
 1

K-mer clustering algorithm using a MapReduce framework:

application to the parallelization of the Inchworm module of

Trinity

Chang Sik Kim1,†, Martyn D. Winn1,*, Vipin Sachdeva2b,§ and Kirk E. Jordan2b

1The Hartree Centre, STFC Daresbury Laboratory, Warrington, WA4 4AD, UK

2Computational Science Center, IBM T.J. Watson Research, Cambridge, MA, USA

†Cancer Research UK Manchester Institute, The University of Manchester, Manchester,

M20 4BX, UK

§Silicon Therapeutics, 300 A Street, Boston MA, USA

†,§Present addresses

*Corresponding author: martyn.winn@stfc.ac.uk

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 2

Abstract

Background

De novo transcriptome assembly is an important technique for understanding gene

expression in non-model organisms. Many de novo assemblers using the de Bruijn

graph of a set of the RNA sequences rely on in-memory representation of this graph.

However, current methods analyse the complete set of read-derived k-mer sequence at

once, resulting in the need for computer hardware with large shared memory.

Results

We introduce a novel approach that clusters k-mers as the first step. The clusters

correspond to small sets of gene products, which can be processed quickly to give

candidate transcripts. We implement the clustering step using the MapReduce approach

for parallelising the analysis of large datasets, which enables the use of compute

clusters. The computational task is distributed across the compute system, and no

specialised hardware is required. Using this approach, we have re-implemented the

Inchworm module from the widely used Trinity pipeline, and tested the method in the

context of the full Trinity pipeline. Validation tests on a range of real datasets show

large reductions in the runtime and per-node memory requirements, when making use

of a compute cluster.

Conclusions

Our study shows that MapReduce-based clustering has great potential for distributing

challenging sequencing problems, without loss of accuracy. Although we have focussed

on the Trinity package, we propose that such clustering is a useful initial step for other

assembly pipelines.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 3

Keywords: MapReduce, de novo sequence assembly, RNA-Seq, Trinity

Background

Quantifying the expression of genes under different conditions is fundamental to

understanding the behaviour and response of organisms to internal and external

stimuli. With the arrival of Next Generation massively parallel sequencing technologies,

the ability to monitor gene expression has been transformed [1, 2]. Direct sequencing of

mRNA from expressed genes (RNA-Seq) is now feasible, and has several advantages

over microarray technology [3]. Most notably, it removes the need to have a priori

knowledge of the transcribed regions, so that novel genes can be identified, or novel

variants of known genes. This has led to a rapid increase in the number of studies

looking at gene expression in non-model organisms. RNA-Seq is also increasingly used

to study non-coding RNAs, such as microRNAs [4], lincRNAs [5], and circRNAs [6] which

play various regulatory roles.

Nevertheless, it is widely recognised that the improvement in sequencing technology

has shifted the bottleneck to down-stream data analysis. In the case of RNA-Seq,

sequencing can be complicated by the presence of contaminant RNA, paralogous genes,

and especially for higher organisms the prevalence of alternative splicing [7, 8]. Paired-

end sequencing and strand-specific sequencing can help to resolve sequencing

ambiguities, but must be included explicitly in the data analysis. Finally, and as we

address in this study, the sheer size of datasets can cause practical problems in

sequence assembly. In particular, the computational complexity limits the ability to try

multiple methods or multiple parameter choices, in order to optimise the quality of the

results obtained.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 4

Initial approaches to the high throughput analysis of transcriptome sequence data were

based on the alignment of RNA-Seq reads to reference genomes [9-14]. Such approaches

are limited by the availability of suitable reference genomes, and by the structural

alterations that can be detected, particularly when input reads are relatively short.

Subsequently, de novo genome assemblers were adapted to the analysis of

transcriptome data in the absence of a reference, by postprocessing draft contigs to

identify transcripts. Examples of transcriptome assemblers based on genome

assemblers include Oases [15] and postprocess [16] based on Velvet [17], TransABySS

[18] based on ABySS [19], and SOAPdenovo-Trans [20] based on SOAPdenovo [21]. In

contrast, the Trinity [22] pipeline which we consider below was developed specifically

for de novo transcriptome assembly. More recent examples hybridizing previous de

novo assembly algorithms include Bridger [23] based on Trinity [22] and SOAPdenovo-

Trans [20], BinPacker [24] based on Bridger [23] and bin-packing strategy [25], and

DRAP [26] based on Trinity [22] and Oases [15].

Most de novo transcriptome assembly methods are based on de Bruijn graphs of k-mers,

where a k-mer is a sub-sequence of an input read with k base calls. For a chosen value of

k, the assembler creates a k-mer graph, where the set of nodes correspond to all unique

k-mers present in the input reads, and the edges represent "suffix-to-prefix" overlaps

between k-mers. Most de novo transcriptome assembly algorithms store all unique k-

mers from the input reads in shared memory, in order to facilitate edge detection and

graph construction, and this can lead to extremely large RAM usage [27]. For example

Velvet, as used by Oases, starts by creating two large hashmap tables in memory storing

the information for all k-mers. TransABySS/ABySS is one of only a few parallel

algorithms, which starts by distributing k-mers onto multiple compute nodes with a

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 5

simple hash function. The Trinity pipeline consists of three independent software

modules; Inchworm, Chrysalis and Butterfly. Inchworm initially creates a large hashmap

table to store all unique k-mers from the input RNA-seq reads, and then it selects k-

mers from the hashmap to construct linear contigs using a greedy k-mer extension

approach. In our previous study [28], we confirmed that the Inchworm module of

Trinity requires relatively high physical memory usage.

The memory requirements of these packages increase for larger and more complex

transcriptomes, which generate larger numbers of k-mers and hence larger graphs, and

can exceed the computational resources available. One strategy that is commonly used

is to normalize the read data [29]. Redundant reads are removed from regions with high

sequencing coverage, while reads are retained in regions of low coverage. In this way,

up to 90% of input reads can be removed, which in turn leads to the elimination of a

large fraction of erroneous k-mers associated with these reads [29]. While this is

believed to work well, it introduces an additional processing step, which can in itself

require large memory.

The fundamental task of de novo transcriptome assembly (in contrast to genome

assembly) is to separate the full sequence data into many disjoint sets. Each set

corresponds to a collection of gene variants sharing k-mers due to alternative splicing

or gene duplication. In other words, a transcriptome can be represented as multiple

distinct de Bruijn graphs (Fig. 1), each of which contains several paths corresponding to

alternative gene products. Intuitively, de novo transcriptome assembly could be

performed for every connected sub-graph separately. In the case of genome-guided

transcriptome assembly, generation of sub-graphs is directed by the reference genome.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 6

In the absence of such a method for de novo assembly, however, most assemblers [15,

20, 22] work with all unique k-mers obtained from the input reads, resulting in the

requirement for a large amount of available memory.

In this work, we present a reference-free method for generating connected sub-graphs

from datasets of RNA-Seq reads. We employ the MapReduce formulation [30] for

distributing the analysis of large datasets over many compute nodes. The MapReduce

approach was popularized by Google for handling massively distributed queries, but has

since been applied in a wide range of domains, including genome analysis [31-33]. A

typical MapReduce implementation is based on map() and reduce() operations that

work on a local subset of the data, but the power of the approach comes from an

intermediate step called shuffle() or collate() which is responsible for re-distributing the

data across the compute nodes. In the context of transcriptome assembly, the

MapReduce approach distributes the sequence data over the available nodes, thus

reducing the per-node memory requirement. The iterative application of map(),

collate() and reduce() steps leads to clustering of the k-mers, such that the desired sub-

graphs are each physically located on a single compute node.

While distributing the sequence data across nodes of a compute cluster should lead to

faster runtimes and reduced per-node memory requirements, this must be balanced

against the cost of inter-node communication and transfer of data. We make use of an

established MapReduce software library [34] that handles communication via the

Message Passing Interface (MPI) protocol. Using this library, we have developed

software that can cluster k-mers, and then launch multiple Inchworm jobs for the

resulting sub-graphs. The procedure can be linked with the rest of the Trinity pipeline,

for selected components of which we have also developed an MPI-based parallelisation

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 7

[28], so that the entire assembly workflow can be run on a commodity cluster. Use of

the MapReduce-MPI software library [34] means that specialised MapReduce

installations such as Hadoop are not required. The only requirement is an MPI library,

which is omnipresent on high performance computing platforms.

Implementation

MapReduce-MPI library

The MapReduce [30] programming paradigm consists of two core operations, namely a

"map" operation followed by "reduce" operation. These are highly parallel operations

working on distributed data, which wrap around an intermediate data-shuffling

operation that requires inter-processor communication. The basic data structures for

MapReduce operations are key/value (KV) pairs, and key/multivalue (KMV) pairs that

consist of a unique key and a set of associated values. There are many implementations

of the MapReduce idea, see for examples [35, 36]. In the MapReduce-MPI library [34],

which we utilise here, KV and KMV pairs are stored within MapReduce objects, and user

defined algorithms consist of operations on these objects.

A typical algorithm using the MapReduce-MPI library is built upon three basic functions

operating on MapReduce objects, namely map(), collate() and reduce(). In map(), KV

pairs are generated by reading data from files or processing existing KV pairs to create

new ones. The collate() operation extracts unique keys and maps all the values

associated with these keys to create KMV pairs. The reduce() operation processes KMV

pairs to produce new KV pairs as input to the following steps of the algorithm. In a

parallel environment, the map() and reduce() operations work on local data, while the

collate() operation builds KMV pairs using values stored on all processors. Since KV

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 8

pairs with the same key could be located on many different processors, there is a choice

about where to store the resulting KMV pair. In the MapReduce-MPI library, each KMV

pair is distributed onto a processor by hashing its key into a 32-bit value whose

remainder modulo the number of processors is the owning processor rank.

The MapReduce-MPI library allows user-defined functions to be invoked for map() or

reduce() operations, while the collate() operation and the general housekeeping of

MapReduce objects are handled automatically. The map() and reduce() operations are

called via pointers to functions supplied by the application program. Each user-defined

function is invoked multiple times as a callback for each KV or KMV pair that is

processed.

Out-of-core processing is an important feature of the MapReduce-MPI library, and is

initiated when KV or KMV pairs owned by a processor do not fit in the physical memory.

When this happens, each processor writes one or more temporary files to disk and

reads the data back in when required. Specifically, a pagesize is defined by the user,

which is the maximum size of MapReduce objects that can be held in memory and used

in MapReduce operations. This allows the MapReduce-library to handle data objects

larger than the available memory, at the expense of additional I/O to disk, and we give

examples later.

Finding Connected Components

A connected component of an undirected graph is a sub-graph where any two nodes are

connected by a path of edges. A transcriptome can be represented as a k-mer graph with

multiple connected components, where ideally the number of sub-graphs equals the

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 9

number of genes (Fig. 1). The identification of connected components can be done using

a depth-first search [37]. Starting from a seed node, the procedure searches for the

entire connected component by repeatedly looping through neighbour nodes, and

creates new paths between nodes as extensions of pre-existing paths.

The algorithm starts with the assignment of unique "zone" IDs to each graph node

stored in a MapReduce object. In each iteration, the size of a zone may increase by one

layer of its neighbours. As zone IDs between two nodes conflict by sharing edge, a

winner is chosen and the losing nodes are then merged into the winning zone. When the

final iteration is reached, all nodes in a connected component will have been assigned to

the same zone, and the MapReduce object will contain the zone assignments for all fully

connected components. More details of the algorithm and its implementation in the

MapReduce-MPI library are given in [38]. For the current application, we need to define

the nodes and edges of the full (disconnected) graph to be analysed, which we do in the

next subsection.

MapReduce-Inchworm

We have implemented a multi-step procedure for clustering k-mers as the initial stages

of transcriptome assembly in Trinity [22] (see Fig 2). In the first step, input sequence

reads are decomposed into a list of unique k-mers, together with their abundances, as a

single MapReduce cycle (Algorithm 1 in Supplementary Methods). In the second step,

edges representing k-1 overlaps between k-mers are extracted in a single MapReduce

operation (Algorithm 2). This pre-collection of edge information is an important feature

of our algorithm. The third step filters out edges where a k-mer node has multiple

candidates in the 3' or 5' directions, and is introduced to make the later Inchworm runs

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 10

more robust (Algorithm 3). Inchworm builds contigs by extending a seed k-mer using

the overlapping k-mer with the highest abundance, and extension continues until no

more overlapping k-mers exist in the dataset. Our filtering step makes sure that the

edge or edges with the highest abundance are kept in the cluster, and so available to

Inchworm, while others are removed. Without this filtering operation, the subsequent

step tends to produce k-mer clusters with highly diverse sizes, and leads to load

balancing issues for high performance computing clusters. Having prepared the k-mer

and k-mer overlap data, the fourth step (Algorithm 4) performs the k-mer clustering by

finding connected components, as described above. The steps are described in detail in

the Supplementary Methods 1.1.

The original C++ code of Inchworm for constructing contigs is implemented as step 5 of

the algorithm, and is executed as a callback function by each set of clustered k-mers

(Algorithm 5). The input consists of two MapReduce objects, the zone assignment of k-

mers from the previous step and the list of k-mers with their abundance values. These

two input objects are concatenated into a single MapReduce object, followed by a

collate() operation using k-mers as key. This creates KMV pairs with the k-mer as key

and the pair of zone ID and abundance value as the multivalue. The following reduce()

operation creates new KV pairs, this time with the zone ID as key and the corresponding

pair of k-mer and abundance as the value. Another collate() operation with zone ID as

key produces KMV pairs with each zone ID linked to a list of k-mer/abundant value

pairs.

The final reduce() operation creates a hash_map table for each zone ID, i.e. for each

cluster. This table has the k-mers Vi as keys and the abundance Ci as values. This

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 11

hash_map table is an input to the Inchworm module, which constructs contigs for that

cluster. The final collate() operation evenly distributes the k-mer clusters across the

allocated nodes of the computer. Each compute node will then run multiple Inchworm

jobs, according to the number of k-mer clusters residing on that compute node. The

resulting files of Inchworm contigs can be merged for input to Chrysalis.

Results

This section presents our evaluation of MapReduce-Inchworm, in comparison to the

original Inchworm. The primary aim of our work is to circumvent the high-memory

requirements of the original Inchworm, while a secondary aim is to reduce the runtime

required. It is vital, of course, that performance improvements do not lead to loss of

accuracy, and so we begin by presenting a detailed characterization of the transcripts

generated by the Trinity pipeline when MapReduce-Inchworm is used to generate the

initial contigs. Next, we present performance results in terms of runtime and scalability,

followed by results for the physical memory usage of MapReduce-Inchworm. Finally, we

present a performance comparison using RNA-Seq datasets from several different

organisms.

The datasets and computing resources used in our evaluations are listed in Table 1. The

results presented here for MapReduce-Inchworm were obtained on an IBM iDataplex-

Nextscale cluster, consisting of nodes with 2 x 12-core Intel Xeon processors and 64GB

of RAM. For the original version of Inchworm, the code is necessarily run on a single

node, albeit with multiple processors. For the mouse dataset, a single node of the

iDataplex-Nextscale cluster was used. For the larger sugarbeet dataset, jobs were run on

a high-memory (256GB) node of a slightly older iDataplex cluster. For the most complex

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 12

transcriptome, the wheat dataset, ScaleMP software (http://www.scalemp.com/) was

used to create a virtual symmetric multiprocessing node on the iDataplex cluster to

meet the high memory requirement of the original Inchworm.

Accuracy Assessment

To evaluate the accuracy of the MapReduce procedure, we compared the final

transcripts generated by the Trinity pipeline when either the MapReduce-Inchworm or

the original Inchworm is used. We focus on the final transcripts since these are the

biologically relevant objects, while the intermediate contigs from each version of

Inchworm can be quite different. We performed these tests using a mouse RNA-Seq

dataset consisting of 105M pair-end reads taken from [22]. To generate additional

datasets, we used the rsem-simulate-reads program from RSEM [39, 40] to simulate

RNA-Seq read data based on parameters learned from the real dataset. The simulation

was done in 3 steps as follows. First, we ran Trinity (using the original Inchworm) on

the downloaded set of reads to produce 80,867 transcripts. These transcripts act as the

set of reference transcripts for our trials. Second, RSEM was executed using the mouse

RNA-Seq data together with the reference transcripts to obtain parameters for

simulation of RNA-Seq reads. Third, RNA-Seq read data was simulated by executing

rsem-simulate-reads with the reference transcripts and parameters from the previous

RSEM run. Three simulated datasets were generated consisting of 100M, 150M and

200M pair-end reads, compared to the original experimental dataset with 105M pair-

end reads, and contain approximately 5% background reads.

We ran both versions of Inchworm on the three simulated datasets to produce Fasta-

formatted files of Inchworm contigs. The remainder of the Trinity pipeline was run from

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 13

these Inchworm contigs, producing two sets of transcripts derived from MapReduce-

Inchworm and the original Inchworm. The REF-EVAL module from DETONATE [41] was

used to assess both sets against the "reference transcripts", giving assembly recall and

precision scores for each version of the transcriptome. Initially, all significant local

alignments between assembled transcripts and reference transcripts are found using

BLAT [42]. At the contig level, REF-EVAL counts the number of transcripts that align

with at least a predefined level of accuracy in a one-to-one mapping. We varied the

required level of accuracy to get a range of statistics. At the nucleotide level, it counts

the number of correctly assembled nucleotides without requiring "one-to-one"

mapping; that is, it takes partially assembled transcripts into account as true positives.

Recall is defined as the fraction of reference transcripts that are correctly recovered by

an assembly. Precision is defined as the fraction of assembled transcripts that correctly

recover a reference transcript.

We also evaluated the two quantities N1 and N2, as given by the analysis script

FL_trans_analysis_pipeline.pl distributed with the Trinity software. This tool looks at the

alignment of reconstructed transcripts onto the set of reference transcripts. If at least

99% of a reconstructed transcript is aligned to the reference, and the aligned sections

have at least 99% identity, then it is considered a full-length match. The focus is on the

quality of the reconstructed transcript, rather than recovery of the reference transcripts

(cf. REF-EVAL above). The N1 statistic represents the total number of assembled

transcripts that give full-length matches to the reference. The N2 statistic represents the

number of assembled transcripts that align to multiple reference transcripts, and are

thus fused transcripts.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 14

The results (Table 2) show that Trinity run with MapReduce-Inchworm gives

consistently higher values for Recall, Precision and N1 for the three simulated datasets.

The number of fused transcripts, given by N2, is also lower. Thus, parallelisation of the

initial step in the Trinity pipeline actually leads to a slight increase in assembly

accuracy. In fact, the improvement of Recall and Precision at the nucleotide level is only

marginal, and the absolute values are close to 1.0, indicating that both versions of

Inchworm lead to transcripts that are highly similar to the reference transcripts. Recall

and Precision at the contig level are lower, roughly in line with the N1 values, indicating

small differences in the transcripts that lead to some reference transcripts not being

fully recovered or matched. In this case, the MapReduce-Inchworm leads to a more

significant improvement.

Fig. 3(a) and 3(c) show the variation of the Recall and Precision statistics at the contig

level, as a function of required alignment accuracy, for the simulated dataset with 100M

reads. If the cutoff is reduced from 99% to 90%, so that transcripts align with high but

not complete overlap, then most of the reference transcripts can be recovered from the

simulated dataset. Although the absolute numbers are similar, MapReduce-Inchworm

gives higher values of Recall and Precision for all cutoffs.

With the simulated data, we are testing the ability of Trinity to recover the transcripts

from which the simulated reads were generated. As a further test, we used REF-EVAL to

compare the transcript sets that we generate to a mouse transcriptome downloaded

from the UCSC genome-browser database. We used the CruzDB programmatic interface

[43] to obtain a set of 22,403 coding transcripts. Statistics for the two sets of transcripts

are given Table 3, and the similarity between them is quantified in Table 4. Specifically,

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 15

we compared transcripts generated from the downloaded set of 105M pair-end reads

using Trinity run with MapReduce-Inchworm and the original Inchworm.

Results for contig-level Recall and Precision are shown in Fig. 3(b) and 3(d), as a

function of the required alignment accuracy. The Recall is generally lower than for the

simulated datasets, as the read data used probably doesn't have the coverage to fully

explain the UCSC transcriptome. Nevertheless, the Recall does approach 1.0 when the

required accuracy is relaxed. The Precision also improves as the required alignment

accuracy is relaxed, but remains less than 0.5 reflecting the fact that some of the read

data used derives from transcripts not included in the UCSC set of coding transcripts. In

the context of the current study, it is reassuring to see that again the MapReduce-

Inchworm approach gives slightly improved statistics in most cases, compared to the

original Inchworm (Table 5).

We believe that the reason for the slightly improved accuracy of MapReduce-Inchworm

is the inclusion of additional edge information, which is obtained in step 2 of the

procedure from pairs of k-mers appearing consecutively in input reads (see Methods).

With this edge information, MapReduce-Inchworm clusters k-mers into multiple

groups, each of which should contain k-mers from same gene. Inchworm contigs are

constructed within each cluster, and the output is implicitly guided by the input reads

via this initial segregation. On the other hand, the original Inchworm uses all unique k-

mers extracted from the input reads, and the construction of Inchworm contigs is done

without any additional supporting information from the input reads. Both methods

produce a similar total number of Inchworm contigs (data not shown), but there are

clearly differences in the resulting transcripts.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 16

Runtime Improvement

Fig. 4 shows the scaling of the MapReduce-Inchworm runtime with increasing number

of compute nodes, for the experimental mouse dataset. Plots are displayed for different

choices of the pagesize parameter, which determines the physical memory usage (see

the MapReduce-MPI library section in Methods for a detailed explanation). For each plot,

the runtime of the original Inchworm (5431 seconds) is displayed as a dashed line for

comparison. The number of compute nodes was varied from 32 to 192, with each node

running a single MPI process, while the pagesize was varied from 1 GB to 4 GB. The

runtimes obtained using all 192 compute nodes are 1093, 1067, 1034, and 1034

seconds for the four choices of pagesize, corresponding to a speed-up by a factor of

about 5 compared to the original Inchworm.

There are also speed-ups for smaller numbers of compute nodes, except for the cases of

32 nodes with a pagesize parameter of 1 or 2 GB. In these cases, the memory

requirements exceed the chosen pagesize leading to significant "out-of-core" processing

(see Methods). The cumulative file I/O (Tb) is also plotted in Fig. 4, which confirms the

significant paging to disk in these cases. Thus, the pagesize setting should be large

enough (within the constraints of the available physical memory) or the number of

nodes large enough (in order to distribute the memory requirements), otherwise there

is an adverse effect on the runtime.

We stratified the runtime in terms of the major steps in both versions of Inchworm, as

shown in Fig. 5. The original Inchworm consists of 3 principal steps: 1) jellyfish, 2)

parsing k-mers, and 3) inchworm contig construction. The first step involves counting the

occurrence of every unique k-mer in the set of input reads using the program Jellyfish

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 17

[44], and writing the output to a disk file. In the second step, Inchworm reads the output

file back into physical memory by storing each k-mer and its count into a hashmap table

as a key-value pair. In the final step, the algorithm creates draft contigs using the

hashmap table of unique k-mers. We divide the MapReduce-Inchworm algorithm into

an initial splitting input reads step, followed by the five steps described in Methods. The

initial step consists of evenly splitting the input file of reads into multiple files,

according to the number of allocated compute nodes. Each file is then read into a

compute node in preparation for subsequent steps.

Fig. 5 shows that the first two steps of the original Inchworm, which could be

categorised as k-mer preparation steps, take a significant fraction of the total runtime.

These steps are equivalent to the splitting input reads and step 1 of MapReduce-

Inchworm. The latter steps are however much quicker because they avoid storing k-

mers on disc. The remaining runtime of the original Inchworm involves construction of

contigs. In the MapReduce-Inchworm implementation, this is done individually for each

cluster, and is very fast (MR: step 5 in Fig. 5). The bulk of the runtime for MapReduce-

Inchworm is taken by the clustering algorithm (MR: step 4 in Fig. 5), and this scales well

with the number of nodes used. As mentioned above, super-linear scaling is achieved in

going from 32 nodes to 64 nodes because of the reduction in out-of-core processing,

while going from 64 to 128 nodes gives a speedup of 1.9, and from 64 to 192 nodes a

speedup of 2.6.

Physical Memory Requirement

The main objective of our work is to remove the need for large shared memory, by

distributing the overall memory requirement over multiple computer nodes. With the

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 18

ability to do that, the per-node memory requirement can always be reduced by adding

more compute nodes, albeit with the expense of increased inter-node communication.

The physical memory available on each node is controlled by the pagesize parameter in

the underlying MapReduce-MPI library. In this section, we look at the memory

requirements of MapReduce-Inchworm, as a function of the number of compute nodes

and the pagesize parameter.

Firstly, we assessed the memory requirements as a function of the number of allocated

compute nodes, using the mouse dataset (see Table 1). Within the 5 main steps of

MapReduce-Inchworm, we collected the number of KV/KMV pairs generated from each

of the three basic MapReduce functions: map, collate, or reduce. These values were

converted into data object sizes in GB, and averaged over all compute nodes. Fig. 6(a)

shows that the data size per compute node, and hence the memory requirement,

decreases with increasing number of nodes, as expected. The values for step 4 are also

averaged over the iterations of the k-mer clustering algorithm, of which there are 47 for

the mouse dataset. The figure shows clearly that step 2 of the MapReduce algorithm,

which extracts edges from the input read data, is the most memory demanding.

The values in Fig. 6(a) give an estimate of the per-node memory requirements of

MapReduce-Inchworm. When these exceed the physical memory allocated according to

the pagesize parameter, then pages of data are written as temporary files on disk.

Paging for each of the steps is shown in Fig. 6(b)-(e) for four choices of the pagesize

parameter. For example, the data sizes of KV pairs obtained from the map operation of

step 2 are 11.0~GB, 5.5~GB, 2.75~GB and 1.83~GB when run on 32, 64, 128 and 192

nodes respectively (see Fig. 6(a)). For a small pagesize of 1 GB (Fig. 6(b)), there is

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 19

always some out-of-core processing. Increasing the pagesize to 2 GB (Fig. 6(c)) means

that, in the case of 192 compute nodes, the KV pairs can fit in memory and there is no

paging. Increasing the pagesize to 3 GB (Fig. 6(d)) means that out-of-core processing is

eliminated when using 128 or 192 compute nodes. However, there is always paging for

the smaller compute clusters considered, even for the largest tested pagesize of 4 GB.

Out-of-core processing in the map operation of step 2 initiates out-of-core processing in

the following collate step, because the KV pairs written to disk by the map operation

need to be read back for the collate step. Fig. 6(b)-(e) shows that file I/O occurs for the

collate operation of step 2 whenever it is present for the map operation. It also shows

that total I/O is substantially higher for the collate operation. This arises because the

core collate algorithm needs to cycle through the KV pairs multiple times, as it finds

matches and builds up the KMV objects, necessitating multiple reading and writing of

pages to disk. Thus, step 2 of the MapReduce algorithm is particularly sensitive to the

choice of the pagesize parameter. On the other hand, Fig. 5 shows that the runtime is

dominated by step 4, and so the performance hit caused by paging in step 2 is perhaps

not so important.

The underlying MapReduce-MPI library tends to evenly distribute the KMV pairs

produced by collate operations by hashing each of its key for assignment onto available

MPI-processors. In the present application, where the number of KMV pairs is much

larger than the number of compute nodes, this is expected to lead to good load

balancing. In fact, the minimum and maximum values for data size over all compute

nodes are indistinguishable from the average values shown in Fig. 6(a).

Performance comparison for RNA-Seq datasets from complex organisms

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 20

We next tested our approach on some more challenging RNA-Seq datasets obtained

from sugarbeet and wheat samples, see Table 1. The memory requirement of the

original Inchworm depends on the transcriptome complexity and is expected to roughly

correlate with the number of unique k-mers from the input reads. Fig. 7(a) shows that

the mouse, sugarbeet and wheat datasets require 46.7GB, 141.5GB and 373.9GB of

memory respectively, and these values do indeed correlate with the total number of

unique k-mers listed in Table 1. In fact, the required memory for the wheat dataset

exceeded the physical memory on any single node of our available compute platforms.

In order to run the original Inchworm, we used ScaleMP software

(http://www.scalemp.com/) to aggregate 32 nodes, each providing 128GB memory, to

create a vSMP node with a 4TB address space.

Fig. 7(b) shows the total runtime to produce Inchworm contigs for MapReduce-

Inchworm, compared with a run using the original Inchworm. With 64 compute nodes

available, the MapReduce-Inchworm procedure yields a faster runtime, and increasing

the number of nodes to 128 or 192 gives further improvements. Although we have only

tested a small range of node counts, the scaling of the speedup is very good, suggesting

that more nodes could be used. For example, tripling the number of nodes from 64 to

192 yields speedups of 2.4, 1.9 and 2.9 for mouse, sugarbeet and wheat respectively.

The original Inchworm is particularly slow for the wheat dataset, taking over 6 days,

because of the use of ScaleMP to provide the required amount of shared memory. While

ScaleMP was required to be able to process the wheat dataset at all, its software-based

aggregation of memory clearly incurs a significant overhead. Such problems are avoided

in the distributed memory implementation of MapReduce-Inchworm.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 21

Fig. 7(c) shows the cummulative I/O for the runs using MapReduce-Inchworm, reflecting

the out-of-core processing of MapReduce-MPI. The wheat dataset, with 1.5~billion input

reads and 5.8~billion unique k-mers, is particularly large and the MapReduce objects do

not fit into the aggregate physical memory. Even with 192 nodes, there is 45TB of I/O

over the course of the run. This could be reduced by allocating further compute nodes,

or by using higher memory nodes that could accommodate a larger pagesize. For the

smaller sugarbeet dataset, the situation is much better, but there is nevertheless still a

small amount of paging to disk.

In conclusion, the MapReduce-Inchworm procedure scales well to large and complex

datasets. Increasing the number of compute nodes leads to a reduction in runtime, and

reduced paging to disk as the per-node memory requirements are lowered. In

particular, MapReduce-Inchworm allowed us to process the large wheat dataset in less

than a day, while the original Inchworm required an advanced platform solution to run

at all.

Discussion

In this study, we enabled the parallelization of the Inchworm module of Trinity by using

a MapReduce-based approach to pre-cluster the k-mers obtained from the input reads.

An instance of Inchworm is run on each k-mer cluster, yielding a set of contigs per

cluster. Contigs from all clusters are pooled together and passed to the Chrysalis module

for re-clustering according to the original Trinity scheme. The Inchworm module of

Trinity is known to be the most memory-intensive step [28], and is often a barrier to

processing large or complex RNA-Seq datasets. In our scheme, the computational load is

passed to the pre-clustering step, where the well-established MapReduce procedure

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 22

allows the load to be distributed over a commodity compute cluster. Our approach is

distinct from other recent developments, which seek to MPI-parallelise Inchworm itself

(Brian Haas, personal communication).

Pell et al. [45] have introduced a Bloom filter which provides memory efficient storage

of kmer graphs. Chikhi and Rizk [46] added an additional data structure holding the

false positives which might arise through trial kmer extensions, as well as a marking

structure holding complex nodes for use in graph traversal. In contrast, we store an

explicit list of kmer nodes and edges in a set of MapReduce objects. There is no

reduction in the total memory required, but rather we focus on the ability to distribute

these MapReduce objects over a large number of nodes to reduce the per node memory

requirement. Note that by storing edges explicitly, we do not make trial extensions from

kmer nodes, which can lead to false edges in the Bloom filter method.

We expect that there should be a correspondence between the k-mer clusters we

generate, and the contig clusters (components) produced by Chrysalis, in that they both

relate to a set of gene products. It may be that further efficiency gains can be achieved

by merging these steps, but we have not investigated this possibility in the current

work, adopting instead a conservative approach. If, for example, reads from a

transcribed gene yield two k-mer clusters, and hence two sets of Inchworm contigs, then

the Chrysalis module should in principle find welds between them, and recover the

correct graph.

The assessment of the assembly accuracy using simulated and experimental RNA-Seq

datasets shows that our parallelized Inchworm provides the final transcripts from the

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 23

Trinity pipeline with marginally more accuracy compared to the original inchworm. The

difference in accuracy comes from the utilization of additional edge information in

MapReduce-Inchworm, which clusters k-mers guided by edge objects which link pairs

of k-mers appearing consecutively in input reads. On the other hand, the original

Inchworm constructs contigs directly from the set of all k-mers. Contigs are extended by

searching for appropriately overlapping k-mers, rather than using pre-calculated edges.

This pre-collection of edge information is feasible in our approach because of the

distributed nature of the algorithm.

We have presented performance results for a range of experimental read datasets. The

total runtime required to produce the complete set of Inchworm contigs could be

reduced below that required for the original Inchworm, provided a moderate number of

compute nodes are available. It may be debatable whether this is necessary for small

datasets, such as the mouse dataset included here, but there are clearly significant gains

for larger and more complex datasets (Fig. 7). More importantly, the memory

requirement on each node can be reduced by distributing the job over sufficient nodes.

In this way, commodity compute clusters can be used, and there is no need for high

memory nodes or specialised solutions for aggregating node memory into a single

address space.

Conclusion

The results of this study indicate that the MapReduce framework has great potential for

processing high throughput sequencing datasets more efficiently. The proposed

approach could be applied as a pre-processing step for other de novo transcriptome

assemblers, by implementing the chosen assembly code as a callback function in the

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 24

final reduce() step, as we have done for Inchworm in the current study. Specifically, we

plan to investigate the parallelization of Oases [15] and SOAPdenovo-Trans [20] via this

approach. It is also worth exploring the feasibility of the pre-clustering approach for de

novo metagenome and metatranscriptome assembly, which is more complex due to the

presence of multiple genomes or transcriptomes from different species. For example,

the de novo metagenome assembler [47] starts by partitioning the de Bruijn graph into

isolated components corresponding to different species. Then for each component, it

reconstructs the slight variants of the genomes of subspecies within the same species

using multiple sequence alignments. A similar approach has been developed for de novo

metatransciptome assembly [48]. Our proposed approach could be adapted to these

pipelines to provide a memory-efficient method for the initial partitioning.

In conclusion, we have presented a computationally efficient method for clustering k-

mers derived from RNA-Seq datasets. Applied to the Trinity pipeline, the approach

avoids the large memory requirements of the original Inchworm, enabling the analysis

of large datasets on commodity compute clusters. We expect that this general approach

will have applications for other assembly problems.

Declarations

Acknowledgement

We would like to thank Brian Haas of the Broad Institute for his advice on the Trinity

software and source code. We thank Keywan Hassani-Pak of Rothamsted Research, UK

for providing the sugarbeet and wheat datasets, as well as many useful discussions. We

thank Steve Plimpton for making the MapReduce-MPI library freely available, and for

answering technical questions on its use. We also wish to acknowledge the Hartree

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 25

Centre at the STFC Daresbury Laboratory, UK for providing the computational

resources used for this work.

Authors’ contributions

CSK and MDW conceived the study. CSK implemented the method. CSK and MDW

designed the research. All authors analysed the data. The benchmarking and repository

maintenance were done by CSK and MDW. All authors wrote, read and approved the

final manuscript.

Availability of material

The code used in this study is available at https://github.com/kimosaby2001/MR-

Inchworm/.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Funding

This work was internally funded by the Hartree Centre at STFC Daresbury Laboratory.

Reference

1. Corney DC: RNA-Seq using next generation sequencing. Materials and

Methods 2013, 3:203.

2. Schliesky S, Gowik U, Weber APM, Brautigam A: RNA-Seq Assembly - Are We

There Yet? Front Plant Sci 2012, 3:220.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 26

3. Oshlack A, Robinson MD, Young MD: From RNA-Seq reads to differential

expression results. Genome Biology 2010, 11:220.

4. Gunaratne PH, Coarfa C, Soibam B, Tandon A: miRNA data analysis: next-gen

sequencing. Methods Mol Biol 2012, 822:273-288.

5. Ulitsky I, Bartel DP: lincRNAs: genomics, evolution, and mechanisms. Cell

2013, 154:26-46.

6. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak

SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of

animal RNAs with regulatory potency. Nature 2013, 495:333-338.

7. Reddy ASN, Rogers MF, Richardson DN, Hamilton M, Ben-Hur A: Deciphering

the plant splicing code: experimental and computational approaches for

predicting alternative splicing and splicing regulatory elements. Frontiers in

Plant Science 2012, 3.

8. Hooper JE: A survey of software for genome-wide discovery of differential

splicing in RNA-Seq data. Human Genomics 2014, 8.

9. Morin RD, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh TJ, McDonald H,

Varhol R, Jones SJM, Marra MA: Profiling the HeLa S3 transcriptome using

randomly primed cDNA and massively parallel short-read sequencing.

Biotechniques 2008, 45:81-94.

10. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF,

Schroth GP, Burge CB: Alternative isoform regulation in human tissue

transcriptions. Nature 2008, 456:470-476.

11. Fullwood MJ, Wei C-L, Liu ET, Ruan Y: Next-generation DNA sequencing of

paired-end tags (PET) for transcriptome and genome analyses. Genome

Research 2009, 4:521-532.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 27

12. Yassour M, Kaplan T, Fraser HB, Levin JZ, Pfiffner J, Adiconis X, Schroth G, Luo S,

Khrebtukova I, Gnirke A, et al: Ab initio construction of a eukaryotic

transcriptome by massively parallel mRNA sequencing. Proc Natl Acad Sci

USA 2009, 9:3264-3269.

13. Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol

MJ, Gnirke A, Nusbaum C, et al: Ab initio reconstruction of cell type-specific

transcriptomes in mouse reveals the conserved multi-exomic structure of

LineRNA. Nature Biotechnology 2010, 28:503-510.

14. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg

SL, Wold BJ, Pachter L: Transcripts assembly and quantification by RNA-Seq

reveals unannotated transcripts and isoform switching during cell

differentiation. Nature Biotechnology 2010, 28:511-515.

15. Schulz MH, Zerbino DR, Vingron M, Birney E: Oases: Robust de novo RNA-seq

assembly across the dynamic range of expression levels. Bioinformatics

2012, 28:1086-1092.

16. Sze S-H, Tarone AM: A memory-efficient algorithm to obtain splicing graphs

and de novo expression estimates from de Bruijn graphs of RNA-Seq data.

BMC Genomics 2014, 15:S6.

17. Zerbino DR, Birney E: Velvet: Algorithms for de novo short read assembly

using de Bruijn graphs. Genome Research 2008, 18:821-829.

18. Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD, Zhao Y,

Hirst M, Schein JE, et al: De novo transcriptome assembly with ABySS.

Bioinformatics 2009, 25:2872-2877.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 28

19. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I: ABySS: A parallel

assembler for short read sequence data. Genome Research 2009, 19:1117-

1123.

20. Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, Huang W, He G, Gu S, Li S, et al:

SOAPdenovo-Trans: De novo transcriptome assembly with short RNA-Seq

reads. Bioinformatics 2014, 30:1660-1666.

21. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, et al:

De novo assembly of human genomes with massively parallel short read

sequencing. Genome Research 2010, 20:265-272.

22. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan

L, Raychowdhury R, Zeng Q, et al: Full-length transcriptome assembly from

RNA-seq data without a reference genome. Nature Biotechnology 2011,

29:644-652.

23. Chang Z, Li G, Liu J, Zhang Y, Ashby C, Liu D, Cramer CL, Huang X: Bridger: a new

framework for de novo transcriptome assembly using RNA-seq data.

Genome Biology 2015, 16.

24. Liu J, Li G, Chang Z, Yu T, Liu B, McMullen R, Chen P, Huang X: BinPacker:

Packing-Based De Novo Transcriptome Assembly from RNA-seq Data. PLOS

Computational Biology 2016, 12: e1004772.

25. Martello S, Toth P: Knapsack Problems: Algorithms and Computer

Implementations. John Wiley and Sons; 1990.

26. Cabau C, Escudié F, Djari A, Guiguen Y, Bobe J, Klopp C: Compacting and

correcting Trinity and Oases RNA-Seq de novo assemblies. PeerJ 2017, 5.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 29

27. Zhao Q-Y, Wang Y, Kong Y-M, Luo D, Li X, Hao P: Optimizing de novo

transcriptome assembly from short-read RNA-Seq data: a comparative

study. BMC Bioinformatics 2011, 12:S2.

28. Sachdeva V, Kim CS, Jordan KE, Winn MD: Parallelization of the Trinity

pipeline for de novo transcriptome assembly. pp. 566-575; 2014:566-575.

29. Brown CT, Howe A, Zhang Q, Pyrkosz AB, Brom TH: A reference-free algorithm

for computational normalization of shotgun sequencing data.

arXiv:12034802 2012.

30. Dean J, Ghemawat S: MapReduce: Simplified data processing on large

clusters. Computing in Science and Engineering 2009, 11:29-41.

31. McKenna A, Hanna M, Banks E, Sivachenko A, Kristian Cibulskis AK, Garimella K,

Altshuler D, Gabriel S, Daly M, DePristo MA: The Genome Analysis Toolkit: A

MapReduce framework for analyzing next-generation DNA sequencing

data. Genome Research 2010, 20:1297-1303.

32. Mohammed EA, Far BH, Naugler C: Applications of the MapReduce

programming framework to clinical big data analysis: current landscape

and future trends. Biodata Mining 2014, 7:22.

33. Xu B, Gao J, Li C: An efficient algorithm for DNA fragment assembly in

MapReduce. Biochem Biophys Res Commun 2012, 426:395-398.

34. MapReduce-MPI Library

35. White T: Hadoop: The Definitive Guide. O'Reilly Media; 2009.

36. Ranger C, Raghuraman R, Penmetsa A, Bradski G, Kozyrakis C: Evaluating

MapReduce for Multi-core and Multiprocessor Systems. IEEE 13th

International Symposium on High Performance Computer Architecture 2007:13-

24.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 30

37. Hopcroft JE, Tarjan RE: Efficient algorithms for graph manipulation.

Communications of the ACM 1973, 16:372-378.

38. Plimpton SJ, Devine KD: MapReduce in MPI for Large-Scale Graph

Algorithms. Parallel Computing 2011, 37:610-632.

39. Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN: RNA-Seq gene expression

estimation with read mapping uncertainty. Bioinformatics 2010, 26:493-500.

40. Li B, Dewey CN: RSEM: accurate transcript quantification from RNA-Seq data

with or without a reference genome. BMC Bioinformatics 2011, 12.

41. Li B, Fillmore N, Bai Y, Collins M, Thomson JA, Stewart R, Dewey C: Evaluation of

de novo transcriptome assemblies from RNA-Seq data. Genome Biology 2014,

15:553.

42. Kent WJ: BLAT-the BLAST-like alignment tool. Genome Research 2002,

12:654-664.

43. Pedersen BS, Yang IV, De S: CruzDB: software for annotation of genomic

intervals with UCSC genome-browser database. Bioinformatics 2013,

29:3003-3006.

44. Marcais G, Kingsford C: A fast, lock-free approach for efficient parallel

counting of occurrences of k-mers. Bioinformatics 2011, 27:764-770.

45. Pell J, Hintze A, Canino-Koning R, Howe A, Tiedje JM, Brown CT: Scaling

metagenome sequence assembly with probabilistic de Bruijn graphs. Proc

Natl Acad Sci USA 2012, 109:13272-13277.

46. Chikhi R, Rizk G: Space-efficient and exact de Bruijn graph representation

based on a Bloom filter. Algorithms for Molecular Biology 2013, 8.

47. Peng Y, Leung HCM, Yiu SM, Chin FYL: Meta-IDBA: a de novo assembler for

metagenomic data. Bioinformatics 2011, 27:i94-i101.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 31

48. Leung HCM, Yiu SM, Parkinson J, Chin FYL: IDBA-MT: De Novo Assembler for

Metatranscriptomic Data Generated from Next-Generation Sequencing

Technology. J Comp Biol 2013, 20:540-550.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 32

Figures

Figure 1: A few selected de Bruijn graphs of transcripts from whitefly RNA-Seq data.

Each node represents one of the unique k-mers present in the input reads, and the

edges represent suffix-to-prefix overlap between k-mers. Examples of branching and

looping are visible (data source: http://evomics.org/learning/genomics/trinity).

Figure 2: Workflow summarising the MapReduce-Inchworm algorithm. The steps are

described in the main text and the Supplementary Methods. In this figure, V represents

k-mer nodes with abundances C, E represents edges with abundances CE, and Z

represents zone IDs.

Figure 3: Assessment of the reconstruction accuracy of MapReduce-Inchworm (red

bars) compared to the original Inchworm program (light blue bars), as given by the

REF-EVAL tool of DETONATE [41]. Plots (a) and (c) give results for the dataset of 100M

simulated pair-end reads (see main text), while plots (b) and (d) give the corresponding

results for the original mouse RNA-Seq dataset of experimental reads. Plots (a) and (b)

show the Recall statistic, which is the fraction of reference transcripts that are correctly

recovered by an assembly. Plots (c) and (d) show the Precision statistic, which is the

fraction of assembled transcripts that correctly recover a reference transcript. Recovery

of a reference transcript by a particular assembly is measured at the ``contig'' level,

which requires almost complete alignment in a one-to-one mapping between the

assembly and the reference. Each plot is given as a function of the alignment cutoff used

to identify a recovered transcript.

Figure. 4: Scaling of the runtime of MapReduce-Inchworm (black lines, left-hand axis)

as a function of the number of compute nodes used, for the experimental mouse dataset

(see Table 1). The runtime is for the MapReduce-Inchworm step only, and does not

include the remainder of the Trinity pipeline. The runtime of the corresponding serial

Inchworm is shown as a horizontal dashed line. Results are shown with pagesize set to

(a) 1 GB, (b) 2 GB, (c) 3 GB and (d) 4 GB. The cumulative I/O to disk, due to out-of-core

processing, is also shown (blue line, right-hand axis).

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 33

Figure 5: Stratification of the runtime in terms of individual steps within both versions

of Inchworm, for the experimental mouse dataset (see Table 1). OI represents Original

Inchworm; MR represents MapReduce-Inchworm. On the X-axis, original represents the

original version of Inchworm, while 32-192 represent the numbers of compute nodes

allocated for MapReduce-Inchworm. The original Inchworm is divided into three steps:

step1 corresponds to Jellyfish [44]; step 2 corresponds to parsing kmers; and step3

corresponds to Inchworm contig construction. MapReduce-Inchworm is divided into six

steps: an initial step for splitting input reads and steps 1-5. The initial step splits an

input file (containing the RNA-Seq reads) into multiple files according to the number of

allocated compute nodes. Steps 1 to 5 of the main algorithm are described in detail in

Methods. Results are given with pagesize assigned to 2GB, cf Figure 3(b).

Figure 6: Data objects created by MapReduce-Inchworm for the experimental mouse

dataset (see Table 1). (a) The size of data objects generated by each MapReduce

function on each compute node, as calculated from the number of KV/KMV pairs

involved. The data sizes for each MapReduce function (map(), collate(), and reduce())

were averaged over nodes and iterations within each of the 5 main steps of MapReduce-

Inchworm. (b-e) The corresponding cumulative I/O to disk, due to out-of-core

processing, per compute node. Results are shown with pagesize set to: (b) 1 GB, (c) 2

GB, (d) 3 GB and (e) 4 GB. For all graphs, the Y-axis gives the data size in GB.

Figure 7: (a) High-water mark for memory usage in GB over all compute nodes, (b)

runtime in minutes, and (c) cumulative I/O in TB. Results are given for the mouse,

sugarbeet and wheat datasets described in Table 1, and using the computing resources

listed. All jobs with MapReduce-Inchworm used a 4GB pagesize parameter. Bars marked

original represent runs of the original Inchworm, MR-64 represents runs of

MapReduce-Inchworm using 64 compute nodes, MR-128 represents runs using 128

compute nodes, and MR-192 represents runs using 192 compute nodes.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

Tables

Table 1: RNA-Seq datasets and computing resources used for each RNA-Seq data.

All datasets are pair-end datasets, in which only mouse dataset is strand-specific.iDataplex-nextscale cluster is known as Bl

NextScale, consisting of 360 nodes each with 2x12 core Intel Xeon processors (E5-2697v2 2.7GHz) and 64GB RAM making t

cores in total. iDataplex cluster is known as "BlueWonder", consisting of 512 nodes each with 2x 8 core Intel SandyBridge p

(2.6 Ghz) making 8,192 cores in total. Original Inchworm with sugarbeet dataset was run using a single iDataplex node w

memory. Original Inchworm with wheat dataset was run using a single vSMP node with 4Tb memory created by ScalewMP

(http://www.scalemp.com) on iDataplex. ScaleMP creates a virtual symmetric multiprocessing (vSMP) node for shared m

aggregating multiple compute nodes.

34

ueWonder-

total 8,640

processors

with 256GB

P software

memory by

.
C

C
-B

Y
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under

T
he copyright holder for this preprint (w

hich w
as not

this version posted June 14, 2017.
;

https://doi.org/10.1101/149948
doi:

bioR
xiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

Table 2: Accuracy assessment of MapReduce-Inchworm compared to the original Inchworm using three simulated read d

mouse RNA-Seq

Statistics from the REF-EVAL component of DENONATE [41], for three simulated read datasets. Recall is the fraction of

elements that are correctly recovered by an assembly. Precision is the fraction of assembly elements that correctly recover a

element. At the Contig level, a 99% alignment cutoff has been used to identify a recovered transcript (left-hand bars in

Original refers to the results of Trinity run with the original version of Inchworm. MapReduce refers to the results of Trinit

the MapReduce-Inchworm method presented here. Also shown are the N1 and N2 statistics, as given by t

FL_trans_analysis_pipeline.pl. N1 represents the total number of assembled transcripts that give full-length matches to the ref

represents the number of fused transcripts. For comparison, there are 80,867 reference transcripts.

35

atasets for

f reference

a reference

Figure 3).

ty run with

the script

ference. N2

.
C

C
-B

Y
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under

T
he copyright holder for this preprint (w

hich w
as not

this version posted June 14, 2017.
;

https://doi.org/10.1101/149948
doi:

bioR
xiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

Table 3: Basic statistics of Trinity transcripts using original Inchworm and MapReduce-Inchworm using the mouse RNA-seq d

The statistics was calculated using the perl script TrinityStats.pl, included in the original Trinity pipeline.

36

data [22].

.
C

C
-B

Y
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under

T
he copyright holder for this preprint (w

hich w
as not

this version posted June 14, 2017.
;

https://doi.org/10.1101/149948
doi:

bioR
xiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

Table 4: The number of similar Trinity transcripts between original Inchworm and MapReduce-Inchworm using the mous

data [22].

Two sets of transcripts from original Inchworm and MapReduce-Inchworm were compared using BLAT [42]; Transcripts fro

Inchworm was used as target and transcripts from MapReduce-Inchworm was used as query for input parameters to BLAT

script blat_top_hit_extractor.pl, included in Trinity pipeline, was used to extract the most top hit for each transcript in que

target. The first column refers to the cutoff of transcript similarity, which was quantified using two similarity score defined as

1 - (query_sequence_size - number_of_matching_bases)/query_sequence_size 2) 1 - (target_sequenc

number_of_matching_bases)/target_sequence_size. If these two similarity scores between two transcripts from both meth

greater than or equal to the cutoff value, those were considered as similar transcripts. The second column refers to the

similar transcripts between original and MapReduce-Inchworm according to the cutoff value. Note the total number of transc

both methods can be found in Table 4.

37

e RNA-seq

om original

T. The perl

ery against

follows: 1)

ce_size -

hods were

number of

cripts from

.
C

C
-B

Y
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under

T
he copyright holder for this preprint (w

hich w
as not

this version posted June 14, 2017.
;

https://doi.org/10.1101/149948
doi:

bioR
xiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

Table 5: Comparison of mouse transcripts assembled using MapReduce-Inchworm or the original Inchworm with

a reference mouse transcriptome.

Statistics from the REF-EVAL component of DENONATE [41] using mouse RNA-seq data [22]. Dividing the number of

transcripts recovered by the total number of reference transcripts (22402) gives the Recall shown in Fig. 3(b). Dividing the

transcripts that map to reference by the total number of assembled transcripts (78719 for MapReduce-Inchworm and 80825 f

Inchworm) gives the Precision shown in Fig. 3(d). The recovery rate was measured at the contig level, which requires certain

complete alignment in a one-to-one mapping between the assembly and the reference. Alignment cutoff refers to the minimum

alignment for the recovery rate calculation. MapReduce refers to the results of Trinity run with the MapReduce-Inchwor

presented here. Original refers to the results of Trinity run with the original version of Inchworm.

38

f reference

number of

for original

amount of

m required

rm method

.
C

C
-B

Y
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under

T
he copyright holder for this preprint (w

hich w
as not

this version posted June 14, 2017.
;

https://doi.org/10.1101/149948
doi:

bioR
xiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 39

Figure 1.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

Figure 2.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 41

Figure 3.

99 95 90 85 80 75 70 65 60

(a) recall:simulated
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

99 95 90 85 80 75 70 65 60

(b) recall:mouse

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

99 95 90 85 80 75 70 65 60

(c) precision:simulated

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

99 95 90 85 80 75 70 65 60

(d) precision:mouse
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 42

Figure 4.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 43

Figure 5.

original 32 64 128 192

MR: step5
MR: step4
MR: step3
MR: step2
MR: step1
MR: splitting input reads
OI: step3
OI: step2
OI: step1

R
un

tim
e

(s
ec

on
ds

)

0
20

00
40

00
60

00
80

00

5431.00

7884.09

2691.19

1431.69

1047.37

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 44

Figure 6.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

 45

Figure 7.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 14, 2017. ; https://doi.org/10.1101/149948doi: bioRxiv preprint

https://doi.org/10.1101/149948
http://creativecommons.org/licenses/by/4.0/

