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Abstract 
Background: The presence of accelerometers in smartphones has enabled low-cost balance assessment. 
Smartglasses, which contain an accelerometer similar to that of smartphones, could provide a safe and 
engaging platform for virtual and augmented reality balance rehabilitation; however, the validity of head-
mounted measurement of balance using smartglasses has not been investigated.  

Objective: To perform preliminary validation of a smartglasses-based balance accelerometry measure (BAM) 
compared with previously validated waist-based BAM. 

Methods: 42 healthy individuals (26 male, 16 female; mean age ± SD = 23.8 ± 5.2 years) participated in the 
study. Following the BAM protocol, each subject performed two trials of six balance stances while 
accelerometer and gyroscope data were recorded from smartglasses (Google Glass). Test-retest reliability and 
correlation were determined relative to waist-based BAM as used in the NIH Standing Balance Toolbox. 

Results: Balance measurements obtained using a head-mounted wearable were highly correlated with those 
obtained through a waist-mounted accelerometer (Spearman’s rank correlation coefficient = 0.85). Test-retest 
reliability was high (ICC = 0.85, 95% CI 0.81-0.88), and in good agreement with waist balance measurements 
(ICC = 0.84, 95% CI 0.80-0.88). Taking into account the total NPL magnitude improved inter-device correlation 
(0.90) while maintaining test-retest reliability (0.87, 95% CI 0.83-0.90). All subjects successfully completed the 
study, demonstrating the feasibility of using a head-mounted wearable to assess balance in a healthy 
population. 

Conclusion: Balance measurements derived from the smartglasses-based accelerometer were consistent 
with those obtained using a waist-mounted accelerometer. Given this and the potential for smartglasses in 
vestibular rehabilitation, the continued development and validation of balance assessment measurements 
obtained via smartglasses is warranted. This research was funded in part by Department of Defense/Defense 
Health Program (#W81XWH-14-C-0007, SBIR Phase II contract awarded to TIAX, LLC). 
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Introduction 
Up to 75% of people over the age of 70 years old experience abnormal postural balance [1], which severely 
impacts their quality of life and contributes to decline in overall health [2]. Balance assessment can be used to 
prevent fall-related injury in the elderly [3], as well as inform critical clinical decisions regarding a variety of 
neurological impairments and movement disorders, including traumatic brain injury (TBI) [4], stroke [5], multiple 
sclerosis [6], Parkinson’s disease [7], and arthritis [8]. A variety of subjective and objective assessments exist 
to both identify and characterize balance deficits [9]. Objective standing balance assessments generate valid 
and reliable quantitative measures through devices such as force platforms, strain gauges, and 
accelerometers. Accelerometer-based assessments have garnered increased attention due to their 
widespread availability as a component of consumer smartphones [10]. These smartphone devices routinely 
contain 9-axis inertial measurement units (IMUs) that include a 3-axis accelerometer, along with a gyroscope 
and magnetometer. The Balance Accelerometer Measure (BAM) of the NIH Toolbox was developed by the 
National Institutes of Health (NIH) in order to provide one such low-cost assessment [11], which can now be 
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administered through the use of an iOS (Apple Inc., Cupertino, CA) app. Likewise, the Sway balance 
application [12] for iOS has gained FDA clearance to assess sway as an indicator of balance using proprietary 
measures based upon accelerometer measurements obtained during traditional clinical balance stances. 

In addition to smartphones, a growing landscape of consumer wearable devices include IMUs with 
accelerometers. Smartglasses, such as Glass (Google, Mountain View, CA), combine components found in 
smartphones such as IMUs with a head-mounted display (HMD), camera, microphone, and audio output. 
Smartglasses could enable self-administered balance assessments and rehabilitative feedback by providing 
integrated instruction to the user through the HMD while monitoring balance via the IMU.  

Despite the potential for smartglasses to provide integrated measurement and training, little research has been 
conducted regarding IMU-based balance measurement on smartglasses. In this report, we examined the 
correspondence between head-mounted accelerometer measurements obtained on smartglasses with those 
obtained on a consumer smartphone device attached to the waist, such as when administering the NIH 
Toolbox Standing Balance Test. 

Methods 
Subjects 

42 healthy individuals participated (Table 1). Subjects 
were recruited from the public and required to be 
between the ages of 18-39 years old, weigh no more than 250 pounds, and possess normal hearing and 
normal or corrected-to-normal vision. All participants were free from any preexisting condition that may have 
altered their ability to balance normally, including multiple sclerosis, Parkinson’s disease, Huntington’s disease, 
other movement disorders, stroke, cervical spine or physical mobility issues, more than one fall in the past 5 
months not as a result of an accident, current pregnancy, dizziness or vertigo, any lower extremity injury that 
required medical attention in the last three months, any surgeries within the last year, or any medication or 
other substance that would affect balance. Individuals were also screened for history of a diagnosed seizure 
disorder (or any seizures within the last 3 years), as well as extreme sensory sensitivity. All participants 
attested to having no diagnosed macular degeneration, glaucoma, or cataracts, or any chronic or acute 
conditions resulting in pain, including diabetes or a history of joint replacement. Procedures were approved by 
Asentral, Inc. Institutional Review Board (Newburyport, MA, USA) and the U.S. Army Human Research 
Protection Office. Informed consent was obtained from all subjects prior to participation. 

Experimental setup 

Prior to administering the BAM protocol, subjects were outfitted with a gait belt. An Android smartphone 
(Samsung Galaxy S5, Samsung Galaxy S6, or LG Electronics/Google Nexus 5) was attached to the gait belt 
using a protective case with clip. The smartphone was attached upright, with the screen was facing away from 
the subject. The subject was given a pair of Google Glass by the facilitator to also wear. Subjects who normally 
wore glasses were given the option to wear Google Glass without their regular glasses, or wear Google Glass 
over their glasses. Subjects were asked to read a sentence on the display screen to confirm the screen was 
adjusted properly. A test exercise was administered on Glass to ensure subject could: (1) Operate Glass by 
tapping on the side, and (2) Could hear a tone played from Glass. The BAM protocol was administered as 
previously described [13]. Briefly, the BAM protocol includes six standing conditions: (1) Solid surface, feet 
together, eyes open, and (2) eyes closed; (3) Foam surface (Airex Balance Pad, Speciality Foams, 
Switzerland), feet together, eyes open, and (4) eyes closed; (5) Solid surface, tandem standing, eyes open, 
and (6) eyes closed (Fig. 1). During each stance, all subjects were asked to stand quietly for 60 seconds and 
to look (in eyes-open conditions) at a symbol placed centrally at eye level one meter from the subject. Subjects 
were instructed by facilitator regarding stance following the instructions adapted from the NIH Toolbox 
Standing Balance Test [11, 14]. Stance was also described on the smartglasses display screen. Subjects 
initiated each set of data collection by tapping the side of the smartglasses. A timer was displayed on Glass 
showing time remaining and a tone was played at the end of each timed stance. All subjects completed two 
trials of all stances on the same day. 

Table 1. Subject demographics (n=42) 
Age, years: mean (SD, range) 23.8 (5.2, 18-37) 
Gender (Female, percent) 16 (38) 
Height, inches: mean (SD, range) 68 (3, 62-76)  
Weight, lbs.: mean (SD, range) 152 (32, 110-241) 
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Data acquisition 

An Android application was developed to synchronize recording of device IMU data between smartglasses and 
the waist-mounted smartphone. The application was loaded on both Google Glass and the Android 
smartphones prior to testing. The application allowed Google Glass to pair with a smartphone via Bluetooth. 
Messages sent via Bluetooth from Google Glass to the smartphone were used to initiate a timer on Google 
Glass and begin storing IMU accelerometer and gyroscope values (sampled at 50 Hz). When running on 
Google Glass, the application provides instructions on stance, a timer, and a tone that plays at the end of each 
stance session.  
Data analysis 

The first 10 seconds of data were discarded to ensure stability of measures (50 seconds of data total). 
Accelerometer data (ACC) from each trial was low-pass filtered using a phase less 4th order, Butterworth filter 
with a cut-off frequency of 1.25 Hz [13]. The normalized path length (NPL; mG/s; higher values indicate more 
sway) of the acceleration time series from the anterior-posterior (AP) postural sway data was defined as: 
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃ℎ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ =  
1
𝑡𝑡
��𝑝𝑝𝑗𝑗+1 − 𝑝𝑝𝑗𝑗�
𝑁𝑁−1
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where t is the time duration, N is the number of time samples, and pj is the ACC at time sample j in the AP 
direction (z-axis on both devices, Fig 2). NPL was also calculated from the combined ACC magnitude. 

 
Fig. 1. BAM protocol conditions. (1, 2) Feet together, standing on a firm surface used for conditions 1 (eyes open) and 
2 (eyes closed). (3, 4) Feet together, standing on a foam surface used for conditions 3 (eyes open) and 4 (eyes closed). 
(5, 6) Feet in tandem stance, standing on a firm surface used for conditions 5 (eyes open) and 6 (eyes closed). 

 
Fig. 2. ACC collection with smartphone and smartglasses. A. Axes of accelerometer on Android smartphone 
compared with (B) Google Glass. C. Example comparison of low-pass filtered ACC (z-axis) collected during a trial of 
condition 6 in Glass (red) compared with waist-mounted smartphone (blue). 
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Smartglasses-based measurements of NPL along different axes were compared with smartphone 
measurements using Spearman’s rank correlation coefficient [15]. For comparison of differences between 
stances, the nonparametric Kruskal-Wallis test was used to compare mean ranks [16, 17]. Normality of 
measurements within stance conditions was evaluated by the Anderson-Darling test [18]. Significant 
differences between correlation coefficients were determined by treating them as Pearson coefficients and 
using the standard Fisher’s z-transformation to compare using a standard normal procedure [19]. Test-retest 
reliability of NPL measurements was estimated for each condition between the two sessions by calculating the 
intraclass correlation coefficient (ICC) and corresponding 95% confidence intervals (CI) [20, 21]. NPL was 
standardized as previously described [13]: 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 =  
𝑁𝑁𝑁𝑁𝑁𝑁 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

𝑆𝑆𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
 

 

where meanyoung is the mean of young healthy subjects (age 18-
34 years) on condition 1 (reported previously as 9.4 mG/sec), and 
SDyoung is the corresponding standard deviation (2.2). The 
composite score, also as previously described, was defined as 
the sum of the standard sway scores across all six conditions. 

Results 
Smartglasses-based measurement of AP sway correlates 
with waist-based measurement 

All 42 subjects completed two balance trials on conditions 1 
through 3, like previous reports [13]. Both trials of the eyes 
closed/foam surface condition (condition 4) were successfully 
completed by 37 subjects (88%). One subject failed a trial of the 
eyes open/tandem stance condition (condition 5). 30 subjects 
(71%) completed two trials of the eyes closed/tandem stance 
condition (condition 6). Overall, two trials on all 6 conditions were 
completed by 28 (66%) subjects.  

NPL AP sway measured from the head was strongly correlated 
(Spearman’s rank correlation coefficient = 0.85) with NPL AP 
sway measured from the waist (Fig 3A). Mean NPL AP sway 
measured from the waist (Fig 3B) was in good agreement with 
previously reported values [13], although we observed a higher 
mean for condition 6. The mean (SD) composite score was 21.4 
(18.0), which was in good agreement with the previously reported 
value of 19.6 (15.3) for healthy subjects.  

While NPL measured from the head was generally larger than 
NPL measured from the waist in each trial, mean NPL AP sway 
measured from the head in each condition (Fig 3C) was observed 
to follow a similar trend as the means measured from the waist. 
Signification differences (Kruskal-Wallis, α = 0.05) were found 
between each set of eyes open and eyes closed conditions, as 
well as between standing on feet together/firm surface compared 
with foam surface or tandem stance.   

 

 
Figure 3: AP sway. A. AP sway measured 
from the head was strongly correlated with AP 
measured from the waist (pooled data from all 
conditions with 95% prediction bands). 
Geometric mean and 95% CI for waist-based 
(B) and head-based (C) measurement of AP 
NPL by condition. 
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Correlation between head and waist measurements was 
significantly stronger when comparing the NPL calculated 
from the combined magnitude of all three ACC axes 

Measuring sway along the ACC’s AP axis was previously shown 
to be sufficient to differentiate healthy subjects from subjects with 
vestibular disorders [13]. However, the additional ACC acquired 
from commercial off-the-shelf smart devices may further enhance 
measurement accuracy, particularly along the mediolateral x-
axis. Indeed, the NPL calculated using all three axes (total NPL) 
was found to have a significantly stronger correlation 
(Spearman’s rank correlation coefficient = 0.90) between head- 
and waist-based measurements (Fig 4A). Mean total NPL 
measured in each condition followed similar trends as using AP 
NPL only for both waist- (Fig 4B) and head-based (Fig 4C) 
measurements.  

Test-retest reliability of measures of NPL sway were 
comparable between head and waist 

Previously, the same day test-retest reliability of NPL AP 
measured from the waist was found to be generally good (ICC ≥ 
0.74) across all conditions except for condition 6 [13]. Here, 
same day test-retest reliability of AP NPL measured from the 
head with smartglasses (Fig 5A) was found to be very good, with 
an ICC (95% CI) of 0.85 (0.81-0.88). This was comparable to our 
estimation of the test-retest reliability of waist-based AP NPL (Fig 
5B), which was 0.84 (0.80-0.88), agreeing with previously 
reported values. Using total NPL, we found a slight improvement 
in test-retest reliability in both head (Fig 5C) and waist-based 
measurements (Fig 5D). ICC (95%) was found to be 0.87 (0.83-
0.90) in the case of head-based measurement, as opposed to 
0.90 (0.88-0.92) in the case of waist-based measurement. 

Discussion 
This study indicates that head-based measurement of AP or total 
sway following the BAM protocol produces similar results to 
waist-based measurement. This included similar relative 
differences between test conditions as well as similar test-retest 
reliability. All subjects successfully complete the study, 
demonstrating the feasibility of using a head-mounted wearable 
to assess balance, at least in a healthy control population.  

Condition effects previously supported the validity of waist AP 
NPL as a measure of balance. Measured sway was larger with 
eyes closed versus eyes open for all stance conditions. Sway 
was also larger in tandem stance and on foam surface conditions 

compared with corresponding conditions with feet together on a firm surface. These condition effects indicated 
that ACC measured from the waist was sensitive to changes in the sensory modalities available for balance, 
including vision and somatosensation [22]. Postural sway as measured by waist-based BAM was adequate to 
discriminate between persons with peripheral vestibular impairments from those without balance-impairment 
[13]. While the specific stance conditions used in the BAM protocol were not found to discriminate between 
healthy and concussed adolescents, instrumenting the Balance Error Scoring System (BESS) protocol with a  

 
Figure 4: Total NPL magnitude. A. Total 
sway measured from head was more strongly 
correlated with sway measured from the waist. 
Geometric mean and 95% CI for waist-based 
(B) and head-based (C) measurement of total 
NPL by condition. 
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waist-based inertial sensor led to superior diagnostic classification of recently concussed individuals compared 
with BESS alone [23]. 

Head-based measurement of balance using smartglasses offers a promising opportunity to develop a balance 
assessment tool that has integrated instruction and feedback. Smartglasses include not only Google Glass, but 
an evolving spectrum of devices from both major device consumer device manufacturers, including Epson 
(Moverio) and Intel (Recon Jet), as well as companies dedicated to the smartglasses market, including Vuzix 
and ODG. Because of their form-factor, smartglasses could offer vestibular rehabilitation through gamified 
virtual reality (VR) better than other head-mounted systems. In general, VR is a promising technology for 
treatment of balance disorders, including vestibular deficits associated with concussion/TBI [24-31]; however, 
non-transparent VR headsets completely block external visual stimuli and are typically bulky, which could limit 
their utility in vestibular therapy. In contrast, Google Glass weighs only 1.3 ounces –ten times less than the 
consumer-grade VR Oculus Rift. Thus, demonstrating that smartglasses are capable of objectively assessing 
balance deficits could lead to an integrated system for vestibular assessment and rehabilitation. In conclusion, 
further studies are warranted to demonstrate smartglasses ability to distinguish balance disorders, including 
those stemming from concussion. 
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Figure 5:  Head-based BAM has comparable test-retest reliability to waist-based BAM. Test-retest ICC for 
accelerometer measures of postural sway along AP (A = head, B = waist) and all axes (C = head, D = waist). 
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