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Abstract 19 

Using genotype data to perform accurate genetic prediction of complex traits can 20 

facilitate genomic selection in animal and plant breeding programs, and can aid in the 21 

development of personalized medicine in humans. Because most complex traits have a 22 

polygenic architecture, accurate genetic prediction often requires modeling all genetic 23 

variants together via polygenic methods. Here, we develop such a polygenic method, 24 

which we refer to as the latent Dirichlet process regression model (DPR). DPR is non-25 

parametric in nature, relies on the Dirichlet process to flexibly and adaptively model the 26 

effect size distribution, and thus enjoys robust prediction performance across a broad 27 

spectrum of genetic architectures. We compare DPR with several commonly used 28 

prediction methods with simulations. We further apply DPR to predict gene expressions, 29 

to conduct PrediXcan based gene set test, to perform genomic selection of four traits in 30 

two species, and to predict eight complex traits in a human cohort.  31 

 32 

 33 

 34 

35 
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Introduction 36 

Genome-wide association studies (GWASs) have identified thousands of genetic loci 37 

harboring associated single nucleotide polymorphisms (SNPs) for many complex traits 38 

and diseases, providing unprecedented insights into the genetic basis of phenotypic 39 

variation1-8. The accumulation of genetic data from existing association studies has led to 40 

a growing interest in predicting traits and diseases using genetic markers (in addition to 41 

using traditional environmental or clinical variables)9. In animals or plants, accurate 42 

phenotype prediction with genetic markers can assist the selection of individuals with 43 

desirable breeding values and can improve the effectiveness of breeding programs10. In 44 

humans, accurate phenotype prediction with genetic markers can facilitate disease 45 

prevention and intervention at early stages and can aid in the development of 46 

personalized medicine by using genotype information to customize the treatment and 47 

predict the outcome11. Phenotype prediction has also been proposed recently as a key 48 

step for integrating functional genomic sequencing studies with GWASs: we can 49 

construct more powerful and interpretable gene-set tests in GWASs by setting variant 50 

weights to be the coefficients inferred from predictive models in expression quantitative 51 

trait locus (eQTL) mapping studies12. 52 

Progress towards accurate phenotype prediction requires the development of statistical 53 

methods that can model all SNPs jointly. Previous association studies have demonstrated 54 

that most complex traits and common diseases have a polygenic background and are each 55 

influenced by many genetic variants with small effects. For instance, it is estimated that 56 

thousands of causal variants influence human height13. Similarly, many animal or plant 57 

traits are contributed by hundreds of causal variants (e.g. maize-related traits, such as 58 

kernel oil and growing degree days14,15; and cattle-related traits, such as backfat thickness, 59 

milk yield and hot carcass weight16,17). Because most complex traits and common 60 

diseases have a polygenic architecture, a handful of identified associated SNPs often only 61 

capture a small proportion of the phenotypic variation and thus cannot be used to yield 62 

accurate phenotype and risk prediction. Instead, accurate phenotype prediction requires 63 

polygenic models that can make use of all genome-wide SNPs9,18-20. In the past decade, 64 

successful development and application of many polygenic models in the context of 65 

genomic selection has revolutionized many animal breeding programs16,21-23. More 66 
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recently, applications of polygenic models to human GWASs have also yielded fruitful 67 

results11,24-27.  68 

Most existing polygenic models for prediction make an assumption on the effect size 69 

distribution and different methods differ mainly in such modeling assumption. For 70 

example, the commonly used linear mixed model (LMM), also known as the best linear 71 

unbiased predictor (BLUP), assumes that the effect sizes from all variants follow a 72 

normal distribution9,28. The Bayes alphabetic (e.g. BayesA and BayesB) methods assume 73 

that the variant effect sizes follow a t-distribution or its variation10,18,29. The Bayesian 74 

lasso assumes a double exponential/Laplace distribution30,31. NEG generalizes the 75 

Bayesian lasso by assuming a normal exponential gamma distribution32. BVSR and 76 

BayesCπ assume a point-normal distribution29,33. BSLMM assumes a mixture of two 77 

normal distributions34 and is closely related to the early reversible jump Markov Chain 78 

Monte Carlo (rjMCMC) method20. BayesR35 assumes a three-component normal mixture 79 

together with a point mass at zero. Given the large number of modeling choices, one 80 

naturally wonders which method to use for any given trait. Previous studies have 81 

suggested that accurate prediction requires choosing a prior effect size distribution that 82 

can closely match the shape of the true effect size distribution, such that the inferred 83 

posterior can approximate well the polygenic architecture of the given trait24,35,36. 84 

However, the effect size distribution for any given trait or disease is unknown a priori 85 

and varies for different diseases in terms of the number of causal variants, their minor 86 

allele frequencies (MAFs), and their individual effect sizes11. Therefore, to achieve 87 

robust performance, it is important to design prior distributions that are flexible enough 88 

to resemble the true effect distribution in many traits as close as possible34,35.  89 

Up to now, almost all existing polygenic models are parametric in nature and use a 90 

prior effect size distribution that is characterized by a few parameters. From the 91 

information channel perspective37, the number of parameters in a parametric model 92 

determines model complexity and bounds the amount of information in data that can be 93 

captured by the model37-40. Therefore, using only a few parameters to characterize the 94 

effect size distribution can limit the flexibility of the model37,38 and impede its robust 95 

performance across a range of genetic architectures. As an example, the commonly 96 

applied LMM uses a normal distribution with one variance component parameter to 97 
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characterize the effect size distribution. For highly polygenic traits, the assumed normal 98 

distribution can approximate the true effect size distribution well, and as a result, LMM 99 

can achieve good predictive performance34,35. However, for traits with large effect 100 

variants, the assumed normal distribution can no longer capture the true effect size 101 

distribution well and the performance of LMM decays34,35.  102 

To allow for greater flexibility on the a priori effect size distribution and to enable 103 

robust phenotype prediction performance across a range of phenotypes, we develop a 104 

Bayesian non-parametric model, which we refer to as the latent Dirichlet process 105 

regression (DPR). DPR does not use any fixed parametric distribution as the prior choice 106 

for the effect size distribution. Instead, DPR relies on the Dirichlet process to assign a 107 

prior on the effect size distribution itself and is thus capable of inferring an effect size 108 

distribution from the data at hand. Effectively, DPR uses infinitely many parameters a 109 

priori to character the effect size distribution, and with such a flexible modeling 110 

assumption, DPR is capable of adapting to a broad spectrum of genetic architectures and 111 

achieves robust predictive performance across a wide range of complex traits. We 112 

illustrate the benefits of DPR with simulations and real data applications for gene 113 

expression prediction, gene-based test via PrediXcan, genomic selection for four traits in 114 

two species, as well as genetic prediction of eight complex traits in a human cohort.  115 

  116 
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Results 117 

Method overview. An overview of our method is provided in the Methods section with 118 

details provided in the Supplementary Note. Briefly, we use a Dirichlet process to 119 

introduce a non-parametric effect size distribution that can robustly resemble a large 120 

classes of unimodal distributions. Indeed, our prior effect size distribution can be used to 121 

adaptively and accurately approximate a t-distribution, a point-t mixture distribution, a 122 

mixture of step functions, as well as the marginal effect sizes estimated from a real data 123 

set; whereas a normal distribution cannot (Fig. 1). Therefore, our prior distribution on the 124 

effect size can adaptively approximate a wide range of possible effect size distributions 125 

underlying complex traits. Since accurate modeling of the effect size distribution is a key 126 

to achieve accurate prediction performance24,34,36, we expect our non-parametric model to 127 

perform robustly well across a range of polygenic architectures. Our method is 128 

implemented in the DPR software, freely available at http://www.xzlab.org/software.html.  129 

Simulations. We first compare the performance of DPR with several other commonly 130 

used prediction methods using simulations. A total of seven different methods are 131 

included for comparison: (1) BVSR29; (2) BayesR35; (3) LMM28; (4) MultiBLUP41; (5) 132 

rjMCMC20; (6) DPR.VB, the variational Bayesian (VB) version of DPR; and (7) 133 

DPR.MCMC, the Markov chain Monte Carlo (MCMC) version of DPR. Note that both 134 

BayesR and MultiBLUP have been recently demonstrated to outperform a range of 135 

existing prediction methods; thus, we do not include other prediction methods into 136 

comparison here. 137 

To make our simulations as real as possible, we used genotypes from an existing 138 

cattle GWAS dataset17 with 5,024 individuals and 42,551 SNPs and simulated 139 

phenotypes. To cover a range of possible genetic architectures, we consider eight 140 

simulation settings from four different simulation scenarios with the phenotypic variance 141 

explained (PVE) by all SNPs being either 0.2, 0.5, or 0.8 (details in Methods). In each 142 

setting for each PVE value, we performed 20 simulation replicates. In each replicate, we 143 

randomly split the data into a training data with 80% individuals and a test data with the 144 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/149609doi: bioRxiv preprint 

https://doi.org/10.1101/149609
http://creativecommons.org/licenses/by-nc-nd/4.0/


7/43 

remaining 20% individuals. We then fitted different methods on the training data and 145 

evaluated their prediction performance on the test data (i.e. Monte Carlo cross validation). 146 

We evaluated prediction performance using either the squared correlation coefficient (R2) 147 

or mean squared error (MSE). We contrasted the prediction performance of all other 148 

methods with that of DPR.MCMC by taking the difference of R2 or MSE between the 149 

other methods and DPR.MCMC. Therefore, an R2 difference below zero or an MSE 150 

difference above zero suggests worse performance than DPR.MCMC. Fig. 2 shows R2 151 

differences for different methods across 20 replicates in each of the eight simulation 152 

settings for PVE=0.5. Because Fig. 2 shows prediction performance difference, a large 153 

sample variance of a method in the figure only implies that the prediction performance of 154 

the method differs a lot from that of DPR.MCMC, but does not imply that the method 155 

itself has a large variation in predictive performance. Supplementary Table 1 shows the 156 

standard deviation of absolute R2 values across cross variation replicates; various 157 

methods display similar prediction variability. Supplementary Figs 1 and 2 show the R2 158 

differences for PVE=0.2 and PVE=0.8, respectively. The corresponding results for MSE 159 

differences are shown in Supplementary Figs 3-5. The R2 and MSE values of the baseline 160 

method, DPR.MCMC, are shown in the corresponding figure legend.  161 

     Overall, while each method works the best when their individual modeling 162 

assumption is satisfied, DPR.MCMC is robust and works well across all eight settings 163 

from four scenarios. For example, if we rank the methods based on their median 164 

performance across replicates, then when the total PVE is moderate (e.g. PVE=0.5, Fig. 2; 165 

note that for each PVE there are a total of eight simulation settings for the four scenarios), 166 

DPR.MCMC is the best or among the best in seven simulation settings (i.e. scenario I, 167 

c=10, 100 and 1,000 in scenario III, and normal, t and Laplace distributions in scenario 168 

IV; where “among the best” refers to the case when the difference between the given 169 

method and the best method is within ±0.001) and is ranked as the second best in the rest 170 

one simulation setting (i.e. scenario II). Similarly, when the total PVE is high (e.g. 171 

PVE=0.8, Supplementary Fig. 2), DPR.MCMC is the best or among the best in seven 172 

simulation settings, and it is ranked as the second best in scenario IV when the effect size 173 

follows a normal distribution. Even when DPR.MCMC is ranked as the second best 174 

method, the difference between DPR.MCMC and the best method is often small. Among 175 
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the rest of the methods, LMM, MultiBLUP and rjMCMC all work well in polygenic 176 

settings (scenario I; c=1,000 in scenario III; scenario IV) but can perform poorly in 177 

sparse settings (scenario II; c=10 and c=100 in scenario III). The performance of LMM, 178 

MultiBLUP and rjMCMC in polygenic vs sparse settings presumably stems from their 179 

polygenic assumptions on the effect size distribution. In contrast, because of the sparse 180 

assumption on the effect size distribution, both BayesR and BVSR have an advantage in 181 

sparse settings (scenario II; c=10 or 100 in scenario III) but suffers in polygenic settings 182 

(c=1,000 in scenario III; scenario IV). The performance of BVSR is also generally worse 183 

than BayesR in the challenging setting when PVE is either small or moderate, 184 

presumably because of the much simpler prior assumption employed in BVSR for the 185 

non-zero effects. Finally, the VB version of DPR (i.e. DPR.VB) performs considerably 186 

less well compared with the MCMC version of DPR (i.e. DPR.MCMC), especially when 187 

PVE is high (Supplementary Fig. 2). However, DPR.VB still compares favorably with 188 

the other methods when PVE is small or moderate (Supplementary Fig. 1).  189 

Real data applications. To gain further insights, we compare the performance of DPR 190 

with the other methods in several real data sets to (1) predict gene expression levels using 191 

cis-SNPs; (2) conduct subsequent PrediXcan based gene set test; (3) perform genomic 192 

selection in animal studies; and (4) predict complex traits in humans.  193 

Our first application is predicting gene expression levels using cis-SNPs in the 194 

GEUVADIS data42. The GEUVADIS data contains gene expression measurements on 195 

15,810 genes and 465 individuals after quality control (Methods). These individuals have 196 

their genotypes measured in the 1000 Genomes project43. In the data, we first identified 197 

cis-SNPs that are within 100 kb of each gene and obtained an average of 175 cis-SNPs 198 

per gene. Then, for each gene in turn, we applied different methods to predict gene 199 

expression levels using these cis-SNPs. To measure prediction performance, we carried 200 

out 20 Monte Carlo cross validation data splits as in simulations. In each data split, we 201 

fitted methods in a training set with 80% of randomly selected individuals and evaluated 202 

method performance using R2 in the test set with the remaining 20% of individuals. In 203 

addition to the seven methods used in the simulations (i.e. LMM, BVSR, MultiBLUP, 204 
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BayesR, rjMCMC, DPR.VB and DPR.MCMC), we also applied Elastic Net (ENET)44, 205 

which is the default method used in the original PrediXcan paper12. Table 1 lists the 206 

number of genes with a predictive R2 above different thresholds for different methods. 207 

The predictive R2 obtained from DPR.MCMC versus various other methods across all 208 

genes is shown as scatter plots in Supplementary Fig. 6, where each plot also lists the 209 

number of genes for which DPR.MCMC performs better and the number of genes for 210 

which DPR.MCMC performs worse.  211 

The results are largely consistent with these in simulations. Overall, DPR.MCMC 212 

generally achieves better predictive performance than the other methods. For example, 213 

DPR.MCMC is able to achieve a higher predictive R2>0.10 in ~1,300 genes, which is 214 

~100 more than that by the second best method at this threshold (i.e. LMM; Table 1). 215 

Similarly, compared with other methods, not only does DPR.MCMC achieve a higher R2 216 

for most genes; the R2 improvement from DPR.MCMC can be large for many genes 217 

(Supplementary Fig. 6). Among the rest of the methods, the performance of LMM, 218 

DPR.VB and ENET are comparable with each other and are ranked right behind 219 

DPR.MCMC. On the other hand, the two sparse models (i.e. BVSR and BayesR) 220 

perform poorly in this data, especially for some genes whose expression levels are highly 221 

predictive by the other methods (Table 1, Supplementary Fig. 6). 222 

The robust performance of DPR.MCMC in predicting gene expression levels also 223 

translates to a relatively high power in the subsequent PrediXcan gene set test. To 224 

perform PrediXcan gene set test, we consider the seven common diseases from WTCCC4 225 

as in Gamazon et al.12. For each disease and each gene in turn, we used the estimated cis-226 

SNP effect sizes on expression levels from GEUVADIS as weights to construct gene set 227 

tests in WTCCC. Following Gamazon et al.12, we focused on a set of 4,343 genes that 228 

had a predictive R2 above 0.01 from all methods. The results are shown in Table 2, which 229 

lists the number of significant genes identified by different methods for different diseases. 230 

In total, DPR.MCMC identified 38 genes associated with different phenotypes, more 231 

than that identified by any other methods. The performance of DPR.MCMC is followed 232 

by DPR.VB and subsequently LMM and rjMCMC. Supplementary Table 2 lists the 233 

significant genes identified by DPR.MCMC, which are all consistent with previous 234 

studies. We also note that, in general, a higher gene expression predictive performance 235 
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leads to a higher power in the subsequent gene set analysis. In addition, consistent with 236 

their relatively poor gene expression prediction performance, the two sparse models 237 

(BayesR and BVSR) do not perform well in the gene set test as well. 238 

 Finally, we compare the performance of DPR with the other methods in predicting 239 

phenotypes in three GWAS data sets: (1) a cattle study17, where we focus on three 240 

phenotypes: milk fat percentage (MFP), milk yield (MY), as well as somatic cell score 241 

(SCS); (2) a maize study15, where we use growing degree day (GDD) as the phenotype; 242 

(3) the Framingham heart study (FHS) data45, where we focus on five plasma traits that 243 

include low-density lipoprotein (LDL) cholesterol, glucose (GLU), high-density 244 

lipoprotein (HDL) cholesterol, total cholesterol (TC) and triglycerides (TG), and three 245 

anthropometric traits that include height, weight and body mass index (BMI). As in 246 

simulations, for each phenotype, we performed 20 Monte Carlo cross validation data 247 

splits. In each data split, we fitted methods in a training set with 80% of randomly 248 

selected individuals and evaluated method performance using R2 or MSE in a test set 249 

with the remaining 20% of individuals. We again contrasted the performance of the other 250 

methods with that of DPR.MCMC by taking the R2 difference or MSE difference with 251 

respect to DPR.MCMC. The results are shown in Fig. 3 (R2 difference) and 252 

Supplementary Fig. 7 (MSE difference), with R2 and MSE of DPR.MCMC presented in 253 

the corresponding figure legend. Supplementary Table 1 shows the standard deviation of 254 

absolute R2 values across cross variation replicates. Supplementary Fig. 8 also displays 255 

trace plots of the log posterior likelihood from DPR.MCMC for all traits, suggesting 256 

reasonable convergence of our method. 257 

Overall, consistent with simulations, DPR.MCMC shows robust performance across 258 

all traits and is ranked either as the best or the second best method. In the cattle data (Fig. 259 

3A), for MFP and MY, both DPR.MCMC and BayesR perform the best. For SCS, 260 

DPR.MCMC performs the best, followed by BayesR. rjMCMC performs well for MFP 261 

and MY but poorly for SCS; while LMM and MultiBLUP do not perform well for MFP 262 

and MY in the cattle data but their performance improves for SCS. The relative 263 

performance of BayesR vs LMM and MultiBLUP in the cattle data is consistent with the 264 

distinct genetic architectures that underlie the three complex traits17,46: while MFP and 265 

MY are affected by a few large or moderate effect SNPs together with many small effect 266 
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SNPs, SCS is a highly polygenic trait influenced by many SNPs with small effects. 267 

BVSR performs poorly for these three traits in the cattle data. In the maize data (Fig. 3A), 268 

DPR.MCMC performs the best, followed by BayesR, suggesting that GDD is influenced 269 

by a few SNPs with large effects15. In the Framingham heart study data (Fig. 3B and Fig. 270 

3C), DPR.MCMC performs the best or among the best for LDL, GLU, TC, Weight and 271 

BMI. Its performance is comparable to BayesR and rjMCMC for Height, and follows 272 

right behind BayesR for HDL and TG. Besides DPR and BayesR, rjMCMC also 273 

performs well in FHS and is often ranked as the third best method (e.g. for LDL, GLU, 274 

Height and Weight). In contrast to the relatively robust performance of DPR.MCMC, 275 

however, all other methods can perform poorly for certain phenotypes. In Fig. 3, for 276 

example, BayesR is the second worst method for predicting GLU; LMM is the second 277 

worst method for predicting LDL; MultiBLUP is the worst method for predicting Weight 278 

and BMI; DPR.VB performs among the worst for LDL and HDL; rjMCMC performs 279 

poorly for HDL; while BVSR performs the worst for almost all traits except for LDL, 280 

Height and Weight. The poor performance of BVSR presumably stems from its relatively 281 

simple and sparse assumption on the effect sizes.  282 

Because the FHS is a family based study, we use this data to further examine the 283 

influence of individual relatedness on prediction performance. To do so, we divided the 284 

FHS data into two sub data sets (D1 and D2) with equal sample size but different levels 285 

of relatedness (details in Methods): individuals in D1 are more closely related to each 286 

other than those in D2. We then compared method performance by performing cross 287 

validation in each of the two data sets separately. While the difference between methods 288 

becomes smaller due to smaller sample size in the two sub data sets, the relative 289 

performance of most methods for the eight traits are largely unchanged in these two sub 290 

data sets as compared to that in the complete data (Fig. 9 vs Figs 3B and 3C). For 291 

example, DPR.MCMC is ranked as the best method or among the best methods for six 292 

traits in D1 and for four traits in D2. BayesR performs similarly and is ranked as the best 293 

or among the best for four traits in D1 and for five traits in D2. LMM ranks right after 294 

DPR.MCMC and BayesR, while the other methods do not perform well here. In addition, 295 

all methods generally perform better in D1 than in D2 (Supplementary Fig. 10), 296 

suggesting that relatedness improves prediction performance –– a phenomenon that has 297 
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been well recognized by previous studies9,23,47-49. Besides cross validation within each 298 

data set separately, we also performed cross validation between D1 and D2 by predicting 299 

traits in one data with parameters inferred from another. The results are again largely 300 

consistent with the main results. In particular, DPR.MCMC is ranked as the best or 301 

among the best for six traits in D1 to D2 prediction and for eight traits in D2 to D1 302 

prediction. BayesR is ranked as the best or among the best for six traits in D1 to D2 303 

prediction and for eight traits in D2 to D1 prediction. rjMCMC also performs reasonably 304 

well and follows right behind DPR.MCMC and BayesR (Supplementary Fig. 11).  305 

Computational time. Finally, we list the computational time of the seven methods for 306 

the twelve traits in Table 3. Note that some differences in computational time among 307 

methods may reflect implementation issues, including the language environment in 308 

which the methods are implemented, rather than fundamental differences between 309 

algorithms. In addition, we only list in the table the computation time in the fitting stage. 310 

Computation time spent in the prediction stage by plugging in estimated coefficients in 311 

the new data is almost ignorable and is thus not listed. For sampling based methods 312 

(BVSR, rjMCMC, DPR.MCMC and BayesR), we measure the computational time based 313 

on a fixed number of iterations. However, due to different convergence properties of 314 

different algorithms (e.g. BVSR uses a Metropolis-Hastings algorithm, rjMCMC uses a 315 

reversible jump MCMC algorithm, while both DPR.MCMC and BayesR use a Gibbs 316 

sampling algorithm), a fixed number of iterations in different methods may correspond to 317 

different mixing performance. Nevertheless, we can see that DPR.MCMC has a similar 318 

computational cost as the other Gibbs based approach (e.g. BayesR), though in the 319 

human data both these Gibbs based approaches (DPR.MCMC and BayesR) can be 320 

slower than the Metropolis-Hastings approach (BVSR) and the reversible jump MCMC 321 

algorithm (rjMCMC) that effectively update only a small subset of significant SNPs in 322 

each iteration. In contrast, DPR.VB is orders of magnitude faster than its MCMC 323 

counterpart, and is computationally as efficient as the other two non-MCMC based 324 

approaches (LMM and MultiBLUP). 325 

326 
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Discussion 327 

We have presented a novel statistical method, DPR, for genetic prediction of complex 328 

traits. DPR uses an infinitely many parameters a priori to flexibly model the effect size 329 

distribution, and represents the first non-parametric method developed for modeling 330 

polygenic traits in genetic association studies. By flexibly modeling the effect size 331 

distribution, DPR is capable of adapting to the polygenic architecture underlying many 332 

complex traits and enjoys robust performance across a range of phenotypes. With 333 

simulations and applications to four real data sets, we have illustrated the benefits of 334 

DPR.  335 

We have focused on one application of DPR –– genetic prediction of phenotypes. 336 

Like some other polygenic methods34,35,50, DPR can also be applied to many other 337 

polygenic applications. For example, DPR can be used to estimate the proportion of 338 

variance in phenotypes explained by all SNPs, a quantity that is commonly referred to as 339 

SNP heritability28,34. Because DPR assumes a flexible effect size distribution that is 340 

adaptive to the genetic architecture underlying a given trait, it has the potential to provide 341 

accurate estimation of SNP heritability. As another example, DPR can be applied to 342 

association mapping. There, we can view the normal component with the smallest 343 

variance as the polygenic background, and we can estimate the probability of a SNP 344 

being in any normal components other than the smallest one as the posterior inclusion 345 

probability (PIP). PIP computed in this way measures SNP marginal association strength 346 

in the presence of polygenic effects, and may represent a more powerful association 347 

indicator than standard single SNP association test statistics33,50. An important feature of 348 

using PIP in the context of Bayesian models is that PIP quantifies the uncertainty of 349 

association strength33,50, which is a desirable feature that is not easily achieved by 350 

penalized frequentist counterparts51.   351 

Here, we have restricted ourselves to applying DPR to continuous phenotypes. For 352 

case control studies, we could follow previous approaches of treating binary phenotypes 353 

as continuous traits and apply DPR directly34,35,41. However, it would be desirable to 354 

extend DPR to accommodate case control data or other discrete data types in a principled 355 

way, by, for example, extending DPR into the generalized linear model framework. In 356 
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particular, we could use a probit or a logistic link to extend DPR to directly model case 357 

control data. We could use a Poisson or an over-dispersed Poisson distribution to extend 358 

DPR to model count data. Extending DPR to various discrete data types would likely 359 

lead to wider applications of DPR beyond GWASs. For instance, by modeling count data, 360 

DPR could be used to perform differential expression analysis52 or expression QTL 361 

mapping in RNA sequencing studies53,54. Similarly, by modeling proportional data, DPR 362 

could be used to perform differential methylation analysis or methyl-QTL mapping in 363 

bisulfite sequencing studies55. Extending DPR to modeling discrete data types using the 364 

generalized linear model framework is thus an important avenue for future research.   365 

In the present study, while we used unrelated individuals for GEUVADIS gene 366 

expression prediction and PrediXcan tests, we used related individuals for the other two 367 

real data applications. Related individuals not only share similar genetic background but 368 

also are likely influenced by a common set of environmental factors47,56. In addition, 369 

untyped causal SNPs in related individuals can be more easily tagged by neighboring 370 

typed SNPs than that in unrelated individuals, thanks to the relatively high linkage 371 

disequilibrium (LD) in related data. Because both the shared environmental factors and 372 

easy tagging of causal SNPs can facilitate prediction, cross validation using related 373 

individuals often results in better prediction performance than using unrelated 374 

individuals9,23,47-49. However, we caution that the prediction accuracy measured in the 375 

test data obtained with cross-validation in related individuals are likely inflated if our 376 

ultimate goal is to perform prediction in unrelated individuals instead of related ones. In 377 

addition, the predictive model inferred from related individuals may not generalize well 378 

to unrelated individuals who are not necessarily influenced by the same set of 379 

environmental factors and who do not share the same LD pattern near the causal SNPs. 380 

We have attempted to tease apart the influence of relatedness on prediction performance 381 

by splitting the FHS data into two parts with different levels of relatedness. Our results 382 

indeed show that, while the relative performance of various methods remains largely the 383 

same, the absolute performance of all methods do increase with individual relatedness. 384 

Additionally, while our method performs well relative to the other methods, we caution 385 

that DPR’s prediction accuracy is still unlikely of practical use in human clinical setting. 386 

Studies on unrelated individuals or studies using a fully independent validation data are 387 

likely required to establish the practical utility of prediction methods, which often have 388 

unsatisfactory performance there9,47,57. Despite the practical importance of using 389 
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completely independent or cross-population studies for prediction performance validation, 390 

however, we also want to point out its potential caveat: using completely independent 391 

data for cross-validation may fail to correctly characterize the relative performance of 392 

different methods. In particular, a good method that properly captures the signal in the 393 

training data may suffer in the validation data due to different LD patterns between the 394 

two data sets. Similarly, a poor method that fails to capture the signal in the training data 395 

may perform well in the validation data where such signal is no longer relevant. 396 

Therefore, using training and validating data that are both representative of the study 397 

population is important to not only ensure a proper comparison among methods but also 398 

to ensure the clinical relevance and wide applicability of the prediction methods. 399 

Exploring the use of such data is an important direction for future research.  400 

DPR is not without its limitations. Perhaps the biggest limitation is its computational 401 

cost. Like any other MCMC based approaches34,35,58, our Gibbs algorithm for fitting DPR 402 

is computationally slow and can only be applied to moderate-sized GWAS studies. To 403 

make DPR widely applicable, we have explored the use of variational Bayesian 404 

approximation for fitting DPR. Variational Bayesian approximation obtains an 405 

approximate posterior distribution through optimization59 and represents a much faster 406 

alternative to MCMC sampling. Indeed, DPR.VB is orders of magnitude faster than 407 

DPR.MCMC. However, despite its faster computational speed, the VB algorithm is less 408 

accurate than MCMC when SNP heritability is large, sometimes by quite a large margin 409 

(e.g. PVE=0.80 in simulations). The loss of accuracy in VB is not unexpected because 410 

our VB assumes that the posterior distributions of the SNP effect sizes are independent 411 

from each other. Posterior independence is an unrealistic assumption given that SNP 412 

genotypes are correlated through LD. Therefore, it is important to explore alternative VB 413 

algorithms to incorporate the posterior correlation among effect sizes, by, for example, 414 

adapting algorithms developed elsewhere60,61. It would be ideal if we could develop 415 

algorithms that can achieve a high predictive performance as DPR.MCMC but incurs a 416 

small computational cost as DPR.VB. Certainly, besides developing alternative 417 

algorithms to MCMC, there is still room for improvement on our MCMC algorithm. For 418 

example, we could use all individuals to compute some quantities while use only a subset 419 

of individuals to compute other quantities, as in our previous MQS method62, in order to 420 

reduce the computational burden while maintaining the accuracy of the algorithm. In any 421 
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case, developing efficient and accurate algorithms likely represents a key step to adapt 422 

existing polygenic methods to association studies that are orders of magnitude larger.  423 

424 
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Methods 425 

Overview of DPR. We provide a brief overview of DPR here. Detailed methods and 426 

algorithms are provided in the Supplementary Note. To model the relationship between 427 

phenotypes and genotypes, we consider the following multiple regression model 428 

 � � �� � �� � �, �~��0, ������, (1) 

where y is an n-vector of phenotypes measured on n individuals; W is an n by c matrix of 429 

covariates including a column of 1s for the intercept term; α is a c-vector of coefficients; 430 

X is an n by p matrix of genotypes; β is the corresponding p-vector of effect sizes; ε is an 431 

n-vector of residual errors where each element is assumed to be independently and 432 

identically distributed from a normal distribution with variance ���.  433 

Like many previous methods9,19,28,34,41, we assume that the effect size of ith SNP, ��, 434 

follows a normal distribution with variance �� , i.e. ��~��0, ��� . Unlike previous 435 

methods, however, we specify a non-parameter prior on the hyper-parameter ��  to 436 

induce a non-parametric prior on �� . To motivate our prior choice for �� , it helps to 437 

provide a brief review of the previous polygenic prediction methods. Among the many 438 

polygenic prediction methods developed recently, a surprisingly large number of them 439 

assume a priori that the effect sizes follow a particular class of prior distribution – the 440 

scale mixture of normal distributions63. Specifically, these methods assume that each 441 

effect size �� follows a normal distribution ��~��0, ���, with the variance parameter (i.e. 442 

the scale parameter) �� following another distribution �����. The prior distribution on 443 

��, �����, thus differentiates many different predictive methods. For example, LMM 444 

assumes a flat prior ����� that is proportional to a constant9,28. The Bayes alphabetic 445 

methods assume that �� follows an inverse gamma distribution to induce a t-prior on 446 

��10,18,64. The Bayesian lasso assumes that �� follows a Rayleigh distribution to induce a 447 

double exponential distribution (a.k.a. Laplace distribution) on ��30,58. NEG assumes an 448 

exponential gamma distribution on ��  to induce an NEG prior on �� 32. BVSR and 449 

BayesCπ assume a mixture of a point mass at zero with another flat prior to induce a 450 

point-normal distribution on ��29,33. BSLMM assumes a mixture of two point masses to 451 

induce a normal mixture distribution on �� 34. While BayesR assumes a three point 452 
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masses together with another point mass at zero on ��

 to also induce a normal mixture 453 

distribution on ��35.  454 

The scale mixture of normal distributions is flexible because different distributions on 455 

the scale parameter ��

 can be used to induce many smooth unimodal distributions on ��. 456 

However, existing predictive methods explicitly make a parametric prior assumption on 457 

�� , which necessarily relies on a limited number of parameters to characterize the 458 

distribution on �� . Consequently, the induced effect size distribution on ��  from a 459 

parametric prior on ��

 can be restrictive and may sometimes fail to resemble closely the 460 

unknown truth effect size distribution underlying complex traits. Motivated by the 461 

potential drawback of parametric priors on ��, we instead develop a non-parametric prior 462 

distribution on �� to induce a more flexible distribution on ��. Because a non-parametric 463 

distribution is characterized by effectively infinitely many parameters, our induced effect 464 

size distribution on �� has the potential to resemble a wide range of genetic architectures 465 

and achieve robust predictive performance across a variety of traits.  466 

Technically, we assume �� follows a Dirichlet process (DP) prior37-40 467 

 ��~�, �~����, ��, (2) 

where H is the base distribution, and λ is the concentration parameter that describes how 468 

the distribution on ��, G, deviates from the base distribution. Here, we use an inverse 469 

gamma distribution as the base distribution and set the two parameters in the inverse 470 

gamma distribution to small values to keep the prior relatively uninformative. We treat 471 

the concentration parameter λ as an unknown hyper-parameter and intend to infer it from 472 

the data at hand. Because we use the Dirichlet process as a prior for the latent variance 473 

parameter �� we refer to our regression model based on equations (1)-(2) as the latent 474 

Dirichlet Process Regression, or DPR. The induced marginal distribution on ��  (after 475 

integrating out ��) is also non-parametric and can robustly resemble a large classes of 476 

unimodal distributions. Indeed, the distribution on ��  can be used to adaptively and 477 

accurately approximate a t-distribution, a point-t mixture distribution, a mixture of step 478 

functions, as well as the marginal effect sizes estimated from a real data set; whereas a 479 

normal distribution cannot (Fig. 1). Therefore, our prior distribution on the effect size can 480 

adaptively approximate a wide range of possible effect size distributions underlying 481 
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complex traits. Since accurate modeling of the effect size distribution is a key to achieve 482 

accurate prediction performance24,34,36, we expect our non-parametric model to perform 483 

robustly well across a range of polygenic architectures.  484 

It is important to point out that our modeling assumption on the effect sizes �� is also 485 

mathematically equivalent to a Dirichlet process normal mixture, which is a mixture of 486 

normal distributions with infinitely many normal components. Specifically, using the 487 

stick-breaking constructive representation of the Dirichlet process59, we can re-write our 488 

modeling assumption on �� in an equivalent form as 489 

 
��~�����0, ����

��

��	

, 

�� � �� ��1 � �
�
��	


�	

, ��~�� !�1, ��, 

 

(3) 

where λ is the same concentration parameter as in equation (2), and determines the 490 

number of normal components in the model and subsequently the model complexity59. 491 

Each ��� in the above equation follows the base distribution H. From the normal mixture 492 

equivalence aspect, our method effectively generalizes many previous methods18,34,35 that 493 

use a fixed, often small, number of normal components to using infinitely many normal 494 

components a priori. Although the prior number of normal components in our model is 495 

infinite, the posterior number of components for any given data set will be finite, and can 496 

be automatically inferred based on the data at hand. Therefore, our model has the 497 

potential to adjust the model complexity according to the data complexity, and has the 498 

potential to adapt to a wide range of polygenic architectures. 499 

To fit our model, we develop two complementary algorithms: one is based on the 500 

MCMC algorithm, and the other is based on the variational Bayesian (VB) 501 

approximation. The MCMC sampling algorithm, which we refer to as DPR.MCMC, is 502 

accurate but computationally slow. The variational Bayesian algorithm, which we refer 503 

to as DPR.VB, is computationally fast, but, as we will show in the results, is often less 504 

accurate. The two algorithms provide users the choice of speed vs accuracy. The details 505 

of the two algorithms are provided in Supplementary Note.  506 
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Simulations. we used genotypes from an existing cattle GWAS dataset17 with 5,024 507 

individuals and 42,551 SNPs and simulated phenotypes. To cover a range of possible 508 

genetic architectures, we consider eight simulation settings from four different simulation 509 

scenarios to cover a range of possible genetic architectures: 510 

(1) Scenario I satisfies the DPR modeling assumption, where all SNPs are causal and 511 

SNPs in different effect-size groups have different effects. Specifically, we 512 

randomly selected 10 group-one SNPs, 100 group-two SNPs, 1,000 group-three 513 

SNPs, and set the remaining SNPs as group-four SNPs. We simulated SNP effect 514 

sizes all from a standard normal distribution but scaled their effects in each group 515 

separately so that the proportion of genetic variance explained by the four groups 516 

are 0.05, 0.15, 0.20, and 0.60, respectively. We set the total proportion of 517 

phenotypic variance (PVE; i.e. SNP heritability) to be either 0.2, 0.5 or 0.8, 518 

representing low, moderate, and high heritability, respectively. This simulation 519 

scenario consists of one simulation setting for each PVE. 520 

(2) Scenario II satisfies the BayesR modeling assumption, where a small proportion 521 

of SNPs are causal. These causal SNPs come from three effect-size groups. The 522 

simulations were similar to scenario I with the only exception that the group-four 523 

SNPs have zero effects. Here, the proportion of PVE by the three groups are 0.1, 524 

0.2, and 0.7, respectively. Again, we set the total PVE to be either 0.2, 0.5 or 0.8. 525 

This simulation scenario consists of one simulation setting for each PVE. 526 

(3) Scenario III is similar to Scenario I except that SNPs come from two effect-size 527 

groups, thus representing a simpler scenario than I. In particular, we selected 528 

either c=10, 100 or 1,000 SNPs as group-one SNPs and set the remaining SNPs 529 

as group-two SNPs. We simulated their effect sizes from a standard normal 530 

distribution and scaled their effects in each group separately so that the proportion 531 

of PVE by the two groups are 0.2 and 0.8, respectively. Again, we set the total 532 

PVE to be either 0.2, 0.5 or 0.8. This simulation scenario consists of three 533 

simulation settings for each PVE (c=10, 100 or 1,000).  534 

(4) Scenario IV is related to the assumption made in LMM and MultiBLUP. Here, all 535 

SNPs have non-zero effects and their effect sizes come from either a normal 536 

distribution, a t-distribution with four degrees of freedom, or a Laplace 537 
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distribution. We scaled their effect sizes further so that the total PVE equals 0.2, 538 

0.5, or 0.8. This simulation scenario consists of three simulation settings for each 539 

PVE (normal, t, or Laplace). 540 

In each setting, we performed 20 simulation replicates. In each replicate, we randomly 541 

split the data into a training data with 80% individuals and a test data with the remaining 542 

20% individuals. We then fitted different methods on the training data and evaluated 543 

their prediction performance on the test data (i.e. Monte Carlo cross validation). 544 

GEUVADIS data. The GEUVADIS data42 contains gene expression measurements for 545 

465 individuals from five different populations: CEPH (CEU), Finns (FIN), British 546 

(GBR), Toscani (TSI) and Yoruba (YRI). Following previous studies65, we focused only 547 

on protein coding genes and lincRNAs that are annotated from GENCODE66 (release 12). 548 

We removed lowly expressed genes that have zero counts in at least half of the 549 

individuals and obtained a final set of 15,810 genes. Afterwards, following previous 550 

studies67, we performed PEER normalization to remove confounding effects and 551 

unwanted variations. In order to remove potential population stratification, we quantile 552 

normalized the gene expression measurements across individuals in each population to a 553 

standard normal distribution, and then quantile normalized the gene expression 554 

measurements to a standard normal distribution across individuals from all five 555 

populations. In addition to the gene expression data, all individuals in GEUVADIS also 556 

have their genotypes sequenced in the 1000 Genomes Project. Among the sequenced 557 

genotypes, we filtered out SNPs that have a Hardy-Weinberg equilibrium (HWE) p-value 558 

< 10-4, a genotype call rate < 95%, or an MAF < 0.01. We retained a total of 7,072,917 559 

SNPs for analysis. We intersected these SNPs with imputed SNPs from WTCCC data4 560 

(see below; for the purpose of performing gene set tests) and kept a final set of 2,793,818 561 

overlapping SNPs for analysis. Then, for each gene in turn, we obtained its cis-SNPs that 562 

are located within either 100 kb upstream of the transcription start site (TSS) or 100 kb 563 

downstream of the transcription end site (TES), resulting in an average of 175 cis-SNPs 564 

per gene.  565 

WTCCC data. The Wellcome Trust Case Control Consortium4 (WTCCC) 1 data 566 

consists of about 14,000 cases from seven common diseases and 2,938 shared controls. 567 
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The cases include 1,963 individuals with type 1 diabetes (T1D), 1,748 individuals with 568 

Crohn's disease (CD), 1,860 individuals with rheumatoid arthritis (RA), 1,868 569 

individuals with bipolar disorder (BD), 1,924 individuals with type 2 diabetes (T2D), 570 

1,926 individuals with coronary artery disease (CAD), and 1,952 individuals with 571 

hypertension (HT). We obtained quality controlled genotypes from WTCCC and imputed 572 

missing genotypes using BIMBAM68. We obtained a total of 458,868 SNPs shared 573 

across all individuals. We then further imputed SNPs using the 1000 Genomes as the 574 

reference panel with SHAPEIT and IMPUTE269. We filtered out SNPs that have a HWE 575 

p-value < 10-4, a genotype call rate < 95%, or an MAF < 0.01 to obtain a total of 576 

2,793,818 imputed SNPs. For PrediXcan analysis12, as in the GEUVADIS data (see 577 

above), we focused on the same 15,810 genes. As in12, we further restricted our 578 

association analysis on a set of 4,343 genes that have a predictive R2 above 0.01 by all 579 

predictive methods. 580 

Cattle data. The cattle data17 consists of 5,024 samples and 42,551 SNPs after removing 581 

SNPs that have a HWE p-value < 10-4, a genotype call rate < 95%, or an MAF < 0.01. 582 

For the remaining SNPs, we imputed missing genotypes with the estimated mean 583 

genotype of that SNP. We analyzed three traits: milk fat percentage (MFP), milk yield 584 

(MY), and somatic cell score (SCS). All phenotypes were quantile normalized to a 585 

standard normal distribution before analysis.  586 

Maize data. The maize data15 consists of 2,267 inbred accessions and 98,385 SNPs after 587 

removing SNPs that have a HWE p-value < 10-4, a genotype call rate < 95%, or an MAF 588 

< 0.01. For the remaining SNPs, we imputed missing genotypes with the estimated mean 589 

genotype of that SNP. We used the growing degree days (GDD) to silking as the 590 

phenotype in genomic selection. GDD was calculated using climate data from weather 591 

stations located near the farms15, and was quantile normalized to a standard normal 592 

distribution before analysis. 593 

Framingham heart study data. The Framingham heart study (FHS) data contains 594 

genotype data on 6,950 individuals and 394,174 SNPs. We filtered out SNPs that have a 595 

HWE p-value < 10-4, a genotype call rate < 95%, or an MAF < 0.01 to obtain a final set 596 

of 387,741 SNPs. For these SNPs, we imputed missing genotypes with the estimated 597 
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mean genotype of that SNP. We performed analysis on eight traits: five commonly used 598 

plasma traits that include low-density lipoprotein (LDL) cholesterol, glucose (GLU), 599 

high-density lipoprotein (HDL) cholesterol, total cholesterol (TC), and triglycerides (TG); 600 

and three anthropometric traits that include height, weight, and body mass index (BMI). 601 

Each trait was quantile normalized to a standard normal distribution before analysis. 602 

Note that the FHS data is a family-based study where individuals are genetically related. 603 

To tease apart the influence of individual relatedness on prediction performance among 604 

methods, we also divided the samples in FHS into two separate data sets with different 605 

levels of relatedness. Specifically, we first used genotypes to compute the genome-wide 606 

genetic relatedness matrix (GRM). We then ordered individual pairs based on their 607 

genetic relatedness values. From top to bottom of the ordered individual pair list, we 608 

selected individuals from individual pairs with high levels of relatedness into a data set 609 

D1, and continued this process until the sample size of D1 was half of the full data. We 610 

then kept the remaining individuals from individual pairs with low levels of relatedness 611 

into a data set D2. The relatedness threshold for separating individual pairs between the 612 

two data sets was 0.151. Nevertheless, the majority pairs in D1 and D2 have genetic 613 

relatedness values close to zero: 99.6% of pairs in D1 and 99.9% of pairs in D2 have a 614 

genetic relatedness value between +/-0.01. As another way of measuring relatedness, we 615 

also computed the effective number of chromosome segments (Me)
49 in the two data. Me 616 

is a crucial parameter that measures the effective number of independent SNPs and is 617 

also closely related to the effective number of independent individuals: Me is small in a 618 

data with related individuals and is large in a data with unrelated individuals. A small 619 

value of Me often correlates to high prediction accuracy48,49,70. With 20 cross-validation 620 

replicates, we estimated Me in D1 and D2 sub data to be 34541.39 (sd=140.87) and 621 

81786.01 (sd=651.52), respectively. 622 

Other methods. We compared the performance of DPR.MCMC and DPR.VB mainly 623 

with five existing methods: (1) LMM28 as implemented in the GEMMA software 624 

(version 0.95alpha); (2) BVSR29 as implemented in the GEMMA software (version 625 

0.95alpha); (3) MultiBLUP41 as implemented in the LDAK software (version 4.9); (4) 626 

BayesR35 as implemented in the bayesR software; (5) rjMCMC20 as implemented in the 627 

gwas_rjmc1.163 software. We used default settings to fit all these methods. For rjMCMC, 628 
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because it requires us to provide a variance component parameter, we used LMM to 629 

estimate the variance component first in all analyses. In addition, rjMCMC does not 630 

output parameter estimates. Therefore, for the PrediXcan analysis, we first merged the 631 

GEUVADIS and WTCCC files for every gene, labeled WTCCC individuals as having 632 

missing phenotypes, and then ran rjMCMC on these files to obtained predicted gene 633 

expression values using the WTCCC genotype data. The same strategy was also applied 634 

to perform cross-validation prediction between D1 and D2 sub data sets in FHS. For gene 635 

expression prediction and PrediXcan analysis, following the original PrediXcan paper12, 636 

we also used Elastic Net (ENET)44, which is implemented in the R package glmnet 637 

(version 1.9-5). For ENET, following12, we set one penalty parameter (i.e. α) to be 0.5 638 

and selected the other one using 100-fold cross validation in the training data. 639 

Data availability. No data were generated in the present study. The GEUVADIS gene 640 

expression data is publicly available at http://www.geuvadis.org. The genotype data from 641 

the 1000 genomes project is publicly available at http://www.internationalgenome.org. 642 

The WTCCC genotype and phenotype data is publicly available at 643 

https://www.wtccc.org.uk. The genotype and phenotype data from the cattle and maize 644 

studies are available from the authors upon reasonable request and with permission of 645 

Prof. Xiaolei Liu at the HuaZhong Agriculture University (xiaoleiliu@mail.hzau.edu.cn). 646 

The Framingham heart study genotype and phenotype data is available in dbGaP 647 

(https://www.ncbi.nlm.nih.gov/gap) with accession number phs000007. 648 

Software availability. Our method is implemented in the DPR software, freely available 649 

at http://www.xzlab.org/software.html. 650 
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Supplementary Information 854 

Supplementary Figure 1. Comparison of prediction performance of several methods 855 

with DPR.MCMC in simulations when PVE=0.2. Performance is measured by R2 856 

difference with respect to DPR.MCMC, where a negative value (i.e. values below the red 857 

horizontal line) indicates worse performance than DPR.MCMC. The sample R2 858 

differences are obtained from 20 replicates in each scenario. Methods for comparison 859 

include BVSR (cyan), BayesR (chocolate), LMM (purple), MultiBLUP (green), DPR.VB 860 

(red), rjMCMC (black blue) and DPR.MCMC. Simulation scenarios include: (A) 861 

Scenario I, which satisfies the DPR modeling assumption; (B) Scenario II, which 862 

satisfies the BayesR modeling assumption; (C) Scenario III, where the number of SNPs 863 

in the large effect group is 10, 100, or 1,000; and (D) Scenario IV, where the effect sizes 864 

are generated from either a normal distribution, a t-distribution or a Laplace distribution. 865 

For each box plot, the bottom and top of the box are the first and third quartiles, while the 866 

ends of whiskers represent either the lowest datum within 1.5 interquartile range of the 867 

lower quartile or the highest datum within 1.5 interquartile range of the upper quartile. 868 

For DPR.MCMC, the mean predictive R2 in the test set and the standard deviation for the 869 

eight settings are respectively 0.074 (0.020), 0.081 (0.016), 0.076 (0.018), 0.072 (0.019), 870 

0.064 (0.016), 0.083 (0.023), 0.077 (0.016) and 0.077 (0.017). 871 

Supplementary Figure 2. Comparison of prediction performance of several methods 872 

with DPR.MCMC in simulations when PVE=0.8. Performance is measured by R2 873 

difference with respect to DPR.MCMC, where a negative value (i.e. values below the red 874 

horizontal line) indicates worse performance than DPR.MCMC. The sample R2 875 

differences are obtained from 20 replicates in each scenario. Methods for comparison 876 

include BVSR (cyan), BayesR (chocolate), LMM (purple), MultiBLUP (green), DPR.VB 877 

(red), rjMCMC (black blue) and DPR.MCMC. Simulation scenarios include: (A) 878 

Scenario I, which satisfies the DPR modeling assumption; (B) Scenario II, which 879 

satisfies the BayesR modeling assumption; (C) Scenario III, where the number of SNPs 880 

in the large effect group is 10, 100, or 1,000; and (D) Scenario IV, where the effect sizes 881 
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are generated from either a normal distribution, a t-distribution or a Laplace distribution. 882 

For each box plot, the bottom and top of the box are the first and third quartiles, while the 883 

ends of whiskers represent either the lowest datum within 1.5 interquartile range of the 884 

lower quartile or the highest datum within 1.5 interquartile range of the upper quartile. 885 

For DPR.MCMC, the mean predictive R2 in the test set and the standard deviation for the 886 

eight settings are respectively 0.554 (0.028), 0.622 (0.022), 0.569 (0.023), 0.548 (0.027), 887 

0.537 (0.030), 0.543 (0.028), 0.546 (0.027) and 0.539 (0.022). 888 

Supplementary Figure 3. Comparison of prediction performance of several methods 889 

with DPR.MCMC in simulations when PVE=0.2. Performance is measured by MSE 890 

difference with respect to DPR.MCMC, where a positive value (i.e. values above the red 891 

horizontal line) indicates worse performance than DPR.MCMC. The sample MSE 892 

differences are obtained from 20 replicates in each scenario. Methods for comparison 893 

include BVSR (cyan), BayesR (chocolate), LMM (purple), MultiBLUP (green), DPR.VB 894 

(red), rjMCMC (black blue) and DPR.MCMC. Simulation scenarios include: (A) 895 

Scenario I, which satisfies the DPR modeling assumption; (B) Scenario II, which 896 

satisfies the BayesR modeling assumption; (C) Scenario III, where the number of SNPs 897 

in the large effect group is 10, 100, or 1,000; and (D) Scenario IV, where the effect sizes 898 

are generated from either a normal distribution, a t-distribution or a Laplace distribution. 899 

For each box plot, the bottom and top of the box are the first and third quartiles, while the 900 

ends of whiskers represent either the lowest datum within 1.5 interquartile range of the 901 

lower quartile or the highest datum within 1.5 interquartile range of the upper quartile. 902 

For DPR.MCMC, the mean predictive MSE in the test set and the standard deviation for 903 

the eight settings are respectively 0.919 (0.044), 0.910 (0.038), 0.929 (0.036), 0.944 904 

(0.053), 0.923 (0.038), 0.925 (0.033), 0.924 (0.037) and 0.918 (0.037). 905 

Supplementary Figure 4. Comparison of prediction performance of several methods 906 

with DPR.MCMC in simulations when PVE=0.5. Performance is measured by MSE 907 

difference with respect to DPR.MCMC, where a positive value (i.e. values above the red 908 

horizontal line) indicates worse performance than DPR.MCMC. The sample MSE 909 

differences are obtained from 20 replicates in each scenario. Methods for comparison 910 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/149609doi: bioRxiv preprint 

https://doi.org/10.1101/149609
http://creativecommons.org/licenses/by-nc-nd/4.0/


32/43 

include BVSR (cyan), BayesR (chocolate), LMM (purple), MultiBLUP (green), DPR.VB 911 

(red), rjMCMC (black blue) and DPR.MCMC. Simulation scenarios include: (A) 912 

Scenario I, which satisfies the DPR modeling assumption; (B) Scenario II, which 913 

satisfies the BayesR modeling assumption; (C) Scenario III, where the number of SNPs 914 

in the large effect group is 10, 100, or 1,000; and (D) Scenario IV, where the effect sizes 915 

are generated from either a normal distribution, a t-distribution or a Laplace distribution. 916 

For each box plot, the bottom and top of the box are the first and third quartiles, while the 917 

ends of whiskers represent either the lowest datum within 1.5 interquartile range of the 918 

lower quartile or the highest datum within 1.5 interquartile range of the upper quartile. 919 

For DPR.MCMC, the mean predictive MSE in the test set and the standard deviation for 920 

the eight settings are respectively 0.722 (0.043), 0.701 (0.028), 0.707 (0.034), 0.717 921 

(0.037), 0.727 (0.034), 0.734 (0.040), 0.721 (0.032) and 0.720 (0.028). 922 

Supplementary Figure 5. Comparison of prediction performance of several methods 923 

with DPR.MCMC in simulations when PVE=0.8. Performance is measured by MSE 924 

difference with respect to DPR.MCMC, where a positive value (i.e. values above the red 925 

horizontal line) indicates worse performance than DPR.MCMC. The sample MSE 926 

differences are obtained from 20 replicates in each scenario. Methods for comparison 927 

include BVSR (cyan), BayesR (chocolate), LMM (purple), MultiBLUP (green), DPR.VB 928 

(red), rjMCMC (black blue) and DPR.MCMC. Simulation scenarios include: (A) 929 

Scenario I, which satisfies the DPR modeling assumption; (B) Scenario II, which 930 

satisfies the BayesR modeling assumption; (C) Scenario III, where the number of SNPs 931 

in the large effect group is 10, 100, or 1,000; and (D) Scenario IV, where the effect sizes 932 

are generated from either a normal distribution, a t-distribution or a Laplace distribution. 933 

For each box plot, the bottom and top of the box are the first and third quartiles, while the 934 

ends of whiskers represent either the lowest datum within 1.5 interquartile range of the 935 

lower quartile or the highest datum within 1.5 interquartile range of the upper quartile. 936 

For DPR.MCMC, the mean predictive MSE in the test set and the standard deviation for 937 

the eight settings are respectively 0.443 (0.032), 0.379 (0.016), 0.429 (0.024), 0.454 938 

(0.023), 0.464 (0.030), 0.465 (0.027), 0.454 (0.032) and 0.457 (0.022). 939 
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Supplementary Figure 6. Comparison of predictive R2 from DPR.MCMC with the 940 

other six methods for predicting gene expression levels in the GEUVADIS data. 941 

Scatter plots show (A) predictive R2 in the test data obtained by DPR.MCMC vs that 942 

obtained by BVSR for all genes; (B) DPR.MCMC vs ENET; (C) DPR.MCMC vs 943 

BayesR; (D) DPR.MCMC vs LMM; (E) DPR.MCMC vs MultiBLUP; (F) DPR.MCMC 944 

vs DPR.VB; (G) DPR.MCMC vs rjMCMC. Each panel also lists the number of genes 945 

where DPR.MCMC performs better (first number) and the number of genes where 946 

DPR.MCMC performs worse (second number).  947 

Supplementary Figure 7. Comparison of prediction performance of several methods 948 

with DPR.MCMC for twelve traits from three data sets. Performance is measured by 949 

MSE difference with respect to DPR.MCMC, where a positive value (i.e. values above 950 

the red horizontal line) indicates worse performance than DPR.MCMC. Methods for 951 

comparison include BVSR (cyan), BayesR (chocolate), LMM (purple), MultiBLUP 952 

(green), DPR.VB (red), rjMCMC (black blue) and DPR.MCMC. The sample MSE 953 

differences are obtained from 20 replicates of Monte Carlo cross validation for each trait. 954 

For each box plot, the bottom and top of the box are the first and third quartiles, while the 955 

ends of whiskers represent either the lowest datum within 1.5 interquartile range of the 956 

lower quartile or the highest datum within 1.5 interquartile range of the upper quartile. 957 

For DPR.MCMC, the mean predictive MSE in the test set and the standard deviation are 958 

0.246 (0.011) for MFP, 0.371 (0.019) for MY, 0.446 (0.028) for SCS, 0.170 (0.012) for 959 

GDD, 0.928 (0.029) for LDL, 0.954 (0.034) for GLU, 0.833 (0.063) for HDL, 0.970 960 

(0.044) for TC, 0.960 (0.035) for TG, 0.519 (0.050) for height, 0.834 (0.065) for weight 961 

and 0.868 (0.074) for BMI. The SNP heritability estimates are 0.912 (0.007) for MFP, 962 

0.810 (0.012) for MY, 0.801 (0.012) for SCS, 0.880 (0.013) for GDD, 0.397 (0.024) for 963 

LDL, 0.357 (0.036) for GLU, 0.418 (0.024) for HDL, 0.402 (0.036) for TC, 0.334 (0.034) 964 

for TG, 0.905 (0.013) for Height, 0.548 (0.022) for Weight and 0.483 (0.023) for BMI. 965 

Supplementary Figure 8. Trace plots of the log posterior likelihood of DPR.MCMC 966 

in real data applications. For each of the twelve traits in the three GWAS data sets, we 967 

plot the log posterior likelihood versus the first 10,000 iterations (i.e. burn-in period) 968 
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using the first cross-validation data. In each panel, the log posterior likelihood values 969 

were centered to have a median value of zero.  970 

Supplementary Figure 9. Comparison of prediction performance of several methods 971 

with DPR.MCMC for eight traits in each of the two sub data sets of FHS. The two 972 

sub data sets D1 and D2 have the same sample size but different levels of relatedness 973 

(individuals in D1 are more related to each other than those in D2). (A) The R2 difference 974 

of five plasma traits (LDL, GLU, HDL, TC and TG) with respect to DPR.MCMC in the 975 

D1 and D2 sub data of FHS; (B) The R2 difference of three anthropometric traits (Height, 976 

Weight and BMI) with respect to DPR.MCMC in the D1 and D2 sub data of FHS. For 977 

each box plot, the bottom and top of the box are the first and third quartiles, while the 978 

ends of whiskers represent either the lowest datum within 1.5 interquartile range of the 979 

lower quartile or the highest datum within 1.5 interquartile range of the upper quartile. 980 

FHS: Framingham heart study. 981 

Supplementary Figure 10. Prediction performance of various methods are higher in 982 

a data with more related individuals (D1) than in a data with less related 983 

individuals (D2). The two data sets D1 and D2 from FHS have the same sample size but 984 

different levels of relatedness (individuals in D1 are more related to each other than those 985 

in D2). For each trait in the FHS data (x-axis), we first computed the median predictive 986 

R2 across 20 replicates in D1 and D2 separately, and then contrast the difference between 987 

the two averaged predictive R2 values in the two data sets (D1 minus D2; y-axis). 988 

Positive averaged predictive R2 differences suggest that all methods have higher 989 

predictive performance in D1 versus D2. FHS: Framingham heart study. 990 

Supplementary Figure 11. Comparison of prediction performance of several 991 

methods with DPR.MCMC using cross-validation between the two sub data sets of 992 

FHS. The two sub data sets D1 and D2 have the same sample size but different levels of 993 

relatedness (individuals in D1 are more related to each other than those in D2). (A) 994 

Predictive R2 difference of different methods in D1 using parameters inferred in D2. For 995 

DPR.MCMC, the R2 is 0.024 for LDL, 0.012 for GLU, 0.021 for HDL, 0.022 for TC, 996 
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0.016 for TG, 0.131 for Height, 0.061 for Weight and 0.041 for BMI. (B) Predictive R2 997 

difference of different methods in D2 using parameters inferred in D1; For DPR.MCMC, 998 

the R2 is 0.043 for LDL, 0.009 for GLU, 0.033 for HDL, 0.021 for TC, 0.015 for TG, 999 

0.226 for Height, 0.083 for Weight and 0.058 for BMI. FHS: Framingham heart study.  1000 

Supplementary Table 1. Sampling variation of R2 measured by standard deviation 1001 

across Monte Carlo cross validation replicates for various methods in simulations 1002 

and real data analysis.  1003 

Supplementary Table 2. Significant genes identified by DPR.MCMC for different 1004 

diseases in the PrediXcan gene set analysis of WTCCC.  1005 

Supplementary Note. Model and Algorithm Details for DPR 1006 

1007 
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   1008 

  1009 

Figure 1. The induced non-parametric Dirichlet process (nonparametric DP) 1010 

normal mixture prior on the effect sizes can be used to approximate a large number 1011 

of unimodal distributions. We either simulated 2,000 values from (A) a standard t-1012 

distribution with df=4; (B) a point-t mixture distribution with the zero proportion being 1013 

0.2, or equivalently, 0.8×t(df=4)+0.2×δ0, where δ0 denotes a point mass at zero; (C) a 1014 

four-component uniform step mixture distribution 0.50×U(-0.05,0.05)+0.25×U(-1015 

0.3,0.3)+0.15×U(-0.8,0.8)+0.05×U(-2,2), where U denotes a uniform distribution; or 1016 

obtained (D) the estimated marginal effect sizes from a linear mixed model in the cattle 1017 

data with SCS (somatic cell score) as the phenotype. To make the first three data 1018 

comparable with the last data in (D), we centered and scaled the values from the first 1019 

three data for them to have a mean of zero and within the range of (-0.3,0.3). We then fit 1020 

each data with either our non-parametric distribution (red) or a normal distribution (blue), 1021 

and displayed the fitted curves on top of the sample distribution (black). Clearly, the non-1022 

parametric Dirichlet process normal mixture can approximate all these distributions well, 1023 

while a simple normal distribution cannot. 1024 
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 1025 

Figure 2. Comparison of prediction performance of several methods with 1026 

DPR.MCMC in simulations when PVE=0.5. Performance is measured by R2 difference 1027 

with respect to DPR.MCMC, where a negative value (i.e. values below the red horizontal 1028 

line) indicates worse performance than DPR.MCMC. The sample R2 differences are 1029 

obtained from 20 replicates in each scenario. Methods for comparison include BVSR 1030 

(cyan), BayesR (chocolate), LMM (purple), MultiBLUP (green), DPR.VB (red), 1031 

rjMCMC (black blue) and DPR.MCMC. Simulation scenarios include: (A) Scenario I, 1032 

which satisfies the DPR modeling assumption; (B) Scenario II, which satisfies the 1033 

BayesR modeling assumption; (C) Scenario III, where the number of SNPs in the large 1034 

effect group is 10, 100, or 1,000; and (D) Scenario IV, where the effect sizes are 1035 

generated from either a normal distribution, a t-distribution or a Laplace distribution. For 1036 

each box plot, the bottom and top of the box are the first and third quartiles, while the 1037 

ends of whiskers represent either the lowest datum within 1.5 interquartile range of the 1038 

lower quartile or the highest datum within 1.5 interquartile range of the upper quartile. 1039 
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For DPR.MCMC, the mean predictive R2 in the test set and the standard deviation for the 1040 

eight settings are respectively 0.272 (0.031), 0.299 (0.026), 0.295 (0.026), 0.281 (0.030), 1041 

0.277 (0.035), 0.278 (0.030), 0.282 (0.025) and 0.273 (0.022). 1042 

 1043 

 1044 

 1045 

 1046 

 1047 

 1048 
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 1049 
Figure 3. Comparison of prediction performance of several methods with 1050 

DPR.MCMC for twelve traits from three data sets. Performance is measured by R2 1051 

difference with respect to DPR.MCMC, where a negative value (i.e. values below the red 1052 

horizontal line) indicates worse performance than DPR.MCMC. Methods for comparison 1053 

include BVSR (cyan), BayesR (chocolate), LMM (purple), MultiBLUP (green), DPR.VB 1054 

(red), rjMCMC (black blue) and DPR.MCMC. For each box plot, the bottom and top of 1055 

the box are the first and third quartiles, while the ends of whiskers represent either the 1056 

lowest datum within 1.5 interquartile range of the lower quartile or the highest datum 1057 

within 1.5 interquartile range of the upper quartile. The sample R2 differences are 1058 

obtained from 20 replicates of Monte Carlo cross validation for each trait. For 1059 
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DPR.MCMC, the mean predictive R2 in the test set and the standard deviation across 1060 

replicates are 0.751 (0.011) for MFP, 0.624 (0.012) for MY, 0.551 (0.017) for SCS and 1061 

0.828 (0.012) for GDD, 0.081 (0.033) for LDL, 0.047 (0.017) for GLU, 0.153 (0.044) for 1062 

HDL, 0.050 (0.020) for TC, 0.044 (0.015) for TG, 0.478 (0.031) for height, 0.169 (0.038) 1063 

for weight and 0.137 (0.037) for BMI. The SNP heritability estimates are 0.912 (0.007) 1064 

for MFP, 0.810 (0.012) for MY, 0.801 (0.012) for SCS, 0.880 (0.013) for GDD, 0.397 1065 

(0.024) for LDL, 0.357 (0.036) for GLU, 0.418 (0.024) for HDL, 0.402 (0.036) for TC, 1066 

0.334 (0.034) for TG, 0.905 (0.013) for Height, 0.548 (0.022) for Weight and 0.483 1067 

(0.023) for BMI. 1068 
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 1093 

 1094 

 1095 

Table 1. Comparison of seven different methods in predicting gene expression levels 1096 

in the GEUVADIS data.  1097 

Threshold ENET BayesR BVSR LMM MultiBLUP rjMCMC  
DPR 

VB MCMC 
0.10 1061 809 486 1195 1098 1013  1163 1280 
0.20 449 338 142 403 299 321  389 467 
0.30 182 170 48 162 110 123  155 194 
0.40 78 84 24 76 46 47  70 86 
0.50 37 35 10 33 16 19  32 38 
0.60 15 14 4 14 5 9  12 17 
0.70 2 3 1 3 1 2  2 3 

To compare prediction performance, we counted the number of genes whose median R2 1098 

across 20 replicates in the test set is above a given R2 threshold. A larger number thus 1099 

indicates better performance. For each given threshold, we colored the best method with 1100 

red and the second best method with blue.   1101 

 1102 

 1103 

 1104 

 1105 

 1106 

 1107 
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 1118 

 1119 

 1120 

Table 2. Comparison of seven different methods in the PrediXcan gene set test in 1121 

the WTCCC data.  1122 

Disease ENET BayesR BVSR LMM MultiBLUP rjMCMC  
DPR 

VB MCMC 
T1D 21 22 16 23 22 24  26 25 
CD 6 0 1 4 4 5  3 6 
RA 7 1 5 9 8 7  8 7 
BD 0 0 0 0 0 0  0 0 

CAD 0 0 0 0 0 0  0 0 
HT 0 0 0 0 0 0  0 0 
T2D 0 0 0 0 0 0  0 0 
Total 34 23 22 36 34 36  37 38 

The table lists the number of genes passing the genome-wide significance threshold via 1123 

Bonferroni correction (α=1.15×10-5) in each of the seven common diseases. For each 1124 

disease, we colored the best method with red and the second best method with blue. 1125 

 1126 

 1127 

 1128 

 1129 

 1130 
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 1136 
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 1138 

 1139 
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 1142 

 1143 

 1144 

 1145 

 1146 

Table 3. Mean computational time of the seven methods in the model fitting stage 1147 

for twelve traits across three data sets.  1148 

Data Traits BVSR rjMCMC BayesR LMM MultiBLUP  
DPR 

VB MCMC 
 MFP 2.26(0.49) 3.04(0.24) 5.01(0.75) 0.27(0.05) 0.40(0.12)  0.22(0.11) 6.29(3.07) 

Cattle MY 2.51(0.52) 2.95(0.31) 5.95(1.04) 0.27(0.08) 0.46(0.07)  0.21(0.09) 4.01(0.55) 
 SCS 4.56(0.78) 3.15(0.27) 6.17(1.05) 0.24(0.04) 0.27(0.06)  0.20(0.08) 5.23(2.38) 
          

Maize GDD 2.38(0.72) 1.08(0.11) 7.86(1.57) 0.19(0.05) 0.03(0.01)  0.08(0.01) 4.53(1.29) 
          
 LDL 1.02(0.17) 1.78(0.15) 78.56(27.78) 1.76(1.15) 1.71(0.33)  1.24(0.79) 85.76(18.22) 
 GLU 0.25(0.14) 1.86(0.18) 47.87(17.86) 1.06(0.52) 1.63(0.13)  0.43(0.12) 61.16(23.46) 
 HDL 0.49(0.16) 1.83(0.14) 80.45(38.23) 3.39(1.26) 1.74(0.11)  1.28(0.56) 84.38(10.61) 

FHS TC 0.24(0.13) 1.92(0.12) 51.17(16.72) 1.05(0.48) 1.62(0.37)  0.42(0.11) 51.69(11.77) 
 TG 0.25(0.17) 1.98(0.15) 59.41(17.72) 0.99(0.35) 1.91(0.46)  0.45(0.13) 50.78(10.72) 
 Height 0.68(0.16) 1.75(0.16) 71.14(13.80) 2.27(1.12) 4.13(1.18)  1.56(0.18) 71.62(11.89) 
 Weight 0.59(0.13) 1.61(0.15) 72.66(12.15) 2.28(1.11) 1.95(0.34)  1.61(0.10) 79.67(15.04) 
 BMI 0.47(0.10) 1.71(0.13) 76.08(15.28) 2.31(1.13) 2.35(0.27)  1.57(0.17) 75.15(14.91) 

The computational time is in hours. Values in parentheses are standard deviations. Mean 1149 

and standard deviation are calculated based on 20 replicates. For MCMC based methods 1150 

(rjMCMC, BVSR, BayesR and DPR.MCMC), the computational time is based on 50,000 1151 

iterations of Metropolis Hastings steps for BVSR, reversible jump steps for rjMCMC, 1152 

and Gibbs steps for BayesR and DPR.MCMC. 1153 

 1154 
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