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Summary 

 

The rice XA21-mediated immune response is activated upon recognition of the RaxX peptide 1	

produced by the bacterium Xanthomonas oryzae pv. oryzae (Xoo).  The 60 residue RaxX 2	

precursor is posttranslationally modified to form a sulfated tyrosine peptide that shares sequence 3	

and functional similarity with the plant sulfated tyrosine (PSY) peptide hormones.  The five kb 4	

raxX-raxSTAB gene cluster of Xoo encodes RaxX, the RaxST tyrosylprotein sulfotransferase, 5	

and the RaxA and RaxB components of a predicted type one secretion system.  The identified the 6	

complete raxX-raxSTAB gene cluster is present only in Xanthomonas spp., in five distinct 7	

lineages in addition to X. oryzae.  The phylogenetic distribution of the raxX-raxSTAB gene 8	

cluster is consistent with the occurrence of multiple lateral transfer events during Xanthomonas 9	

speciation.  RaxX variants representing each of the five lineages, and three Xoo RaxX variants, 10	

fail to activate the XA21-mediated immune response yet retain peptide hormone activity. These 11	

RaxX variants contain a restricted set of missense mutations, consistent with the hypothesis that 12	

selection acts to maintain peptide hormone-like function. These observations are also consistent 13	

with the hypothesis that the XA21 receptor evolved specifically to recognize Xoo RaxX.  14	
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INTRODUCTION 

 

Host receptors activate innate immunity pathways upon pathogen recognition (Ronald & Beutler, 15	

2010).  The gene encoding the rice XA21 receptor kinase (Song et al., 1995) confers resistance 16	

against most strains of the gamma-proteobacterium Xanthomonas oryzae pv. oryzae (Xoo) 17	

(Wang et al., 1996).  This well-studied XA21-Xoo interaction provides a basis from which to 18	

understand molecular and evolutionary mechanisms of host-microbe interactions. 19	

 

Four Xoo genes that are required for activation of XA21-mediated immunity, are located in the 20	

raxX-raxSTAB gene cluster (Fig. 1).  The 60-residue RaxX predicted precursor protein 21	

undergoes sulfation by the RaxST tyrosylprotein sulfotransferase at residue Tyr-41 (Pruitt et al., 22	

2015).  We hypothesize that the RaxB proteolytic maturation and ATP-dependent peptide 23	

secretion complex (da Silva et al., 2004) further processes the sulfated RaxX precursor by 24	

removing its double-glycine leader peptide prior to secretion (Holland et al., 2016).  Located 25	

outside the raxX-raxSTAB gene cluster, the raxC gene, an ortholog of the tolC gene, encodes the 26	

predicted outer membrane channel for this secretion complex (da Silva et al., 2004).  Finally, the 27	

raxPQ genes encode enzymes to assimilate sulfate into 3'-phosphoadenosine 5'-phosphosulfate 28	

(PAPS) (Shen et al., 2002), the sulfodonor for the RaxST sulfotransferase (Han et al., 2012). 29	

 

In both plants and animals, the post-translational modification catalyzed by tyrosylprotein 30	

sulfotransferase is restricted to a subset of cell surface and secreted proteins that influence a 31	

variety of eukaryotic physiological processes (Matsubayashi, 2014, Stone et al., 2009).  For 32	

example, tyrosine sulfation of the chemokine receptors CCR5 and CXCR4 is essential for their 33	
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functions including as coreceptors for the human immunodeficiency virus gp120 envelope 34	

glycoprotein (Farzan et al., 1999, Kleist et al., 2016).  In plants, sulfated tyrosine peptides 35	

influence cellular proliferation and expansion in root growth, and/or plant immune signaling 36	

(Matsubayashi, 2014, Tang et al., 2017).  In contrast to these and other examples of protein 37	

tyrosine sulfation in animals and plants, RaxX sulfation by the RaxST enzyme is the only 38	

example of tyrosine sulfation documented in bacteria (Pruitt et al., 2015, Han et al., 2012). 39	

 

Mature RaxX is predicted to comprise the carboxyl-terminal residues 40-60, numbered according 40	

to the precursor protein (Pruitt et al., 2015, Pruitt et al., 2017).  RaxX residues 40-52 share 41	

sequence similarity with mature plant peptide containing sulfated tyrosine (PSY) hormones 42	

(Pruitt et al., 2015, Amano et al., 2007, Pruitt et al., 2017).  RaxX, like PSY1, can enhance root 43	

growth in diverse plant species (Pruitt et al., 2017).  The XA21-mediated response in rice 44	

requires residues 40-55 (RaxX16 peptide), whereas plant growth stimulation requires only 45	

residues 40-52 (RaxX13 peptide) (Pruitt et al., 2015).  Fig. 2 shows sequences for the RaxX 46	

variants examined in this study, together with two representative PSY sequences for comparison. 47	

 

RaxX sequences generally are well conserved within different Xanthomonas species (Pruitt et al., 48	

2017).  In Xoo however, RaxX from a strain IXO685, which evades XA21-mediated immunity 49	

differs from active RaxX at the critical positions Pro-44 and Pro-48 (Fig. 2) (Pruitt et al., 2015).  50	

Nevertheless, this RaxX protein stimulates root growth, as do two other RaxX Pro-48 variants 51	

from other Xanthomonas spp. (Fig. 6 in (Pruitt et al., 2017)). 52	
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These results suggest that RaxX recognition by XA21 is restrained by different sequence and 53	

length requirements compared to its recognition by the root growth promoting receptor(s) for 54	

PSY hormone(s).  It also suggests that recognition of RaxX by XA21 is specific to Xoo, whereas 55	

PSY mimicry is a general feature of RaxX from other Xanthomonas spp.  Accordingly, we 56	

hypothesized that PSY hormone mimicry is the original function of RaxX, whereas immune 57	

recognition by XA21 evolved later in response to Xoo (Pruitt et al., 2017). 58	

 

Two general predictions derive from this hypothesis.  The first prediction, that PSY hormone 59	

mimicry is broadly selective, is supported here by the presence of the raxX-raxSTAB gene cluster 60	

Xanthomonas spp., and by the ability of all RaxX variants tested to stimulate root growth in an 61	

assay for PSY function.  The second prediction, that recognition by XA21 is restricted to X. 62	

oryzae lineages, is validated here by the observation that XA21-mediated immunity is not 63	

activated by RaxX variants from other Xanthomonas spp.  These results illustrate how a 64	

pathogen protein has evolved to retain its ability to modulate host physiology without being 65	

recognized by the host immune system. 66	
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RESULTS 

 

The raxX-raxSTAB gene cluster is present in a subset of Xanthomonas spp. 

 

We searched databases at the National Center for Biotechnology Information to identify bacterial 67	

genomes with the raxX-raxSTAB gene cluster.  We found the intact raxX-raxSTAB gene cluster 68	

exclusively in Xanthomonas spp., and ultimately detected it in more than 200 unique genome 69	

sequences (File. S1) among 413 accessed through the RefSeq database (O'Leary et al., 2016). 70	

 

Xanthomonas taxonomy has undergone several changes over the years (Vauterin et al., 2000, 71	

Young, 2008) (see (Midha & Patil, 2014) for a representative example).  At one point, many 72	

strains were denoted as pathovars of either X. campestris or X. axonopodis, but today over 20 73	

species are distinguished, several with multiple pathovars (Rademaker et al., 2005, Vauterin et 74	

al., 1995). Because many of the genome sequences we examined are from closely-related strains, 75	

in some cases associated with different species designations, we constructed a whole-genome 76	

phylogenetic tree as described in Materials and Methods in order to organize these sequences by 77	

relatedness (Fig. S1).  The topology of the resulting tree shares broad similarity with several 78	

other Xanthomonas phylogenetic trees in defining relationships between well-sampled species 79	

(Midha & Patil, 2014, Rademaker et al., 2005, Hauben et al., 1997, Parkinson et al., 2007, 80	

Parkinson et al., 2009, Ferreira-Tonin et al., 2012, Gardiner et al., 2014, Triplett et al., 2015, 81	

Young, 2008). 82	
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To examine raxX-raxSTAB gene cluster organization and inheritance more closely, we selected 83	

15 genomes from strains that represent the phylogenetic range of Xanthomonas spp. (Table 1 84	

and Fig. S1).  Where possible, we chose complete genome sequences that are accompanied by 85	

published descriptions.  Throughout the analyses described below, species for which relatively 86	

large numbers of sequences are available also were monitored broadly for exceptional features.  87	

The close relative Stenotrophomonas maltophilia, which does not contain the raxX-raxSTAB 88	

gene cluster, serves as the outgroup (Moore et al., 1997). 89	

 

To facilitate discussion, we represent phylogenetic relationships between these strains as a 90	

cladogram that emphasizes relative positions of the raxX-raxSTAB gene cluster-positive lineages 91	

(Fig. 3).  Six distinct Xanthomonas lineages contain the raxX-raxSTAB gene cluster, one being X. 92	

oryzae.  A second lineage includes related strains currently denoted as X. vasicola or X. 93	

campestris pv. musacearum (Aritua et al., 2008); for concise presentation, we refer to these 94	

collectively as X. vasicola.  The third lineage includes X. euvesicatoria and related species 95	

(Rademaker group 9.2; (Rademaker et al., 2005, Barak et al., 2016).  The fourth lineage includes 96	

strains denoted as X. axonopodis, such as pv. manihotis (Rademaker group 9.4; (Rademaker et 97	

al., 2005, Mhedbi-Hajri et al., 2013).  The fifth lineage includes X. translucens (Langlois et al., 98	

2017), within the distinct cluster of "early-branching" species whose divergence from the 99	

remainder apparently occurred relatively early during Xanthomonas speciation (Parkinson et al., 100	

2007).  The sixth lineage comprises X. maliensis, associated with but nonpathogenic on rice 101	

(Triplett et al., 2015).  Phylogenetic analyses place this species between the "early-branching" 102	

species and the remainder (Triplett et al., 2015). 103	
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Notably, the raxX-raxSTAB gene cluster is absent from the group of strains classified as X. citri 104	

pathovars (Rademaker group 9.5; (Rademaker et al., 2005, Bansal et al., 2017).  These strains 105	

(some of which are denoted as X. axonopodis or X. campestris) cluster phylogenetically among 106	

four of the raxX-raxSTAB gene cluster-positive groups: X. oryzae, X. vasicola, X. euvesicatoria 107	

and X. axonopodis pv. manihotis (Midha & Patil, 2014, Vauterin et al., 1995, Rademaker et al., 108	

2005).  The simplest explanation for this pattern is that the raxX-raxSTAB gene cluster was lost 109	

from an ancestor of the X. citri lineage (Fig. 3); other explanations are not excluded. 110	

 

Sequence conservation of the raxX-raxSTAB gene cluster suggests lateral transfer between 

Xanthomonas spp. 

 

Both the organization and size of the raxX-raxSTAB gene cluster are conserved across all six 111	

lineages.  To assess inheritance patterns, we constructed a phylogenetic tree for the raxX-112	

raxSTAB gene cluster (as the catenation of the four rax genes; Fig. 4) (Kuo & Ochman, 2009).  113	

The rax genes in X. translucens, in the early-branching group, cluster separately from their 114	

homologs in the other lineages.  This finding is consistent with the hypothesis that X. translucens 115	

acquired the raxX-raxSTAB gene cluster relatively early during Xanthomonas speciation.  For X. 116	

maliensis, the raxX-raxSTAB genes are most similar to those from X. euvesicatoria and the X. 117	

axonopodis pathovars manihotis and phaseoli (Fig. 4), even though the X. maliensis genome 118	

sequence itself is more distantly related (Fig. 3).  This finding suggests that X. maliensis acquired 119	

the raxX-raxSTAB gene cluster relatively late during Xanthomonas speciation. 120	
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Boundaries flanking the raxX-raxSTAB gene cluster and adjacent genes suggest lateral 

transfer through general recombination 

 

The raxX-raxSTAB gene cluster lies between two core (housekeeping) genes (Fig. 1).  One, 121	

gcvP, encodes the pyridoxal-phosphate subunit of glycine dehydrogenase.  An approximately 122	

170 nt riboswitch (gcvR in Fig. 1) controls GcvP protein synthesis in response to glycine 123	

(Mandal et al., 2004).  The other, "mfsX", encodes a major facilitator subfamily (MFS) 124	

transporter related to Bcr and CflA efflux proteins (da Silva et al., 2004).  Here, "mfsX" is only a 125	

provisional designation absent functional characterization. 126	

 

Comparing the gcvP - [raxX-raxSTAB] - "mfsX" region from the reference genomes reveals 127	

sharp boundaries flanking the position of the raxX-raxSTAB gene cluster.  On the left flank, 128	

substantial nucleotide identity spans the gcvP gene, the gcvR riboswitch, and a predicted gcvR 129	

promoter –10 element (Mitchell et al., 2003) (Fig. S2).  On the right flank, identity begins 130	

shortly after the "mfsX" initiation codon.  Accordingly, upstream sequence elements for initiating 131	

"mfsX" gene transcription (Mitchell et al., 2003) and translation (Ma et al., 2002) are conserved 132	

within, but not between, raxX-raxSTAB gene cluster-positive and -negative sequences (Fig. S2). 133	

 

Between these boundaries in raxX-raxSTAB gene cluster-negative species, the compact (≤ 200 134	

nt) gcvP-"mfsX" intergenic sequence is modestly conserved in most genomes (about 60-80% 135	

overall identity; Fig. S2).  Much of this identity comes from the "mfsX" potential transcription 136	

and translation initiation sequences described above.  The overall intergenic sequence is less 137	
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conserved in the early-branching species (X. albilineans, X. hyacinthi and X. sacchari), 138	

displaying about 50-65% overall identity. 139	

 

We hypothesize that raxX-raxSTAB gene cluster phylogenetic distribution results from general 140	

recombination between conserved genes flanking each side (e.g., in or beyond the gcvP and 141	

"mfsX" genes).  Two observations are consistent with the hypothesis, First, we observed that the 142	

sequences flanking the raxX-raxSTAB gene cluster are different from the gcvP-"mfsX" intergenic 143	

sequence in raxX-raxSTAB gene cluster-negative strains (Fig. S2).  This argues against models in 144	

which the raxX-raxSTAB gene cluster has integrated into the gcvP-"mfsX" intergenic sequence 145	

during lateral transfer events. 146	

 

The second observation consistent with lateral transfer via general recombination is that gcvP 147	

length polymorphisms (Fig 1 and Fig. S3) do not align with Xanthomonas phylogenetic 148	

relationships (Fig. 3).  Inheritance patterns such as this often result from general recombination 149	

in the vicinity (Nelson et al., 1997). 150	

 

Notably, this gcvP-"mfsX" intergenic region conserved is also conserved in the X. citri lineage 151	

(Fig. S2).  If the raxX-raxSTAB gene cluster was lost during formation of this lineage (see 152	

above), then general recombination would replace the resident raxX-raxSTAB gene cluster with a 153	

donor conserved gcvP-"mfsX" region. 154	

 

raxST but not raxX homologs are present in genomes from diverse bacterial species 
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Our GenBank database searches identified raxX homologs and the raxX-raxSTAB gene cluster 155	

only in Xanthomonas spp.  However, these searches did identify raxST homologs encoding 156	

proteins with about 40% identity to, and approximately the same length as, the Xoo RaxST 157	

protein.  These sequences include the PAPS-binding motifs that define sulfotransferase activity 158	

(da Silva et al., 2004, Negishi et al., 2001).  Regardless of its current function, a raxST homolog 159	

potentially could evolve to encode tyrosylprotein sulfotransferase activity.  160	

 

None of these raxST homologs is associated with a raxX homolog, and most also are not 161	

associated with raxA or raxB homologs.  Presumably, the enzymes by these raxST homologs act 162	

on substrates other than RaxX.  These raxST homologs support the hypothesis that the raxSTAB 163	

cluster arose from a new combination of pre-existing raxST, raxA, and raxB homologs.  164	

Proteolytic maturation and ATP-dependent peptide secretion systems are broadly distributed and 165	

so raxA and raxB homologs are plentiful in bacterial genomes (Holland et al., 2016). 166	

 

These raxST homologs are in diverse genetic contexts in a range of bacterial phyla including 167	

Proteobacteria and Cyanobacteria (Fig. S4).  Nevertheless, for most species represented by 168	

multiple genome sequences, the raxST homolog was detected in a minority of individuals, so it is 169	

not part of the core genome in these strains.  Moreover, relationships between species in a raxST 170	

gene phylogenetic tree bear no resemblance to those in the overall tree of bacterial species.  For 171	

example, in the raxST gene tree, sequences from Cyanobacteria are flanked on both sides by 172	

sequences from Proteobacteria (Fig. S4).  Together, these findings provide evidence for lateral 173	

transfer of raxST homologs (Kuo & Ochman, 2009). 174	
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RaxX protein sequence variants representing all six raxX-raxSTAB gene cluster-positive 

lineages 

 

RaxX protein sequences from diverse Xanthomonas spp. assort into several sequence groups 175	

differentiated by polymorphisms within the predicted mature peptide sequence (Fig. 2) (Pruitt et 176	

al., 2017).  Many of these groups are subdivided further according to polymorphisms in the 177	

predicted leader protein sequence (residues 1-39) or carboxyl-terminal region distal to residue 178	

Pro-52.  Most leader polymorphisms lie between residues 2-24, and are unlikely to affect 179	

function of mature RaxX protein.  Here we only consider polymorphisms in the predicted mature 180	

form. 181	

 

To assess the function of RaxX variants, we focused on frequently observed variants in species 182	

represented by numerous genome sequences (Fig. S1).  These include sequence groups A, B and 183	

D from X. oryzae pv. oryzae and X. oryzae pv. oryzicola, as well as sequence groups E, G and H, 184	

representing most genomes for the X. euvesicatoria and X. vasicola groups (Fig. 2).  Finally, 185	

sequence group K is most numerous among X. translucens genomes.  The comparison reference 186	

is the RaxX protein sequence from the Philippines Xoo strain PXO99A (sequence group A).  187	

Examples from lower frequency (mostly unique) sequence groups were analyzed by 188	

complementation, as described below. 189	

 

RaxX variants promote root growth but fail to activate the XA21-mediated immune 

response 
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We generated and purified tyrosine-sulfated full-length (unprocessed) RaxX peptides for these 190	

seven variants using an expanded genetic code approach (see methods) (Fig. 2), together 191	

representing all five pathogenic lineages that contain the raxX-raxSTAB gene cluster.  The 192	

positive control is RaxX21-sY, a synthetic 21 residue tyrosine-sulfated peptide with strong 193	

activity (Pruitt et al., 2015).  These peptides were used in two separate assays for function.  First, 194	

we performed root growth experiments with an Arabidopsis thaliana tpst-1 mutant lacking 195	

tyrosylprotein sulfotransferase, which is required for all known sulfated tyrosine peptide 196	

hormones including PSY (Matsubayashi, 2014).  This eliminates endogenous PSY activity so 197	

that effects of added peptides are more easily observed (Pruitt et al., 2017, Matsubayashi, 2014).  198	

Root lengths for seedlings grown without added peptide averaged 23.5 mm, whereas root lengths 199	

for seedlings grown with 100 nM peptide were at least twice as long (Fig. 5A and Fig. 5B).  This 200	

observation is consistent with the hypothesis that these peptides mimic PSY1 peptide hormone 201	

activity.  Note that three of these variants (groups D, E and G) were examined previously (Pruitt 202	

et al., 2017) and are included here to facilitate direct comparisons as well as to monitor 203	

consistency of results. 204	

 

In the second assay, we tested each RaxX peptide for direct activation of XA21-mediated 205	

immunity by assaying induction of the PR10b marker gene as a readout for immune activation 206	

(Thomas et al., 2016, Pruitt et al., 2015).  In contrast to results with the root growth assay, here 207	

only the group A RaxX protein (from Xoo strain PXO99A) was able to induce XA21-mediated 208	

PR10b marker gene expression (Fig. 5C). 209	
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In a separate test for activation of XA21-mediated immunity, we used a �raxX deletion mutant 210	

of Xoo strain PXO99A as a host for genetic complementation.  We tested each of the raxX alleles 211	

shown in Fig. 2, which includes examples from lower frequency (mostly unique) sequence 212	

groups.  We introduced each raxX allele into the �raxX test strain, and monitored disease 213	

progression in leaves of whole plants.  Only the group A raxX allele (from Xoo strain PXO99A) 214	

was able to complement the Xoo PXO99A �raxX strain to activate XA21-mediated immunity 215	

(Fig. 6).  Expression of each raxX allele was confirmed by qPCR (Fig. S5). 216	

 

Together, these results provide direct evidence that activation of XA21-mediated immunity is 217	

restricted to RaxX proteins from sequence group A, found in most strains of Xoo.  None of the 218	

other X. oryzae RaxX variants tested (including RaxX from X. oryzae pv. oryzicola) was able to 219	

activate XA21-mediated immunity.  The observation that all RaxX proteins tested stimulated 220	

Arabidopsis root growth suggests that the RaxX PSY peptide mimicry function is not restricted 221	

to rice.  222	

 

African Xoo strain AXO1947 RaxX and RaxST natural variants both lead to evasion of the 

XA21 immune receptor 

 

The raxX alleles from Xoo strains IXO685 and AXO1947 failed to complement the �raxX 223	

mutant of Xoo strain PXO99A for XA21 immune activation (Fig. 6).  In addition to its variant 224	

raxX allele (Fig. 2), we noted that Xoo strain AXO1947 (Huguet-Tapia et al., 2016) carries seven 225	

missense polymorphisms in the raxST gene (Fig. S6) not present in other Xoo strains such as 226	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/149930doi: bioRxiv preprint 

https://doi.org/10.1101/149930
http://creativecommons.org/licenses/by/4.0/


 

 - 15 - rax gene cluster 

IXO685.  To determine if the variant raxST allele from strain AXO1947 encodes a functional 227	

protein, we performed additional complementation tests. 228	

 

We found that the raxX allele from strain PXO99A conferred the XA21 immune activation 229	

phenotype upon strain IXO685 but not upon strain AXO1947 (Fig. 7B).  This result suggests that 230	

the raxX variant allele is not the only factor that prevents strain AXO1947 from activating the 231	

XA21 immune response.  Consistent with this hypothesis, the raxST allele from strain PXO99A 232	

failed to confer the XA21 immune activation phenotype upon strain AXO1947 (Fig. 7D).  In 233	

contrast, addition of both the raxX and raxST alleles from strain PXO99A was sufficient to confer 234	

the XA21 immune activation phenotype upon strain AXO1947 (Fig. 7F). 235	

 

Taken together, these results suggest that Xoo strain AXO1947 has mutant versions of both 236	

genes, raxST and raxX.  Analysis by qRT-PCR confirms that these genes were expressed in the 237	

complemented strains (Fig. S7). 238	

 

RaxST variants from Xoo strain AXO1947 

 

To determine which of the RaxST missense polymorphisms is responsible for the apparent 239	

reduction in enzyme activity, we used site-specific mutagenesis to introduce each individually 240	

into the raxST gene from strain PXO99A.  Genes encoding two of these [His-50 to Asp (H50D) 241	

and Arg-129 to Leu (R129L)] were unable to complement the �raxST mutant of Xoo strain 242	

PXO99A for XA21 immune activation (Fig. 8), indicating that both His-50 and Arg-129 are 243	

necessary for RaxST activity. 244	
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Little is known about RaxST structure and function.  Diverse sulfotransferases share limited 245	

sequence similarity, mostly comprising two relatively short sequence motifs involved in PAPS 246	

binding (Negishi et al., 2001).  These motifs are conserved in the Xoo RaxST sequence (da Silva 247	

et al., 2004).  Research with diverse sulfotransferases has identified three essential residues: a 248	

positively-charged residue (corresponding to Arg-11 in RaxST) in one PAPS binding motif, an 249	

invariant Ser (corresponding to Ser-118 in RaxST) in the other, and a catalytic base (His or Glu) 250	

located between the two PAPS binding motifs (Negishi et al., 2001). 251	

 

We generated a RaxST molecular model with the program iTasser (Yang & Zhang, 2015) using 252	

the crystal structure of human tyrosylprotein sulfotransferase-2 (TPST2) as a template (PDB: 253	

3AP1).  The sequence alignment is shown in Fig. S8.  TPST2 is a functional dimer (Teramoto et 254	

al., 2013), which is replicated in the RaxST structural model (Fig. S9).  The two essential 255	

residues identified from Xoo strain AXO1947, His-50 and Arg-129, display surface exposed side 256	

chains in close proximity to the corresponding position for the bound substrate peptide co-257	

crystalized with TPST2.  These residues are distal to the catalytic site.  Therefore, we 258	

hypothesize that these RaxST residues are involved in RaxX peptide binding. 259	
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DISCUSSION 

 

We previously hypothesized that RaxX mimics the actions of PSY hormones, and that the XA21 260	

receptor evolved specifically to recognize RaxX from Xoo (Pruitt et al., 2015, Pruitt et al., 2017).  261	

This prediction is supported here by our finding that all the RaxX variants tested stimulate root 262	

growth (Fig. 5A and Fig. 5B) (Pruitt et al., 2017) but fail to activate the XA21-mediated immune 263	

response (Fig. 5C and Fig. 6).  Thus, RaxX sequence determinants are more stringent for XA21-264	

mediated immunity activation than for root growth stimulation.  In this discussion, we consider 265	

two questions: (1) What are potential selective pressures acting on RaxX that affect sequence 266	

variation; and (2) How was the raxX-raxSTAB gene cluster inherited in Xanthomonas spp.? 267	

 

Opposing selection pressures drive RaxX natural variation 

 

Maintenance of the raxX-raxSTAB gene cluster (Fig. 3) suggests that RaxX provides fitness 268	

benefits to diverse Xanthomonas spp., presumably during their interactions with hosts that 269	

collectively encompass a range of monocot and dicot species.  This hypothesis is supported by in 270	

vivo data showing that Xoo strains lacking the raxX or raxST genes are compromised for 271	

virulence (Pruitt et al., 2015, Pruitt et al., 2017).  On the other hand, rice-restricted XA21-272	

mediated immunity would select specifically against RaxX maintenance by Xoo.  Analysis of 273	

raxX-raxSTAB gene cluster sequence polymorphisms suggests that both types of selection occur. 274	

 

The Xa21 gene has been introgressed into commercial rice varieties (Khush et al., 1990, Midha 275	

et al., 2017).  Widespread planting of Xa21 rice presumably increases selection for Xoo variants 276	
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that evade XA21-mediated immunity.  All RaxX missense variants examined mimicked PSY 277	

hormone activity (Fig. 5A and Fig. 5B) (Pruitt et al., 2017), suggesting that this property confers 278	

a selective advantage.  Consistent with this, we did not observe any raxX frameshift or nonsense 279	

alterations.  Instead, RaxX variant sequences contain a restricted set of missense substitutions, 280	

consistent with the hypothesis that selection acts to retain PSY-like function (Fig. 2; see 281	

reference (Pruitt et al., 2017)). 282	

 

Among all RaxX variants tested, only that from Xoo strain PXO99A (which represents the large 283	

majority of Xoo raxX alleles) activated the XA21-mediated immune response (Fig. 5C and Fig. 284	

6).  This result demonstrates that recognition of RaxX by XA21 is strictly limited to Xoo, and 285	

confirms and extends a prior conclusion from our laboratory, that residues Pro-44 and Pro-48 286	

both are required for Xoo RaxX recognition by XA21 (Pruitt et al., 2015). 287	

 

Thus, it appears that some Xoo strains that evade activation of XA21-mediated immunity arise 288	

from a restricted set of raxX missense substitution alleles encoding variants that retain PSY-like 289	

function.  This observation suggests that it may be possible to engineer novel XA21 variants that 290	

recognize these variant RaxX proteins.  If so, it may then be possible to engineer broad-spectrum 291	

resistance against Xoo (and other raxX-raxSTAB gene cluster-positive Xanthomonas spp.) by 292	

expressing multiple XA21 proteins that collectively recognize multiple RaxX variants. 293	

 

We also have identified raxST and/or raxA gene loss of function alterations in Xoo field isolates 294	

(Fig. 7; reference (da Silva et al., 2004), which presumably cannot express the PSY mimicry 295	
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phenotype of RaxX).  Such loss of function alterations could temper the effectiveness of 296	

production strategies that rely on engineered Xa21 alleles. 297	

 

raxX-raxSTAB gene cluster origin 

 

The raxAB genes are homologous to those encoding proteolytic maturation and ATP-dependent 298	

peptide secretion complexes (da Silva et al., 2004, Lin et al., 2015), related to type 1 secretion 299	

systems but specialized for secreting small peptides such as bacteriocins and peptide pheromones 300	

(Holland et al., 2016).  Frequently, the gene encoding the secreted substrate is adjacent to genes 301	

encoding components of the secretion complex (Dirix et al., 2004).  We hypothesize that the 302	

intact raxX-raxSTAB gene cluster originated in an ancestor to the lineage containing X. oryzae, 303	

X. euvesicatoria, and related species, with subsequent gains or loss through lateral transfer (Fig. 304	

2).  Relatively few events appear to have been necessary to form the raxX-raxSTAB gene cluster.  305	

The raxX gene might have evolved from the gene for the secreted peptide substrate of the 306	

RaxAB ancestor.  The complete cluster would result from incorporation of the ancestral raxST 307	

gene, homologs of which are distributed broadly (Fig. S4).  308	

 

Role for the raxX-raxSTAB gene cluster in Xanthomonas biology 

 

The raxX-raxSTAB gene cluster does not exhibit features, such as a gene for a site-specific 309	

recombinase, characteristic of self-mobile genomic islands (Hacker et al., 1997).  Instead, 310	

evidence suggests that raxX-STAB gene cluster lateral transfer occurred through general 311	

recombination between genes flanking each side of the raxX-STAB gene cluster (Fig. 1 and Fig. 312	
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S2).  In bacteria, gene acquisition through lateral transfer contributes to emergence of new 313	

pathovars (see reference (Ogura et al., 2009) for one example).  Conceivably, lateral acquisition 314	

of the raxX-raxSTAB gene cluster might allow a particular strain to infect a previously 315	

inaccessible host. 316	

 

Xanthomonas pathovar phenotypes (Jacques et al., 2016) are not predicted by the presence or 317	

absence of the raxX-raxSTAB gene cluster.  For example, some raxX-raxSTAB gene cluster-318	

positive species can infect only monocots (e.g., X. oryzae, X. translucens) or only dicots (e.g., X. 319	

euvesicatoria), just as some raxX-raxSTAB gene cluster-negative species also can infect only 320	

monocots (e.g., X. arboricola, X. hyacinthi) or only dicots (e.g., X. campestris pv. campestris; X. 321	

citri).  Similarly, some raxX-raxSTAB gene cluster-positive species are specific for vascular 322	

tissue (e.g., Xoo; X. vasicola) or for non-vascular tissue (e.g., X. oryzae pv. oryzicola; X. 323	

euvesicatoria), just as some raxX-raxSTAB gene cluster-negative species also are specific for 324	

vascular tissue (e.g., X. hortorum; X. albilineans) or for non-vascular tissue (e.g., X.citri; X. 325	

arboricola).  Thus, selective function(s) for the raxX-raxSTAB gene cluster in Xanthomonas spp. 326	

remain to be determined.  327	
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Experimental Procedures 

 

Survey of the RaxX, RaxST and the raxX-STAB genomic region in publicly available 

databases 

 

We used the 5kb long Xoo PXO99A raxX-raxSTAB genomic region, including 600 bp upstream 328	

of raxST and 70 bp downstream of raxB, as query to search the following NCBI databases with 329	

blastn and megablast using e-value cut-off of 1e-3; nr/nt, htgs, 330	

refseq_genomic_representative_genomes, refseq_genomic, and gss. To identify RaxX homologs 331	

we used the protein sequence of RaxX from Xoo PXO99A as query to search the same databases 332	

using tblastn with a PAM30 scoring matrix to account for the short sequence length of RaxX. In 333	

case of raxST from Xoo PXO99A we used the genomic coding sequence to search the same 334	

databases using the same cut-offs. In addition, we used the RaxST protein sequence to search the 335	

following database using blastp with an e-value cut-off of 1e-3 and a BLOSUM62 scoring 336	

matrix; nr, refseq_protein, env_nr.  The databases were last accessed 2016/01/06 for the initial 337	

manuscript submission and 2018/06/25 during preparation of the resubmission.  Searches were 338	

restricted to bacteria (taxid: 2) in case of refseq_genomic_representative_genomes. The 339	

observations of specificity of raxX and the intact raxX-raxSTAB gene cluster to the genus 340	

Xanthomonas was consistent across all queries. 341	

 

Whole genome based phylogenetic tree for Xanthomonas spp. 
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All available Xanthomonas genomes were downloaded from the NCBI ftp server on January 29, 342	

2016 (413 genome accessions).  The genome fasta files were used to build a local blast database 343	

using BLASTv2.27+ (Camacho et al., 2009).  For all genes in and surrounding the raxSTAB 344	

cluster blastn (evalue cutoff of 1e-3) was used to identify homologs in the local blast database.  345	

Due to the small size of RaxX, tblastn was required to identify homologs (evalue cutoff of 1e-3).  346	

Fasta files for each blast hit were generated using a custom python script (available upon 347	

request).  Alignments of all genes were performed with Muscle v3.5  (Edgar, 2004) implemented 348	

in the desktop tool Geneious v9.1.8 (Kearse et al., 2012).  Alignment ends were trimmed so that 349	

each sequence was equal in length and in the first coding frame.  Maximum likelihood trees were 350	

built with RaxML v8.2.4  (Stamatakis, 2014) with the following settings: (-m GTRGAMMA F -f 351	

a -x 3298589 -N 10000 -p 23).  Trees shown in all figures are the highest scoring ML tree and 352	

numbers shown on branches are the resampled bootstrap values from 1000 replicates.  Trees 353	

were drawn in FigTree v1.4.0 (http://tree.bio.ed.ac.uk/software/figtree/). 354	

 

Whole genome phylogenies were generated using the entire genome assembly with the program 355	

Andi v0.10 (Haubold et al., 2015, Klotzl & Haubold, 2016).  These distance matrices were 356	

plotted as neighbor-joining tree using Phylip v3.695 (Felsenstein, 1981).  Numbers on the 357	

branches represent the proportion (0-100) that the branch appeared in the “bootstrapped” 358	

distance matrices using Andi. 359	

 

Sequence analyses 
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Nucleotide and deduced amino acid sequences were edited and analyzed with the programs 360	

EditSeqTM (version 14.1.0), MegAlignTM (version 14.1.0) and SeqBuilderTM (version 14.1.0), 361	

DNASTAR, Madison, WI.  The Integrated Microbial Genomes interface (Chen et al., 2017) was 362	

used to compare genome segments from different species. 363	

 

Bacterial growth 

 

Xanthomonas strains were cultured at 28°C.  Solid medium was peptone sucrose agar (PSA; pH 364	

7.0), which contains (per liter) peptone (10 g), sucrose (10 g), sodium glutamate (1 g) and agar 365	

(15 g).  Liquid cultures were aerated at 230 rpm in YEB medium (pH 7.3), which contains (per 366	

liter) yeast extract (5 g), tryptone (10 g), NaCl (5 g), sucrose (5 g), and MgSO4 (0.5 g).  367	

Antibiotics were kanamycin, carbenicillin, spectinomycin (all at 50 �g/ml), and cephalexin (20 368	

�g/ml). 369	

 

Rice growth and inoculation 

 

Oryza sativa ssp. japonica rice varieties were TP309 and XA21-TP309, which is a 106-17-370	

derived transgenic line of TP309 carrying the Xa21 gene expressed from its native promoter 371	

(Song et al., 1995).  TP309 rice does not contain the Xa21 gene.  Seeds were germinated in 372	

distilled water at 28°C for one week and then transplanted into sandy soil (80% sand, 20% peat; 373	

Redi-Gro) in 5.5-inch square pots with two seedlings per pot.  Plants were grown in tubs in a 374	

greenhouse, and were top watered daily with fertilizer water [N, 58 ppm (parts per million); P, 375	

15 ppm; K, 55 ppm; Ca, 20 ppm; Mg, 13 ppm; S, 49 ppm; Fe, 1 ppm; Cu, 0.06 ppm; Mn, 0.4 376	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/149930doi: bioRxiv preprint 

https://doi.org/10.1101/149930
http://creativecommons.org/licenses/by/4.0/


 

 - 24 - rax gene cluster 

ppm; Mo, 0.02 ppm; Zn, 0.1 ppm; B, 0.4 ppm] for four weeks, followed by water for two weeks.  377	

Six weeks after planting, rice pots were transferred to a growth chamber with the following 378	

day/night settings: 28°C/24°C, 80%/85% humidity, and 14/10-hour lighting.  Plants were 379	

inoculated 2 to 3 days after transfer using the scissors clipping method (Song et al., 1995). 380	

Bacteria for inoculation were taken from PSA plates and resuspended in water at a density of 381	

approximately 8 × 108 CFU/ml.  Water-soaked lesions were measured 14 days after inoculation. 382	

 

Complementation tests 

 

The Xoo strain PXO99A marker-free deletions �raxX and �raxST were described previously 383	

(Pruitt et al., 2015).  The raxX and raxST genes from different Xanthomonas spp. were cloned 384	

into plasmid vector pVS61 and electrotransformed into the appropriate recipient strains as 385	

described previously (Pruitt et al., 2015).  Site-specific mutational alterations were introduced by 386	

PCR using the In-Fusion HD cloning system (Takara). 387	

 

RaxX peptide stimulation of PR10b gene expression 

 

Full-length sulfated RaxX proteins were purified from an E. coli strain with an expanded genetic 388	

code that directs incorporation of sulfotyrosine at the appropriate position (Schwessinger et al., 389	

2016).  The resulting MBP-3C–RaxX-His fusion proteins were incubated with 3C protease 390	

followed by anion exchange chromatography in order to remove the amino-terminal maltose 391	

binding protein tag, as described previously (Schwessinger et al., 2016).  The control peptide, 392	

sulfated RaxX21-sY, has been described (Pruitt et al., 2015). 393	
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Rice plants were grown in a hydroponic system in growth chambers at 24° or 28°C with a 14-394	

hour/10-hour light-dark cycle at 80% humidity.  Seedlings were grown in A-OK Starter Plugs 395	

(Grodan) and watered with Hoagland’s solution twice a week.  Peptide influence on PR10b 396	

marker gene expression was measured as described previously (Pruitt et al., 2015).  Briefly, 397	

leaves of 4-week-old hydroponically grown rice plants were cut into 2-cm-long strips and 398	

incubated for at least 12 hours in ddH2O to reduce residual wound signals.  Leaf strips were 399	

treated with the indicated peptides and then snap-frozen in liquid nitrogen before processing.  400	

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was done as described 401	

previously (Pruitt et al., 2015).  Gene expression was normalized to the actin gene expression 402	

level and to the respective mock-treated control at 0 or 9 hour. 403	

 

DNA primers for qRT-PCR were:  ampC-F, GACTCGTAATGCCTACGACC; ampC-R, 404	

AATTGCTCGTAGAAGCTGCC; qraxST-F, CTTCCAACGTGCAGATCGAC; qraxST-R, 405	

TATCGACGATCCAACCAAC; qRaxX-F, AAAATCGCCCGCCAAGGGT; qRaxX-R, 406	

TCAATGGTGCCCGGGGTTG; PR10b-F, TGTGGAAGGTCTGCTTGGAC; PR10b-R, 407	

CCTTTAGCACGTGAGTTGCG 408	
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FIGURE LEGENDS 

 

Fig. 1.  The raxX-raxSTAB gene cluster. 

The raxX-raxSTAB gene cluster is located between the flanking gcvRP and "mfsX" genes.  Gene 617	

cluster acquisition through lateral transfer is hypothesized to occur by general recombination in 618	

the flanking gcvR and "mfsX" sequences as described in the text.  Sequences at the left and right 619	

boundaries are shown in Fig. S2.  Sequences for length polymorphisms in the gcvP gene are 620	

shown in Fig. S3. 621	

 

Fig. 2.  RaxX variants. 

Sequences show the presumed leader-cleaved forms of RaxX, numbered from the beginning of 622	

the precursor sequence.  The extent of sequence comprising the RaxX16 and RaxX13 synthetic 623	

peptides is indicated above the alignment.  Residues are shaded according to conservation in 624	

PSY sequences (Pruitt et al., 2017): positions with nearly invariant residues are shaded black, 625	

and those with only two or three substitutions are shaded blue.  The sulfated Tyr residue is 626	

shaded red.  Gaps are indicated by dots.  Sequence groups are described elsewhere in detail 627	

(Pruitt et al., 2017).  The subgroups B1-B3 differ only in the carboxyl-terminal sequence 628	

beginning with residue 53.  X. oryzae strains X8-1A and X11-5A are nonpathogenic and 629	

therefore do not have pathovar designations.  The mature form of Arabidopsis thaliana PSY1 630	

(Amano et al., 2007) and the corresponding region from Oryza sativa PSY1a (Amano et al., 631	

2007, Pruitt et al., 2017) are shown for comparison.  Residues Pro-16 and Pro-17 in AtPSY1 632	

both are hydroxylated [†,‡], and Pro-16 is glycosylated with L-Ara3 [‡] (Amano et al., 2007) . 633	
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Fig. 3.  Model for raxX-raxSTAB inheritance during Xanthomonas speciation. 

The Xanthomonas spp. cladogram is based on published phylogenetic trees; see text for 634	

references.  Red lines depict lineages for strains that lack the raxX-raxSTAB gene cluster, 635	

whereas blue lines depict those that carry the cluster.  Numbers indicate gcvP length 636	

polymorphism in each species (see Fig. S3).  Hypothetical events are:  A, formation of the raxX-637	

raxSTAB gene cluster; B, lateral transfer to X. translucens, relatively early during speciation 638	

(indicated by the long blue line); C, lateral transfer to X. maliensis, relatively late during 639	

speciation (indicated by the short blue line); D, loss from X. citri.  Strain numbers denote sources 640	

of RaxX proteins chosen for functional tests, as described in the text. 641	

 

Fig. 4.  Phylogenetic tree for raxX-raxSTAB nucleotide sequences. 

The best scoring maximum likelihood tree for the catenated raxA, raxB, raxX and raxST coding 642	

sequences.  Numbers shown on branches represent the proportion of branches supported by 643	

10,000 bootstrap replicates (0-100). Bootstraps are not shown for branches with less than 50% 644	

support, nor for branches too short to easily distinguish.  Species names are colored according to 645	

phylogenetic group. 646	

 

Fig. 5.  RaxX variant peptides promote root growth. 

(A)  Stimulation of Arabidopsis root growth.  Fourteen-day-old tpst-1 seedlings were grown on 647	

½ MS vertical plates with or without 100 nM of the indicated full-length peptides.  Bars indicate 648	

the average seedling root length measured after 14 d (n>10). Error bars show the standard 649	

deviation.  The “*” indicates a statistically significant difference from Mock using Dunnett’s test 650	

(p<0.05).  Peptide RaxX sY21 is a 21 residue sulfated peptide with potent RaxX activity (Pruitt 651	
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et al., 2015).  Strain abbreviations are Xvv, X. vasicola pv. vasculorum; Xt, X. translucens; Xe, X. 652	

euvesicatoria; Xcm, X. campestris pv. musacearum; PXO99A, IXO685, AXO1947, strains of X. 653	

oryzae pv. oryzae.  (B)  Arabidopsis seedlings from a representative experiment.  (C)  Activation 654	

of rice PR10b gene expression.  Purified peptide (500 nM) was used to treat detached leaves as 655	

described in Materials and Methods.  Expression levels of the PR10b gene (normalized to actin 656	

gene expression) were determined after 12 h.   Data are the mean values from four biological 657	

replicates.  Error bars show the standard deviation.  The “*” indicates a statistically significant 658	

difference from Mock using Dunnett’s test (p<0.05). 659	

 

Fig. 6.  RaxX variants fail to activate XA21-mediated immunity. 

Different raxX genes were cloned into vector pVSP6 (see Materials and Methods) to test for 660	

complementation of the Xoo strain PXO99A ∆raxX strain.  Leaf tips of rice varieties TP309 661	

(panel A) or XA21-expressing TP309 (panel B) were inoculated by clipping with scissors dipped 662	

in bacterial suspensions (approximate cell density of 8 × 108 cells mL-1).  Lesion lengths were 663	

measured 14 days after inoculation.  Data are the mean values from measurements of 10-20 664	

leaves.  Error bars show the standard error of the mean, and “*” indicates a statistically 665	

significant difference from Xoo strain PXO99A according to Dunnett’s multiple comparison 666	

procedure (p<0.05).  Values in panel A are insignificantly different.  Strain abbreviations are 667	

Xvv, X. vasicola pv. vasculorum; Xt, X. translucens; Xoc, X. oryzae pv. oryzicola; Xe, X. 668	

euvesicatoria; Xcm, X. campestris pv. musacearum; X8-1A, X11-5A, strains of X. oryzae; M97, 669	

X. maliensis M97; PXO99A, IXO685, AXO1947, strains of X. oryzae pv. oryzae. 670	

 

Fig. 7.  The raxX and raxST genes are dysfunctional in Xoo strain AXO1947. 
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Different combinations of the raxX and raxST genes were cloned into vector pVSP61 (see 671	

Materials and Methods) to test for complementation.  Leaf tips of rice varieties TP309 (panels A, 672	

C and E) or XA21-expressing TP309 (panels B, D and F) were inoculated by clipping with 673	

scissors dipped in bacterial suspensions (approximate cell density of 8 × 108 cells mL-1).  Lesion 674	

measurements were taken 14 days after inoculation.  Data are the mean values from 675	

measurements of 10-20 leaves.  Error bars show the standard error of the mean, and “*” indicates 676	

a statistically significant difference from Xoo strain PXO99A according to Dunnett’s multiple 677	

comparison procedure (p<0.05).  Values in panels A, C and E are insignificantly different.  678	

Panels A and B show complementation results for the raxX gene, panels C and D show results 679	

for the raxST gene, and panels E and F show results for the combination of both the raxX and 680	

raxST genes.  Specific combinations of genes and complementation hosts are described in the 681	

figure labels. 682	

 

Fig. 8.  Two missense substitutions inactivate RaxST in Xoo strain AXO1947. 

Each of the seven raxST missense polymorphisms from Xoo strain AXO1947 was introduced 683	

singly into the wild-type raxST gene from Xoo strain PXO99A (see Materials and Methods).  684	

These mutant alleles then were tested for complementation of the Xoo strain PXO99A ∆raxST 685	

strain.  Leaf tips of rice varieties TP309 (panel A) or XA21-expressing TP309 (panel B) were 686	

inoculated by clipping with scissors dipped in bacterial suspensions (approximate cell density of 687	

8 × 108 cells mL-1).  Lesion measurements were taken 14 days after inoculation.  Data are the 688	

mean values from measurements of 10-20 leaves.  Error bars show the standard error of the 689	

mean, and “*” indicates a statistically significant difference from Xoo strain PXO99A according 690	

to Dunnett’s multiple comparison procedure (p<0.05). 691	
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Table 1.  Reference strains for sequence comparisons. 
 
 

Species Strain raxX-raxSTAB Accession Reference 
 
 

S. maltophilia K279a – NC_010943.1 (Crossman et al., 

2008) 

X. albilineans GPE PC73 – NC_013722.1 (Pieretti et al., 

2015) 

X. arboricola pv. juglandis Xaj 417 – NZ_CP012251.1 (Pereira et al., 

2015) 

X. axonopodis pv. manihotis UA536 + NZ_AKEQ00000000 (Bart et 

al., 2012) 

X. campestris pv. campestris ATCC 33913 – NC_003902.1 (da Silva et al., 

2002) 

X. campestris pv. musacearum NCPPB 4392 + NZ_AKBI00000000.1

 (Wasukira et al., 2012) 

X. cannabis NCPPB 2877 – NZ_JSZE00000000.1(Jacobs et 

al., 2015) 

X. citri subsp. citri 306 – NC_003919.1 (da Silva et al., 

2002) 

X. euvesicatoria 85-10 + NZ_CP017190.1 (Thieme et al., 

2005) 

X. fragariae LMG 25863 – NZ_AJRZ00000000.1

 (Vandroemme et al., 2013) 

X. hyacinthi DSM 19077 – JPLD00000000.1 (Naushad et 

al., 2015) 
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X. maliensis M97 + NZ_AQPR00000000.1(Triplett 

et al., 2015) 

X. oryzae pv. oryzae PXO99A + NC_010717.2 (Salzberg et al., 

2008) 

X. sacchari R1 – NZ_CP010409.1 (Studholme et 

al., 2011) 

X. translucens DAR61454 + GCA_000334075.1(Gardiner et 

al., 2014) 

X. vesicatoria 15b – NZ_JSXZ00000000.1

 (Vancheva et al., 2015) 
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Supporting Information 

Fig. S1. Whole genome-based Xanthomonas phylogenetic tree. 

This tree was constructed by analysis of whole genome sequences as described in Materials and 692	

Methods.  Blue indicates genomes that contain the raxX-raxSTAB gene cluster; red indicates 693	

genomes that do not.  Group numbers are arbitrary. 694	

 

Fig. S2. Sequences flanking the raxX-raxSTAB gene cluster. 

Sequences are from the reference strains described in Table 1.  Sequences conserved within a 695	

group but different from other groups are colored green ("early-branching" species), brown 696	

(raxX-raxSTAB cluster-negative strains), or yellow (raxX-raxSTAB cluster-positive strains).  For 697	

presentation, the sequence is divided into Left and Right boundaries.  The green and brown 698	

sequences are contiguous, whereas the yellow sequences are interrupted by the ca. 5 kb raxX-699	

raxSTAB gene cluster, depicted as a yellow rectangle.  For presentation, approximately 60-80 nt 700	

with relatively low similarity were removed from sequence shown in the Right boundary panel.  701	

These conceptual deletions are denoted by the number of nt removed in each case.  Black 702	

sequences are conserved in all lineages, and include both coding regions as well as matches to 703	

transcription and translation initiation consensus sequences, which are described in the text.  An 704	

“mfsX” +1 frameshift in Xoo sequences is indicated by the vertical red line.  Abbreviations are in 705	

red for raxX-raxSTAB cluster-negative strains and blue for raxX-raxSTAB cluster-positive 706	

strains: S. maltophilia, Sm; X. albilineans, Xa; X. arboricola pv. juglandis, Xaj; X. axonopodis 707	

pv. manihotis, Xam; X. campestris pv. campestris, Xcc; X. campestris pv. musacearum, Xcm; X. 708	

cannabis, Xc; X. citri subsp. citri, Xac; X. euvesicatoria, Xe; X. fragariae, Xf; X. hyacinthi, Xh; 709	
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X. maliensis, Xm; X. oryzae pv. oryzae,Xoo; X. sacchari,; Xs X. translucens, Xt; X. vesicatoria, 710	

Xv. 711	

 

Fig. S3. GcvP length polymorphisms in different Xanthomonas lineages. 

The relevant portion of the GcvP amino acid sequence is shown for each of the reference strains.  712	

Species in red lack the raxX-raxSTAB gene cluster, whereas those in blue carry the cluster.  713	

Numbers denote different allelic types for reference to Fig. 3.  The positions of residues Gly-733 714	

and Val-738 (numbering for allelic type 1) are indicated.  Abbreviations: S. maltophilia, Sm; X. 715	

albilineans, Xa; X. arboricola pv. juglandis, Xaj; X. axonopodis pv. manihotis, Xam; X. 716	

campestris pv. campestris, Xcc; X. campestris pv. musacearum, Xcm; X. cannabis, Xc; X. citri 717	

subsp. citri, Xac; X. euvesicatoria, Xe; X. fragariae, Xf; X. hyacinthi, Xh; X. maliensis, Xm; X. 718	

oryzae pv. oryzae,Xoo; X. sacchari,; Xs X. translucens, Xt; X. vesicatoria, Xv. 719	

 

Fig. S4. Phylogenetic tree for raxST homologs. 

Distribution of raxST homologs across bacterial genera, including the major groups of 720	

proteobacteria as well as cyanobacteria.  The tree shown was constructed by neighbor-joining 721	

with 1000 bootstrap replicates; branches with < 50% bootstrap support are not drawn.  The raxST 722	

sequence from Xoo strain PXO99A was used as query for tBLASTn. 723	

 

Fig. S5.  raxX expression in Xoo PXO99A complemented strains. 

Data show that raxX gene expression in the complemented strains with different raxX alleles 724	

with its promoter region on plasmids. The expression is shown as the logarithm of raw data using 725	

qRT-PCR. Gene expression was normalized to the chromosomal gene PXO_01660 (annotated as 726	
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an ampC gene homolog encoding ß-lactamase). Data are the mean values from two biological 727	

replicates.  Error bars show the standard deviation.  728	

 

Fig. S6.  RaxST sequence polymorphisms in Xoo strain AXO1947. 

The RaxST sequence from Xoo strain PXO99A is shown.  The seven missense substitutions in 729	

the sequence from Xoo strain AXO1947 (Huguet-Tapia et al., 2016) are indicated.  The 730	

boundaries of the PAPS binding motifs (5'-PSB and 3'-PB; reference (Negishi et al., 2001), are 731	

enclosed in boxes.  These motifs encompass the catalytic residues Arg-11 and Ser-118. 732	

 

Fig. S7.  raxX and raxST expression in Xoo PXO99A complemented strains. 

Data show raxX and raxST gene expression in the complemented strains (with raxX and raxST 733	

on plasmids) relative to expression in Xoo strain PXO899A (with raxX and raxST on the 734	

chromosome).  Expression was determined by qRT-PCR (see Materials and Methods), and is 735	

shown as the logarithm of the fold change.  Gene expression was normalized to the chromosomal 736	

gene PXO_01660 (annotated as an ampC gene homolog encoding �-lactamase).  Data are the 737	

mean values from two biological replicates.  Error bars show the standard deviation. 738	

 

Fig. S8.  RaxST structural alignment. 

Sequence alignment of the human TPST2 and Xoo RaxST sequences formatted with ESPript 3.0 739	

(Robert & Gouet, 2014).  Secondary structure elements derived from the respective structural 740	

models are shown.  Stars show TPST2 residues involved in PAPS binding, and arrows show 741	

RaxST missense substitutions. 742	
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Fig. S9.  Model for RaxST structure. 

Predicted RaxST structure shown in cartoon and surface representation, based on the dimeric 743	

structure of TPST2.  The two RaxST monomers are colored in dark and light green.  The 3’-744	

phosphoadenosine-5’-phosphate (PAP) and C4 substrate peptide that where co-crystallized with 745	

TPST2 are superimposed on the RaxST model.  PAP is represented as labelled and the substrate 746	

peptide is shown in yellow-cartoon with the acceptor tyrosine represented as labelled.  Residues 747	

His-50 and Arg-129 are colored in magenta and highlighted. 748	

 

File. S1.  Xanthomonas strains analyzed for whole-genome phylogeny. 

Excel file (.XLS format). 749	
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Fig. 1.  750	
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Fig. 2.  751	
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Fig. 3. 752	
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Fig. 4.  780	
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Fig. 5.781	
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Fig. 6.782	
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Fig. 7. 783	
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Fig. 8. 801	
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Fig. S1. 820	
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Fig. S2.821	

A.  Left Boundary
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Xcc C T T C T C C C A C C G T G T T A C C T G C C G A T T A T A - - G C C T G C G C C C A A G C C - G C C G G C G C G C C G C A C C A C G C T G C C G - C G G C A G G G G C C C T G C G - C T C G G G
Xv C T T C T C C C A C C A T G T T G C C C G G C G A T T A T A - - G C G T G G C T C C G C G C C G G C T T G C G C G C G G G C G G G G A C G C A C G G C A A C - - G C G C C G C G T A - C T T G C G
Xaj C T T C T C C C A C C G T G T T G C C G G C C G A T T A T A - - G C C T G C G T - - - - - - - - G C G T G C G T G C G C G C C G G A G C G T A C G - C G G C - - A G G C C A T G C A - C T C G G G
Xc C T T C T C C C A C C G T G T T G C C G G C C G A T T A T A - - G C G T G G C T - - G C G C A T G A T G G C G G G C C C G C G T G G G C C G C C G G C A A C - - G G C C C G T G C A - C T T G G G
Xac C T T C T C C C A C C G T G T T G C G G G C C G A T T A T A - - G C G T G G C T G C A G G T T - G C C C G - G C G C G C C C G C G C G C A C C C G T C T G C C T G C C G A C T G C A - C T T G G G

Xt C T T C T C C C A C C A T G T T G C G C C C A C A G T A T A T A G C C A G C G C C G C G C G G G A T T G G C G A A G C G C A C C C C A A C C G G G C A C A C C C G G C A A T G •
Xm C T T C T C C C A C C G T G T T G C C T G G C T A G T A T A - - G C C A G C G C C C G G C C G C - T T G G C G A A A C G C T G C G C G G C G C C A T G - A A C C G C C A G A G •
Xcm C T T C T C C C A C C G T G T T G C C T G G C T A G T A T A - - G C C A G C G C C C A G C C G C - T T G G C G A A A T G C T G C G C G G C T C G A T C - G A C C G C C G G A G •
Xoo C T T C T C C C A C C G T G T T A C C C G G C T A G T A T A - - G C C A G C G C C C G G C C G C - T T G G C G A A A C G C T G C G C G G G G T C A T G - A G C C G G C A G A G •
Xam C T T C T C C C A C C G T G T T A C C T G G C T A G T A T A - - G C C A G C G C C C G G C C G C - T T G G C G A A A C G C T T T T C G G C G C C A T G - A G A T G T C G G A G •
Xe C T T C T C C C A C C G T G T T G C C T G G C T A G T A T A - - G C C A G C G T C C A G C C G C - T T G G C G A A A C G C T T T T C G G C G C C A T G - A A A T G C C A A A G •

B.  Right Boundary

5' — T T G A C A n n n n n n n n n n n n - T G T R n T A T A A T 5' — A G G A G G n n n n n - - - - A T G
• • • • • • • • • • • • • • • • • • • • • • • • •

G C T G C A T G G C A T C A G G C G C A A T C C C C A C C T A T G A T G G G • • T G C C G G A C G C C T T T C C C - A T G A C C G C C G C T G T T G C T C C C T C C A C C C G C C G C A T G Sm
G C A T G T G T G C A G C G - A C G C T G C T G G C G C G T A T C A T A G G • • A T C A G G A T G T C C G A - - - - A T G C C C C T C C C G A A T G T G - - - T C C A C C C G C C G C A T G Xa
G C - G C T T A A C G - C G G C A T C G G C C A G G G G G T A T C A T G G C • • T C C A G G A T C C T G C G C - - - A T G C C G C T C C C G A C C A T C - - - C C G A T C C G C C G C C T G Xh
G C - G G A T G C G C G C C T G C G G C C G C A G C G C G T A T C A T G G C • • T T C A G G A T G A T G T C C C C - A T G C C G C T C C C G T C C G T G - - - T C C A C A C G C C G C A T G Xs

T T T G C T T A A C C - T T G C C G G G G T G A A C A C C T A T C A T C T G • • T T C C G G A T C C C G G C - - - - A T G A C C C C G A C C A C G C C C - - - T C C A C C C G T C G C A T G Xcc
C T T G C T T A A C C - T T G T C G G C G C A A G C G C C T A T C A T C G G • • T T T C G G A T C C C T G C - - - - A T G C C C C C C A C C A C G C C C - - - T C C A C C C G T C G C A T G Xv
T C T G C T T A A C C - T T G C A A C G G C C A G C G C C T A T C A T C G A • • T T T C G G A T C C C T G C - - - - A T G A C C C C C A C T A C G C C T - - - T C C A C C C G T C G C A T G Xaj
T T T G C T T A A C C - T T G C C G G C G C A A G C G C C T A T C A T C G G • • T T T C G G A T C C C T G C - - - - A T G A C C C C C A C C A C G C C C - - - T C C A C C C G G C G C A T G Xc
T T T G C T T A A C C - T T G C C G G C G C A A G C G C C T A T C A T C G G • • C C G C G G A T C C C T G A - - - - A T G C C C C C C A C C A C G C C T - - - T C C A C C C G T C G C A T G Xac

- - C G G C C C G G C - G C G C C G G C C G C G G C T G C G C C G A T G C C • • T C C G C G A T A T T G C C G C G C A T G C C C C C G G C C G T T C C C - - - T C C A C C C G C T A C A T G Xt
G C T G G G C C G C A - T G C G G T G G C A G T T G G C G T A A A G T G T C • • C T C C G G A T A C C G T T G C G C A T G T C T T C T G C T G T T C C C - - - T C C A C C C G T C G C A T G Xm
G C T G G G C C G A A - C A T C T G G G C A G T T G G C G T A A A G T G T C • • G T C C G G A T A C C - C T G C G C A T G T C T T C T G C T G T T C C C - - - A C C T C C C G T C G C A T G Xcm
T C G C G G G C G C A - C C C G G T G G C C A T T G G C G T G A A G T G T C • • C T C C G G G T G C C G T T G C G C A T G T C G T C T G C T G C T T C C - - - T C C A T C C G T C G C A T G Xoo
G C T G G G C C G C A - T G C G G T G G C A G T T G G C G T A A A G T G T C • • C T C C G G A T A C C G T T G C G C A T G T C T T C T G C T G T T C C C - - - T C C A C C C G T C G C A T G Xam
G C T G G G C C G C A - T G C G G T G G C A G T T G G C G T A A A G T G T C • • C T C C G G A T A C C G T T G C G C A T G T C T T C T G C T G T T C C C - - - T C C A C C C G T C G C A T G Xe
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Fig. S3. 822	
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GVGPCAVKSHLAPYLPRAGI----HAGEGQTAAIHGGGLNSESGSGHSSRIGGMVSAAAYGSASILPISWM         09
GVGPCAVKSHLAPYLPRAGI----HAGEGQDVAAHGGGLNSESGAAGSLRTGGMVSAAAYGSASILPISWM         11
GVGPCAVKSHLAPFLPRAGL----HAGEGQTAAIHGGGFNSGSGSGHSSRIGGMVSAAAYGSASILPISWM         12a
GVGPCAVKSHLAPYLPRAGI----HAGEGQTAAIHGGGFNSESGNGHSSRIGGMVSAAAYGSASILPISWM         13
GVGPCAVKSHLAPYLPRAGI--------------HGGGFNSESGSGHSSRIGGMVSAAAYGSASILPISWM         06
GVGPCAVKSHLAPFLPRAGL--------------HAGGFNSESGSGHSSRIGGMVSAAAYGSASILPISWM         12b
GVGPCAVKSHLAPFLPKTLPNAGIRAGENQKAAIHGSGSNF--GEGE----VGMVSAASYGSASILPISWM         07
GVGPCAVKAHLAPYLPMTLPN----AGEAQKAA----------GEGV----VGMVSAASFGSASILPISWM         01
GVGPCAVKEHLAPFLPGKLG-----------------------DNGP----VGMVSAASFGSASILPISWM         Sm
GVGPCAVKSHLAPYLPKTLG-----------------------GEGD----VGMVSAASFGSASILPISWM         02
GVGPCAVKAHLAPYLPKTLG-----------------------GDGE----VGMVSAASFGSASILPISWM         03
GVGPCAVKSHLAPYLPKTLG-----------------------GEGD----VGMVSAASFGSASILPISWM         04
GVGPCAVKSHLAPFLPRTLG-----------------------SEGD----VGMVSAASYGSASILPISWM         05
GVGPCAVKSHLAPFLPKTLG-----------------------GEGD----VGMVSAASYGSASILPISWM         08
GVGPCAVKSHLAPFLPRTLG-----------------------GEGD----VGMVSAASYGSASILPISWM         10
GVGPCAVKSHLAPFLPRTLG-----------------------GEGD----VGMVSAASYGSASILPISWM         14
GVGPCAVKSHLAPYLPKTLG-----------------------GEGD----VGMVSAASYGSASILPISWM         15
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Xa 3b

Xs 1
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Xt 1
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Xc 1

Xcc 3a

Xv 1

Xm 2b
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Fig. S4.  823	
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Fig. S5. 824	

 825	

 826	

 827	

 828	

 829	

 830	

 831	

 832	

 833	

 834	

 835	

 836	

 837	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/149930doi: bioRxiv preprint 

https://doi.org/10.1101/149930
http://creativecommons.org/licenses/by/4.0/


 

 - 56 - rax gene cluster 

Fig. S6. 838	

 
 
          11                                     50 53 
          •                                      •  • 
VDYHFISGLPRAGSSLLAALLRQNPQLHADVTSPVARLYAAMLMGMSEEHPSNVQIDDAQ  60 
         5'-PSB                                  D  K 
 
              75                                         118 
              •                                          • 
RVRLLRAVFDAYYQNRQELGTVFDTNRAWCSRLTGLARLFPRSRMICCVRDVGWIVDSFE  120 
              D                                    3'-PB 
 
       129             145 
        •               • 
RLAQSQPLRLSALFGYDPEDSVSMHADLLTAPRGVVGYALDGLRQAFYGDHADRLLLLRY  180 
        L               R 
 
                    202 
                     • 
DTLAQRPAQAMEQVYAFLQLPAFAHDYAGVQAEAERFDAALQMPGLHRVRRGVHYVPRRS  240 
                     T 
 
       249               267 
        •                 • 
VLPPALFDQLQELAFWESAPSHGALLV                                   267 
        R                 I 
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Fig. S7.839	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/149930doi: bioRxiv preprint 

https://doi.org/10.1101/149930
http://creativecommons.org/licenses/by/4.0/


 

 - 58 - rax gene cluster 

Fig. S8.840	
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Fig. S9.841	
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