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INTRODUCTORY PARAGRAPH: 
Above-ground biomass production is a key target for studies of crop abiotic stress tolerance, 
disease resistance and yield improvement. However, biomass is slow and laborious to evaluate in
the field using traditional destructive methods1. High-throughput phenotyping (HTP) is widely 
promoted as a potential solution that can rapidly and non-destructively assess plant traits by 
exploiting advances in sensor and computing technology2. A key potential application of HTP is 
for quantitative genetics studies that identify loci where allelic variation is associated with 
variation in crop production. And, the value of performing such studies in the field, where 
environmental conditions match that of production farming, is recognized3. To date, HTP of 
biomass productivity in field trials has largely focused on expensive and complex methods, 
which – even if successful – will limit their use to a subset of wealthy research institutions and 
companies with extensive research infrastructure and highly-trained personnel. Even with 
investment in ground vehicles, aerial vehicles and gantry systems ranging from thousands to 
millions of dollars, there are very few examples where Quantitative trait loci (QTLs) detected by 
HTP of biomass production in a field-grown crop are shown to match QTLs detected by direct 
measures of biomass traits by destructive harvest techniques4. Until such proof of concept for 
HTP proxies is generated it is unlikely to replace existing technology and be widely adopted. 
Therefore, there is a need for methods that can be used to assess crop performance by small 
teams with limited training and at field sites that are remote or have limited infrastructure. Here 
we use an inexpensive and simple, miniaturized system of hemispherical imaging and light 
attenuation modeling to identify the same set of key QTLs for biomass production as traditional 
destructive harvest methods applied to a field-grown Setaria mapping population. This provides 
a case study of a HTP technology that can deliver results for QTL mapping without high costs or 
complexity.
  
TEXT:
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Current rates of yield gain are unlikely to meet the projected demands of global 
population growth and development5,6. High-throughput phenotyping (HTP) techniques rapidly 
evaluate plant performance and leverage advances in genotyping7–9, the development of mapping 
populations10–12, and the design and analysis of quantitative genetic experiments to ultimately 
develop a predictive understanding of genotype-to-phenotype relationships13,14. This 
understanding enables an accelerated and more targeted approach to crop improvement2,3. 
Biomass production generates both the calories that are partitioned towards food consumption 
and the raw feedstock used for carbon efficient biofuels15. Biomass productivity per unit ground 
area must be maximized to ensure profitability and avoid displacement or disturbance of natural 
ecosystems16. However, biomass is a complex trait that is difficult to assess in the field and 
usually is measured by destructive harvest1. We addressed this challenge by testing the ability of 
hemispherical imaging to identify genomic regions associated with above-ground biomass 
production. The successful application of hemispherical imaging was evaluated with respect to 
its strong phenotypic correlation and high degree of QTL co-localization with directly validated 
destructive harvest traits. 

Numerous remote sensing methods have been demonstrated to correlate with destructive 
measures of biomass production and can be considered proxy measurements17–20. These include 
multispectral and hyperspectral indices of radiation reflected from crop canopies, as well as 
measures of canopy light distribution. Often, a combination of sensor outputs and additional 
processing techniques such as regression, inverse modeling, and multivariate analysis are 
required to produce relevant phenotypes1,21. Tanger et al (2017) used a combination of tractor-
mounted multispectral reflectance and ultrasonic sensors to detect manually validated QTL 
associated with biomass in rice4. Similar measurements have been deployed in other field-grown 
crops using ground vehicles, aerial vehicles and gantries requiring investment in equipment that 
often exceeds $100,000s - $1,000,000s22,23. In addition to the expense of HTP equipment, many 
techniques under development require extensive research infrastructure, permits (e.g. flight 
authorization) and complex data analyses. Highly trained personnel are consequently needed to 
support both data acquisition and analysis. Unfortunately, these factors combine to mean that the 
majority of HTP techniques can only feasibly be used by large research intuitions and 
companies. And, even in those organizations deployment of HTP has to be limited to a few high 
priority projects. Cheap methods of HTP that rely on simpler technology could greatly increase 
how widely HTP is adopted, and support work in a broader diversity of environmental conditions
and crops outside of the major growing regions of the world’s staple crops.

Hemispherical imaging captures the geometry of sky openings and models the 
attenuation of solar radiation by the canopy to estimate canopy properties, such as Leaf Area 
Index (LAI; leaf area per unit ground area)24,25. The ability to account for the influence of both 
stems and leaves allows its use for estimating Plant Area Index (PAI; above-ground plant tissue 
area per unit ground area) in herbaceous systems26. Canopy properties estimated from 
hemispherical images use mechanistic and biophysical models rather than reliance on statistical 
relationships between sensor and subject. Therefore, they should be less context dependent and 
more widely applicable to different crops, growing conditions, and management practices than 
other methods that require a training model to relate remotely sensed data to traditional measures
of crop productivity27 (e.g. Busemeyer et al 2013). Traditionally, hemispherical photography 
equipment is tall, bulky, and not suited to crop HTP. In this study a miniature remotely triggered 
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digital camera designed for point-of-view action sport videography (GoPro Hero 3+) was 
modified with a miniature hemispherical lens and mounted to a custom-built self-leveling gimbal
(Fig. 1 a-c). The resulting system was small enough to fit between tight crop rows and below the 
crop canopy. 
 

An F7 recombinant inbred line (RIL) mapping population with 186 genotypes generated 
from a cross between the cultivated Setaria italica and its weedy ancestor Setaria viridis 
provides an ideal platform for assessing the ability of hemispherical imaging to detect QTL 
related to above-ground biomass production due to its wide diversity of morphologies and multi-
fold variation in biomass production7,11. As a model C4 grass emerging as a tool for systems-level
biology, the genus Setaria has the advantage of being closely related to C4 grass food and fuel 
crops such as maize, sorghum, miscanthus, and switchgrass, while having a smaller stature, 
faster life cycle, and diploid genome28.

First, a validation experiment determined whether the customized imaging system was 
suitable for HTP in Setaria. Setaria viridis, Setaria italica, and the phenotypically intermediate 
RIL #161 derived from crossing these two species were used as test material because they vary 
widely in canopy architecture and rate of biomass production. Each genotype was grown in eight
replicated plots of which four were randomly chosen for measurement. An independent plot for 
each genotype was selected for collection of both hemispherical images and destructive canopy 
and biomass harvest measures on four dates distributed across the growing season to generate a 
wide range of canopy closures and biomasses with which to evaluate hemispherical imaging. 
Notably, total above-ground biomass correlated more strongly with PAI (r2=0.79) than it did with
destructively measured LAI (r2=0.55, Fig. 1d). This highlights the ability of hemispherical 
imaging to robustly assess the total amount of plant tissue over an area of ground across a 
diversity of short, herbaceous grass canopies in a non-destructive manner. Data is easy to acquire
and analyze since the camera, lens and analysis software are all commercially available. 

Next, the ability of hemispherical imaging to detect QTLs for biomass production was 
tested in a Setaria F7 RIL mapping population. 186 RILs were planted in a randomized design 
with six check plots for each parent. Hemispherical images, manually measured morphological 
traits, and destructive harvest weight data were collected from the same plots of each genotype. 

Results from manual measures of developmental, architecture, and biomass production 
traits showed that the segregating population was phenotypically diverse for a comprehensive set
of destructive harvest traits assessed at maturity, including total above-ground biomass, tiller 
number, and height (Table S1). 

Principal component analysis (PCA) was performed on directly measured traits – leaf 
mass, panicle mass, stem mass, branch number, clump spread, culm height, tiller height, days-
after-sowing until panicle emergence, and reproductive-to-vegetative mass ratio – to simplify the
description of plant performance relative to hemispherical imaging estimates (Fig. 2). The first 
three principal components (PCs) with eigenvalues greater than 1.00 together explain 76% of the
variation in the dataset. The trait loadings based on eigenvectors in each of these three 
orthogonal PCs appear to describe three plant growth components: (1) biomass production, (2) 
bushiness, and (3) partitioning of biomass to vegetative versus reproductive structures. Days-
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after-sowing until panicle emergence varied significantly within the RIL population, loading 
moderately in both PC1 and PC3, but not strongly in any single PC. PC1 accounted for 44% of 
overall variation and approximates above-ground biomass production based on strong loadings 
for culm height, tiller height, leaf mass, panicle mass, and stem mass. PC2 accounted for 20% of 
variation and approximates plant bushiness based on strong loadings for clump spread, branch 
number, and tiller number. PC3 accounted for 12% of variation and approximates the partitioning
of biomass to vegetative versus reproductive structures based on strong loadings for panicle mass
and reproductive-to-vegetative mass ratio. 

These apparent descriptions, while not definitive, are biologically intuitive and provide a 
framework for interpreting the genetic and phenotypic attributes of a plant in the field. 
Correlation analysis of all traits measured shows that PAI correlated positively and strongly with 
total mass, vegetative mass, and with the other traits that loaded strongly into PC1 to describe 
biomass production (Fig. 3). 

Quantitative trait loci analysis detected 53 significant QTL across 12 traits  (Table S2). 
The identified loci clustered in groups corresponding with the segregation of traits into the three 
different PCs (Fig. 4). This suggests that the variation underlying the separation of PCs is driven 
by genetic programs related to biomass production, bushiness, and partitioning of biomass to 
vegetative versus reproductive structures rather than uncontrolled physiological or environmental
factors.   

QTL for PAI were co-located with all four of the hotspots of QTL for traits related to 
above-ground biomass production evaluated in destructive harvests. These four hotspots found 
on chromosomes 2, 5, 8, and 9 featured QTL for between five and seven traits, including PAI, 
total mass, vegetative mass, leaf mass, stem mass, culm height, and tiller height. All PAI and 
biomass productivity QTL within the four hotspots had positive additive effects. Together, these 
loci appear to represent the primary features of the genetic architecture of above-ground biomass 
production in Setaria. There was very little overlap between the location of these QTL hotspots 
for biomass production and QTL for traits associated with bushiness or vegetative-to-
reproductive biomass ratio.  Single QTL each for PAI and leaf mass co-localized on chromosome
8 and both had positive additive effects. Additionally, two isolated QTL for leaf mass and culm 
height did not overlap with QTL for PAI. In contrast to all the other QTLs for traits associated 
with biomass production, QTL for culm height and tiller height had negative additive effects and 
co-located with a single QTL for reproductive-to-vegetative mass ratio (5@100). There was also 
very close correspondence between QTL identified for PAI and other productivity traits in the 
study with an independent field experiment on the same RIL population in Oklahoma29. This 
provides strong evidence in support of using HTP of PAI to evaluate the genetic architecture of 
field-grown grass crops biomass productivity. 

Twelve QTL for traits related to plant bushiness and nine QTL for traits related to 
partitioning of biomass to vegetative versus reproductive structures were detected. Notably, there
was minimal overlap between QTL for PAI and those for traits associated with plant bushiness 
and biomass partitioning rather than biomass production. So, while hemispherical imaging is a 
powerful tool for assessing the genetic architecture of productivity traits in the field, other more 
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complex imaging techniques or laboratory based methods will be needed to quickly phenotype 
plant architectural traits30.

QTL for PAI captured the main features of the genetic architecture for directly measured 
traits related to biomass productivity (PC1), but in a non-destructive and far less laborious 
manner and without the need for intermediate calibration models. This was achieved with a 
minimal number of genotypes (186), replicates (1), and subsampling (2), confirming the 
method’s power to detect the genetic components of variation in biomass productivity. In 
addition to its high detection fidelity, hemispherical imaging has the characteristics of an ideal, 
scalable HTP technique. Compared to the manual traits that it parallels, hemispherical imaging is
very efficient (4 person-hours for image collection and 7 for image analysis compared to 148 
person-hours for destructive biomass harvest and 15 person-hours for sample weighing). The 
equipment used to collect and analyze hemispherical images is inexpensive and commercially 
available. This simplicity, low-cost and universally applicable principle of operation mean that 
the method could be deployed on diverse crops at any location by a small team of personnel with
limited training. The equipment is compact and lightweight, meaning that  it can also be 
deployed on a rover to further accelerate image collection, improve the signal-to-noise ratio, and 
uncover the temporal dynamics of biomass productivity.  

METHODS SUMMARY:
Validation experimental design

Setaria viridis and Setaria italica, the parents of the F7 RIL population, and the 
phenotypically intermediate RIL #161 were grown on the South Farms at the University of 
Illinois Urbana Champaign in summer 2014. The field site is rain-fed, tile-drained, has a deep, 
organically rich, Flanagan/Drummer series type soil. RIL #161 was selected as a phenotypic 
intermediate between S viridis and S italica because of its placement in the 50th percentile for 
both culm height and tiller number. The experiment was a randomized complete block design 
with all three genotypes replicated in eight plots of which four were randomly chosen for 
measurement. Each plot was 4 m2 with 25 cm grid spacing between plants. Data was collected 
from an independent plot of each genotype on four dates through the growing season. This 
resulted in significant variation in height, biomass production, canopy architecture, and PAI. 
Measured plots were not used for subsequent data collection. 

First, non-destructive estimates of PAI were generated using HemiView software (Delta-
T Devices) to analyze 6 canopy hemispherical photographs taken either within or between 
planting rows near the plot center under diffuse light conditions (pre-dawn, dusk, or high cloud 
cover). Hemispherical photographs were taken with a GoPro Hero 3+ digital camera modified 
with a fully hemispherical lens and mounted on a miniature self-leveling gimbal. Second, 8 or 16
plants (depending on collection date) were harvested from each plot, and separated into leaf, 
stem, and reproductive tissues. Fresh leaves were laid flat and photographed with a digital SLR 
camera (Cannon EOS 7D, 50mm lens) alongside a scaling object to allow estimation of total leaf
area using ImageJ (NIH). All tissues were then dried at 65oC and weighed. 
QTL experimental design 

186 F7 recombinant inbred lines from an interspecific cross between Setaria italica x 
Setaria viridis were evaluated on the South Farms at the University of Illinois Urbana-
Champaign in summer 2014. Seeds were germinated in greenhouses and transplanted by hand 
into a mechanically tiled field 7 days after sowing. The experiment was an un-replicated 
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randomized design with six check plots for each parent. Data was collected from a single plot 
(36 plants, 1 m2, 20 cm grid spacing between plants) of each RIL and six plots of each parent 
genotype. 
Climate conditions

Over the duration of the validation experiment, the average air temperature was 21.74oC, 
the average humidity was 72.34%, and the cumulative rainfall was 37.23 cm. Over the duration 
of QTL experiment, the average air temperature was 19.37oC, the average humidity was 78.59%, 
and the cumulative rainfall was 18.85 cm. 
Phenotyping

Panicle emergence was measured as the number of days after sowing at which the panicle
head was seen past the collar of the flag leaf. The angle between the outermost tillers (i.e. clump 
spread) was measured in the field with a modified protractor 50 days after sowing. Non-
destructive estimates of PAI were generated using Hemiview software (Delta-T Devices) to 
analyze 2 canopy hemispherical photographs taken with a GoPro Hero 3+ digital camera either 
within or between planting rows at the plot center under diffuse light conditions at dusk or dawn 
when the canopy was near maximum size prior to senescence at the end of the growing season, 
between 67 and 70 days after sowing. The GoPro camera was customized by replacing the 
standard lens with a 1.39mm 190o fisheye lens and mounted on a self-leveling gimbal in order to 
insure the camera faced upwards from horizontal. The camera was consistently staged such that 
the top of the image was oriented north. Two identical camera setups were used and images were
analyzed by two people. A common set of images were processed and analyzed to confirm a lack
of camera or person bias. End of season destructive harvest was done on three representative 
center plants in each plot beginning 72 days after sowing. Plants were cut at the base, separated 
into leaf, stem, and reproductive tissues, and the following morphological traits were measured. 
Culm height was measured as the length from the base of the plant to the collar of the flag leaf 
on the first emerged tiller. Tiller height was measured as the length from the base of the plant to 
the collar of the flag leaf on the second emerged tiller. Basal circumference was measured with a 
length of twine wrapped around the root crown. Tiller number was measured as the count of 
tillers emerging from the bottommost node. Branch number was measured as the count of 
primary branches emerging from nodes one or higher. The separated leaf, stem, and reproductive 
tissues were dried at 65oC and weighed. Vegetative mass was calculated as the sum of leaf and 
stem mass. Total mass was calculated as the sum of leaf, stem, and panicle mass. All masses 
were standardized by planting density and are reported on a per unit ground area basis. The 
following R packages were used for data analysis and visualization: ggplot2, plyr, reshape2, and 
ggrepel. Data and scripts used in analyses is available in a .zip folder included in the 
supplemental information. 
Data transformation 

Data were normalized using a second power, square root, or cube root transformation. 
Normality was assessed through the R function shapiro.test and the associated histograms and 
Shapiro Wilk’s values. Results of the transformation procedures are shown in Table S1.
Trait correlations 

Trait correlations were tested using the R function cor using pairwise deletion to generate
Pearson’s coefficients of correlation and visualized with corrplot. 
Principle Component Analysis 

Principle component analysis was performed using the R function prcomp, with default 
parameters. Only genotypes with complete sets of observations were used in the principle 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/150144doi: bioRxiv preprint 

https://doi.org/10.1101/150144
http://creativecommons.org/licenses/by-nc-nd/4.0/


7

component analysis. Evaluation of individual eigenvectors for each trait was used to describe the
significant PCs and used to parse the traits into biologically relevant groupings (Fig. 2). The 
three most significant principle components were treated as individual traits in correlation 
analysis. 
QTL analysis

QTL analysis was performed using “foxy_qtl_pipeline” , available at 
https://github.com/maxjfeldman/foxy_qtl_pipeline, written by Max Feldman and adapted from 
R/qtl31,32. QTL detection was done using forward-backward Haley-Knott regression in order to 
build a multiple QTL model from each trait. A genome scan interval of 1 cM and a window size 
of 10 were used. 1,000 permutations were performed to estimate LOD threshold values. Additive
effects were estimated as half the distance between phenotypic averages for the two 
homozygotes. To compare additive effects across traits with different scales, additive effects 
were normalized as a percent of the phenotypic mean33. Co-localized QTL were grouped into 
“clusters” based on their mapping to same or neighboring markers where confidence intervals 
overlapped. Confidence intervals were calculated as the interval where the LOD score was 
within 1.5 units of its maximum. Lander and Botstein (1989) first proposed the use of 2 LOD 
support intervals and more recently Dupuis and Siegmund (1999) provided support for using the 
1.5 LOD interval method34,35. The use of LOD support intervals as a method to estimate the 
location of QTL and define co-localized clusters continues in current plant biology QTL 
experiments36.
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Figure 1 | Customized hemispherical imaging system application to high throughput 
phenotyping of above-ground biomass production. a, A hemispherical lens fitted on a GoPro 
Hero3+ digital camera and mounted on a self-leveling gimbal. The camera unit had maximum 
dimensions of 5.8*4*3.7 cm and the full system was 11*15*13.3 cm. b, The system was used to 
capture fully hemispherical images of a plant canopy. c, Images were thresholded for analysis 
and estimation of Plant Area Index (PAI) using Delta-T Hemiview software. d, The resulting PAI
estimates were correlated to total biomass (filled symbols, solid line) and compared to that 
between Leaf Area Index estimated from destructive harvest and total biomass (open symbols, 
dashed line). Measurements made on parent lines A.10, B.100 and phenotypically intermediate 
RIL#161 together represent a diversity of growth habit and morphology seen across the 
population. Symbols correspond to single plots from which all images and measurements were 
collected 38, 44, 52, and 60 days after sowing. Correlation r2 values are reported for both 
measurements. 
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Figure 2 | Principal component analysis of directly measured biomass traits. Trait loadings 
based on eigenvectors (color-coded by direction and magnitude, blue: positive, yellow: negative)
in each principal component (PC) appear to describe three orthogonal processes: biomass 
production (PC1), bushiness (PC2), and partitioning of biomass to vegetative versus reproductive
structures (PC3). The individual and cumulative contributions of each PC are reported. 

PC1 PC2 PC3
Clump spread 0.0567 0.4673 0.1197
Tiller number 0.1015 0.4358 0.2538

Branch number 0.2357 0.4866 0.1732
Culm height -0.4206 -0.1947 -0.0498

Second tiller height -0.4332 -0.1118 -0.0226
Leaf mass -0.4049 0.2478 0.216
Stem mass -0.4266 0.1527 0.2055

Panicle mass -0.3723 0.3511 -0.3114
Reproductive to vegetative mass ratio -0.0365 0.3092 -0.7965
Panicle emergence days after sowing -0.2837 0.0292 0.2607

Eigenvalue 2.1 1.41 1.09
Proportion of variance 0.44 0.2 0.12

Cumulative proportion 0.44 0.64 0.76
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Figure 3 | Correlation matrix of PAI and directly measured biomass traits. PAI correlates 
strongly and positively with traits associated with biomass production. Blue, yellow, and white 
cells represent positive, negative, and no correlation, respectively, between traits based on 
Pearson correlation coefficient values. PAI=plant area index, CS=clump spread, TN=tiller 
number, BN=branch number, CH=culm height, TH=second tiller height, LM=leaf mass per m2 
ground, SM=stem mass per m2 ground, PM=panicle mass per m2 ground, VM=vegetative mass 
per m2 ground, TM=total mass per m2 ground, RV=reproductive to vegetative mass ratio, 
PE=panicle emergence days after sowing. 
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Figure 4 | QTL mapping for PAI and directly measured biomass traits. Panels 1-9 
correspond to each chromosome in the Setaria genome. Additive effects relativized by 
phenotypic mean are plotted against centimorgan position for each QTL. Error bars represent the 
1.5 LOD score confidence intervals for each QTL’s location. Colored points represent QTL 
corresponding to biomass production (red) bushiness (blue) and partitioning of biomass to 
vegetative versus reproductive structures (black). PAI=plant area index, CS=clump spread, 
BN=branch number, CH=culm height, TH=second tiller height, LM=leaf mass per m2 ground, 
SM=stem mass per m2 ground, PM=panicle mass per m2 ground, VM=vegetative mass per m2 
ground, TM=total mass per m2 ground, RV=reproductive to vegetative mass ratio, PE=panicle 
emergence days after sowing.
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Table S1. Summary of phenotyping results. Mean, number of observations, minima, maxima, range, fold change, and summary of 
transformation procedures for 14 measured traits are reported. 

Trait Mean N Minimum Maximum Range Fold change Transformation Wilks statistic P-value

Basal circumference (mm) 2607.51 195 40.11 8100.00 8059.89 200.94 square 0.98 0.0029

Branch number (count) 3.47 185 1.00 7.39 6.39 6.39 square root 0.99 0.1908

Clump spread (degrees) 3.93 203 2.99 4.89 1.90 0.64 cube root 0.99 0.6265

Culm height (mm) 20.20 188 10.25 27.47 17.22 1.68 square root 0.99 0.3258

Leaf mass (g) 9.07 189 4.41 16.69 12.28 2.79 square root 0.99 0.0459

PAI (m2/m2) 0.91 186 0.25 1.62 1.37 5.46 square root 0.98 0.0172

Panicle emergence (days after sowing) 39.17 210 29.00 49.00 20.00 0.69 0.93 0.0000

Panicle mass (g) 20.12 190 2.88 35.19 32.31 11.23 square root 0.99 0.4337

Reproductive to vegetative mass ratio 1.20 187 0.33 1.52 1.19 3.59 square root 0.93 0.0000

Stem mass (g) 14.22 191 6.87 22.49 15.62 2.27 square root 0.99 0.1684

Tiller height (mm) 359.68 187 113.67 721.67 608.00 5.35  0.99 0.1354

Tiller number (count) 1.81 187 1.26 2.69 1.43 1.14 cube root 0.99 0.0802

Total mass (g) 26.46 187 9.14 43.13 33.99 3.72 square root 0.99 0.5196

Vegetative mass (g) 16.92 188 8.44 28.01 19.57 2.32 square root 0.99 0.2685
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Table S2. Summary of QTL results. Marker name, location, proportion of genotypic variance explained, and relative additive effect 
for QTL identified for 13 measured traits at a 0.05 detection threshold are reported. 

Trait Marker Chromosome
Position

(cM) LOD
Proportion of

variance
Additive relative

effect 
Branch number S1_36617026 1 84.01 6.18 8.9 -0.08
Branch number S3_10844641 3 53.4 4.43 6.23 -0.07
Branch number S5_7622386 5 44.09 5.38 7.67 -0.08
Branch number S6_32411928 6 68.73 3.91 5.45 0.07
Branch number S7_18218515 7 43.93 3.94 5.51 -0.07
Branch number S9_6501061 9 33.94 3.74 5.21 -0.07
Branch number S9_51926088 9 140.72 8.53 12.72 -0.1
Clump spread S2_1368736 2 4.37 4.33 6.26 -0.03
Clump spread S2_3532599 2 18 6.16 9.13 -0.04
Clump spread S2_46536006 2 112.82 4.63 6.71 -0.02
Clump spread S3_18761486 3 68.28 8.2 12.51 -0.03
Clump spread S5_1722371 5 17.26 3.96 5.69 -0.02
Culm height S2_37820883 2 70.03 7.21 13.12 0.06
Culm height S5_42085155 5 100.66 3.99 6.92 -0.04
Culm height S6_1367337 6 10.03 5.07 8.95 0.04
Culm height S9_6295446 9 33.94 4.27 7.45 0.04
Culm height S9_48859174 9 131.48 4.81 8.45 0.05
Leaf mass S1_31298551 1 66.87 3.82 4.45 0.06
Leaf mass S2_37965908 2 71.12 16.1 22.35 0.14
Leaf mass S3_47360417 3 106.7 5.13 6.08 0.06
Leaf mass S5_34517974 5 83.88 12.33 16.2 0.1
Leaf mass S6_2365280 6 17.58 5.61 6.7 0.07
Leaf mass S8_2959300 8 35.91 4.46 5.23 0.06
Leaf mass S9_6724364 9 34.93 9.93 12.6 0.1
PAI S2_37987785 2 71.12 10.94 18.47 0.13
PAI S5_34517974 5 83.88 12.62 21.87 0.13
PAI S6_2365280 6 17.58 4.73 7.27 0.08
PAI S8_6974146 8 42.4 6.74 10.67 0.09
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PAI S9_6724364 9 34.93 4.27 6.52 0.08
Panicle emergence S2_43829684 2 92.82 5.46 11.63 0.03
Panicle emergence S7_32133319 7 99.94 5.13 10.87 0.04
Panicle mass S2_41096419 2 80.96 5.79 12.09 0.1
Panicle mass S5_34517974 5 83.88 5.22 10.83 0.09
Panicle mass S7_32133319 7 99.94 6.27 13.19 -0.15
Reproductive to vegetative mass ratio S5_4501200 5 34.5 5.22 8.49 0.05
Reproductive to vegetative mass ratio S5_41999990 5 100.41 8.16 13.85 0.07
Reproductive to vegetative mass ratio S6_7525462 6 40.63 7.76 13.08 -0.08
Reproductive to vegetative mass ratio S7_32133319 7 99.94 7.18 12.01 -0.09
Second tiller height S2_37820883 2 70.03 6.96 13.24 0.12
Second tiller height S5_32800961 5 79.01 4.39 8.05 0.09
Second tiller height S5_42113193 5 100.9 5.31 9.87 -0.1
Second tiller height S6_1682903 6 12.47 5.59 10.43 0.09
Second tiller height S9_6724364 9 34.93 4.46 8.19 0.09
Stem mass S2_37820883 2 70.03 9.15 18.11 0.11
Stem mass S5_29574617 5 69.56 4.39 8.12 0.06
Stem mass S6_2516340 6 18.48 7.39 14.27 0.09
Total mass S2_37820883 2 70.03 5.89 12.47 0.1
Total mass S5_29574617 5 69.56 6.47 13.8 0.09
Total mass S6_2516340 6 18.48 4.38 9.07 0.08
Vegetative mass S2_37820883 2 70.03 11.56 22.02 0.12
Vegetative mass S5_33682130 5 82.15 5.83 10.22 0.07
Vegetative mass S6_2516340 6 18.48 7.77 14.01 0.09
Vegetative mass S9_6724364 9 34.93 3.34 5.65 0.06
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