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Abstract

Recent efforts in systems immunology lead researchers to build quantitative models of
cell activation and differentiation. One goal is to account for the distributions of
proteins from single-cell measurements by flow cytometry or mass cytometry as a
readout of biological regulation. In that context, large cell-to-cell variability is often
observed in biological quantities. We show here that these readouts, viewed in
logarithmic scale may result in two easily-distinguishable modes, while the underlying
distribution (in linear scale) is uni-modal. We introduce a simple mathematical test to
highlight this mismatch. We then dissect the flow of influence of cell-to-cell variability
using a graphical model and its effect on measurement noise. Finally we show how
acquiring additional biological information can be used to reduce uncertainty introduced
by cell-to-cell variability, helping to clarify whether the data is uni- or bi-modal. This
communication has cautionary implications for manual and automatic gating strategies,
as well as clustering and modeling of single-cell measurements.

Author summary

Populations of cells are often composed of distinct sub-populations, each performing a
unique biological function. A major tool to identify such populations is antibody
staining followed by flow- and mass-cytometry. These technologies boast high
acquisition speed, resolution and sensitivity, measuring ∼ 102 − 105 molecules per cell in
more than 15 different labels. With these data, identification of populations typically
amounts to manually selecting clusters of cells with distinct molecular abundances.
While such a strategy is sufficient for clearly distinct groups, our increasingly refined
definitions of cell populations require objective criteria to partition a population. To
establish the number of unique sub-populations, we apply both Hartigan’s dip test and
a new method which examines the statistical mode of abundance distributions. We
demonstrate the necessity of these criteria both mathematically and experimentally. We
find that the number of unique populations depends on whether the tag abundances are
scaled linearly or logarithmically, an often overlooked fact. Interestingly, theoretical
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models to explain such distributions are usually treated in linear space, whereas the
experimental data is usually treated logarithmically. This mismatch between the two
representations has the potential to mislead researchers, more so as technology advances
and with it a growing reliance on automatic tools to distinguish populations in
high-dimensional space. We detail an approach relying specifically on higher
multiplexing in measurements that will be useful to circumvent this mismatch.

Introduction 1

Flow cytometry data typically stretches across several orders of magnitude, with 2

fluorescence intensity I readily spanning values between 102 and 105. As such, when 3

binning cytometry data to create histograms or distributions, it is natural to let bin 4

sizes increase as a geometric progression, namely, to evenly bin the logarithm of the 5

fluorescence intensity. As a result, instead of the distribution Q(I) of fluorescence 6

intensity I, one usually analyzes the distribution of log I, which we denote P (log I). 7

Indeed, P (log I) has many advantages: easy display of many orders of magnitude in I, 8

easy to model as a two-component log-normal mixture model (as in [1]), and easy to 9

intuitively understand the effect of changing the voltage gain on the flow-cytometer 10

detector photo-multiplier. While such data presentation has been widely adopted in the 11

field of cytometry out of these practical reasons, a rigorous assessment of this 12

log-transformation reveals unwarranted features. 13

After estimating P (log I), by logarithmically binning or using a kernel-density 14

method, one can formally derive Q(I) as [2], 15

Q(I) = P (log I)

∣∣∣∣ ddI log I

∣∣∣∣ (1)

=
1

I
P (log I) = e−yP (y) ,

with log I ≡ y. 16

Simply plotting Q(I) vs. I is impractical as most of the data inevitably appears 17

crowded against the I = 0 axis. Thus, it is common practice to plot P (log I) or variants 18

thereof which deal with small and negative I values introduced by fluorescence 19

compensation (e.g. ”Logicle” [3], ”VLog” [4] and other transformations [5]). Displaying 20

faithfully flow-cytometry data is not easy, as the logarithmic scale and fluorescence 21

compensation introduce problems that are easy to miss [6] leading to uncertainty in the 22

number of distinct populations present in the data. Previously, attention has been given 23

to the possibility of effects produced by logarithmic binning [7], contrasting the 24

difference between plotting logarithmic histograms P (log I) vs. log I as opposed to 25

rescaling the x-axis by plotting Q(I) vs. log I. However, an additional, potentially 26

confusing situation seems to have been overlooked: the possible appearance of a second 27

mode in P (log I), rendering P (log I) bi-modal, while for the same data only one mode 28

exists in Q(I). This is the focus of this work. 29

When considering biological measurements, I is proportional to the actual copy 30

number of RNA or proteins. When theoretical considerations are applied to biological 31

systems (such as biochemical dynamics [8–12,15], mass-action chemical equilibria, 32

cell-cycle measurements [13] and Hill dose-reponse curves [14]), it is the copy number 33

itself that is under consideration. Despite that, the logarithm of copy number is an 34

appealing quantity because of its approximately Gaussian statistics, yielding insight into 35

details easily lost if the data were to be analyzed only in linear scale. This leads to a 36

mismatch, where for instance models posed in linear space and data plotted in 37

logarithmic space seem unable to be reconciled without invoking additional effects such 38
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as stochastic gene expression noise [15] and cell-to-cell variability [16–18]. Even so, 39

typically one must resort to approximations to analyze noise propagation linearly [8]. 40

The difference between the convenient consideration of the logarithm of abundances 41

and the theoretically-accurate analysis of the linear copy number renders the question of 42

whether Q(I) has one or two modes (3 extrema) relevant in the following ways: (i) the 43

existence of 1 or 3 extrema is often used to infer the fixed points of a dynamic 44

stochastic biochemical network [1,9,15] and other in silico methods [19] (ii) extrema are 45

used to define cell-types in automatic (density based) gating and clustering 46

algorithms [20–25]; (iii) The existence of a clearly bi-modal distribution is used for 47

manual gating (e.g. discerning between activated and un-activated cells) in a way that 48

appears more robust and compelling than it might truly be. It is this potential for 49

confusion when the data is viewed in log-space, which we will elaborate on. 50

The rest of this paper is composed of two parts. In the first part, we point out and 51

analyze the situation where a mismatch between the two representations can happen: 52

we formally state the problem using theoretical modeling of cytometry data as a 53

mixture of two log-normal distributions (colloquially the ”negative” and ”positive” 54

modes), explicitly show situations where two modes appear in P (log I) while only one 55

mode exists in Q(I), and demonstrate this confounding effect on experimental data. In 56

the second part, we analyze the role of cell-to-cell variability in experimental data and 57

show how by measuring a suitable extra dimension one can factor out some of this 58

variability, thus reducing the broadness of the modes sufficiently so as to reduce the 59

mismatch between the two representations. Thus we provide a prescription to design 60

experiments and analyze them so as to resolve the uni-modal vs. bi-modal discrepancy. 61

Theoretical method 62

Cytometry data is often amenable to modeling as a log-normal mixture (e.g. [1]). To 63

demonstrate the log/linear mismatch we consider a mixture of two populations, 64

characterized by the distribution of intensity. We define P (log I) as follows: 65

P (log I) =
(1− α)√

2πσ2
1

e
− (log I−y1)2

2σ21 +
α√
2πσ2

2

e
− (log I−y2)2

2σ22 , (2)

with y1,2 = log I1,2 which are the loci of the centers of the left and right Gaussians in 66

log-space, respectively, and σ1,2 the log-space standard deviations. We then define 67

Q(I) = 1
IP (log I) as in Eq. 1. 68

In Fig. 1, to illustrate with typical measurement values, we set I1 = 100 and 69

I2 = 1000 (arbitrary units) and α = 0.5, while varying σ1 = σ2. This figure presents the 70

three cases we wish to contrast: on the left column, both P (log I) and Q(I) are 71

bi-modal; in the central column, P (log I) is bi-modal whereas Q(I) is uni-modal; on the 72

right column, both P (log I) and Q(I) are uni-modal, a situation which we examine in 73

more detail in Eq. 7. Moreover, we see an example where even when both are bi-modal 74

(left column), the loci of the modes are different. 75

The question of uni/multi modality has been investigated before, in the context of 76

modeling flow-cytometry data [19], by using Hartigan’s dip test for uni-modality [26]. 77

Briefly, Hartigan’s dip statistic measures the maximum difference between the empirical 78

distribution and the uni-modal distribution that minimizes that maximum difference. 79

This is compared to the appropriate null distribution which is, in this case, the uniform 80

distribution, to give pu, a p-value for uni-modality. In Fig. 1, we report pu for the data, 81

according to Hartigan’s test, by simulating 104 events drawn from the distributions 82

under consideration [27]. We note that for the central column, Hartigan’s test quantifies 83

PLOS 3/15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/150201doi: bioRxiv preprint 

https://doi.org/10.1101/150201
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 1. Log-normal mixture showing the mismatch in the number of peaks.
Top row, red: P (log I) vs. log I normalized to max. Middle row, magenta: Q(I)
vs. I normalized to max, and plotted on a narrower range. Bottom row, blue: Q(I)
vs. log I normalized to max, rescaling the x-axis as in Ref. [7]. In the central column
where σ1 = σ2 = 0.8, P (log I) shows explicit bi-modality whereas Q(I) is uni-modal.
Right column: in this case, the variance σ2 is large enough (see Eq. 7) that P (log I)
has only one mode even though it is modeled as a mixture. pu is Hartigan’s dip-test
p-value for uni-modality. In the middle column plots, Hartigan’s test further agrees that
P (log I) is bi-modal whereas Q(I) isn’t. In all cases: I1 = 100, I2 = 1000, α = 0.5
varying σ1,2 = {0.4, 0.8, 1.2}.

and concurs with a visual inspection of the data, i.e., whereas P (log I) is not uni-modal 84

(pu = 0), for the corresponding Q(I) it is uni-modal (pu = 1). 85

We define y = log I and proceed to the number of extrema for P (y) and Q(I). It is 86

possible to discern between one or three extrema of the distribution P (log I), 87

corresponding to one or two modes (respectively) by counting the number of solutions 88

for d
d log IP (log I) = 0. Similarly, d

dIQ(I) = 0 can have either one or three solutions. 89

This raises the possibility of there being three extrema (two modes) for P (log I) 90

whereas only one mode in Q(I). We explicitly evaluate the extrema of the mixture of 91

log-normal distributions by solving, 92

dP (y)

dy

∣∣∣∣
y=y∗

= − (y∗ − y1)

σ2
1

(1− α)√
2πσ1

e
− (y−y1)2

2σ21 − (y∗ − y2)

σ2
2

(α)√
2πσ2

e
− (y−y2)2

2σ22

= 0

which by algebraic rearrangement, 93

(y∗ − y1)/σ2
1

(y2 − y∗)/σ2
2︸ ︷︷ ︸

S3(y∗)

=
σ1
σ2

(
α

1− α

)
e

(y∗−y1)2

2σ21 e
− (y∗−y2)2

2σ22︸ ︷︷ ︸
F (y∗)

, (3)

provides a more transparent form. 94

Here we refer to the LHS and RHS as S3(y) and F (y), respectively. In like, 95

computing the extrema of the linear scale distribution amounts to dQ(I)
dI

∣∣∣
log I=y∗

= 0, 96
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which by change of variable is equivalent to, 97

P (y∗) =
dP (y)

dy

∣∣∣∣
y=y∗

, (4)

and by substitution, 98

y∗−y1
σ2
1

+ 1

y2−y∗
σ2
2
− 1︸ ︷︷ ︸

S1(y∗)

= F (y∗) (5)

We refer to the quantity on the LHS, S1(y). Thus we have introduced the following 99

functions, 100

F (y) =

(
α

1− α

)(
σ1
σ2

)
e

(y−y1)2

2σ21
− (y−y2)2

2σ22 (6)

S1(y) =

y−y1
σ2
1

+ 1

y2−y
σ2
2
− 1

S3(y) =
(y − y1)/σ2

1

(y2 − y)/σ2
2

.

F (y) is the ratio of the two Gaussians in Eq. 2 and is therefore always non-negative; 101

this implies that any extremum y∗ must satisfy S1(y∗) ≥ 0 and S3(y∗) ≥ 0. We note 102

that in Eq. 4 the condition for extrema in Q(I) requires that d
dyP (y) = P (y) whereas, 103

of course, extremizing P (log I) sets its derivative to zero, demonstrating the fact that 104

the loci of the modes for P (log I) and Q(I) are manifestly different. The region where 105

the log-space distribution shows a second mode occurs when Eq. 3 for S3 admits three 106

solutions whereas Eq. 5 for S1 admits only one. Given that Eq. 3 and 5 are 107

transcendental, a graphical way to asses the number of solutions is to plot 108

F (y), S1(y), S3(y) and count the number of times S1 and S3 intersect F . 109

In Fig. 2, we present an example of this graphical method. The mismatch between 110

the number of extrema of P (log I) and Q(I) is apparent whenever (red curve) S3(y) 111

intersects F at 3 points, whereas (blue curve) S1(y) only intersects F once. 112

In the plots along the diagonal, we have σ1 = σ2 (as in Fig. 1) which simplifies F (y) 113

since the quadratic (Gaussian) terms cancel, leaving only an exponential. This leads to 114

a simple criterion to determine whether P (log I) itself admits one or two modes - 115

previously in Fig. 1(right) we saw an example where P (log I) is uni-modal despite being 116

generated from a mixture. Graphically, we see that for S3 = F to have 3 solutions, 117

logS3(y) has to have a slope less than logF (y) about the extremum y∗. In other words, 118

d
dy logS3(y)

∣∣∣
y∗
≤ d

dy logF (y)
∣∣∣
y∗

, with equality as the threshold between 1 and 3 119

extrema, similarly to the way Landau theory defines the critical point in second order 120

phase transitions [28]. This leads to the following intuitive criterion, 121

(y∗ − y1)(y2 − y∗) ≥ σ2 =⇒ 3 extrema for P (log I) , (7)

which states that for P (log I) to appear bi-modal, it must have an extremum (y∗) such 122

that the variance of the individual Gaussian components of P (log I) must be smaller 123

than the distance between y∗ and the Gaussian centers. Substituting for y∗ ≈ log 316, 124

y1 = log 100 and y2 = log 1000 and σ2 = 1.44 we see that the criterion in Eq. 7 is not 125

satisfied and indeed in Fig. 1(right) and Fig. 2(bottom right) we see that P (log I) has 126

only one mode. A similar condition can be derived for Q(I), that is, 127
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Fig 2. Graphical solution to count the number of extrema. When the red
(blue) curves intersect the dashed black line, P (log I) (Q(I)) are extremized. Dashed
black: F (y), blue: S1(y) and red: S3(y). The mismatch between the number of extrema
of P (log I) and Q(I) is apparent when the red curve intersects F at 3 points, whereas
the blue curve only intersects F once. In both cases, the loci of the extrema are
different for the two distributions. The plots along the diagonal (which correspond to
the cases in Fig. 1) show the case σ1 = σ2 which simplifies F (y) to a straight line (the
general case being a parabola) in these axes.

d
dy logS1(y)

∣∣∣
y∗
≤ d

dy logF (y)
∣∣∣
y∗

, such that, 128

(y∗ − y1 + σ2)(y2 − y∗ − σ2) ≥ σ2 =⇒ 3 extrema for Q(I) , (8)

it is, however, hard to compare the two bounds analytically because the y∗ which 129

extremizes P (log I) is different from the y∗ which extremizes Q(I). 130

As a check for the predictive power of Hartigan’s test with regards to experimental 131

data, we apply it on a log-normal mixture comparing its predictive power as a function 132

of the number of tests and number of events in each test [27]. In Fig. 3, we test it on 133

the situation in Fig. 2(top,middle) in which Q(I) is weakly bi-modal, meaning that its 134

bi-modality is nearly marginal (σ1 = 0.4 and σ2 = 0.8). The Hartigan probability of 135

unimodality (pu) is not sensitive to the number of bootstrap tests in a reasonable range 136

but becomes strongly predictive of the (weak) bi-modality only when there are more 137

than 105 events. Such an abundance of cells may not always be available in typical flow 138

cytometry data, especially for sub-populations which have been selected (gated) and 139

may comprise only a small fraction of all the cells acquired. Fig. 3 supports that in such 140

weakly bi-modal situations, Hartigan’s p-value should be treated cautiously, a situation 141

which we will encounter in Fig. 6. 142

We conclude this theoretical section of the manuscript by making a more intuitive 143

argument. Above, we have demonstrated the theoretical existence of a situation where 144

P (log I) has two modes when Q(I) has only one. But how does this come about ? 145
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Fig 3. Testing Hartigan’s p-value pu for uni-modality on a weakly bi-modal
log-normal mixture. The heat-map shows pu as a function of the number of
bootstrap tests and number of events in each test, for σ1 = 0.4 and σ2 = 0.8 as in
Fig. 2(top,middle). With less than ∼ 105 events, Hartigan’s test for this case may
misidentify the number of peaks.

Intuitively, by binning in logarithmic scale, we are effectively making the bin sizes grow 146

as I increases. A larger bin can only lead to a higher count in that bin and so we might 147

stumble upon a regime where this creates a quasi-mode. Probing further, we established 148

a simple criterion (Eq. 7) where by making the underlying Gaussian mixture composed 149

of too-close-together Gaussians, even in P (log I) there exists only one peak. 150

Experimental results 151

We now apply our analysis to experimental data, namely the measured distribution of 152

Extracellular Signal-regulated Kinase (ERK) phosphorylation (ppERK) signaling in 153

CD8+ primary mouse T-cells responding to antigens and inhibited by the SRC inhibitor 154

Dasatinib. These data were acquired in exactly the same manner as the experiments in 155

Ref. [1], for brevity we refer the reader there for all experimental details. In Fig. 4(A) 156

we see how a commercially-available analysis software (FlowJo [29]) plots the 157

distribution of ppERK in such an experiment, which clearly shows a bi-modal structure. 158

Fig. 4(B) plots those same data when subjected to logarithmic binning P (log I), giving 159

the two modes as in FlowJo (red dots) whereas Q(I) has a single mode (blue dots). We 160

fit P (log I) as a Gaussian mixture. This is followed in Fig. 4(C) by the same extrema 161

analysis as in Fig. 2, revealing that indeed Q(I) has a single maximum. 162

Immunologists have relied on cytometry for over forty years to identify new cell 163

populations, often based on manual gating of cytometry data. The success of this 164

method (with validation by identification of new transcription factors) stands in 165

contrast with the danger of generating modes in the distributions of log-transformed 166

data P (log I), as presented above. This is particularly cogent to recent efforts at 167

clustering single-cell measurements in high-dimensional space by mass cytometry. 168

Hence, we wondered whether gating in logarithmic scale could be justified a posteriori, 169

based on biological knowledge. We aimed to include additional information in our 170

analysis such that the biological significance of the distributions in our single-cell 171

measurements is better captured. 172
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Fig 4. Analysis of experimental data reveals the effect we describe in a real
scenario. (A) Histogram of ppERK as plotted by FlowJo [29]; (B) Histograms for
P (log I) (red,dots) and Q(I) (blue,dots) vs. log I as estimated from the data binned
logarithmically. Note that plotting Q(I) vs. log I is somewhat unusual but allows both
P and Q to be plotted on the same axis. The red line shows the result of fitting
P (log I) to a gaussian mixture model (Eq. 2), and the blue line is the estimate for Q(I)
from P (log I) according to Eq. 1. The blue star indicates the location of the only
maximum for Q(I) obtained from Eq. 5, despite the obvious two maxima in P (log I)
(red). Hartigan’s uni-modality p-values for log I (red) and I (blue) are taken directly
from the data without binning, corroborating that log I is bi-modal whereas I is
unimodal. (C) Graphic solution of the extrema conditions as in Fig. 2 explicitly reveals
the three solutions for P (log I∗) (red line intersects black dashed) as opposed to the
single solution for Q(I∗) (the blue line intersects the black dashed line up beyond the
plotted area, solution also plotted as blue star in the middle plot), indicating that Q(I)
has only one mode.

In Fig. 5(A), we show the experimental data we will use in our proposed solution. 173

Here we returned to our single-cell measurements of ERK phosphorylation in primary 174

mouse T cells in Ref. [16]. We show a heat map of the joint distribution of ppERK 175

(IppERK) and total ERK1 (IERK1) expression in mouse CD8+ T-cells. Notably, 176

whereas the two modes of ppERK significantly overlap when plotted in the marginal 177

distribution P (log IppERK), ppERK expression correlates with total ERK1 levels in 178

their joint distribution P2(log IppERK , log IERK1). Each cell’s state encodes another 179

latent variable, its activation status - which tells if the cell has been successfully 180

activated by the stimulus. To deduce the activation status, it is common practice to use 181

manual gating of the data by drawing of a boundary between the active and inactive 182

states. To account for the correlation between ERK1 and ppERK we consider two 183

manual gating strategies: (i) perpendicular gating (dashed red) according to 184

P (log IppERK) with IppERK > ppERK∗ considered an activated cell, and (ii) diagonal 185

gating according to the apparent correlation in P2 (dashed grey). We set the diagonal 186

gate with a slope of unity, meaning that we take the dividing line, reflecting 187

proportionality ppERK ∝ ERK1, as a good way to partition the two states. We define 188

”Inactive” to the left of the dashed line, and ”Active” to the right of it. 189

To understand the structure of these data, it is important to characterize explicitly 190

the dependency structure of our observables (ERK1, ppERK), the latent activation 191

status, and the influence of external factors on these three. The existence of two peaks, 192

in ppERK which appear distinct from each other but correlated with ERK1 levels, 193

guides us to use a Bayesian network to capture these features in the data as a graphical 194

model. First - we test whether ERK1 and the cell’s activation status are independent. 195

In S1 Fig we see that whereas independence implies that 196

P (logERK1) = P (logERK1|Activation), in fact there is a weak dependence between 197
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them regardless of whether we employ a vertical (red) or a diagonal (grey) gate (the 198

diagonal gate showing a weaker dependence). The weak dependence between activation 199

state and ERK1 levels is reasonable, if we account for cell-to-cell variability, since for a 200

given stimulus some cells inevitably respond differently from the typical cell [30]. We 201

summarize the causal structure for this system in Fig. 5(B) which depicts a probabilistic 202

graphical model [31] of the flow of influence from cell-to-cell variability and activation 203

signal, to ERK1 levels and activation status, and finally to the distribution of ppERK. 204

We depict the pair ERK1-ppERK in a template, to suggest to the reader the existence 205

of multiple other pairs. Importantly, in what follows we show how to better resolve the 206

log-space peak; this recipe, together with the model in Fig. 5(B) can be used a priori in 207

automatic gating and clustering algorithms to prevent some of the mismatch between 208

logarithmic and linear binning strategies. For stochastic modeling, such a structure 209

presents an opportunity to analyze the structure and propagation of noise in the 210

system [8,32]. 211

We treat the broadness of ppERK modes as generated by cell-to-cell variability in 212

total ERK1 content - a reasonable assumption since the noise in the phosphorylation of 213

ERK is negligible in comparison [33]. We further neglect the indirect influence between 214

activation status and ERK1 levels due to its weakness (checked in S1 Fig). Thus we 215

approximate that the conditional independence between ERK1 and activation status 216

(given that both are influenced by cell-to-cell variability) is true independence. This 217

implies an approximately linear relation IppERK ∝ IERK1 given activation status. We 218

define the normalized intensity Ĩ = IppERK/IERK1 as the ratio of ppERK to ERK1 219

intensity, thereby eliminating the linear dependence of ppERK on ERK1 levels and 220

reducing uncertainty due to cell-to-cell variability. The resulting P (log Ĩ) may boast a 221

sufficiently reduced noise in ppERK such that a clear bi-modal signature appears 222

regardless of logarithmic or linear binning of Ĩ. In Fig. 6 we show such an example, 223

where in Fig. 6(A,B), P (log I) and Q(I) do not agree on the number of modes, whereas 224

in Fig. 6(C,D) Ĩ = IppERK/IERK1 do agree. These data have order 25,000 events and 225

so, similarly to Fig. 3, Hartigan’s test may not identify the number of peaks correctly, 226

as is indicated in the pu values. 227

Thus we demonstrate how by suitably accounting for cell-to-cell variability one can 228

reduce the measured noise so as to circumvent the mismatch in the number of modes 229

between the logarithmic and linear treatment. For testing bi-modality, whereas our 230

method relies on fitting a Gaussian mixture, Hartigan’s test requires no fitting yet may 231

lack statistical power when applied to typical experimental situations. 232

Conclusion 233

The scale-dependent bi-modality as demonstrated in Fig. 4 and Fig. 6(A,B) may be not 234

uncommon. Specifically, one must take extra care when attempting to manually gate, 235

automatically cluster or build dynamical models which rely on an apparent bi-modal 236

structure, as it might depend on whether the data was log-transformed or not. This 237

becomes increasingly relevant as cytometry moves forward to higher dimensional 238

measurements which become tractable only with automatic gating schemes. Instead, 239

one might consider plotting Q(I) on the log-log scale, a presentation which preserves 240

the number of maxima, at the expense of the measure of the distribution. It is possible 241

to ameliorate the mismatch between the two scales, as we demonstrate in Fig. 6(C,D), if 242

one can simultaneously measure correlated observables (in our example, ppERK and 243

ERK1). This allows to control for cell-to-cell variability, increasing the resolution of the 244

data. Recently, this favorable scenario has become more attainable with the 245

introduction of mass cytometry - where one can rely on a large number of channels 246
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Fig 5. Analysis of experimental data with two correlated measurements.
(A) The joint distribution P2(log IppERK , log IERK1) as a heat map with its marginals
plotted on the top and on its right. The correlation between ppERK and ERK1 levels is
clear in the data. Dashed red (grey) lines are proposed manual gates according to the
marginal (joint) distributions P (log IppERK) (P2(log IppERK , log IERK1)). (B)
Bayesian network depicted as a graphical model to show the flow of influence on the
measurement of ppERK. The pair ERK1 and ppERK are in a template to suggest that
there exist other pairs of correlated observables that depend on activation status and
cell-to-cell variability.
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Fig 6. By dividing ppERK readings by ERK1, we can ameliorate the
mismatch between the two representations. (A) P (log I) and Q(I) vs. log I
(dots: data, lines: gaussian mixture fit) together with (B) their extrema analysis,
showing that the second mode in log ppERK does not exist if the data is linearly
binned. (C) The same treatment but for Ĩ = IppERK/IERK1, (D) shows that both Ĩ

and log Ĩ have two modes, thus normalizing ppERK levels by total ERK1 maintains the
bi-modal structure both in P (log Ĩ) and in Q(Ĩ).
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without compromising the flow-cytometry panel. Based on the analysis carried out in 247

this paper, we conjecture that such extra channels, chosen wisely, can provide automatic 248

clustering/gating algorithms the right information needed to make more reliable 249

clustering and population defining. This is a simple way to introduce knowledge of the 250

biological structure of the data into otherwise objective clustering algorithms, without 251

compromising their objectivity. We propose and test some features of a graphical model 252

that captures the structure of such dependencies in a way potentially useful for those 253

interested in automatic gating and clustering algorithms. Though we caution on the use 254

of P (log I), we find it remarkable how well the distribution of biological quantities can 255

be modeled as a log-normal mixture. This highlights the deep and still little understood 256

connection between distributions observed in living things and their relation to the 257

logarithm of abundance, a subject likely to puzzle researchers for years to come. 258

Supporting information 259

S1 Fig Test for weak dependence of ERK1 and activation status. Whereas 260

independence implies that P (logERK1) = P (logERK1|Activation), in fact there is a 261

weak dependence between them regardless of whether we employ a vertical (red, defined 262

by threshold value ppERK∗) or a diagonal (grey) gate (the diagonal gate showing a 263

weaker dependence); this is observed directly by noting that the different distributions 264

in S1 Fig do not lie on top of each other. To quantify this difference, the inset shows the 265

mutual information between P (logERK1) and P (logERK1|Activation), with the 266

circle pointing out the particular concentration of stimulus (out of all concentrations 267

used in Ref. [16]) we chose to plot in this example. The chosen concentration has the 268

highest mutual information, i.e., the lowest ability to discern between the active and 269

inactive states. 270
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