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Abstract
We investigated how conventional spoken words might emerge from imitations of environmental sounds.
Participants played a version of the children’s game “Telephone”. The first generation of participants
imitated recognizable environmental sounds (e.g., glass breaking, water splashing). Subsequent generations
imitated the imitations of the prior generation for a maximum of 8 generations. The results showed
that the imitations became more stable and word-like, and more easily learnable as category labels. At
the same time, even after 8 generations, both spoken imitations and their written transcriptions could
be matched above chance to the category of environmental sound that motivated them. These results
show how repeated imitation can create progressively more word-like forms that continue to retain a
resemblance to the original sound that motivated them. The results speak to the possible role of human
vocal imitation in explaining the origins of spoken words.

People have long pondered the origins of languages, especially the words that compose them. For example,
both Plato in his Cratylus dialogue (Plato & Reeve, 1999) and John Locke in his Essay Concerning Human
Understanding (Locke, 1948) examined the “naturalness” of words—whether they are somehow imitative of
their meaning. Here we investigated whether new words can be formed from the repetition of non-verbal vocal
imitations. Does the repetition of imitations over generations of speakers gradually give rise to novel word
forms? In what ways do these words resemble the original sounds that motivated them? We report a large-scale
experiment (N=1571) investigating how new words can form—gradually and without instruction—simply by
repeating imitations of environmental sounds.

The importance of imitation and depiction in the origin of signs is clearly observable in the origin of words
in signed languages (Goldin-Meadow, 2016; Kendon, 2014; Klima & Bellugi, 1980), but in considering the
idea that vocal imitation may be key to understanding the origin of spoken words, many have argued that
the human capacity for vocal imitation is far too limited to play a significant role (Arbib, 2012; Armstrong
& Wilcox, 2007; Corballis, 2003; Hewes, 1973; Hockett, 1978; Tomasello, 2010). For example, Pinker &
Jackendoff (2005) argued that, “most humans lack the ability. . . to convincingly reproduce environmental
sounds. . . Thus ‘capacity for vocal imitation’ in humans might be better described as a capacity to learn to
produce speech” (p. 209). Consequently, it is still widely assumed that vocal imitation—or more broadly, the
use of any sort of resemblance between form and meaning—cannot be important to understanding the origin
of spoken words.

Although most words of contemporary spoken languages are not clearly imitative in origin, there has been a
growing recognition of the importance of imitative words in spoken languages (Dingemanse, Blasi, Lupyan,
Christiansen, & Monaghan, 2015; Perniss, Thompson, & Vigliocco, 2010) and the frequent use of vocal
imitation and depiction in spoken discourse (Clark & Gerrig, 1990; Lewis, 2009). This has led some to argue
for the importance of imitation for understanding the origin of spoken words (e.g., Brown, Black, & Horowitz,
1955; Dingemanse, 2014; Donald, 2016; Imai & Kita, 2014; Perlman, Dale, & Lupyan, 2015). In addition,
experiments show that counter to previous assumptions, people are highly effective at using vocal imitations
in reference—in some cases, even more effective than with conventional words (Lemaitre & Rocchesso, 2014).
Recent work has also shown that people are able to create novel imitative vocalizations for more abstract
meanings (e.g. ‘slow’, ‘rough’, ‘good’, ‘many’) that are understandable to naïve listeners (Perlman et al.,
2015). The effectiveness of these imitations arises not because people can mimic environmental sounds with
high fidelity, but because they are able to produce imitations that capture the salient features of sounds in
ways that are understandable to listeners (Lemaitre, Houix, Voisin, Misdariis, & Susini, 2016). Similarly,
the features of onomatopoeic words might highlight distinctive aspects of the sounds they represent. For
example, the initial voiced, plosive /b/ in “boom” represents an abrupt, loud onset, the back vowel /u/ a low
pitch, and the nasalized /m/ a slow, muffled decay (Rhodes, 1994).
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Imitations collected in the transmission chain experiment

Figure 1: The design of the transmission chain experiment. Seed sounds (16) were sampled from four
categories of environmental sounds: glass, tear, water, zipper. Participants imitated each seed sound, and
then the next generation of participants imitated the imitations and so on for up to 8 generations. Chains
are unbalanced due to random assignment and the exclusion of some low quality recordings.

Thus, converging evidence suggests that people can use vocal imitation as an effective means of communication.
But can vocal imitations give rise to words that can be integrated into the vocabulary of a language? And if
so, what is required for this to happen? What happens to a vocal imitation in the course of it being turned
into a word? To answer these questions, we recruited participants to play an online version of the children’s
game of “Telephone”. In the children’s game, a spoken message is whispered from one person to the next. In
our version, the original message or “seed sound” was a recording of an environmental sound. The initial
group (first generation) of participants imitated these seed sounds, the next generation imitated the previous
imitators, and so on for up to 8 generations (Fig. 1).

In subsequent experiments, we systematically answered the following questions about the form of the
vocalizations and their potential to function as words. First, does iterated imitation drive the vocalizations
to stabilize in form and become more word-like? Second, do the imitations become more suitable as labels for
the category of sounds that motivated them? For example, does the imitation of a particular water-splashing
sound become, over time, a better label for the more general category of water-splashing sounds? Third, do
the imitations retain a resemblance to the original environmental sounds that inspired them? If so, it should
be possible for naïve participants to match the emergent words back to the seed sounds that were originally
imitated.

Results

We begin with a summary of our main results: (1) Imitations of environmental sounds became more stable
over the course of being repeatedly imitated as revealed by increasing acoustic similarity along individual
transmission chains. In addition, later generations of imitations had higher levels of agreement when
transcribed into English orthography further suggesting an increase in stability and word-likeness. (2) When
transcriptions of first and last generation imitations were learned as novel labels for categories of environmental
sounds, last generation transcriptions were learned faster and generalized to new category members more
easily than transcriptions of first generation imitations, suggesting that repeating imitations caused the forms
to become more suitable as category labels. (3) Even as the imitations became more word-like, they also
retained a resemblance to the original category of environmental sound that motivated them, as measured by
the ability of naïve listeners to match both the auditory imitations and their written transcriptions to the
correct category of environmental sounds even after 8 generations of repetition.
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B. Later imitations were transcribed more consistently

Figure 2: Stabilization of imitations through repetition. A. Change in perception of acoustic similarity over
generations of repetition. Means and hierarchical linear model predictions with ±1 SE are shown. Acoustic
similarity increased over generations, indicating that repetition made the vocalizations easier to imitate with
high fidelity. B. Transcription similarity for first and last generation imitations. Mean orthographic distance
between the most frequent transcription and all other transcriptions of a given imitation are shown, with
error bars as ±1 SE of the hierarchical linear model predictions. Transcriptions of later generation imitations
were more similar to one another than transcriptions of first generation imitations.

Iterated imitations became more stable and word-like

The final set of vocal imitations included 365 imitations along 105 contiguous transmission chains from
94 participants (Fig. 1; see Methods). Research assistants (N=5) rated the acoustic similarity of pairs of
imitations while blind to all conditions and hypotheses (see Methods). We also conducted automated analyses
of acoustic similarity using Mel Frequency Cepstral Coefficients (MFCCs) as a measure of acoustic distance.
These results are reported in the Supporting Information (Fig. 9). Acoustic similarity ratings were fit with a
hierarchical linear model1 predicting similarity from generation with random effects for rater and for category.
Imitations from later generations were rated as sounding more similar to one another than imitations from
earlier generations, b = 0.09 (SE = 0.02), t(4.5) = 4.42, p = 0.009 (Fig. 2A). This result suggests that
imitations became more stable (i.e., easier to imitate with high fidelity) with each generation.

As an additional test of stabilization, we had English-speaking participants transcribe a sample of first and
last generation imitations into English orthography, and then measured whether transcription similarity

1Degrees of freedom and corresponding significance tests for hierarchical linear models were estimated using the Satterthwaite
approximation (Kuznetsova, Bruun Brockhoff, & Haubo Bojesen Christensen, 2016).
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(spelling agreement) increased over generations. We collected a total of 2163 transcriptions—approximately
20 transcriptions per sound (see Methods). Some examples of the transcriptions are presented in Table 1.

Table 1: Examples of invented words.

Category Seed First generation Last generation
glass 1 tingtingting dundunduh
glass 2 chirck correcto
glass 3 dirrng wayew
glass 4 boonk baroke
tear 1 scheeept cheecheea
tear 2 feeshefee cheeoooo
tear 3 hhhweerrr chhhhhhewwwe
tear 4 ccccchhhhyeaahh shhhhh
water 1 boococucuwich eeverlusha
water 2 chwoochwooochwooo cheiopshpshcheiopsh
water 3 atoadelchoo mowah
water 4 awakawush galonggalong
zipper 1 euah izoo
zipper 2 zoop veeeep
zipper 3 arrgt owww
zipper 4 bzzzzup izzip

To measure the similarity among transcriptions of a given imitation, we calculated the orthographic distance
between the most frequent transcription and all other transcriptions. The orthographic distance measure was
a ratio based on longest contiguous matching subsequences between pairs of transcriptions. A hierarchical
linear model predicting orthographic distance from the generation of the imitation (First generation, Last
generation) with random effects for transmission chains nested within categories of environmental sounds
revealed that transcriptions of last generation imitations were more similar to one another than transcriptions
from first generation imitations, b = -0.12 (SE = 0.03), t(14.5) = -4.15, p < 0.001 (Fig. 2B). The same result
is reached through alternative measures of orthographic distance such as exact string matching and length of
longest substring match, and when excluding imitations for which all transcriptions were unique in which
case there was no most frequent transcription (Fig. 12). These results support our hypothesis that unguided
repetition drives imitations to stabilize on particular words.

Iterated imitations made for better category labels

One consequence of imitations becoming more word-like is that they may make for better category labels.
For example, an imitation from a later generation, by virtue of having a more word-like form, may be easier
to learn as a label for the category of sounds that motivated it than an earlier imitation, which may be
more closely yoked to an individual seed sound. To the extent that repeating imitations abstracts away the
idiosyncrasies of a particular category member, it may also be easier to generalize to new category members.
We tested these predictions using a category learning task wherein participants had to learn novel labels
for categories of environmental sounds. Unbeknownst to the participants, the novel labels they learned
were transcriptions generated either from first or last generation imitations. The procedure for selecting
otherwise-equal transcriptions is detailed in the Supporting Information. Here we focus on the consequences
of learning either first or last generation transcriptions in the category learning experiment.

At the beginning of the experiment, where participants had to learn through trial-and-error which labels
were associated with which sounds, participants learning transcriptions of first or last generation imitations
did not differ in overall accuracy, p = 0.887, or reaction time, p = 0.616. After this initial learning phase
(i.e. after the first block of trials), accuracy performance quickly reached ceiling (Fig. 15) and did not differ
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Figure 3: Learning transcriptions of imitations as category labels. A. Participants achieved faster RTs in
matching transcribed labels to environmental sounds for labels transcribed from later compared to earlier
generation imitations. B. There was a generalization cost for first-generation labels, but not last generation
labels.

between groups p = 0.775. However, participants learning last generation transcriptions responded more
quickly in subsequent blocks than participants learning first generation transcriptions, b = -114.13 (SE =
52.06), t(39.9) = -2.19, p = 0.034 (Fig. 3A). These faster responses suggest that, in addition to becoming
more stable both in terms of acoustic and orthographic properties, repeating imitations makes them easier to
learn as category labels. Given how quickly accuracy performance reached ceiling, further investigation with
a more difficult category learning experiment is warranted (e.g., more than four categories and 16 exemplars).

Next, we examined whether transcriptions from last generation imitations were easier to generalize to novel
sounds. To test this hypothesis, we compared RTs on trials immediately prior to the introduction of novel
sounds (new category members) and the first trials after the block transition (±6 trials). The results revealed
a reliable interaction between the generation of the transcribed imitation and the block transition, b =
-110.77 (SE = 52.84), t(39.7) = -2.10, p = 0.042 (Fig. 3B). This result suggests that transcriptions from later
generation imitations were easier to generalize to new category members.

Iterated imitations retained resemblance to original sounds

As the imitations became more word-like, were they stabilizing on arbitrary acoustic and orthographic forms,
or did they maintain some resemblance to the original environmental sound that motivated them? To test
this, we measured the ability of participants naïve to the design of the experiment to match imitations back
to their original source relative to other seed sounds from either the same category or from different categories
(Fig. 4A). All 365 imitations were tested in the three question types depicted in Fig. 4A. These questions
differed in the relationship between the imitation and the four seed sounds provided as the choices in the
question. Responses were fit by a hierarchical generalized linear model predicting match accuracy as different

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/149708doi: bioRxiv preprint 

https://doi.org/10.1101/149708
http://creativecommons.org/licenses/by/4.0/


from chance (25%) based on the type of question being answered (True seed, Category match, Specific match)
and the generation of the imitation.

Matching accuracy for all question types was above chance for the first generation of imitations, b = 1.65 (SE
= 0.14) log-odds, odds = 0.50, z = 11.58, p < 0.001, and decreased steadily over generations, b = -0.16 (SE
= 0.04) log-odds, z = -3.72, p < 0.001. We tested whether this increase in difficulty was constant across the
three types of questions or if some question types became more difficult than others. The results are shown
in Fig. 4B. Performance decreased over generations more rapidly for questions requiring a within-category
distinction than for between-category questions, b = -0.08 (SE = 0.03) log-odds, z = -2.68, p = 0.007,
suggesting that between-category information was more resistant to loss through repeated imitation. An
alternative explanation for this result is that the within-category match questions are simply more difficult2

because the sounds provided as choices are more acoustically similar to one another than the between-category
questions, and therefore, performance might be expected to drop off more rapidly with repeated imitations.
However, performance also decreased for the easiest type of question where the correct answer was the actual
seed generating the imitation (True seed questions; see Fig. 4A); the advantage of having the true seed
among between-category distractors decreased over generations, b = -0.07 (SE = 0.02) log-odds, z = -2.77, p
= 0.006. The observed increase in the “category advantage” (i.e., the advantage of having between-category
distractors) combined with a decrease in the “true seed advantage” (the advantage of having the actual seed
among the choices), shows that the changes induced by repeated imitation caused the imitations to lose some
of properties that linked the earlier imitations to the specific sound that motivated them, while nevertheless
preserving a more abstract category-based resemblance.

We next tested whether it was possible to match the written transcriptions of the auditory sounds back to
the original environmental sounds. Participants were given a novel word (the most frequent transcriptions of
first and last generation imitations) and had to guess the sound that was represented by the invented word.
The distractors for all questions were between-category, i.e. true seed and category match. Specific match
questions were omitted.

Remarkably, participants were able to guess the correct meaning of a word that was transcribed from an
imitation that had been repeated up to 8 times, b = 0.83 (SE = 0.13) log-odds, odds = -0.18, z = 6.46, p <
0.001 (Fig. 4C). This was true for True seed questions containing the actual seed generating the transcribed
imitation, b = 0.75 (SE = 0.15) log-odds, z = 4.87, p < 0.001, and for Category match questions where
participants had to associate transcriptions with a particular category of environmental sounds, b = 1.02 (SE
= 0.16) log-odds, z = 6.39, p < 0.001. The effect of generation did not vary across these question types, b =
0.05 (SE = 0.10) log-odds, z = 0.47, p = 0.638. Possible reasons for this difference between imitations and
their transcriptions are explored in the Supporting Information.

In sum, our results show how unguided repetition causes initial imitations of environmental sounds transition to
more word-like forms. They suggest that in the course of this transition, the imitations become more categorical
and more effective as learned category labels all while retaining some resemblance to the environmental
sounds that motivated them.

Discussion

Imitative (or “iconic”) words are found across the spoken languages of the world (Dingemanse et al., 2015;
Imai & Kita, 2014; Perniss et al., 2010). Counter to past assumptions about the limitations of human vocal
imitation, people are surprisingly effective at using vocal imitation to represent and communicate about
the sounds in their environment (Lemaitre et al., 2016) and more abstract meanings (Perlman et al., 2015),
making the hypothesis that early spoken words originated from imitations a plausible one. We examined
whether simply repeating an imitation of an environmental sound—with no intention to create a new word or
even to communicate—produces more word-like forms.

2We observed that performance on some Specific match questions dropped below chance for later generations indicating
participants had an apparent aversion to the nominally correct answer. Additional analyses showed that participants were not
converging on a single incorrect response. The reason for this pattern is at present unclear. Removing these trials from the
analysis does not substantively change the conclusions.
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Figure 4: A. Three types of matching questions used to assess the resemblance between the imitation (and
transcriptions of imitations) and the original seed sounds. For each question, participants listened to an
imitation (dashed circles) and had to guess which of 4 sound choices (solid circles) they thought the person
was trying to imitate. True seed questions contained the actual sound that generated the imitation as one
of the choices (correct response). The remaining sounds were sampled from different categories. Category
match questions replaced the original seed sound with another sound from the same category. Specific match
questions pitted the actual seed against the other seeds within the same category. B. Change in matching
accuracy over generations of imitations, shown as predictions of the generalized linear models with ±1 SE
of the model predictions. The "category advantage" (Category match vs. Specific match) increased over
generations, while the "true seed advantage" (True seed v. Category match) decreased (see main text),
suggesting that imitations lose within-category information more rapidly than between-category information.
C. Change in matching accuracy over generations of imitations transcribed into English-sounding words.
Imitations and transcriptions of imitations could still be matched back to the category of sound that motivated
the original imitation even after 8 generations. Match accuracy for imitations is shown for comparison.
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Our results show that through simple repetition, imitative vocalizations became more word-like both in form
and function. In form, the vocalizations gradually stabilized over generations, becoming more similar from
imitation to imitation. They also became increasingly standardized in accordance with English orthography,
as later generations were more consistently transcribed into English words. In function, the increasingly
word-like forms became more effective as category labels. In a category learning experiment, naïve participants
were faster to learn category labels derived from transcriptions of later-generation imitations than those
derived from direct imitations of the environmental sound. This fits with previous research showing that
the relatively arbitrary forms that are typical of words (e.g. “dog”) makes them better suited to function as
category labels compared to direct auditory cues (Boutonnet & Lupyan, 2015; Edmiston & Lupyan, 2015;
e.g. the sound of a dog bark; Lupyan & Thompson-Schill, 2012).

Evan as the vocalizations became more word-like, they nevertheless maintained an imitative quality. After
eight generations they could no longer be matched to the particular sound from which they originated
any more accurately than they could be matched to the general category of environmental sound. Thus,
information that distinguished an imitation from other sound categories was more resilient to transmission
decay than exemplar information within a category. Remarkably, even after the vocalizations were transcribed
into English orthography, participants were able to guess their original sound category from the written “word”.
In contrast to the vocalizations, participants continued to be more accurate at matching late generation
transcriptions back to their particular source sound relative to other exemplars from the same category.

Although the number of imitative words in contemporary languages may appear to be very small (Crystal,
1987; Newmeyer, 1992), increasing evidence from disparate languages shows that vocal imitation is, in fact,
a widespread source of vocabulary. Cross-linguistic surveys indicate that onomatopoeia—imitative words
used to represent sounds—are a universal lexical category found across the world’s languages (Dingemanse,
2012). Even English, a language that has been characterized as relatively limited in iconic vocabulary
(Vigliocco, Perniss, & Vinson, 2014), is documented to have hundreds of clearly imitative words including
words for human and animal vocalizations as well as various types of environmental sounds (Rhodes, 1994;
Sobkowiak, 1990). Besides words that are directly imitative of sounds—the focus of the present study—many
languages contain semantically broader inventories of ideophones. These words comprise a grammatically
and phonologically distinct class of words that are used to express various sensory-rich meanings, such as
qualities related to manner of motion, visual properties, textures and touch, inner feelings and cognitive
states (Dingemanse, 2012; Nuckolls, 1999; Voeltz & Kilian-Hatz, 2001). As with onomatopoeia, ideophones
are often recognized by naïve speakers as bearing a degree of resemblance to their meaning (Dingemanse,
Schuerman, & Reinisch, 2016).

Our study focused on imitations of environmental sounds and more work remains to be done to determine the
extent to which vocal imitation can ground de novo vocabulary creation in other semantic domains (Lupyan
& Perlman, 2015; e.g., Perlman et al., 2015). What the present results make clear is that the transition
from imitation to word can be a rapid and simple process: the mere act of repeated imitation can drive
vocalizations to become more word-like in both form and function. Notably, just as onomatopoeia and
ideophones of natural languages maintain a resemblance to the quality they represent, the present vocal
imitations transitioned to words while retaining a resemblance to the original sound that motivated them.

Methods

Selecting seed sounds

To avoid sounds having lexicalized or conventionalized onomatopoeic forms in English, we used inanimate
categories of environmental sounds. Using an odd-one-out norming procedure (N=105 participants; see
Supporting Information), an initial set of 36 sounds in 6 categories was reduced to a final set of 16 “seed”
sounds: 4 sounds in each of 4 categories (Figs. 5-6). The four final categories were: water, glass, tear, zipper.

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/149708doi: bioRxiv preprint 

https://doi.org/10.1101/149708
http://creativecommons.org/licenses/by/4.0/


Collecting imitations

Participants (N=94) recruited from Amazon Mechanical Turk were paid to participate in an online version of
the children’s game of “Telephone”. Participants were instructed that they would hear some sound and their
task is to reproduce it as accurately as possible using their computer microphone (Fig. 7). Full instructions
are provided in the Supporting Information. Participants listened to and imitated 4 sounds, receiving one
sound from each of the four categories of sounds drawn at random such that participants were unlikely to
hear the same person more than once. Recordings that were too quiet (less than –30 dBFS) were not allowed.
Imitations were monitored by an experimenter to catch any gross errors in recording before they were heard
by the next generation of imitators (Fig. 8). For example, recordings were trimmed to the length of the
imitation, and recordings with loud sounds in the background were removed. The experimenter also blocked
sounds that violated the rules of the experiment, e.g., by saying something in English. A total of 115 (24%)
imitations were removed prior to subsequent analysis.

Measuring acoustic similarity

Acoustic similarity was measured by having research assistants listen to pairs (approx. 314) of sounds and
rate their subjective similarity. On each trial, raters heard two sounds from subsequent generations were
played in succession but in random order. They then indicated the similarity between the sounds on a 7-point
Likert scale from Entirely different and would never be confused to Nearly identical. Raters were encouraged
to use as much of the scale as they could while maximizing the likelihood that, if they did this procedure
again, they would reach the same judgments. Full instructions are provided in the Supporting Information.
Ratings were normalized (z-scored) prior to analysis.

Collecting transcriptions of imitations

Participants (N=216) recruited from Amazon Mechanical Turk were paid to transcribe sounds into words in
an online survey. They listened to imitations and were instructed to write down what they heard as a single
word so that the written word would sound as much like the message as possible. Exact instructions are
provided in the Supporting Information (Fig. 9).

Transcriptions were generated from the first and last three generations of all imitations collected in the
Telephone game; that is, not all imitations were transcribed (Fig. 10). Participants also provided transcriptions
of the original environmental seed sounds (Fig. 11). Transcriptions from participants who failed a catch
trial were excluded (N=2), leaving 2163 transcriptions for analysis. Of these, 179 transcriptions (8%) were
removed because they contained English words, which was a violation of the instructions of the experiment.

Learning transcriptions as category labels

Our transmission chain design and subsequent transcription procedure created 1814 unique words. From these,
we sampled words transcribed from first and last generation imitations as well as from seed sounds that were
equated in length and overall matching accuracy. Specifically, we removed transcriptions that contained less
than 3 unique characters and transcriptions that were over 10 characters long. Of the remaining transcriptions,
a sample of 56 were selected using a bootstrapping procedure to have approximately equal means and variances
of overall matching accuracy. The full procedure for sampling the words in this experiment is described in
the Supporting Information.

Participants (N=67) were University of Wisconsin undergraduates who received course credit for participation.
Participants were randomly assigned four novel labels to learn for four categories of environmental sounds.
Participants were assigned between-subject to learn labels (transcriptions) of the first or last generation
imitations, as well as labels from transcriptions of seed sounds as a control (Fig. 15). On each trial,
participants heard one of the 16 seed sounds. After a 1s delay , participants saw a label–one of the transcribed
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imitations–and responded yes or no using a gamepad controller depending on whether the sound and the
word went together. Participants received accuracy feedback (a bell if correct; a buzzing sound if incorrect).
Four outlier participants were excluded from the final sample due to high error rates and slow RTs.

Participants categorized all 16 seed sounds over the course of the experiment, but they learned them in blocks
of 4 sounds at a time. Within each block of 24 trials, participants heard the same four sounds and the same
four words multiple times, with a 50% probability of the sound matching the word on any given trial. At the
start of a new block of trials, participants heard four new sounds they had not heard before, and had to learn
to associate these new sounds with the words they had learned in the previous blocks.

Matching imitations to seed sounds

Participants (N=751) recruited from Amazon Mechanical Turk were paid to listen to imitations, one at a
time, and for each one, choose one of four possible sounds they thought the person was trying to imitate.
The task was unspeeded and no feedback was provided. Participants completed 10 questions at a time.

Question types (True seed, Category match, Specific match) were assigned between-subject. Participants in
the True seed and Category match conditions were provided four seed sounds from different categories as
choices in each question. Participants in the Specific match condition were provided four seed sounds from
the same category. All 365 imitations were tested in each of the three conditions.

Matching transcriptions to seeds

Participants (N=468) recruited from Amazon Mechanical Turk completed a modified version of the matching
survey. Instead of listening to imitations, participants now read a word (a transcription of an imitation),
which they were told was an invented word. They were instructed that the word was invented to describe
one of the four presented sounds, and they had to guess which one. Of all the unique transcriptions that
were collected for each sound (imitations and seed sounds), only the top four most frequent transcriptions
were used in the matching experiment. 6 participants failed a catch trial and were excluded, leaving 461
participants in the final sample.

Supplementary Materials

Open data and materials

We are committed to making the results of this research open and reproducible. The R code used to generate
all stats and figures reported in the main manuscript as well as in this Supporting Information document is
available on GitHub at github.com/lupyanlab/creating-words. The data are available in an R package, which
can be downloaded and installed with the following R commands:

# Install the R package from GitHub
library(devtools)
install_github("lupyanlab/words-in-transition",

subdir = "wordsintransition")

# Load the package
library(wordsintransition)

# Browse all datasets
data(package = "wordsintransition")
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# Load a particular dataset
data("acoustic_similarity_judgments")

The materials used to run the experiments are also available in GitHub repositories. The web app used to
collect vocal imitations, transcriptions of imitations, and matches of imitations and transcriptions to the
original seed sounds is available at github.com/lupyanlab/telephone-app. Analyses of acoustic similarity
including both algorithmic analyses as well as the procedure for gathering subjective judgments of similarity
are provided at github.com/lupyanlab/acoustic-similarity. The category learning experiment is available at
github.com/lupyanlab/learning-sound-names.

Selecting seed sounds

Our goal in selecting sounds to serve as seeds for the transmission chains was to pick multiple sounds within
a few different categories such that each category member was approximately equally distinguishable from
the other sounds within the same category. To do this, we started with an initial set of 6 categories and 6
sounds in each category and conducted 2 rounds of “odd one out” norming to reduce the initial set to a final
set of 16 seed sounds: 4 sounds in each of 4 categories. Having 4 sounds in 4 categories was the minimum
necessary in order to generate 4AFC questions with both between-category and within-category distractors
with the appropriate level of counterbalancing across all conditions.

Participants (N=105) recruited via Amazon Mechanical Turk were paid to participate in the norming
procedure. Participants listened to all sounds in each category and picked the one that they thought was
the most different from the others. In the first round of norming, participants listened to 6 sounds on a
given trial. We removed the 2 sounds in each category that were the most different from the others (Fig. 5),
and repeated the norming process again with 4 sounds in each category (Fig. 6). After the second round of
norming, we selected the four categories to use in the experiment. The resulting sounds that were selected in
each category are considered to be a set of equally distinguishable category members.

The final 16 seed sounds used in the transmission chain experiment can be downloaded from
sapir.psych.wisc.edu/telephone/seeds/all-seeds.zip.

Collecting vocal imitations

Participants played a version of the children’s game of Telephone via a web-based interface (Fig. 7). Initially
the only action available to participants is to play the message by clicking the top sound icon. After listening
to the message once, they could then initiate a recording of their imitation by clicking the bottom sound icon
to turn the recorder on. Turning the recorder off submitted their response. If the recording was too quiet
(less than –30 dBFS), participants were asked to repeat their imitation. In response, they could repeat the
initial message again. After a successful recording was submitted, a new message was loaded. Participants
made 4 recordings each. The instructions given to participants are presented below.

We are researchers at the University of Wisconsin-Madison studying how audio messages are
passed on from person to person, much like in the children’s game Telephone. If you choose to
participate, we will ask you to listen to an audio message recorded by someone else, and then
record yourself imitating the message that you heard using your computer’s microphone.

Unlike the children’s game of Telephone, the sounds you will hear will not be recognizable English
words, but will be various nonspeech sounds. Your task is the same, however: to recreate the
sound you heard as accurately as you can. [. . . ]
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Figure 5: Results of the first round of seed norming. After collecting these data, two sounds were removed
from each category and the norming procedure was conducted again.
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Figure 6: Results of the second round of seed norming. After collecting these data, four categories of sounds
were selected to use in the main experiment.
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Figure 7: The interface for collecting vocal imitations. Participants clicked the top sound icon to hear the
message and the bottom sound icon to record their response. After ending their recording a new message was
presented.

Figure 8: The interface for monitoring incoming imitations. All imitations were listened to by an experimenter
and trimmed to remove extraneous noise. Imitations eligible for the next generation appear in green. Bad
quality imitations were rejected (in gray).

Monitoring incoming imitations

Since the imitations were collected online, it was likely that at least some of the imitations would be invalid,
either due to low recording quality or due to a violation of the instructions of the experiment (e.g., saying
something in English). We monitored the imitations as they were received to verify the integrity of the
recordings and exclude ones where necessary. The monitoring helped catch gross errors in the timing of the
recording, the most common of which was recordings that were too long relative to the imitation. Via this
interface (Fig. 8), recordings were heard, trimmed, and, in some cases, rejected. Due to random assignment
and the irregular nature of the rejections, all transmissions chains did not reach to the full 8 generations.

Measuring acoustic similarity

After collecting the imitations in the transmission chain design, the imitations were submitted to analyses of
acoustic similarity. The primary measure of acoustic similarity was obtained from research assistants who
participated in a randomized rating procedure. We also measured algorthmic acoustic distance.

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/149708doi: bioRxiv preprint 

https://doi.org/10.1101/149708
http://creativecommons.org/licenses/by/4.0/


Acoustic similarity judgments

Five research assistants rated the similarity between 324 different pairs of imitations. These pairs comprised
consecutive imitations in the transmission chain design, e.g., each message was compared to its response.
Message order was randomized on each trial so that participants did not know which message was the original
and which message was the imitation. Participants were also blind to the overall generation of the imitations
by randomizing generation from trial to trial. To facilitate consistency in rating, pairs of sounds were blocked
by category, e.g., participants rated all tearing sounds before moving on to other categories of sounds. The
instructions given to participants are stated below.

On each trial, you will hear two sounds played in succession. To help you distinguish them, during
the first you will see the number 1, and during the second a number 2. After hearing the second
sound, you will be asked to rate how similar the two sounds are on a 7-point scale.

A 7 means the sounds are nearly identical. That is, if you were to hear these two sounds played
again, you would likely be unable to tell whether they were in the same or different order as the
first time you heard them. A 1 on the scale means the sounds are entirely different and you would
never confuse them. Each sound in the pair will come from a different speaker, so try to ignore
differences due to just people having different voices. For example, a man and a woman saying
the same word should get a high rating.

Please try to use as much of the scale as you can while maximizing the likelihood that if you did
this again, you would reach the same judgments. [. . . ]

Algorithimic measures of acoustic similarity

To obtain algorithmic measures of acoustic similarity, we used the acoustic distance functions included in
the Phonological Corpus Tools program (Hall, Allen, Fry, Mackie, & McAuliffe, n.d.). Using this program,
we computed MFCC similarities between pairs of sounds using 12 coefficients in order to obtain speaker-
independent estimates.

We calculated average acoustic similarity in six kinds of comparisons (Fig. 9A). The first four kinds compared
imitations within the same category of environmental sound (glass, tear, water, zipper). The most similar
were imitations along consecutive transmissions chains (Within chain, consecutive). Next were all pairwise
comparisons of imitations from the same chain (Within chain), followed by all pairwise comparisons leading
from the same seed sound (Within seed), and finally all pairwise comparisons for imitations from all seeds
within the same category (Within category). As expected, all four kinds of within category comparisons
resulted in higher similarity scores than the between category comparisons. The between category comparisons
included imitations from the same generation across different chains (Between category, same), and imitations
from consecutive generations from different chains (Between category, consecutive).

In parallel with the judgments of acoustic similarity, we also investigated how automated measures of acoustic
similarity change over generations of imitation. For the automated analyses we did not find a reliable
relationship between imitation generation and automated analysis of acoustic similarity, b = 0.04 (SE =
0.03), t(357.0) = 1.18, p = 0.24 (Fig. 10B). For our stimuli the correlation between automated analyses of
acoustic similarity and rater judgments was low, r = 0.20, 95% CI [0.16, 0.25] (Fig. 10C), suggesting that
the automated analyses may not capture the acoustic features driving the perception of acoustic similarity of
these stimuli. This is possibly due to the non-verbal nature of the imitations as well as variation in recording
quality between participants in the online study.

Collecting transcriptions of imitations

To collect transcriptions of vocal imitations, participants were instructed to turn the sound they heard into a
word that, when read, would sound much like the imitation. The interface for collecting transcriptions as well
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Figure 9: Algorithmic measures of acoustic distance. A. Average acoustic distance between pairs of sounds
grouped by type of comparison. B. Change in algorithmic acoustic distance over generations of imitations. C.
Correlation between similarity judgments and algorithmic measures.

16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/149708doi: bioRxiv preprint 

https://doi.org/10.1101/149708
http://creativecommons.org/licenses/by/4.0/


Figure 10: Interface for collecting transcriptions. Participants listened to an imitation and were instructed to
create novel words corresponding to the sound they heard.
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Figure 11: Proportion of imitations that were transcribed. Gray region indicates the number of imitations
collected at each generation. Outlined regions denote the number of imitations that were transcribed. First
generation imitations and the last three generations of imitations were transcribed.

as the exact wording of the instructions is shown in Fig. 10.

We only obtained transcriptions of a sample of the imitations collected in the Telephone game. Specifically, we
obtained transcriptions of the first generation of imitations as well as the last 3 generations. The proportion
of imitations that were transcribed is shown in Fig. 11.

Alternative measures of orthographic distance

Our primary measure of transcription difference was provided by the SequenceMatcher functions in the
difflib package of the python standard library. These functions implement Ratcliff and Obershelp’s “gestalt
pattern matching” algorithm, with the additional feature of taking into account repeated “junk” characters
when finding longest contiguous substring matches. Here we report alternative measures of orthographic
distance, such as the number of exact spelling matches (Fig. 12A).

As can be seen in Fig. 12A, some of the imitations did not yield any exact string matches, indicating that all
transcriptions for these imitations were unique. This potentially invalidates our metric for measuring average
distance since it involved comparing the most frequent transcription to all other transcriptions of a given
imitation. For imitations with all unique transcriptions, the “most frequent” transcription was selected at
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random. In Fig. 12B, we show the results of our orthographic distance metric separately for imitations with
and without any agreement.

Fig. 12C shows an alternative measure corresponding exactly to the length of the substring match among
transcriptions, again separating the results by whether or not there was any agreement on the transcription
of the imitation.

Matching imitations and transcriptions to seeds

To measure the extent to which imitations resembled their seed sound source, we tasked participants with
matching the imitation (Fig. 13) or a transcription of an imitation (Fig. 14) to its source relative to other
seed sounds used in the experiment. Participants were assigned 4 seed sounds (between-subject) to serve
as options in the 4AFC task. Mousing over the options played the sounds, which became active after the
participant listened to the imitation one time completely. For imitations, they were allowed to listen to the
imitation as many times as they wanted. On each trial they were presented a different imitation and asked to
match it to the seed sound they thought the imitator was trying to imitate. For transcriptions, they were
instructed the that word was “invented” to correspond to one of the sounds in their options.

Learning transcriptions as category labels

To determine which transcriptions to test as category labels, we first selected only those transcriptions which
had above chance matching performance when matching back to the original seeds. (The matching experiments
were conducted chronologically prior to the category learning experiment). Then we excluded transcriptions
that had less than two unique characters or were over 10 characters long, and used a bootstrapping procedure
to sample from both first and last generation imitations to reach a final set that controlled for overall matching
accuracy. The R script that performed the selection and bootstrapping procedure is available on GitHub
at github.com/lupyanlab/learning-sound-names/blob/master/R/select_messages.R. It involves selecting a
desired mean matching accuracy from the last generation of transcriptions, and sampling transcriptions from
first generation transcriptions until the sample falls within the desired variance.

In the experiment, participants learned, through trial-and-error, the names for four different categories of
sounds. On each trial participants listened to one of the 16 environmental sounds used as seeds and then saw
a novel word–a transcription of one of the imitations. Participants responded by pressing a green button on a
gamepad controller if the label was the correct label and a red button otherwise. They received accuracy
feedback after each trial.

The experiment was divided into blocks so that participants had repeated exposure to each sound and the
novel labels multiple times within a block. At the start of a new block, participants received four new sounds
from the same four categories (e.g., a new zipping sound, a new water-splash sound, etc.) that they had not
heard before, and had to associate these sounds with the same novel labels from the previous blocks. The
extent to which their performance declined at the start of each block serves as a measure of how well the
label they associated with the sound worked as a label for the category.

Transcriptions of seed sounds

As a control, we also had participants generate “transcriptions” directly from the seed sounds. These
transcriptions were the most variable in terms of spelling (Fig. 16A), but the most frequent of them were the
easiest to match back to the original seeds (Fig. 16C). When learning these transcriptions as category labels,
participants were the fastest to learn them in the first block (Fig. 16B), but they did not generalize to new
category members as fast as transcriptions taken from last generation imitations.
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Figure 12: Alternative measures of orthographic distance. A. Percentage of exact string matches per imitation.
B. Orthographic distance separated by whether there was any agreement among the transcriptions of a given
imitation. C. Change in the average length of the substring match.
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Figure 13: Interface for matching imitations back to original seed sounds.

Figure 14: Interface for matching transcriptions back to original seed sounds.
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Figure 15: Mean number of errors by block of 24 trials showing that accuracy performance quickly reached
ceiling after the first block of trials.
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