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Microbes comprise nearly half of all biomass on Earth. Almost every habitat on Earth is9

teeming with microbes, from hydrothermal vents to the human gastrointestinal tract. Those10

microbes form complex communities and play critical roles in maintaining the integrity of11

their environment or the well-being of their hosts. Controlling microbial communities can12

help us restore natural ecosystems and maintain healthy human microbiota. Yet, our abil-13

ity to precisely manipulate microbial communities has been fundamentally impeded by the14

lack of a systematic framework to control them. Here we fill this gap by developing a con-15

trol framework based on the new notion of structural accessibility. This framework allows16

identifying minimal sets of “driver species” through which we can achieve feasible control17

of the entire microbial community. We numerically validate our control framework on large18

microbial communities, and then we demonstrate its application for controlling the gut mi-19

crobiota of gnotobiotic mice infected with Clostridium difficile and the core microbiota of the20

sea sponge Ircinia oros.21
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INTRODUCTION1

Microorganisms form complex communities that play critical roles in maintaining the well-being2

of their hosts or the integrity of their environment1–4. This deep relationship can have severe3

consequences to the host or the environment when a microbial community is disrupted. In humans,4

for example, a disruption to the gut microbiota —the aggregate of microorganisms residing in our5

intestine— has been associated to gastrointestinal diseases such as irritable bowel syndrome, and6

Clostridium difficile Infection (CDI)5, 6. A variety of non-gastrointestinal disorders as divergent as7

autism, obesity, and cavernous cerebral malformations have also been associated with disrupted8

gut microbiota5, 7. For agriculture crops, a disruption to rhizosphere microbiota can reduce their9

disease resistance and hence affect the overall crop yield8, 9. In the oceans, a disruption to their10

microbiota can impact global climate by altering carbon sequestration rates3, 4, 10. Driving these11

microbial communities back to their healthy states has the potential to bring novel solutions to12

prevent and treat complex human diseases, enhance sustainable agriculture, and regulate global13

warming11, 12. For example, inoculation of soil microbes can restore terrestrial ecosystems13, and14

Fecal Microbiota Transplantation (FMT) is so far the most successful therapy in treating patients15

with recurrent CDI by restoring disrupted gut microbiota14. Despite the success of these two16

empirical strategies, a broad application of microbial-manipulation strategies will only be possible17

if we can efficiently and systematically control large complex microbial communities15.18

There are two main challenges to efficiently control a large complex microbial community.19

First and foremost, an efficient control method should only manipulate the minimal necessary20
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number of species in the community. However, we still lack a method to systematically identify1

minimal sets of those “driver species” whose control can help us drive the whole community to2

desired states. Here, we use the term “species” in the general context of ecology, i.e., as a set3

of organisms adapted to a particular set of resources in the environment. It doesn’t necessarily4

represent the lowest major taxonomic rank. In fact, one could think of organizing microbes by5

strains, genera, or operational taxonomical units as well. Second, even if those driver species were6

known, calculating the control strategy that should be applied to them for driving the community7

towards the desired state remains somewhat tricky (e.g., it is difficult to calculate how much the8

abundance of those drive species needs to be increased or decreased). The difficulty in solving9

this second challenge is not only due to our insufficient knowledge of microbial dynamics and10

interactions, but also because of the inherently complex dynamics they often display.11

To efficiently and systematically control large complex communities, here we develop a12

framework showing that the above two challenges can be addressed by focusing on the ecolog-13

ical network underlying the microbial community. We first introduce the new notion of “structural14

accessibility” and derive its graph-theoretical characterization. This theoretical result enables us15

to efficiently identify minimal sets of driver species of any microbial community purely from the16

topology of its underlying ecological network, even if some microbial interactions are missing17

and its population dynamics is unknown. Structural accessibility is a generalization of the notion18

of structural controllability16 —which only applies to systems with linear dynamics— to systems19

with nonlinear dynamics. Linear structural controllability is receiving increasing attention from the20

viewpoint of Network Science17. Once the driver species are identified, we systematically design21
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feedback control strategies to drive a microbial community towards the desired state, even if the1

microbial dynamics is not precisely known. We numerically validated our control framework in2

large microbial communities, analyzing its performance for different parameters of the community3

we aim to control (e.g., the connectivity of its underlying ecological network), and with respect to4

errors in the ecological network used to identify the driver species. Finally, we demonstrate our5

framework by controlling the core microbiota of the sea sponge Ircinia oros, and restoring the gut6

microbiota of gnotobiotic mice infected by Clostridium difficile. Our results provide a rational and7

systematic framework to control microbial communities and other complex ecosystems based only8

on knowing their underlying ecological networks.9

PROBLEM STATEMENT10

In our modeling framework, we focus on exploring the impact that manipulating a subset of species11

has on the abundances of other species. We thus consider a microbial community whose state at12

time t can be determined from the abundance profile x(t) ∈ RN of its N species, where the i-th13

entry xi(t) of x(t) represents the abundance of the i-th species at time t. Let us assume that the14

state evolves according to some general population dynamics15

ẋ(t) = f(x(t)), (1)

where the function f : RN → RN models the intrinsic growth and inter/intra-species interactions16

of the community (see Supplementary Note 1 for details). For most microbial communities the17

function f is unknown and difficult to infer due to the manifold of interaction mechanisms between18

microbes, such as cross-feeding and modulation by the host immune system18. Thus we assume19
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that f(x) is some unknown meromorphic function (i.e., each entry fi(x) is the quotient of analytic1

functions of x). This is a very mild assumption that is satisfied by most population dynamics2

models19.3

Instead of knowing the population dynamics of the microbial community, we assume we4

know its underlying ecological network G = (X,E). This network is defined as a directed graph5

where nodes X = {x1, · · · , xN} represent species and edges (xj → xi) ∈ E denote that the j-6

th species has a direct ecological impact (e.g., direct promotion or inhibition) on the i-th species7

(Fig.1a). Mapping these ecological networks requires performing mono-culture and co-culture8

experiments20, 21, using time-resolved abundance data and system identification techniques22, 23, or9

using steady-state abundance data via a recently developed inference method24. The accuracy of all10

these methods strongly depends on how informative is the available data25. Note that these ecolog-11

ical networks are different from correlation or co-occurrence based networks because correlation12

doesn’t imply causation26. Correlation-based networks can be readily constructed from abundance13

profiles of different samples20, 27 and, under certain specific conditions28, they could be a proxy of14

the underlying ecological network.15

Controlling a microbial community consists in driving its state from an initial value x0 =16

x(0) ∈ RN at time t = 0 (e.g., a “diseased” state) towards a desired value xd ∈ RN (e.g., a17

“healthier” state, Fig. 1b). We consider that the community will not naturally evolve to the desired18

state. To drive the microbial community, we consider a set of M control inputs u(t) ∈ RM
19

that directly affect certain species that we call actuated species (Fig. 1a). These control inputs20
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encode a combination of M control actions that are simultaneously applied to the community at1

time t. There are four types of control actions that we consider. If uj(t) < 0, the j-th control2

action at time t is either a bacteriostatic agent or a bactericide, which decreases the abundance3

of the species it actuates by inhibiting their reproduction or directly killing them, respectively29.4

If uj(t) > 0, the j-th control action at time t is either a prebiotic30 or a transplantation, which5

stimulate the growth or engrafts a consortium of the species it actuates, respectively. For the6

human gut microbiota, probiotics administration31 and FMTs14 are examples of transplantations.7

We introduce the controlled ecological network of the community Gc = (X ∪ U,E ∪ B) to specify8

which species are actuated by each control input. Here, the set U = {u1, · · · , uM} is the set of9

control input nodes, and the edge (uj → xi) ∈ B denotes that the the j-th control input actuates10

the i-th species (Fig.1a).11

Given a controlled ecological network describing the interactions between species and which12

species are actuated by the control inputs, we next introduce two control schemes describing how13

the control inputs will affect the species. The first control scheme models a combination of prebi-14

otics (if uj(t) > 0) and bacteriostatic agents (if uj(t) < 0) as continuous control inputs modifying15

the growth of the actuated species (Fig. 1c):16

ẋ(t) = f (x(t)) + g (x(t))u(t), t ∈ R. (2)

The second control scheme considers a combination of transplantations (if uj(t) > 0) and bacteri-17

cides (if uj(t) < 0) applied at discrete intervention instants T = {t1, t2, · · · }, rendering impulsive18

6
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control inputs that instantaneously modify the abundance of the actuated species (Fig. 1d):1

ẋ(t) = f (x(t)) if t 6∈ T, x(t+) = x(t) + g (x(t))u(t) if t ∈ T. (3)

In the above equation, the symbol x(t+) denotes the state “right after time t”, so a control input2

u(t) 6= 0 at t ∈ T makes x(t) “jump” at that time instant. Thus, control actions are classified as3

impulsive if they instantaneously modify the abundance of some species, and continuous otherwise4

(see Supplementary Note 1.2 for details).5

Both control schemes are characterized by the pair of functions {f, g}, describing the con-6

trolled population dynamics of the microbial community. As we have seen, the function f : RN →7

RN models the intrinsic growth and inter/intra-species interactions. The function g : RN → RN×M
8

models the direct susceptibility of the species to the control actions. The i-th species is actuated9

by the j-th control input if the (i, j)-th entry of g(x) satisfies gij(x) 6≡ 0. As in the uncon-10

trolled community of Eq. (1), the function g(x) is typically unknown because the mechanisms of11

susceptibility to the control actions can be uncertain. Thus we assume that g is some unknown12

meromorphic function such that gij 6≡ 0 iff (uj → xi) ∈ B.13

Notice that when all species are directly controlled (i.e., each species is actuated by an inde-14

pendent control input so M = N and g(x) is full rank), the state of the whole microbial commu-15

nity can obviously be fully controlled. Fortunately, as we next show, controlling all the species in16

a community is far from being necessary. Indeed, several species can be indirectly controlled by17

the same control input when this signal is adequately propagated through the ecological network18

underlying the community. Thus, our first goal is to identify minimal sets of species that we need19
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to actuate in order to drive the entire community. We call those species driver species. We will1

also study if the impulsive control scheme can be as effective as the continuous control scheme for2

controlling microbial communities. Indeed, the former is more feasible than the latter, especially3

for human-associated microbial communities. Finally, we will design the control inputs that should4

be applied to the identified driver species to drive the whole community towards the desired state.5

IDENTIFYING DRIVER SPECIES6

Driver species are characterized by the absence of autonomous elements. To understand when7

a set of actuated species is a set of driver species, consider a three-species community with the clas-8

sical Generalized Lotka-Volterra (GLV) population dynamics (Fig. 2a). This toy community has9

one control input actuating the third species x3. Actuating this species alone creates an autonomous10

element —namely, a constraint between some species abundances that the control input cannot11

break, confining the state of the community to a low-dimensional manifold. More precisely, our12

mathematical formalism reveals that ξ = x1x2 is an autonomous element for this microbial com-13

munity (Example 2 in Supplementary Note 2). Indeed, differentiating ξ with respect to time yields14

ξ̇ = x1x2(1 − x3) + x1x2(−1 + x3) ≡ 0, which implies that the state of the community is con-15

strained to the low-dimensional manifold {x ∈ R3|x1x2 = x1(0)x2(0)} for all control inputs (Fig.16

2a right). Intuitively, an autonomous element exists because the control input cannot change the17

abundance of species x1 without changing the abundance of species x2 in a predefined way (i.e.,18

x2 = x1(0)x2(0)/x1). It is thus impossible to drive the whole community in its three-dimensional19

state space, implying that x3 cannot be a driver species for this community. Introducing a second20
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control input actuating species x1 eliminates this autonomous element by helping the system to1

jump out of the low-dimensional manifold. Hence, the community can be driven in any direction2

within its three-dimensional state space (Fig. 2b). This indicates that {x1, x3} is a minimal set of3

driver species for this community. Actually, by using these two driver species we can steer the4

community to any desired state with positive abundances (Example 6 in Supplementary Note 5).5

In the general case of N species and M control inputs, we define a set of actuated species6

as a set of driver species if the corresponding controlled population dynamics {f, g} of the micro-7

bial community lacks autonomous elements. For a given pair {f, g}, the absence of autonomous8

elements can be mathematically deduced using a formalism based on differential one-forms (Sup-9

plementary Note 2). Indeed, for the continuous control scheme of Eq. (2), the conditions for the10

absence of autonomous elements are well understood because they define when a system is accessi-11

ble32. As a cornerstone concept in nonlinear control theory, accessibility has been instrumental for12

developing technological advances such as robotics. Since it is more natural to control microbial13

communities with impulsive control actions, in this paper we extended the study of autonomous14

elements to the impulsive control systems of Eq. (3). For this, we first introduced a mathematical15

definition of autonomous elements for impulsive control systems (Definition 3 in Supplementary16

Note 2). Using this definition, we characterized necessary and sufficient conditions for the absence17

of autonomous elements in a given controlled population dynamics (Theorem 2 in Supplementary18

Note 2).19

To our surprise, we found that the conditions for the absence of autonomous elements for the20
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continuous and the impulsive control schemes are identical (Remark 2 in Supplementary Note 2).1

This result suggests that, for controlling microbial communities, transplantations and bactericides2

(impulsive control actions) can be as effective as prebiotics and bacteriostatic agents (continuous3

control actions). Since impulsive control actions could be simpler to implement for many mi-4

crobial communities such as the human gut microbiota, this result assures us to further develop5

microbiome-based therapies in the form of probiotic cocktails and FMTs.6

Structural accessibility characterizes the generic absence of autonomous elements. For com-7

plex microbial communities such as the human gut microbiota, it is very difficult to choose an8

adequate pair {f, g} to model its controlled population dynamics. As the autonomous elements9

depend on such a pair, this might suggest that it is impossible to predict their presence and thus to10

identify the driver species of complex microbial communities. We now show that this seemingly11

unavoidable limitation can be solved by focusing on the topology of the controlled ecological12

network of the community.13

Define the graph Gf,g = (X ∪ U,Ef,g ∪ Bf,g) associated with a meromorphic function pair14

{f, g} as follows. First, the edge (xj → xi) ∈ Ef,g exists if xj appears in the right-hand side of ẋi15

or xi(t+) in Eqs. (2) or (3), respectively. Second, the edge (uj → xi) ∈ Bf,g exists if gij 6≡ 0. In16

this definition, the interaction xj → xi can originate in the uncontrolled population dynamics (i.e.,17

fi(x) depends on xj) or, in a more general case, also in the controlled dynamics (i.e., the i-th row18

of g(x) depends on xj). Using this definition and given a controlled ecological network Gc, we can19

describe the class D of all possible controlled population dynamics that the controlled microbial20
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community can have. Mathematically, we describe the class D as containing all base models1

{f ∗, g∗} such that Gf∗,g∗ = Gc, together with all deformations {f, g} of each of those base models.2

The base models characterize the simplest controlled population dynamics that the community can3

have. We have chosen them as controlled GLV models with constant susceptibilities:4

f ∗i (x) = rixi +
N∑
j=1

aijxixj, g∗ij(x) = bij, (4)

for i = 1, · · · , N . The base models are parametrized by A = (aij) ∈ RN×N , r = (ri) ∈ RN ,5

and B = (bij) ∈ RN×M , representing the interaction matrix, the intrinsic growth rate vector,6

and the susceptibility matrix of the community, respectively. Thus, the base models in D are all7

controlled GLV models such that their graph matches Gc. As a classical population dynamics8

model, the GLV model has been applied to microbial communities in lakes, soils, and human9

bodies14, 15, 20, 33–39. Notice that in a microbial community, any species that gets extinct cannot10

“resurrect” by itself without some external influence such as a transplantation or migration. Eq.11

(4) is the simplest population dynamics that satisfies this condition in the following sense: it is12

obtained by considering population dynamics of the form fi(x) = xiFi(x), and then choosing the13

functions Fi(x) to be simple affine functions.14

Next, we say that a meromorphic pair {f, g} is a deformation of a base model {f ∗, g∗}15

if it satisfies the following three conditions: (i) it has the same graph as the base model (i.e.,16

Gf,g = Gf∗,g∗); (ii) there exists a finite set of parameters θ ∈ RC such that {f(x), g(x)} =17

{f̃(x; θ), g̃(x; θ)}; and (iii) the identity {f̃(x; 0), g̃(x; 0)} = {f ∗(x), g∗(x)} holds. The minimal18

integer C ≥ 0 for which these conditions are satisfied is called the size of the deformation, quanti-19

fying the cardinality of the parameter set θ that is needed to obtain the deformation from the base20

11
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model. A rather general class of controlled population dynamics can be described by deformations1

of the base model of Eq. (4), such as2

fi(x; θ) = θi,1+xi (−ri − θi,2xi) (θi,3xi − 1)+
N∑
j=1

aij
xixj

1 + θij,4 + θij,5xi + θij,6xixj + θij,7xj
, (5)

for i = 1, · · · , N . In Eq. (5), the parameters θi,1 are migration rates from/to neighboring habi-3

tats, θ−1i,2 are the carrying capacities of the environment, θ−1i,3 are the Allee constants, and the rest4

{θij,k}7k=4 characterize the saturation of the functional responses40. Note that θi,1 > 0 can also5

model species like C. difficile that sporulate into “inactive” forms and then recover. Note also6

that “higher-order” interactions can be described as deformations. For example, if species xi is7

directly affected by species xj and xk, then a deformation can include the third-order interaction8

θixixjxk. Similarly, deformations allow cases when the susceptibility of the i-th species to j-9

th control input is mediated by the abundance of other species. For example, the deformation10

gij(x; θ) = bij + θijkxk models a case when the i-th species is actuated by the j-th control input11

but its effect is mediated by the abundance of the k-th species.12

We call the class D structurally accessible if almost all of its base models and almost all13

of their deformations lack autonomous elements. This means that, except for a zero-measure14

set of “singularities”, all the controlled population dynamics that the community may take have15

to lack autonomous elements. The conditions under which D is structurally accessible are fully16

characterized using our mathematical formalism (Supplementary Note 3), and they depend only17

on the underlying controlled ecological network Gc. We first proved that, generically, increasing18

the size of a deformation cannot create autonomous elements (see Proposition 1 in Supplementary19

Note 3, and Fig. 2c for an illustration). This result reduces the search for autonomous elements to20
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the deformations in D with minimal size C = 0. That is, to all base models whose graph matches1

Gc. Finally, we proved that D is structurally accessible if and only if Gc satisfies the following two2

conditions: (i) each species is the end-node of a path that starts at a control input node; and (ii)3

there is a disjoint union of cycles (excluding self-loops) and paths that cover all species nodes (see4

Theorem 3 of Supplementary Note 3). If these two graph conditions are satisfied, we also call Gc
5

structurally accessible.6

The notion of structural accessibility introduced above is a nonlinear counterpart of the no-7

tion of structural controllability for linear systems16. For linear systems we have {f(x), g(x)} =8

{Ax,B}, and the absence of autonomous elements is equivalent to their controllability32 —the9

intrinsic ability to drive the system between two arbitrary states, which can be verified by the cel-10

ebrated Kalman’s rank condition: rank(B,AB,A2B, ..., AN−1B) = N . Condition (i) above is11

necessary for both structural accessibility and linear structural controllability, requiring that the12

network contains paths that spread the influence of the control inputs to all species. However, for13

linear structural controllability, condition (ii) is sufficient but not necessary. More precisely, for14

linear structural controllability, the required disjoint union of cycles that cover the species nodes15

can also include self-loops due to intrinsic nodal dynamics (see Remark 4 in Supplementary Note16

3).17

Identifying minimal sets of driver species in microbial communities. The above result provides18

a complete graph-characterization of driver species: a set of actuated species is a set of driver19

species (for all but a zero-measure set of controlled population dynamics that the community may20
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have) if and only if its corresponding Gc is structurally accessible. We used this characterization1

to build an algorithm that identifies a minimal set of driver species from the ecological network2

of the community. More precisely, we mapped the satisfaction of the graph conditions (i) and (ii)3

into solving a maximum matching problem over the graph G without self-loops (Proposition 3 in4

Supplementary Note 4). This result provides a polynomial time algorithm to identify one minimal5

set of driver species, making it feasible for large networks (Remark 5 in Supplementary Note 4).6

Note that once Gc is structurally accessible this network cannot lose its structural accessibil-7

ity when new edges are added to it. This observation implies that a set of driver species remains8

valid even if new edges (e.g., new inter/intra-species interactions) are added to the ecological net-9

work of the community. Therefore, it is possible to find the driver species of a microbial community10

using an “incomplete” ecological network that only includes some of the ecological interactions11

(e.g., high-confidence interactions).12

DRIVING THE DRIVER SPECIES13

Next we turn to the question of calculating the control signal u(t) that needs to be applied to a14

set of driver species to drive the whole community towards the desired state. We will show that15

impulsive control actions can make this calculation easier.16

Calculating optimal control strategies for microbial communities with known population dy-17

namics. To calculate the impulsive control inputs {u(tk), tk ∈ T} needed to drive the micro-18

bial community to the desired state xd we adopt a model predictive control (MPC) approach41.19

14
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First, based on the current state of the community x(tk) at the intervention instant tk ∈ T, we1

use knowledge of its controlled population dynamics to predict the sequence of states X̂k,L =2

{x̂(tk+1), · · · , x̂(tk+L+1)} that the community will take in response to a sequence of L impulsive3

control inputs Uk,L = {u(tk), · · · , u(tk+L−1)}. The prediction horizon L > 0 quantifies how far4

into the future we predict. We then choose u(tk) = u∗1(tk), where u∗1(tk) is the first element of the5

optimal control input sequence U∗k,L calculated by solving the following optimization problem:6

U∗k,L = arg min
Uk,L∈RM×L

Jxd(X̂k,L, Uk,L) subject to Uk,L ∈ Ω. (6)

Here Ω ⊆ RM×L is a set that specifies constraints in the control inputs we can use, and Jxd is some7

cost function penalizing deviations of the predicted trajectory X̂k,L from the desired state xd. For8

example, the simplest cost function Jxd(X̂k,L, Uk,L) = ‖x̂(tk+L+1) − xd‖ penalizes deviations of9

the predicted final state from the desired state. Penalizing the deviations of intermediate states can10

provide a smoother transition to the desired state.11

To choose the prediction horizon L in Eq. (6), we proved that it is possible to distinguish12

between two cases (Theorem 4 in Supplementary Note 5). The first case is when the commu-13

nity can be driven to the desired state using a finite number L of impulsive control actions. This14

number can be calculated from its controlled population dynamics. The second case is when the15

community can only be asymptotically driven to the desired state as time goes by, meaning that a16

“sufficiently large” L� N should be used. This second case could be circumvented by increasing17

the number of driver species (Remark 8 in Supplementary Note 5). Note that by recalculating U∗k,L18

at each intervention instant tk ∈ T using the actual state of the community, the MPC method cre-19

ates a feedback loop that enhances its robustness against prediction errors due to uncertainty in the20

15
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dynamics41. For L = 1 the proposed MPC methodology is similar to the network control method1

of Ref. (40). Eq. (6) is a finite-dimensional optimization problem that can be solved using several2

algorithms such as “DIRECT”42. By contrast, for continuous control actions, the analogous opti-3

mization problem is defined over the infinite-dimensional space of all M -dimensional continuous4

functions. Solving such optimization problem is apparently more difficult, significantly limiting5

our ability to calculate optimal continuous control actions.6

We studied the performance of the above MPC strategy in the three-species microbial com-7

munity with a solo driver species of Fig. 1. Given the dynamics of this community (see caption8

in Fig. 1), we find that L = 3 impulsive control inputs are sufficient to drive the whole commu-9

nity (Example 4 in Supplementary Note 5). To calculate the optimal control inputs we selected10

Jxd(X̂k,L, Uk,L) = ‖x̂(tk,L) − xd‖2 in Eq. (6). Solving the optimization problem using DIRECT11

yields the MPC strategy u∗(t1) = −0.8815, u∗(t2) = 2.0089 and u∗(t3) = −10−4 (pink in Fig.12

3a). We use this example to compare the performance of applying two other control strategies13

to drive this community. The first strategy uses a transplantation to restore the abundance of the14

driver species (i.e., increase its abundance to its desired value), expecting that such control action15

will drive the rest of the community to the desired state (purple in Fig. 3a). This control strat-16

egy is reminiscent of a probiotic administration that restores the “healthy” abundance of the driver17

species. The second control strategy ignores the driver species of this community, using two con-18

trol inputs (instead of one) to set the abundance of the non-driver species to their desired values19

(blue in Fig. 3a).20

16
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Among the above control strategies, only the MPC applied to the driver species succeeds1

(Fig. 3b). Actually, this strategy succeeds in a somewhat unconventional way: despite the driver2

species is more abundant in the desired state than in the initial state, the first control action de-3

creases further its abundance. This first control action makes the non-driver species reach their4

desired abundances and, once that happens, the abundance of the driver species is finally increased5

to its desired value (pink in Fig. 3b). The second control strategy succeeds in driving species x26

and x3, but it fails to drive x1 to the desired abundance because it approaches the desired state from7

an unstable direction (purple in Fig. 3b). Finally, not actuating the driver species results in the8

worst strategy, failing to drive a single species to the desired state (blue in Fig. 3b). This example9

demonstrates the importance of actuating the driver species.10

Calculating control strategies for microbial communities with uncertain population dynam-11

ics or a large number of species. In general, solving the non-convex optimization problem of12

Eq. (6) is challenging as the number of species or prediction horizon increase. Also, a prerequisite13

for solving this optimization problem is a reasonable knowledge of the controlled population dy-14

namics of the community, which may not available. To circumvent these two drawbacks, next we15

leverage the network underlying the controlled microbial community.16

Consider that it is possible to obtain a weighted adjacency matrix Â ∈ RN×N from the17

ecological network G of the community, providing a proxy for its interaction matrix. Without18

additional knowledge of the susceptibility matrix of the community, we assume it is possible to19

increase or decrease as desired the abundance of each driver species. Under this assumption, we20

17
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define B̂ ∈ {0, 1}N×M as a proxy for the susceptibility matrix, with bij = 1 if the j-th control1

input actuates the i-th driver species. Next, by rewriting the controlled population dynamics of the2

community as {f(x), g(x)} = {Âx + wx, B̂ + wu}, we use the pair {Âx, B̂} to provide a linear3

prediction for the response of the community to the control inputs. Here, the nonlinear functions4

(wx, wu) = (f − Âx, g − B̂) represent perturbations whose magnitude depend on how well the5

linear pair {Âx, B̂} approximates the true dynamics {f(x), g(x)} of the community. Using this6

linear pair for predicting the response of the community to impulsive control actions, we design a7

linear MPC by solving the optimization problem of Eq. (6) with the quadratic cost function8

Jxd(X̂k,L, Uk,L) =
L∑

i=k

[x̂(ti)− xd]
ᵀQ[x̂(ti)− xd] + u(ti)

ᵀRu(ti).

In the above equation, the positive definite matrices Q = Qᵀ ∈ RN×N and R = Rᵀ ∈ RM×M
9

are design parameters. The matrix Q penalizes the deviations of the predicted trajectory from the10

desired state, and R quantifies the “cost” of using the control inputs. Under this scenario (i.e., a11

linear prediction model and quadratic cost), the solution to the optimization problem of Eq. (6)12

can be obtained in closed form43 even if L→∞. This result enabled us to obtain the explicit form13

u(tk) = Kx(tk) for the linear MPC at time tk ∈ T, where K ∈ RM×N is computed by solving a14

Riccati algebraic equation (Supplementary Note 6). Since the Riccati equation can be efficiently15

solved for large N , the linear MPC can be calculated for large microbial communities. The above16

linear MPC has several other advantages: it requires minimal knowledge of the controlled popula-17

tion dynamics of the community (i.e., the weighted adjacency matrix of its underlying ecological18

network); it is robust to the perturbations (wx, wu) and other uncertainties (Remark 12 in Sup-19

plementary Note 6); and it also allows calculating the control signals for the continuous control20

18
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scheme (Remark 10 in Supplementary Note 6).1

We used the above linear MPC for controlling the three-species community of Fig. 1, assum-2

ing its dynamics is unknown. Based on the ecological network of this community and its popula-3

tion dynamics (see Fig. 1 and its caption), we choose Â = (−0.5, 0,−0.1; 0,−5, 1; 0, 0,−1) as a4

proxy for its interaction matrix. Note that Â is a rather rough approximation of the linearization of5

the population dynamics at the desired state given by (−0.37, 0,−0.05; 0,−5.31, 0.52; 0, 0,−1).6

Since {x3} is a solo driver species for this community, we use B̂ = (0; 0; 1). Choosing Q =7

diag(20, 1, 10), we compared the performance of three different linear MPCs obtained by using8

the values R = 10−4, 10−3, 10−2 (Fig. 3c). The performance of the linear MPC strongly depends9

on the selection of these parameters. For R = 10−4, despite not using knowledge of the population10

dynamics, the performance of the linear MPC (pink in Fig. 3d) is very similar to the performance11

of the MPC that uses full knowledge of the nonlinear population dynamics (pink in Fig. 3b). The12

success of the linear MPC in driving a community with nonlinear population dynamics illustrates13

the robustness of the MPC strategy, since the controller succeeds despite having non-zero pertur-14

bations (wx, wu). As R increases, the performance of the linear MPC deteriorates, first using more15

interventions to reach the desired state (green in Fig. 3d), and finally failing to drive the system to16

the desired state (blue in Fig. 3d). Indeed, sinceR > 0 quantifies the “cost” of using control inputs,17

increasing R reduces the magnitude of the control inputs, to the point they are not large enough to18

drive the system towards the desired state. We emphasize that, in general, the performance of the19

linear MPC also depends on the chosen (Â, B̂) and the desired state (Remark 11 in Supplementary20

Note 6).21

19
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Numerical validation of the control framework on large microbial communities. To system-1

atically validate our control framework, we considered communities of N = 100 species having2

random Erdös-Rényi ecological networks with a prescribed connectivity c ∈ [0, 1], see Fig. 4a.3

The network edge-weights are chosen from a normal distribution with zero mean and standard4

deviation σ ≥ 0, where σ characterizes the typical interspecies interaction strength. Negative self-5

loops with weights −1 were added to each species to ensure stability, representing intraspecies6

interactions. We use this ecological network to identify the driver species of the community, and7

its corresponding weighted adjacency matrix as the interaction matrix to construct the linear MPC.8

The parameters Q = 20× 104IN×N , R = 0.15IM×M of the linear MPC were fixed for all commu-9

nities, and the intervention time instants tk ∈ T were chosen such that tk+1 − tk = 0.1. Next, we10

used Eq. (5) to numerically simulate the population dynamics of these communities. For this, we11

set the weighted adjacency matrix of the ecological network we built as the interaction matrix A in12

Eq. (5). We choose θi,j = 0 for j = 1, · · · , 6, and θij,7 uniformly at random from [0, θmax], where13

θmax is a parameter. Last, we choose the intrinsic growth rates ri to ensure all generated random14

communities share the desired state xd ∈ RN as an equilibrium point. Note all the constructed15

communities have nonlinear population dynamics, and their linearization at the desired state is not16

equal to the interaction matrix used for the linear MPC (see Supplementary Note 8 for details of17

this construction).18

To quantify the success of our control framework on a particular community, we generate 30019

initial species abundances that are uniformly distributed at a distance d > 0 from the desired state20

(distance is measured using the Euclidean norm). Then, the success rate of our control framework21

20
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at distance d is defined as the proportion of those initial conditions that are driven to the desired1

state only when the linear MPC is applied to a minimal set of driver species of the community2

(Fig. 4b-d). Namely, the success rate discards all initial conditions that naturally evolve to the3

desired state. Finally, we calculated the mean success rate by averaging the success rate over 1004

randomly constructed ecological networks (see items 7 and 8 of Supplementary Note 8 for details).5

The mean success rate of our control framework changes with the distance to the desired6

state, being close to 1 for small distances regardless of the parameters of the microbial community7

(Fig. 4e-f). This result agrees well with the theoretical prediction that success is guaranteed pro-8

vided that the distance to the desired state is small enough. We next investigated how the success9

rate changes with the distance d for different interspecies interaction strengths, and for different10

connectivities of the ecological network underlying the community. The success rate decreases11

as the interspecies interaction strength increase, especially for large distances (Fig. 4e). Since12

increasing the interspecies interaction strength damages the stability of the population dynamics44,13

this result suggests that microbial communities become “harder” to control as they lose stability.14

The success rate of our control framework is also higher in microbial communities whose ecolog-15

ical networks have lower connectivity (Fig. 4f). Note that, in general, the size of a minimal set of16

driver species decreases as the network connectivity increases. Therefore, this observations sug-17

gest that the success rate may increase as the number of driver species increases. Indeed, regardless18

of the distance to the desired state, we find that our control framework attains a success rate > 0.819

provided that we drive at least 6 of the 100 species (Fig. 4g). This last result also suggests that20

the success rate of our control framework can be enhanced by directly controlling a few additional21

21
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species.1

Finally, we investigated the robustness of our control framework to errors in the ecological2

network used for both identifying the driver species, and for calculating the linear MPC. Note that,3

despite structural accessibility is insensitive to missing interactions in the ecological network, the4

calculated linear MPC is not. Additionally, structural accessibility can be lost if some ecological5

interactions do not really exist in the ecological network. To introduce errors in the ecological6

network, we randomly rewire each of its edges with probability p ∈ [0, 1]. This rewiring probability7

determines the percentage of error introduced to the ecological network (e.g., p = 0.05 corresponds8

to a 5% error). Our control framework is robust to these errors, in the sense that the success rate9

deteriorates but remains larger than zero despite large errors (Fig. 4h). However, just a 5% error10

decreases the success rate in about 30%. This result illustrates that our framework is feasible for11

controlling large microbial communities provided we have an accurate map of their ecological12

networks.13

APPLICATION14

Mapping the ecological network of a microbial community allow us to identify its driver species.15

We identified a minimal set of driver species in the gut microbiota of germ-free mice that are16

pre-colonized with a mixture of human commensal bacterial type strains and then infected with17

Clostridium difficile spores22. We identified a minimal set of five driver species in this 14-species18

community: R. obeum (x1), R. mirabilis (x12), B. ovalus (x2), C. ramnosum (x6) and A. muciniphila19

22
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(x10), see Fig. 5a. We also used the ecological network underlying the core microbiota of the sea1

sponge Ircinia oros23, finding ten driver species in this twenty-species community (Fig. 5b).2

We studied by simulation the efficacy of the identified driver species and the linear MPC3

method for these two microbial communities, assuming that their dynamics are uncertain (see4

Supplementary Note 7 for details of the dynamics used for the simulation). For the mice gut5

microbiota, our framework succeeds in driving the whole community from an initial state where6

Clostridium difficile is overabundant, towards a desired state with a better balance of species (Figs.7

5c and 5d). Similar results were obtained for controlling the core microbiota of Ircinia oros, using8

the ten identified driver species to drive the twenty species constituting this microbial community9

(Figs. 5e and 5f). The success of our control framework shows again that the linear MPC method is10

robust enough to drive microbial communities despite the presence of the perturbations (wx, wu).11

DISCUSSION12

An influential method to understand and manage complex ecosystems has been identifying species13

with a “big impact” on the entire ecosystem, leading to notions such as keystone45, 46 or core47
14

species. In general, the keystone or core species of an ecosystem are not necessarily its driver15

species. For example, the driver species of an ecosystem do not depend on their abundance, while16

the definition of keystone species does depend on the abundance —namely, species whose removal17

cause a disproportionate deleterious effect relative to their abundance45.18

It was suggested that notion of controllability —the ability to drive a system between any two19
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states— could help predicting the success of ecosystem management strategies48. For microbial1

communities and many other biological systems, it is inadequate to use the notion of controllability2

because there are states that those systems cannot reach by their nature (e.g., those states corre-3

sponding to negative abundances). Additionally, since dynamic models for microbial communities4

and other complex ecosystems are nonlinear, uncertain, and often very difficult to infer, it is impos-5

sible to even test if those systems are controllable or not. The notion of structural accessibility at6

the basis of our framework overcomes these two limitations, generalizing the control-theoretic no-7

tion of accessibility32 to systems with uncertain dynamics and impulsive control inputs. As result,8

our framework allows efficiently controlling microbial communities only knowing their underlying9

ecological networks. We note that our framework can be used to identify minimal sets of “driver10

variables” for biological systems beyond microbial communities when their underlying networks11

are known. For this, we just need to choose the adequate base model49 for each class of system. For12

example, we identified a single “driver protein” in the repressilator50 —a synthetic three-gene reg-13

ulatory network that generates sustained oscillations— allowing us to eliminate those oscillations14

(Supplementary Note 8 and Fig. S2).15

In this paper, we used a maximum matching based algorithm to identify a minimum set of16

driver species from the ecological network of a given microbial community. In principle, there17

could be multiple maximum matchings associated with the same network, rendering potentially18

different minimum sets of driver species. Note that those minimum driver species sets share the19

same cardinality. We claim that a minimum set of driver species is optimal only in the sense that20

its cardinality is minimal. If the cost of choosing any species as a driver species is known, one can21
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develop a combinatorial optimization scheme to further pick up the best driver species set. But we1

feel this is beyond the scope of the current work and hence leave it for future work.2

Rather counterintuitively, our mathematical formalism shows that increasing the complexity3

of the community’s population dynamics (measured by the size of the deformation) can only reduce4

the number of necessary driver species. In practice, however, increasing the complexity of the5

dynamics could render the design of the control strategies more difficult. Note that, in general,6

it can be expected that the design of control strategies becomes more difficult as the number of7

used driver species decreases (see Remark 9 in Supplementary Note 5). Additionally, we note that8

despite the minimal number of driver species decreases as the ecological network becomes denser,9

this condition is only sufficient. Indeed, the minimal number of driver species of a microbial10

community should be mainly determined by the degree distribution of the ecological network, since11

the maximum matching size of a directed network is largely determined by its degree distribution51.12

For large communities with uncertain controlled population dynamics, we calculated the13

control actions using a linear prediction model with an infinite horizon. More sophisticated control14

algorithms, such as those based on reinforcement learning52 (RL), could provide better perfor-15

mance. Note that RL algorithms typically require specifying a-priori the “driver variables” they16

can actuate53. Our characterization of minimal sets of driver species should help to efficiently ap-17

ply RL methods for controlling microbial communities and other biological systems. In practice,18

the performance of the control algorithms can also be improved by using more detailed models that19

incorporate the dynamics of the susceptibility of species to the control actions (e.g., the pharma-20
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cokinetics of prebiotics). In such case, different control actions could be modeled by different pairs1

{f, g} in Eqs. (2) or (3), making the conditions for the absence of autonomous elements different2

for continuous and impulsive control actions. We note that altering the ecological network of a mi-3

crobial community or obtaining a “simplified” network, in the spirit of Refs.54 and 55, respectively,4

could be an alternative and complementary approach to controlling microbial communities (e.g.,5

to reduce the number of necessary driver species).6

Note also that in our deterministic framework we don’t consider the effects of stochasticity7

due to, e.g., immigration in microbial communities. From a theoretical viewpoint, incorporating8

stochastic effects into the model will turn Eqs. (2) and (3) into controlled stochastic differential9

equations, which are the material of a different scientific area. To the best of our knowledge, the10

characterization of the accessibility properties of those class of equations remains an open prob-11

lem and their analysis become intractable in practice. Indeed, the very notion of an autonomous12

element —the basis for the concept of accessibility— would need to be reformulated. We consider13

this is beyond the scope of the current work and call for research activities of the control theory14

community in this area.15

In conclusion, by identifying driver species, our framework shows that an accurate map of16

the ecological network underlying a microbial community opens the door for an efficient and sys-17

tematic control. The driver species can be identified despite missing interactions in the ecological18

network, but our methods to calculate the adequate control actions can be sensitive to them. The19

design of controllers that are robust to missing interactions will be a necessary step for controlling20
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real microbial communities. To fully harvest the potential benefits of controlling microbial com-1

munities a stronger synergy between microbiology, ecology, and control theory will be necessary.2
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Figure 1 Controlling a microbial community. a. Ecological network G for a toy microbial
community of N = 3 species (green, yellow, blue). The controlled ecological network Gc con-
tains M = 1 control input actuating the third species. b. Initial and desired abundance pro-
files (bars). Controlling the community consists in driving its state from the initial state x0 to
the desired state xd, represented by two points in the state space of the community. c. In the
continuous control scheme, the control inputs u(t) are continuous signals modifying the growth
of the actuated species. The controlled population dynamics of this community is given by
ẋ1 = 0.1+x1(1−x1/5)(x1/3−1)−(0.1x1x3)/(1+x3), ẋ2 = 0.1+x2(1−x2/4)(x2−1)+(x2x3)/(1+x3),
ẋ3 = x3(1 − x3/2)(x3 − 1) + u. In the absence of control, this community has two equilibria
x0 = (3.14, 4.58, 1)ᵀ and xd = (4.57, 4.73, 2)ᵀ, chosen as the initial and desired states, respectively.
d. In the impulsive control scheme, the control inputs u(t) are impulses applied at the intervention
instants T = {t1, t2, · · · }, instantaneously changing the abundance of the actuated species. The
controlled population dynamics is the same as in panel c, except that ẋ3 = x3(1−x3/K3)(x3/C3−1)
and x3(t

+) = x3(t) + u(t) if t ∈ T = {5, 10, 15}. Under this controlled population dynamics, our
mathematical formalism identifies x3 as the solo driver species needed to drive this microbial com-
munity (Example 1 in Supplementary Note 2).

1
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Figure 2 Autonomous elements constrain the state of microbial communities, characterizing their2

driver species. a. A three-species community with GLV dynamics ẋ1 = x1(−1+x3), ẋ2 = x2(1−x3),3

ẋ3 = x3(−0.5 + 1.5x3). For actuating x3, we consider the impulsive control scheme with x3(t+) =4

x3(t) + u1(t) for t ∈ T. With this controlled population dynamics, our mathematical formalism5

reveals the autonomous element x1x2 that constraints the state of this microbial community to6

the low-dimensional manifold {x ∈ R3|x1x2 = x1(0)x2(0)} (gray) for all control inputs. Five state7

trajectories (in colors) with random control inputs illustrate this fact. Hence, {x3} alone cannot be8

a set of driver species for this controlled population dynamics. b. Including a second control input9

u2(t) actuating x1 (i.e., x1(t+) = x1(t) + u2(t) for t ∈ T) eliminates the autonomous element, since10

the state of the microbial community (colors) can explore a three-dimensional space (gray). Hence11

{x1, x3} is a minimal set of driver species for this community with GLV dynamics. c. We proved12

that, generically, increasing the complexity of the controlled population dynamics cannot create13

autonomous elements. In this example, increasing the deformation size C from the GLV in panel a14

(with C = 0) to the controlled population dynamics in Fig.1 (with C > 0) eliminates the autonomous15

element that was present by actuating x3 alone (Example 1 in Supplementary Note 2). Therefore,16

increasing the complexity of the population dynamics makes {x3} a solo driver species.17
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Figure 3 Success and failure of different control strategies. a. Three control strategies for driving2

the microbial community of Fig. 1a toward the desired state. First, MPC applied to the identified3

driver species {x3} (pink dots). The second control strategy increases the abundance of the driver4

species to match its value at the desired state x3(t1) = x3,d (purple dots). The third control5

strategy does not actuate the driver species, but actuates the other two species {x1, x2} by setting6

their abundance to their desired values (i.e., x1(tk) = x1,d and x2(tk) = x2,d, solid and hollow blue7

dots, respectively). b. The response of the microbial community to these three control strategies.8

Here and in panel d, the “jumps” produced by the control inputs are depicted by dashed lines. The9

equilibria of the population dynamics are shown as gray dots. Only the first strategy applying MPC10

to the driver species succeeds in driving the community to xd. c. Control strategies obtained by11

using the linear MPC with parameters Q = diag(20, 1, 10) and different values for R: 10−4 (pink),12

10−3 (green), 10−2 (blue). d. Trajectories of the controlled community using the linear MPC control13

strategies described in panel c. Colors correspond to the different values of R.14
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Figure 4 Numerical validation of the control framework on large microbial communities. a. Ex-3

ample of the ecological network of a random microbial community with N = 100 species with4

connectivity c = 0.03. We used our framework to identify a minimal set of M = 6 driver species.5

The desired state is chosen as xd = (1, · · · , 1)ᵀ. b. We randomly set the initial abundance x0 of6

species at a distance d = 0.4 from the desired state. Without control, the state of the microbial7

community does not reach the desired state xd. c. and d. For the same community and initial8

abundance as in panel b, we apply the control input generated by the linear MPC (panel c) to9

37

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/149765doi: bioRxiv preprint 

https://doi.org/10.1101/149765
http://creativecommons.org/licenses/by/4.0/


the six driver species we identified. This control strategy successfully drives the state of the com-1

munity to the desired state (panel d). e., f. and h. Mean success rate of our control framework2

as a function of the distance d of the initial state from the desired state. Error bars denote the3

standard error of the mean. Here, the simulation parameters are: c = 0.025, θmax = 0.05 for panel4

e, σ = 0.8, θmax = 0.05 for panel f, and c = 0.025, σ = 0.8, θmax = 0.05 for panel h. g. Success5

rate of our control framework for different proportions of driver species M/N . Black dots show the6

success rate of 7700 random communities plotted as a function of the proportion of driver species.7

Pink shows the mean success rate as a function of the proportion of driver species.8
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Figure 5 Controlling host-associated microbial communities. a. Inferred ecological network of2

the gut microbiota of germ-free mice pre-colonized with a mixture of human commensal bacterial3

type strains and then infected with C. difficile (species 7). b. Inferred ecological network of the4

core microbiota of the sea sponge Ircinia oros. In both networks, self-loops are omitted to improve5

readability. A minimal set of driver species is shown, providing a disjoint union of paths (purple)6

and cycles (green) covering all species nodes. Refer to Table 1 in Supplementary Note 7 for the7

species name. The controlled population dynamics of both microbial communities were simulated8

using the cGLV equations (see Supplementary Note 7 for details). The intrinsic growth rates9

were adjusted such that the community has an initial “diseased” equilibrium state x0 in which one10

species (C. difficile for the mice gut microbiota) is overabundant compared to the rest of species.11

We chose the desired state xd as another equilibrium with a more balanced abundance profile. c, e.12

Control actions obtained using the linear MPC for the impulsive and continuous control schemes.13

d, f. Projection of the high-dimensional abundance profiles (states of the microbial communities)14

into their first three principal components (PCs). See Supplementary Fig.S1 for the temporal15

response of each species. The calculated control strategies applied to the driver species succeed16

in driving the community to the desired state, using either continuous or impulsive control.17
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