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Abstract 

Coordinate-based meta-analysis can provide important insights into mind-

brain relationships. A popular meta-analytic approach is activation likelihood 

estimation (ALE), which identifies brain regions consistently activated across a 

selected set of experiments, such as within a functional domain or mental disorder. 

ALE can also be utilized in meta-analytic co-activation modeling (MACM) to identify 

brain regions consistently co-activated with a seed region. Therefore ALE aims to 

find consensus across experiments, treating heterogeneity across experiments as 

noise. However, heterogeneity within an ALE analysis of a functional domain might 

indicate the presence of functional sub-domains. Similarly, heterogeneity within a 

MACM analysis might indicate the involvement of a seed region in multiple co-

activation patterns that are dependent on task contexts. Here we demonstrate the use 

of the author-topic model to automatically determine if heterogeneities within ALE-

type meta-analyses can be robustly explained by a small number of latent patterns. In 

the first application, the author-topic modeling of experiments involving self-

generated thought (N = 179) revealed two cognitive components fractionating the 

default network. In the second application, the author-topic model revealed that the 

inferior frontal junction (IFJ) participated in three co-activation patterns (N = 323), 

which are differentially expressed depending on cognitive demands of different tasks. 

Overall the results suggest that the author-topic model is a flexible tool for exploring 

heterogeneity in ALE-type meta-analyses that might arise from functional 

subdomains, mental disorder subtypes or task-dependent co-activation patterns. Code 

and data for this study are publicly available at GITHUB_LINK_TO_BE_ADDED. 

 

Keywords: 

theory of mind, autobiographical memory, executive function, inhibition, attentional 
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Note: As requested by a reviewer, a pre-alpha “dump” of the code and data are 

currently available at https://github.com/ThomasYeoLab/CBIG/tree/v0.2.0-

Ngo2017_AuthorTopic/stable_projects/meta-analysis/Ngo2017_AuthorTopic. We are 

working hard on a stable and user-friendly code/data release. 
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Introduction 

Magnetic resonance imaging (MRI) experiments of the human brain are often 

underpowered (Wager et al. 2009; Carp, 2012; Poline et al., 2012; Button et al., 2013; 

David et al. 2013). Because many neuroimaging studies report activation coordinates 

in common coordinate systems (e.g., MNI152), coordinate based meta-analysis 

provides an important framework (Turkeltaub et al. 2002; Chein et al. 2002; Wager et 

al. 2003; Eickhoff et al., 2009; Fox et al. 2014; Poldrack and Yarkoni, 2016) for 

analyzing underpowered studies across different experimental conditions and analysis 

piplines in order to reveal reliable trends (Smith et al., 2009; Shackman et al., 2011; 

Phillip et al., 2012) or null effects (Nickl-Jockschat 2015; Müller et al., 2017).  

Large-scale coordinate-based meta-analyses might involve thousands of 

experiments across diverse experimental designs (Smith et al., 2009; Laird et al., 

2011; Poldrack et al., 2011; Crossley et al., 2014; Yeo et al., 2015; Bertolero et al., 

2015). The goal of these large-scale meta-analyses is to discover broad and general 

principles of brain organization and disorder. By contrast, the vast majority of meta-

analyses involve smaller number of experiments, the goal of which is to generate 

consensus on specific functional domains (e.g., Binder et al. 2009), brain regions 

(e.g., Shackman et al., 2011) or disorders (e.g., Cortese et al., 2012). 

A popular approach for these smaller-scale meta-analyses is activation 

likelihood estimation or ALE (Turkeltaub et al. 2002; Laird et al., 2005; Eickhoff et 

al. 2009, 2012; Turkeltaub et al. 2012). ALE identifies brain regions consistently 

activated across neuroimaging experiments within a functional domain (Rottschy et. 

al., 2012; Spaniol et al., 2009, Decety and Lamm, 2007, Costafreda et al., 2008, 

Beissner et al., 2013) or within a disease (e.g., Glahn et al., 2005; Minzenberg et al., 

2009; Ragland et al., 2009; Fitzgerald et al., 2008; Delaveu et al., 2011; Kuhn and 

Gallinat, 2013; Di Martino et al., 2009; Phillip et al., 2012). ALE can also be utilized 

in meta-analytic connectivity modeling or MACM (Toro et al., 2008; Koski and Paus, 

2010; Robinson et al., 2010; Eickhoff et al., 2010) to identify brain regions that 

consistently co-activate with a particular seed region. MACM has provided insights 

into functionally distinct sub-regions, such as those within lateral prefrontal cortex 

(Reid et al., 2016), insula (Cauda et al., 2012; Clos et al., 2014) and orbitofrontal 

cortex (Zald et al. 2014). 

A key feature of ALE is that it seeks consensus across neuroimaging 

experiments. However, by treating heterogeneities across studies as noise, ALE 
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analysis of a functional domain might miss out on genuine biological heterogeneity 

indicative of functional sub-domains. Similarly, MACM of a seed region might miss 

out on heterogeneity indicative of the seed region involving in multiple co-activation 

patterns depending on task contexts. One way to address this issue is for meta-

analyses to manually subdivide experiments into smaller domains based on specific 

hypotheses. For example, a recent ALE meta-analysis of working memory further 

divided the experiments into verbal versus non-verbal working memory tasks, as well 

as tasks involving object identity versus object locations (Rottschy et al., 2012).  

In this work, we propose the use of the author-topic model to automatically 

make sense of heterogeneity within ALE-type meta-analyses. We have previously 

utilized the author-topic model (Figure 1; Yeo et al. 2015; Bertolero et al., 2015) to 

encode the intuitive notion that a behavioral task recruits multiple cognitive 

components, which are in turn supported by overlapping brain regions (Mesulam 

1990; Poldrack 2006; Barrett and Satpute, 2013). While our previous work focused on 

large-scale meta-analysis across many functional domains (Yeo et al. 2015; Bertolero 

et al., 2015), the current study focuses on heterogeneity within a functional domain or 

co-activation heterogeneity of a seed region. These applications of the author-topic 

Figure 1. Author-topic model for coordinate-based meta-analysis (Yeo et al., 
2015). Behavioral tasks recruit multiple cognitive components, which are in turn 
supported by overlapping brain regions. The model parameters are the probability 
that a task would recruit a cognitive component (Pr(component | task)) and the 
probability that a component would activate a brain voxel (Pr(voxel | component)). 
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model are made possible by the development of a novel inference algorithm for the 

author-topic model (Ngo et al., 2016) that is sufficiently robust for smaller-scale 

meta-analyses.  

We demonstrate our approach with two applications. The first application 

focuses on the functional domain of self-generated thought. Self-generated thought 

often involves an associative and constructive processes that take place within an 

individual, and depends upon an internal representation to reconstruct or imagine a 

situation, understand a stimulus, or generate an answer to a question. The term “self-

generated thought” serves to contrast with thoughts where the primary referent is 

based on immediate perceptual input (Andrews-Hanna et al., 2014). By virtue of 

being largely stimulus independent or task unrelated, self-generated thought has been 

linked with the functions of the default network (Buckner et al., 2008; Andrews-

Hanna et al., 2014). The default network is a collection of brain regions with 

heightened activity during passive task states (Raichle et al., 2001; Buckner et al. 

2008). Previous ALE meta-analyses have implicated the default network in many 

tasks involving self-generated thought, including theory of mind, episodic memory 

and moral cognition (Spreng et al. 2009; Binder et al. 2009; Mar et al., 2011; Sevinc 

and Spreng, 2014). However, some neuroimaging meta-analyses and empirical 

studies have suggested that the default network might be fractionated into sub-regions 

or sub-systems (Laird et al. 2009; Andrews-Hanna et al., 2010; Yeo et al. 2014; 

Andrews-Hanna et al., 2014). A functional fractionation of the default network has 

been proposed, wherein there is a dorsomedial prefrontal subsystem, more specialized 

for social cognition and narrative processing (Andrews-Hanna et al., 2014; Spreng & 

Andrews-Hanna, 2015). A second subsystem involves the medial temporal lobes, 

which play a specific role in mnemonic constructive processes (Andrews-Hanna et al., 

2014; Christoff et al., 2016). However, the specific fractionation details differed 

across studies (Laird et al. 2009; Mayer et al. 2010; Andrews-Hanna et al., 2014; 

Humphreys et al., 2015), so the author-topic model might potentially clarify cognitive 

components subserving self-generated thought. 

In the second application, the author-topic model was utilized to investigate 

the co-activation heterogeneity of the left inferior frontal junction (IFJ). The IFJ 

region was delineated in a previous study using MACM and co-activation based 

parcellation (Muhle-Karbe et al., 2015). In that study, the IFJ seed region was found 

to exhibit a “global” co-activation pattern distinctively different from neighboring 
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regions. However, the global co-activation pattern revealed by MACM might 

potentially comprise multiple co-activation patterns. Indeed, the IFJ has been 

implicated in many cognitive processes (Brass and Cramon, 2002; Brass et al. 2005; 

Derfuss et al. 2004, 2005; Asplund et al. 2010; Baldauf and Desimone, 2014; 

Chikazoe et al. 2009; Levy and Wagner, 2011; Zanto et al. 2010; Sneve et al. 2013, 

Kim et al. 2011; Yeo et al., 2015) and is also a key node of the multiple-demand 

system (Duncan et al., 2010; Fedorenko et al., 2010). In graph theoretic analysis of 

resting-state fMRI, the IFJ has been shown to be a connector hub (Bertolero et al., 

2015) that coordinates information across modules. By adapting the author-topic 

model for co-activation analyses, we seek to determine if the IFJ is involved in 

multiple co-activation patterns that are dependent on task contexts. 
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Methods 

Overview 

We first review the author-topic model for coordinate-based meta-analysis 

(Yeo et al. 2015). The model was then utilized in two different applications. In the 

first application, we applied the author-topic model to discover cognitive components 

subserving self-generated thought. The model captures the premise that tasks 

involving self-generated thoughts recruit one or more cognitive components, 

supported by overlapping brain regions. In the second application, we estimated the 

co-activation patterns of the IFJ. The model is driven by the premise that the IFJ 

expresses one or more co-activation patterns; an experiment activating the IFJ can 

recruit one or more co-activation patterns. 

 

Author-Topic Hierarchical Bayesian Model  

The author-topic model was originally developed to discover topics from a 

corpus of text documents (Rosen-Zvi et al., 2010). The model represents each text 

document as an unordered collection of words written by a group of authors. Each 

author is associated with a probability distribution over topics, and each topic is 

associated with a probability distribution over a dictionary of words. Given a corpus 

of text documents, there are algorithms to estimate the distribution of topics 

associated with each author and the distribution of words associated with each topic. 

A topic is in some sense abstract, but is made concrete by its association with certain 

words and its association with certain authors. For example, if the author-topic model 

was applied to neuroimaging research articles, the algorithm might yield a topic 

associated with the author Stephen Smith and words like “fMRI”, “resting-state” and 

“ICA”. One might then interpret the topic posthoc as a “resting-state fMRI” research 

topic.  

The author-topic model was applied to neuroimaging meta-analysis (Figure 1) 

by treating experimental contrasts in the BrainMap database (Fox and Lancaster, 

2002) as text documents, 83 BrainMap task categories (e.g., n-back) as authors, 

cognitive components as topics, and activation foci as words in the documents (Yeo et 

al. 2015). Thus, the model encodes the premise that different behavioral tasks recruit 

multiple cognitive components, supported by overlapping brain regions.  

Suppose a study utilizes one or more task categories, resulting in an 

experimental contrast yielding a collection of activation foci. Under the author-topic 
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model, each activation focus is assumed to be generated by first randomly selecting a 

task from the set of tasks utilized in the experiment. Given the task, a component is 

randomly chosen based on the probability of a task recruiting a component 

(Pr(component | task)). Given the component, the location of the activation focus is 

then randomly chosen based on the probability that the component would activate a 

voxel (Pr(voxel | component)). The entire collections of Pr(component | task) and 

Pr(voxel | component) are denoted as matrices 𝜃 and 𝛽, respectively. For example, the 

2nd row and 3rd column of 𝜃 corresponds to Pr(3rd component | 2nd task) and the 4th 

row and 28th column of 𝛽 corresponds to Pr(28th voxel | 4th component). Therefore 

each row of 𝜃 and 𝛽 sums to 1. The formal mathematical definition of the model is 

provided in Appendix A1. 

A key property of the author-topic model is that the ordering of words within a 

document is exchangeable. When applied to meta-analysis, the corresponding 

assumption is that the ordering of activation foci is arbitrary. Although the ordering of 

words within a document is obviously important, the ordering of activation foci is not. 

Therefore the author-topic model is arguably more suitable for meta-analysis than 

topic discovery from documents. 

 

Estimating the model parameters 

Given a collection of experiments with their associated activation coordinates 

and task categories, as well as the number of cognitive components 𝐾 , the 

probabilities 𝜃  and 𝛽  can be estimated using various algorithms, such as Gibbs 

sampling (Rosen-Zvi et al. 2010), expectation-maximization (EM) algorithm (Yeo et 

al., 2015) or collapsed variational Bayes (CVB) algorithm (Ngo et al., 2016). Both the 

EM (Yeo et al., 2015) and CVB (Ngo et al., 2016) algorithms were significantly faster 

than the Gibbs sampling algorithm (Rosen-Zvi et al., 2010).  

The EM algorithm iterates between the E-step and M-step till convergence. In 

the E-step, the posterior distribution of each activation focus being generated from a 

latent task and component is estimated using the current estimates of 𝜃 and 𝛽. In the 

M-step, the estimated posterior distribution from the E-step is used to update 𝜃 and 𝛽. 

By contrast, the CVB algorithm avoids this two-step procedure by using the current 

estimate of the posterior distribution to update the posterior distribution. This is 

achieved by marginalizing (collapsing) the model parameters 𝜃  and 𝛽  (hence the 
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name of the algorithm). By avoiding using point estimates of the model parameters 𝜃 

and 𝛽 to update the posterior distribution, the CVB algorithm might result in better 

parameter estimates than EM. While the EM and CVB algorithms worked equally 

well in large-scale datasets (Ngo et al., 2016), the CVB algorithm is more robust to 

the choice of hyperparameters in smaller datasets. Therefore the CVB algorithm was 

used in the present work. 

Although the CVB algorithm for the author-topic model was first introduced 

in a conference article (Ngo et al., 2016), detailed derivations have not been 

published. Detailed derivations of the author-topic CVB algorithm are provided in 

Appendix A2. Explanations of why the CVB algorithm is theoretically better than the 

EM algorithm and standard variational Bayes inference are found in Appendix A3. In 

this work, Bayesian information criterion (BIC) is used to estimate the optimal 

number of cognitive components (Appendix A4).  Further implementation details are 

found in Appendix A5.  

 

Activation Foci of Experiments Involving Self-Generated Thought 

To explore cognitive components subserving self-generated thought, we 

considered 1812 activation foci from 179 experimental contrasts across 167 imaging 

studies, each employing one of seven task categories subjected to prior meta-analysis 

with GingerALE (Fox and Lancaster, 2002; Laird et al., 2009, 2011; Fox et al., 2014; 

http://brainmap.org/ale). Of the 167 studies, 48 studies employed “Autobiographical 

Memory” (N = 19), “Navigation” (N = 13) or “Task Deactivation” (N = 16) tasks. 

The 48 studies were employed in a previous meta-analysis examining the default 

network (Spreng et al., 2009). There were 79 studies involving “Story-based Theory 

of Mind” (N = 18), “Nonstory-based Theory of Mind” (N = 42) and “Narrative 

Comprehension” (N = 19) tasks. The 79 studies were utilized in a previous meta-

analysis examining social cognition and story comprehension (Mar et al., 2011). 

Finally, there were 40 studies involving the “Moral Cognition” task that was again 

utilized in a previous meta-analysis (Sevinc and Spreng, 2014). All foci coordinates 

were in or transformed to the MNI152 coordinate system (Lancaster et al., 2007). 

 

Discovering Cognitive Components of Self-Generated Thought 

The application of the author-topic model to discover cognitive components 

subserving self-generated thought (Figure 2) is conceptually similar to the original 
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application to the BrainMap (Yeo et al., 2015). The key difference is that the current 

application is restricted to seven related tasks in order to discover heterogeneity 

within a single functional domain, while the original application sought to find 

common and distinct cognitive components across domains.  

 

The model parameters are the probability of a task recruiting a component 

(Pr(component | task)) and the probability of a component activating a brain voxel 

(Pr(voxel | component)). The parameters were estimated from the 1812 activation foci 

from the previous section using the CVB algorithm (Appendices A2 and A5). BIC 

was used to estimate the optimal number of cognitive components (Appendix A4).  

 

Interpreting Cognitive Components of Self-Generated Thought 

The matrix Pr(voxel | component), 𝛽, can be interpreted as 𝐾 brain images in 

MNI152 coordinate system (Lancaster et al., 2007), where 𝐾  is the number of 

cognitive components. Volumetric slices highlighting specific subcortical structures 

were displayed using FreeSurfer (Fischl, 2012). The cerebral cortex was visualized by 

transforming the volumetric images from MNI152 space to fs_LR surface space using 

Figure 2. Author-topic model for discovering cognitive components of self-
generated thought. The application of the author-topic model in this scenario is 
conceptually the same as the original application to the Brainmap database (Yeo et 
al., 2015). The key difference is the current focus on a narrow set of tasks within the 
functional domain of self-generated thought. 
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Connetome Workbench (Van Essen et al., 2013) via the FreeSurfer surface space 

(Buckner et al., 2011; Fischl et al., 2012). For visualization purpose, isolated surface 

clusters with less than 20 vertices were removed, Pr(component | task) was 

thresholded at 1/K, and Pr(voxel | component) was thresholded at 1e-5, consistent 

with previous work (Yeo et al., 2015).  

 

Activation Foci of Experiments Activating the Inferior Frontal Junction (IFJ) 

To explore co-activation patterns expressed by the IFJ, we considered 

activation foci from experiments reporting activation within a left IFJ seed region 

(Figure S1). The IFJ seed region was delineated by a previous co-activation-based 

parcellation of the left inferior frontal suclus and the adjacent parts of the pre-central, 

inferior frontal, and middle frontal gyri (Muhle-Karbe et al. 2015). The seed region is 

publicly available on ANIMA (Reid et al. 2016; http://anima.fz-

juelich.de/studies/MuhleKarbe_2015_IFJ). We selected experiments from the 

BrainMap database with at least one activation focus falling within the IFJ seed 

region. We further restricted our analyses to experimental contrasts involving normal 

subjects. Overall, there were 323 experiment contrasts from 323 studies with a total of 

5201 activation foci.  

 

Discovering Co-activation Patterns Involving the IFJ 

To apply the author-topic model to discover co-activation patterns, we 

consider each of the 323 experimental contrasts to employ its own unique task 

category (Figure 3). The premise of the model is that the IFJ expresses one or more 

overlapping co-activation patterns depending on task contexts. A single experiment 

activating the IFJ might recruit one or more co-activation patterns. The model 

parameters are the probability that an experiment would recruit a co-activation pattern 

(Pr(co-activation pattern | experiment)), and the probability that a voxel would be 

involved in a co-activation pattern (Pr(voxel | co-activation pattern)). The parameters 

were estimated from the 5201 activation foci from the previous section using the CVB 

algorithm (Appendices A2 and A5). BIC was used to estimate the optimal number of 

cognitive components (Appendix A4). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 19, 2017. ; https://doi.org/10.1101/149567doi: bioRxiv preprint 

https://doi.org/10.1101/149567
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 12	

Interpreting Co-activation Patterns of the IFJ 

Similar to the previous application on self-generated thought, the matrix 

Pr(voxel | co-activation pattern), 𝛽, was visualized as 𝐾 brain images in both fsLR 

surface space and MNI152 volumetric space. Like before, isolated surface clusters 

with less than 20 vertices were removed for the purpose of visualization.  

Because each of the 323 experiments was treated as employing a unique task 

category, Pr(co-activation pattern | experiment), 𝜃, is a matrix of size K x 323. 𝜃 was 

further mapped onto BrainMap task categories to assist in the interpretation. More 

specifically, since the experiments were extracted from the BrainMap database, so 

each experiment was tagged with one or more BrainMap task categories (Table S1). 

The Pr(co-activation pattern | experiment) was averaged across experiments 

employing the same task category to estimate the probability that a task category 

would recruit a co-activation pattern (Pr(co-activation pattern c | task t)). Further 

details of this procedure are found in Appendix A6.  

  

Figure 3. Author-topic model for discovering co-activation patterns involving the 
inferior frontal junction (IFJ). In contrast to Figure 1, this instantiation of the 
model assumes that each experiment employs a unique task category. The premise 
is that the IFJ expresses one or more overlapping co-activation patterns. A single 
experiment activating the IFJ might recruit one or more co-activation patterns.  
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Results 

Cognitive Components of Self-Generated Thought 

Figure 4a shows the BIC score as a function of the number of estimated 

cognitive components. A higher BIC score indicates a better model. Because the 2-

component estimate achieved the highest BIC score, subsequent results will focus on 

the 2-component estimate. 

The 2-component estimate is shown in Figure 4b. The seven tasks recruited 

the two cognitive components to different degrees. The top tasks recruiting 

component C1 were “Navigation” and “Autobiographical Memory”. In contrast, the 

top tasks recruiting component C2 were “Narrative Comprehension”, “Theory of 

Mind (nonstory-based)”, “Theory of Mind (story-based)”, and “Moral Cognition”. 

“Task deactivation” recruited both components almost equally: 0.47 for component 

C1 and 0.53 for component C2.  

The two cognitive components appeared to activate different portions of the 

default network (Figure 4b). Focusing our attention to the medial cortex, both 

components had high probability of activating the medial parietal cortex. However, 

while component C2’s activation was largely limited to the precuneus, component 

C1’s activation also included the posterior cingulate and retrosplenial cortices in 

addition to the precuneus. Both components also had high probability of activating the 

medial prefrontal cortex (MPFC). However, component C1’s activations were 

restricted to the middle portion of the MPFC, while component C2’s activations were 

restricted to the dorsal and ventral portions of the MPFC. Finally, component C1, but 

not component C2, had high probability of activating the hippocampal complex. 

Switching our attention to the lateral cortex, component C1 had high 

probability of activating the posterior inferior parietal cortex, while component C2 

had high probability of activating the entire stretch of cortex from the temporo-

parietal junction to the temporal pole. Component C2, but not component C1, had 

high probability of activating the inferior frontal gyrus. 
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Figure 4. Cognitive components of self-generated thought. (a) Bayesian 
Information Criterion (BIC) plotted as a function of the number of estimated 
cognitive components. A higher BIC indicates a better model. BIC peaks at 2 
components. (b) 2-component model estimate. The seven tasks recruit two 
cognitive components to different degrees. Each orange line connects 1 task with 1 
component. The thickness and brightness of the lines are proportional to the 
magnitude of Pr(component | task). For each component, Pr(voxel | component) is 
visualized both on surface and in the volume. The top color bar is utilized for the 
surface-based visualization, whereas the bottom color bar is utilized for the 
volumetric slices. The tables on the right show the top tasks most likely to recruit a 
particular component. Task deactivation recruits the two components almost 
equally, and so is not assigned to any component in the tables. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 19, 2017. ; https://doi.org/10.1101/149567doi: bioRxiv preprint 

https://doi.org/10.1101/149567
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 15	

Co-activation Patterns Involving the Inferior Frontal Junction (IFJ) 

Figure 5a shows the BIC score as a function of the number of estimated co-

activation patterns. Because the 3-pattern estimate achieved the highest BIC score, 

subsequent results will focus on the 3-pattern estimate. 

The 3 estimated co-activation patterns are shown in Figure 5b. Not 

surprisingly, all three co-activation patterns involved the IFJ, but were generally 

spatially distinctive. Co-activation pattern C1 is left lateralized and might be recruited 

in tasks involving language processing. Co-activation pattern C2 involves bilateral 

superior parietal and posterior medial frontal cortices, and might be recruited in tasks 

involving attentional control. Co-activation pattern C3 involves bilateral frontal 

cortex, anterior insula and posterior medial frontal cortex, and might be recruited in 

tasks involving inhibition or response conflicts.  

We now discuss in detail spatial differences among the co-activation patterns. 

Co-activation pattern C3 strongly engaged bilateral anterior insula, while co-

activation pattern C1 only engaged left anterior insula. Co-activation pattern C2 did 

not engage the anterior insula. 

In the frontal cortex, co-activation pattern C1 had high probability of 

activating the left inferior frontal gyrus, while co-activation pattern C3 had high 

probability of activating bilateral dorsal lateral prefrontal cortex. Although all three 

co-activation patterns also had high probability of activating the posterior medial 

frontal cortex (PMFC), the activation shifted anteriorly from co-activation patterns C1 

to C2 to C3. In addition, the PMFC activation was left lateralized in C1, but bilateral 

in C2 and C3. 

In the parietal cortex, co-activation pattern C2 included the superior parietal 

lobule and the intraparietal sulcus in both hemispheres. The activation was weaker in 

C3 and mostly concentrated in the intraparietal sulcus, while C1 did not activate the 

parietal cortex.  

Finally, co-activation pattern C1 engaged bilateral superior temporal cortex, 

which might overlap with early auditory regions. Both co-activation patterns C1 and 

C2 also had high probability of activating ventral visual regions, especially in the 

fusiform gyrus.   

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 19, 2017. ; https://doi.org/10.1101/149567doi: bioRxiv preprint 

https://doi.org/10.1101/149567
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 16	

 

The top three tasks recruiting each co-activation pattern is shown in Figure 5b. 

The top tasks with the highest probability of recruiting co-activation C1 were 

“Phonological Discrimination”, “Semantic Monitoring/Discrimination”, and “Covert 

Reading”. The top tasks recruiting co-activation C2 were “Task Switching”, 

“Counting/Calculation”, and “Wisconsin Card Sorting Task”. The top tasks recruiting 

Figure 5. Co-activation patterns involving the inferior frontal junction (IFJ). (a) 
Bayesian Information Criterion (BIC) plotted as a function of the number of 
estimated co-activation patterns. A higher BIC indicates a better model. BIC peaks 
at 3 co-activation patterns. (b) Estimate of 3 co-activation patterns. For each co-
activation pattern, Pr(voxel | co-activation pattern) is visualized both on surface 
and in the volume. The tables on the right show the top tasks most likely to recruit 
a particular component based on the posthoc estimate of Pr(co-activation pattern | 
task). “(C)” and “(O)” indicate “covert” and “overt” respectively. “Mon/Disc” is 
short for “Monitoring/Discrimination”. “Count/Calculate” is short for 
“Counting/Calculation”. “WCST” is short for “Wisconsin Card Sorting Test”. 
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co-activation C3 were “Go/ No-Go”, “Stroop – Color Word”, and “Reward”. For 

completeness, the top five tasks recruiting each co-activation pattern are shown in 

Table S2. 

To help interpret the results, Table S3 lists the top three experiments with the 

highest Pr(co-activation pattern | experiment) for each of the top three tasks associated 

with each co-activation pattern. For example, Table S3-A lists the top three 

experiments employing “Phonological Discrimination” with the highest Pr(co-

activation pattern C1 | experiment), Table S3-B lists the top three experiments 

employing “Semantic Monitoring/Discrimination” with the highest Pr(co-activation 

pattern C2 | experiment), and Table S3-C lists the top three experiments employing 

“Covert Reading” with the highest Pr(co-activation pattern C3 | experiment). 

 

Although previous analyses using co-activation based parcellation and 

MACM (Muhle-Karbe et al., 2015) suggested the IFJ seed region to be a single 

functional unit, one might be concerned that the co-activation patterns (Figure 5b) 

might simply be further fractionating the IFJ into sub-regions. Figure S2 illustrates the 

activation foci of the top three experiments with the highest Pr(co-activation pattern | 

experiment) for each of the top three tasks associated with each co-activation pattern 

falling inside the IFJ. Table 1 shows the mean and standard deviation of the 

coordinates of these activation foci for each co-activation pattern. The mean locations 

of the IFJ activations across co-activation patterns did not differ by more than 1.5mm 

along any dimension, suggesting that the co-activation patterns were probably not 

simply sub-dividing the IFJ.  

Each row of the table shows the mean and standard deviation of the coordinates of 
the activation foci within the IFJ reported by the top 3 experiments that have the 
highest probabilities of recruiting a co-activation pattern (Pr(co-activation pattern | 
experiment)) and employing at least one of the top 3 tasks with the highest 
probabilities of recruiting the co-activation pattern (Pr(co-activation pattern | 
task)). See Figure S2 for volumetric slices illustrating the locations of the 
activation foci within the IFJ. Across the 3 co-activation patterns, the mean 
coordinates do not differ by more than 1.5mm in any dimension, suggesting that 
the co-activation patterns were not fractionating the IFJ. 
 

Table 1: Spatial locations of co-activation patterns within the IFJ 
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Discussion 

The author-topic model can encode the intuitive notion that behavioral tasks 

recruited multiple cognitive components, supported by multiple brain regions 

(Mesulam 1990; Poldrack 2006; Barrett & Satpute, 2013). We have previously 

utilized the author-topic model for large-scale meta-analysis across functional 

domains (Yeo et al., 2015; Bertolero et al., 2015). By exploiting a recently developed 

CVB algorithm for the author-topic model (Ngo et al., 2016), we show that the model 

can also be utilized for small-scale meta-analyses focusing on a given functional 

domain or brain seed region.  

A dominant approach for small-scale meta-analyses is ALE, which seeks to 

find consistent activations across neuroimaging experiments within a functional 

domain or mental disorder or seed region (also known as MACM). ALE treats 

heterogeneity across experiments as noise. By contrast, the author-topic model 

evaluates whether the heterogeneity might be indicative of robust latent patterns 

within the data. We applied the author-topic model to two applications: one on 

fractionating a functional sub-domain and one on discovering multiple task-dependent 

co-activation patterns.  

In the first application, the author-topic model encoded the notion that tasks 

involving self-generated thought might recruit one or more spatially overlapping. 

cognitive components. The model revealed two cognitive components that appeared 

to delineate two overlapping default sub-networks, consistent with the hypothesized 

functional organization of the default network (Andres-Hanna et al., 2014). In the 

second application, the author-topic model encoded the notion that experiments 

activating the IFJ might recruit one or more co-activation patterns dependent on task 

contexts. The model revealed that the IFJ participated in three co-activation patterns, 

suggesting that IFJ flexibly co-activate with different brain regions depending on the 

cognitive demands of different tasks. Overall, our work suggests that the author-topic 

model is a versatile tool suitable for both small-scale and large-scale meta-analyses.  

 

Cognitive components of self-generated thought 

 Self-generated thought is a heterogeneous set of cognitive processes that 

includes inferring other people’s mental states, dealing with challenging moral 

scenarios, understanding narratives, retrieving autobiographical memories, 

internalizing semantic information, and mind-wandering. These processes are 
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characterized by an absence of external stimuli, self-related, and often involve 

simulation or inferential reasoning (Buckner et al., 2008; Spreng et al. 2009; 

Smallwood et al., 2011; Baird et al., 2011; Prebble at al. 2013; Smallwood, 2013). 

Studies of tasks involving self-generated thought have consistently found the 

activation of the default network, suggesting its functional importance (Buckner et al. 

2008; Spreng et al. 2009; Andrews-Hanna et al., 2010; Andrews-Hanna, 2012; 

Gorgolewski, 2014; Callard and Margulies, 2014). Additionally, the default network 

has been fractionated into sub-networks supporting different aspects of these stimulus 

independent cognitive processes (Buckner et al., 2008; Uddin et al. 2009; Sestieri et 

al., 2011; Andrews-Hanna et al., 2010; Kim, 2012; Seghier and Price, 2012; Salomon 

et al., 2013; Bzdok et al., 2013).  

 The author-topic model revealed two cognitive components of self-generated 

thought that appeared to fractionate the default network (Figure 4). The default 

network has been defined as the set of brain regions that are more active during 

passive task conditions relative to active task conditions, i.e., task deactivation 

(Shulman et al., 1997; Buckner et al., 2008). Our results show that “Task 

Deactivation” recruited both components with almost equal probability, suggesting 

that rest is a task that reliably engages both sub-components of the default network. 

While there have been multiple studies fractionating the default network (Andrews-

Hanna et al., 2010; Mayer et al. 2010; Yeo et al. 2011; Kim, 2012; Humphreys et al., 

2015), the specific patterns of fractionation have differed across studies. The spatial 

topography of components C1 and C2 in this paper corresponded well to the 

previously proposed “medial temporal subsystem” and “dorsal medial subsystem” 

respectively (Figure 3A of Andrews-Hanna et al. 2014; Andrews-Hanna et al., 2010). 

The first cognitive component C1 was strongly recruited by navigation and 

autobiographical memory tasks, suggesting its involvement in constructive mental 

simulation based upon mnemonic content (Andrews-Hanna et al., 2014). Constructive 

mental simulation is the process of combining information from the past in order to 

create a novel mental representation, such as imagining the future (Buckner and 

Carroll, 2007; Hassabis and Maguire, 2007; Schacter et al., 2007). “Navigation” tasks 

require constructive mental simulation to create a mental visualization (“scene 

construction”) for planning new routes and finding ways in unfamiliar contexts 

(Burgess et al., 2002; Byrne et al. 2007). On the other hand, “Autobiographical 

Memory” tasks require constructive mental simulation to project past experience 
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(“constructive episodic simulation”; Atance and O’Neil, 2001; Schacter et al. 2007) or 

previously acquired knowledge (“semantic memory”; Irish et al., 2012; Brown et al. 

2014) across spatiotemporal scale to enact novel perspectives. Overall, cognitive 

component C1 seems to support the projection of self, events, experiences, images 

and knowledge to a new temporal or spatial context based upon an associative 

constructive process, likely mediated by the hippocampus and connected brain 

structures (Moscovitch et al. 2016, Christoff et al., 2016). 

The second cognitive component C2 was strongly recruited by narrative 

comprehension and theory of mind, suggesting its involvement in mentalizing, 

inferential, and conceptual processing (Andrews-Hanna et al., 2014). Mentalizing is 

the process of monitoring one’s own mental states or predicting others’ mental states 

(Frith and Frith 2003), while conceptual processing involves internalizing and 

retrieving semantic or social knowledge (Binder and Desai, 2011; Overwalle, 2009). 

“Narrative Comprehension” engages conceptual processing to understand the 

contextual settings of the story, and requires mentalizing to follow and infer the 

characters’ thoughts and emotions (Gernsbacher et al., 1998; Mason et al. 2008). 

“Theory of Mind” tasks require the recall of learned knowledge, social norms and 

attitudes to form a meta-representation of the perspectives of other people (Leslie, 

1987; Frith and Frith, 2005; Binder and Desai, 2011). The grouping of Narrative 

Comprehension and Theory of Mind tasks echoes the link between the ability to 

comprehend narratives and the ability to understanding others’ thoughts in 

developmental studies of children (Guajardo and Watson, 2001; Slaughter et al. 2007; 

Mason et al. 2008). 

The two cognitive components had high probability of activating common and 

distinct brain regions. Both components engaged the posterior cingulate cortex and 

precuneus, which are considered part of the “core” sub-network that subserves 

personally relevant information necessary for both constructive mental simulation and 

mentalizing (Andrews-Hanna et al. 2014). The distinct brain regions supporting each 

cognitive component also corroborated the distinct functional role of each component. 

For instance, component C1, but not C2, had high probability of activating the medial 

temporal lobe and hippocampus. This is consistent with neuropsychological literaure 

(Hassabis et al., 2007; Rosenbaum et al., 2007; Race et al., 2011; Rosenbaum et al., 

2009) showing that patients with impairment of the medial temporal lobe and 

hippocampus retain theory of mind and narrative construction capabilities, while 
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suffering deficits in episodic memories and imagining the future (Hassabis et al., 

2007; Rosenbaum et al., 2007; Race et al., 2011; Rosenbaum et al., 2009). 

 

Co-activation patterns of the IFJ 

The inferior frontal junction (IFJ) is located in the prefrontal cortex at the 

intersection between the inferior frontal sulcus and the inferior precentral sulcus 

(Brass et al., 2005; Derfuss et al., 2005). The IFJ has been suggested to be involved in 

a wide range of cognitive functions, including task switching (Brass and Cramon, 

2002; Derfuss et al., 2005), attentional control (Asplund et al. 2010; Baldauf and 

Desimone, 2014), detection of conflicting responses (Chikazoe et al. 2009; Levy and 

Wagner, 2011), short-term memory (Zanto et al. 2010; Sneve et al. 2013), 

construction of attentional episodes (Duncan, 2013) and so on. Using the author-topic 

model, we found that the IFJ participated in three task-dependent co-activation 

patterns.  

Co-activation pattern C1 might be involved in some aspects of language 

processing, such as phonological processing for lexical understanding. Phonological 

processing is an important linguistic function, concerning the use of speech sounds in 

handling written or oral languages (Wagner and Torgesen 1987; Poldrack et al. 1999; 

Friederici 2002). The top tasks associated with C1 were “Phonological 

Discrimination”, “Semantic Monitoring/ Discrimination” and “Covert Reading” 

(Figure 5b). Inspecting the top three experiments recruiting these three tasks (Table 

S3) offered more insights into the functional characteristics of co-activation pattern 

C1. The top “Phonological Discrimination” experiments with the highest probability 

of recruiting co-activation pattern C1 examined phonological assembly/disassembly 

(Tyler et al., 2005) and phonological representation (Xu et al. 2001). Among 

“Semantic Monitor/Discrimination” experiments, C1 was associated with an 

experiment requiring lexical perception and not just perception of elementary sounds 

(Poeppei et al., 2004), as well as experiments demanding retrieval of semantic 

meaning (Wagner et al. 2001). The top “Covert Reading” experiments most strongly 

associated with C1 identified a common brain network activated by both reading and 

listening (Jobard et al., 2007), as well as language comprehension across different 

media (Small et al., 2009), suggesting the involvement of C1 in generic language 

comprehension. The language and phonological processing interpretation is supported 

by C1’s strong left lateralization with high probability of activating classical auditory 
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and language brain regions, including the left (but not right) inferior frontal gyrus and 

bilateral superior temporal cortex. 

Co-activation pattern C2 might be engaged in attentional control, especially 

aspects of task maintenance and shifting of attentional set. Attentional set-shifting is 

the ability to switch between mental states associated with different reactionary 

tendencies (Omori et al. 1999, Konishi et al. 1998). The top three tasks most highly 

associated with C2 were “Task Switching”, “Counting/Calculation” and “Wisconsin 

Card Sorting Test” (Figure 5b). Inspecting the top three experiments under the top 

task paradigms provided further insights into the functional characteristics of co-

activation pattern C2 (Table S3). The top “Task Switching” experiments most 

strongly associated with C2 involved the switching of mental states to learn new 

stimulus-response or stimulus-outcome associations (Xue et al. 2008; Sylvester et al. 

2003; Omori et al. 1999). Furthermore, the top “Counting/ Calculation” experiments 

most strongly recruiting co-activation pattern C2 involved switching of resolution 

strategies in executive function. For example, one experimental contrast seeks to 

isolate demanding mental calculation but not retrieval of numerical facts (Zago et al. 

2001; Pesenti 2005), suggesting C2’s involvement in the selection and application of 

strategies to solve arithmetic problems. C2 was also strongly expressed by 

“Wisconsin Card Sorting Task” (WCST) experiments, which required attentional set-

shifting to change behavioral patterns in reaction to changes of perceptual dimension 

(color, shape, or number) upon which the target and reference stimuli were matched 

(Berman 1995; Konishi 2002; Konishi 2003). Overall, the attentional control 

interpretation of co-activation pattern C2 is supported by C2’s high probability of 

activating classical attentional control regions, such as the superior parietal lobule and 

the intra-parietal sulcus, although there is a clear lack of DLPFC activation. 

Co-activation pattern C3 might be engaged in inhibition or response conflict 

resolution. Conflict-response resolution is a central aspect of cognitive control, which 

involves monitoring and mediating incongruous response tendencies (Pardo et al. 

1990; Braver et al. 2001; Barch et al. 2001). Co-activation pattern C3 is most strongly 

recruited by experiments utilizing “Go/No-Go”, “Stroop – Color Word” and 

“Reward” tasks (Figure 5b). Closer examination of the top three experiments under 

each task paradigm provided further insights into the functional characteristics of C3 

(Table S3). The top experiments utilizing “Go/No-Go” required the monitoring, 

preparing and reconciling of conflicting tendencies to either giving a “go” or “stop” 
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(no-go) response (Chikazoe et al. 2009, Simoes-Franklin et al. 2010; Zandbelt et al. 

2011). The top “Stroop” experiments most strongly associated with C3 required 

control over the tendencies to either read the stimulus word or to name its color 

(Pompei et al. 2011; Weiss et al. 2003). Finally, it might be surprising at first glance 

that the “Reward” task was grouped together with “Go/No-Go” and “Stroop” tasks. 

However, the top experiments utilizing the “Reward” task all required subjects to 

make competing decisions (Table S3). For examples, these experiments involved 

making decisions of selling versus buying an item (Knutson et al. 2008) or choosing 

between immediate but smaller rewards versus later but larger ones (Peters et al. 

2010). Overall, the inhibition or response conflict interpretation of co-activation 

pattern C3 is supported by C3’s high probability of activating classical executive 

function regions, including the bilateral dorsal lateral prefrontal cortex.   

The intriguing location of the IFJ and its functional heterogeneity suggests the 

role of IFJ as an integrative hub for different cognitive functions. For example, the IFJ 

has been suggested to consolidate information streams for cognitive control from its 

bordering brain regions (Brass et al., 2005). The involvement of the IFJ in three task-

dependent co-activation patterns supported the view that the IFJ orchestrates different 

cognitive mechanisms to allow their operations in harmony. 

 

 
Conclusion 

Heterogeneities across neuroimaging experiments are often treated as noise in 

coordinate-based meta-analyses. Here we demonstrate that the author-topic model can 

be utilized to determine if the heterogeneities can be explained by a small number of 

latent patterns. In the first application, the author-topic model revealed two 

overlapping cognitive components subserving self-generated thought. In the second 

application, the author-topic revealed the participation of the IFJ in three task-

dependent co-activation patterns. These applications exhibited the broad utility of the 

author-topic model, ranging from discovering functional subdomains or task-

dependent co-activation patterns. Code from this study is publicly available at 

GITHUB_LINK_TO_BE_ADDED. 
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Appendix 

A1. Mathematical Model  

 Figure 6 shows the formal graphical representation of the author-topic model 

for coordinate-based meta-analysis. The model assumes that there are 𝐸 experiments. 

The 𝑒-th experiment is associated with a set of tasks 𝝉' and an unordered set 𝒗' of 𝐹' 

activated voxels. The location of the 𝑓 -th activated voxel is denoted as 𝑣', , 

corresponding to one of 𝑉 = 284100  possible locations in MNI152 2mm space 

(Lancaster et al., 2007). The collection of activated voxels across all 𝐸 experiments is 

denoted as 𝒗 = 𝒗' . The collection of tasks across all 𝐸 experiments is denoted as 

𝝉 = 𝝉' . Thus, 𝒗, 𝝉  are the input data for the meta-analysis. 

Figure 6. Formal graphical representation of the author-topic model for coordinate-
based meta-analysis (Yeo et al. 2015). The circles represent random variables, while 
the squares represent non-random parameters. The edges represent statistical 
dependencies. There are 𝐸  experiments. The 𝑒 -th experiment utilizes a set of 
behavioral tasks 𝝉'  and reports 𝐹'  number of activated voxels. The 𝑓-th activated 
voxel has an observed location 𝑣 , and associated with a latent (unobserved) 
component 𝐶 and a latent (unobserved) task 𝑇 ∈ 𝝉' . The variables at the corners of 
the rectangles (plates) indicate the number of times the variables within the 
rectangles were replicated. Therefore 𝝉'  was replicated 𝐸  times, once for each 
experiment. For the 𝑒-th experiment, the variables	𝑣 , 𝐶  and 𝑇  were replicated 𝐹' 
times, once for each activated voxel. 𝜃 denote Pr(component | task) and 𝛽 denote 
Pr(voxel | component). Thus 𝜃 and 𝛽 are matrices, where each row is a categorical 
distribution summing to one. 𝛼  and 𝜂  are hyperparameters parameterizing the 
Dirichlet priors on 𝜃 and 𝛽 respectively.  
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We assume that there are 𝐾 cognitive components and 𝑀 unique tasks in the 

dataset.  For example, 𝑀 = 83 in Yeo et al. (2015). Each task has a certain (unknown) 

probability of recruiting a component Pr(component | task). The collection of all 

probabilities Pr(component | task) is denoted by a 𝑀×𝐾 matrix 𝜃. The 𝑡-th row and 

𝑘-th column of θ corresponds to the probability of the 𝑡-th task recruiting the 𝑘-th 

component. Each component has a certain (unknown) probability of activating a 

voxel pr(voxel | component). The collection of all probabilities Pr(voxel | component) 

is denoted by a 𝐾×𝑉 matrix 𝛽. The 𝑘-th row and 𝑣-th column of 𝛽 corresponds to the 

probability of the 𝑘 -th component activating the 𝑣 -th MNI152 voxel. Symmetric 

Dirichlet priors with hyperparameter 𝛼 are assumed on θ, and hyperparameter 𝜂 on β. 

We assume that the activated voxels of an experiment are independent and 

identically distributed (conditioned on knowing 𝜃  and 𝛽 ). To generate the 𝑓 -th 

activated voxel 𝑣', in the 𝑒-th experiment, a task 𝑇', is sampled uniformly from the 

set of tasks 𝝉' utilized by the experiment. Given task 𝑇',, a component 𝐶', is sampled 

based on the probability that the task would recruit a component (corresponding to the 

𝑇', -th row of the 𝜃  matrix).  Given component 𝐶', , the activation location 𝑣',  is 

sampled based on the probability that the component would activate a voxel 

(corresponding to the 𝐶',-th row of the 𝛽 matrix). 𝑇',  and 𝐶',  are known as latent 

variables because they are not directly observed in the input data. We denote 𝑻 =

𝑇', , 𝑪 = 𝐶',  as the collection of latent tasks and components across all 

experiments and activated voxels. 

Given the number of cognitive components 𝐾, the fixed hyperparameters 𝛼 

and 𝜂 , and the activated voxels and behavioral task categories 𝒗, 𝝉  of all 

experiments, the parameters Pr(component | task) 𝜃, and Pr(voxel | component) 𝛽 can 

be estimated using different algorithms. Gibbs sampling was proposed in the original 

author-topic paper (Rosen-Zvi et al. 2010). We also proposed a faster expectation 

maximization (EM) algorithm that was highly efficient on large amount of data (Yeo 

et al. 2015). In the present work, we used collapsed variational Bayes (CVB) 

inference (Ngo et al. 2016), which is less sensitive to choice of hyperparameters 

compared to the EM algorithm.  

 
A2. Collapsed Variational Bayes (CVB) Inference 
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The CVB algorithm for the latent dirichlet allocation model (Blei et al., 2006) 

was introduced by Teh et al. (2006). We subsequently extended the CVB algorithm to 

the author-topic model (Ngo et al. 2016). Here we provide the derivation of the 

algorithm in detail.  

We start by following the standard variational Bayesian inference procedure 

(Beal, 2003) of constructing the lower bound of the log data likelihood: 

 

 log 𝑝 𝒗	 	𝛼, 𝜂, 𝝉) 

= log 𝑝 𝒗, 𝑪, 𝑻	 	𝛼, 𝜂, 𝝉)𝑪,𝑻  	

= log 𝑞 𝑪, 𝑻 G 𝒗,𝑪,𝑻	 	H,I,𝝉)
J 𝑪,𝑻𝑪,𝑻  	

= log 𝐸J 𝑪,𝑻
G 𝒗,𝑪,𝑻	 	H,I,𝝉)

J 𝑪,𝑻
  

≥ 𝐸J 𝑪,𝑻 log 𝑝 𝒗, 𝑪, 𝑻	 	𝛼, 𝜂, 𝝉) − 𝐸J 𝑪,𝑻 log 𝑞 𝑪, 𝑻  

 

 

 

 

 

(1) 

 

where 𝑞(𝑪, 𝑻) can be any probability distribution and the inequality (Eq. (1)) utilizes 

the Jensen inequality (Beal, 2003). We can indirectly maximize the data likelihood 

𝑝 𝒗	 	𝛼, 𝜂, 𝝉) by finding the variational distribution 𝑞(𝑪, 𝑻) that maximizes the lower 

bound (Eq. (1)). The equality in Eq. (1) occurs when 𝑞 𝑪, 𝑻 = 𝑝 	𝑪, 𝑻	 	𝒗, 𝛼, 𝜂, 𝝉), 

i.e., when the variational distribution is equal to the true posterior distribution. 

However, computing the true posterior distribution of the latent variables is 

intractable because of dependencies among the variables constituting 𝑪  and 𝑻 . 

Instead, the posterior of the latent variables (𝑪, 𝑻) is approximated to be factorizable 

(Teh et al., 2006): 

 

𝑞 𝑪, 𝑻 = 𝑞 𝐶',, 𝑇', ,
NO

,PQ

R

'PQ

 (2) 

 

where 𝑞 𝑪, 𝑻  is a categorical distribution with parameters 𝜙: 

 

𝑞 𝐶', = 𝑐, 𝑇', = 𝑡 = 	𝜙',UV				. (3) 

 

By plugging Eq. (3) into Eq. (1), we get  
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log 𝑝 𝒗	 	𝛼, 𝜂, 𝝉) 

≥ 𝐸J 𝑪,𝑻 log 𝑝 𝒗, 𝑪, 𝑻	 	𝛼, 𝜂, 𝝉) − 𝐸J 𝑪,𝑻 log 𝑞 𝑪, 𝑻  

=	 𝜙',UV 𝐸J(𝑪XOY,	𝑻XOY) log 𝑝 𝒗, 𝑪Z',, 𝑻Z',, 𝐶', = 𝑐, 𝑇', =V∈𝝉O
[
UPQ

𝑡	 	𝛼, 𝜂, 𝝉) − 𝜙',UV log𝜙',UVV∈𝝉O
[
UPQ

NO
,PQ

R
'PQ ,     

 

 

 

(4) 

 

where the subscript “−𝑒𝑓” indicates the exclusion of corresponding variables 𝐶', and 

𝑇',. Maximizing the lower bound (Eq. (4)) by differentiating with respect to 𝜙 and 

using the constraint that 𝜙',UVV∈𝝉O
[
UPQ = 1,  we get the update equation 

 

𝜙',UV

=
exp 𝐸J(𝑪XOY,	𝑻XOY) log 𝑝 𝒗, 𝑪Z',, 𝑻Z',, 𝐶', = 𝑐, 𝑇', = 𝑡	 	𝛼, 𝜂, 𝝉)

exp 𝐸J(𝑪XOY,	𝑻XOY) log 𝑝 𝒗, 𝑪Z',, 𝑻Z',, 𝐶', = 𝑐′, 𝑇', = 𝑡′	 	𝛼, 𝜂, 𝝉)V`∈𝝉OU`

,	
 (5) 

 

The CVB algorithm involves iterating Eq. (5) till convergence. The remaining 

derivations concern the evaluation of Eq. (5). We first apply the conditional 

independence assumptions of the author-topic model to simplify the joint probability 

distribution in Eq. (5): 

 

log 𝑝 𝒗, 𝑪, 𝑻	|	𝛼, 𝜂, 𝝉 = log 𝑝 𝒗	|	𝑪, 𝜂 + log 𝑝 𝑪	|	𝑻, 𝛼 + log 𝑝(𝑻	|	𝝉). (6) 

 

By exploiting the properties of Dirichlet-multinomial compound distribution (Teh et 

al., 2006), the first term on the right hand side of Eq. (6) is given by 

 

log 𝑝 𝒗	|	𝑪, 𝜂  

(𝑎)
= 	log

Γ(𝑉𝜂)
Γ(𝑉𝜂 + 𝑁∙∙U∙)

Γ(𝜂 + 𝑁∙∙Ug)
Γ(𝜂)

h

gPQ

[

UPQ

 

(𝑏)
= 	log

1
𝑉𝜂 𝑉𝜂 + 1 … (𝑉𝜂 + 𝑁∙∙U∙ − 1)

𝜂 𝜂 + 1 … (𝜂 + 𝑁∙∙Ug − 1)
h

gPQ

[

UPQ

 

= − log 𝑉𝜂 +𝑚
l∙∙m∙ZQ

nPo

[

UPQ

+ log 𝜂 + 𝑚
l∙∙mpZQ

nPo

h

gPQ

[

UPQ

, 

 

 

 

 

 

 

(7) 
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where equality (7a) arises from the definition of the Dirichlet-multinomial compound 

distribution and Γ ∙  is the Gamma function. 𝑁'VUg is the number of activation foci in 

experiment 𝑒  generated by task 𝑡 , cognitive component 𝑐 , and located at brain 

location 𝑣. The dot ‘∙’ indicates that the corresponding variable is summed out. For 

example, 𝑁⋅⋅U⋅ is the number of activation foci generated by component 𝑐 across all 

experiments. Equation (7b) arises from the identity Γ 𝑧 + 1 = 𝑧Γ 𝑧  for 𝑧 > 0 . 

Using the same procedure, the second term on the right hand side of Eq. (6) can be 

written as 

 

log 𝑝 𝑪	|	𝑻, 𝛼 = − log 𝐾𝛼 +𝑚
l∙t∙∙ZQ

nPoV	∈	𝝉

+ log 𝛼 + 𝑚
l∙tm∙ZQ

nPo

[

UPQV	∈	𝝉

, (8) 

 

Substituting Eq. (7) and Eq. (8) back into Eq. (6), we get  

 

log 𝑝 𝒗, 𝑪, 𝑻	|	𝛼, 𝜂, 𝝉

= − log 𝑉𝜂 +𝑚
l∙∙m∙ZQ

nPo

[

UPQ

+ log 𝜂 + 𝑚
l∙∙mpZQ

nPo

h

gPQ

[

UPQ

− log 𝐾𝛼 +𝑚
l∙t∙∙ZQ

nPoV	∈	𝝉

+ log 𝛼 + 𝑚
l∙tm∙ZQ

nPo

[

UPQV	∈	𝝉

+ log 𝑝(𝑻	|	𝝉). 

(9) 

 

We are now ready to substitute Eq. (9) back into the update Eq. (5). The last term 

(log 𝑝(𝑻	|	𝝉)) of Eq. (9) exists in both the numerator and denominator of Eq. (5) and 

thus cancels out. The remaining terms in Eq. (9) can be similarly simplified as 

follows. For example, the first term of Eq. (9) can be written as  

 

		− log 𝑉𝜂 + 𝑚
l∙∙m∙ZQ

nPo

[

UPQ

= − log 𝑉𝜂 +𝑚

l
∙∙mu∙
XOYZQ

nPo

[

UuPQ

− log 𝑉𝜂 + 𝑁∙∙U∙
Z', . (10) 
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Therefore when Eq. (9) is substituted back into Eq. (5), the first term of Eq. (10) 

would be present in both the numerator and denominator of Eq. (5) and cancel out. 

Using the similar evaluation for the remaining terms, update Eq. (5) becomes 

 

𝜙',UV ∝ exp 𝐸J 𝑪XOY,	𝑻XOY − log 𝑉𝜂 + 𝑁∙∙U∙
Z', + log 𝜂 + 𝑁∙∙UgOY

Z', 	

− log 𝐾𝛼 + 𝑁∙V∙∙
Z', + log 𝛼 + 𝑁∙VU∙

Z',  (11) 

for 𝑡′ ∈ 𝝉'  (otherwise 𝜙',UV  is zero), where the first log	(∙) term in Eq. (11) comes 

from the first term in Eq. (9), the second log	(∙) term in Eq. (11) comes from the 

second term in Eq. (9), and so on. 

The log	(∙) terms in Eq. (10) can be approximated by a second-order Taylor’s 

series expansion about their means (Teh at al. 2006). Consider the Taylor’s series 

expansion of the log(𝑏 + 𝑥) function about a particular constant 𝑎: 

 

log 𝑏 + 𝑥 ≈ log 𝑏 + 𝑎 +
𝑥 − 𝑎
𝑏 + 𝑎 −

𝑥 − 𝑎 y

2 𝑏 + 𝑎 y (12) 

  

Applying the expansion in Eq. (12) with 𝑏 = 𝑉𝜂 , 𝑥 = 𝑁∙∙U∙
Z', , and 𝑎 =

𝐸J Z𝑪OY,Z	𝑻OY 𝑁∙∙U∙
Z', ,  the first term in Eq. (11) can be approximated as  

 

𝐸J 𝑪XOY,	𝑻XOY − log 𝑉𝜂 + 𝑁∙∙U∙
Z', 	

(𝑎)
≈ − 𝐸J log 𝑉𝜂 + 𝐸J 𝑁∙∙U∙

Z', +
𝑁∙∙U∙
Z', − 𝐸J 𝑁∙∙U∙

Z',

𝑉𝜂 + 𝐸J 𝑁∙∙U∙
Z', −

𝑁∙∙U∙
Z', − 𝐸J 𝑁∙∙U∙

Z', y

2 𝑉𝜂 + 𝐸J 𝑁∙∙U∙
Z', y 	

(𝑏)
= −log 𝑉𝜂 + 𝐸J 𝑁∙∙U∙

Z', +
𝑉𝑎𝑟J 𝑁∙∙U∙

Z',

2 𝑉𝜂 + 𝐸J 𝑁∙∙U∙
Z', y, 

 

 

 

(13) 

 

where the subscript (𝑪Z',, 	𝑻Z',)  in 𝐸J 𝑪XOY,	𝑻XOY ∙  was omitted in Eq. (13a) to 

reduce clutter. Eq. (13b) was obtained because the expectation of a constant is itself. 
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Therefore the first term corresponds to 𝐸J log 𝑉𝜂 + 𝐸J 𝑁∙∙U∙
Z', = log 𝑉𝜂 +

𝐸J 𝑁∙∙U∙
Z', . The second term evaluates to zero because 𝐸J 𝐸J 𝑁∙∙U∙

Z', = 𝐸J 𝑁∙∙U∙
Z', . 

Applying the same approximation for all log	(∙)  terms in Eq. (11) and 

rearranging, the update equation for 𝜙 becomes 

 

 
𝜙',UV ∝

𝜂 + 𝐸J 𝑁∙∙UgOY
Z', 𝛼 + 𝐸J 𝑁∙VU∙

Z',

𝑉𝜂 + 𝐸J 𝑁∙∙U∙
Z', 𝐾𝛼 + 𝐸J 𝑁∙V∙∙

Z',
 

×exp
𝑉𝑎𝑟J 𝑁∙∙U∙

Z',

2 𝑉𝜂 + 𝐸J 𝑁∙∙U∙
Z', y −

𝑉𝑎𝑟J 𝑁∙∙UgOY
Z',

2 𝜂 + 𝐸J 𝑁∙∙UgOY
Z',

y  

×exp
𝑉𝑎𝑟J 𝑁∙V∙∙

Z',

2 𝐾𝛼 + 𝐸J 𝑁∙V∙∙
Z', y −

𝑉𝑎𝑟J 𝑁∙VU∙
Z',

2 𝛼 + 𝐸J 𝑁∙VU∙
Z', y  

 

(14) 

 

The mean and variance of the counts in Eq. (14) can be evaluated using the current 

estimate of  𝜙. For example, 𝑁∙∙U∙
Z', can be thought of as the number of heads obtained 

from tossing a coin independently for each focus of each experiment in the entire 

dataset (excluding the 𝑓-th focus of the 𝑒-th experiment), where the probability of 

getting a head for the 𝑓′ -th activated voxel of the 𝑒′ -th experiment is equal to  

𝜙'`,`UVV∈𝝉Ou . Thus, the expectation and variance of 𝑁∙∙U∙
Z',is given by 

 

𝐸J 𝑁∙∙U∙
Z', = 𝜙'`,`UV

V∈𝝉Ou'u{',,`{,

,	

𝑉𝑎𝑟J 𝑁∙∙U∙
Z', = 𝜙'`,`UV

V∈𝝉Ou

1 − 𝜙'`,`UV
V∈𝝉Ou

.
'u{',,`{,

	

(15) 

 

By using the same argument for the remaining terms of Eq. (14), we can evaluate the 

update equation for 𝜙',UV given the current estimate of 𝜙. 

To summarize, the CVB algorithm proceeds by iterating Eq. (14) until 

convergence. Notice that under CVB inference, the posterior 𝜙 is estimated without 

using the point estimates of the model parameters 𝜃 and 𝛽 (unlike the EM algorithm; 
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see Appendix A3). Given the final estimate of posterior distribution 𝜙, the parameters 

𝜃 and 𝛽 can be estimated by the posterior means (Teh et al. 2006): 

 

𝜃VU ∝ 𝛼 + 𝜙',UV

NO

,PQ

R

'PQ

	 (16) 

𝛽Ug ∝ 𝜂 + 𝜙',UV
V∈𝝉O

NO

,PQ

R

'PQ

𝕝 𝑣', = 𝑣 , (17) 

 

where 𝕝(𝑣', = 𝑣) equals to one if the activation focus 𝑣', corresponds to location 𝑣 

in MNI152 space, and zero otherwise. 

 

A3. Theoretical differences between CVB with Standard Variational Bayes 

(SVB) and EM algorithm 

The CVB algorithm is theoretically better than standard variational Bayes 

(SVB) inference (Teh et al., 2006). As explained in the previous appendix, CVB 

algorithm constructs a lower bound to the data log likelihood with respect to the latent 

variables (𝑪, 𝑻). On the other hand, the SVB algorithm constructs a lower bound with 

respect to both latent variables (𝑪, 𝑻) and model parameters (𝜃, 𝛽). Consequently, 

CVB provides a tighter lower bound to the data log likelihood: 

 

log 𝑝 𝒗	 	𝛼, 𝜂, 𝝉) 

≥ 𝐸J 𝑪,𝑻 log 𝑝 𝒗, 𝑪, 𝑻	 	𝛼, 𝜂, 𝝉) − 𝐸J 𝑪,𝑻 log 𝑞 𝑪, 𝑻  

≥ 𝐸J 𝑪,𝑻 J },~ log 𝑝 𝒗, 𝑪, 𝑻, 𝜃, 𝛽	 	𝛼, 𝜂, 𝝉) 	−	𝐸J },~ log 𝑞 𝜃, 𝛽 	

− 𝐸J 𝑪,𝑻 log 𝑞 𝑪, 𝑻  

  

(18) 

(19) 

 

where the inequality (Eq. (18)) is the same as CVB Eq. (1) and the second inequality 

(Eq. (19)) corresponds to SVB.  

One can also draw parallels between the CVB (Appendix A2) and EM (Yeo et 

al., 2015) algorithms for the author-topic model. Both algorithms iterate between 

estimating the posterior distribution of the latent variables (𝑪, 𝑻)  and using the 

posterior distribution to update the model parameters estimates (𝜃, 𝛽). However, the 

EM algorithm uses point estimates of the model parameters to update the posterior 
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distribution of (𝑪, 𝑻). In contrast, the CVB algorithm avoids doing so (Eq. (14)) and 

might therefore produce better estimates of the parameters (Ngo et al. 2016).  

In practice, we find the CVB algorithm to be less sensitive than the EM 

algorithm to the initialization of the hyperparameters 𝛼 and 𝜂. This is not an issue for 

a big dataset (e.g., BrainMap; Yeo et al., 2015) because the data will overwhelm the 

priors. However, this issue is important for small datasets like those utilized in this 

work. For the CVB algorithm, the hyperparameters 𝛼 and 𝜂 were set to 100 and 0.01 

respectively across all of our experiments. Perturbing 𝛼  and 𝜂  by two orders of 

magnitude did not significantly change the model parameters estimated by CVB 

algorithm, suggesting its robustness. This was not the case for the EM algorithm. 

 

A4. Estimating Number of Components using Bayesian Information Criterion 

(BIC) 

Bayesian Information Criterion (BIC) is commonly used for model selection 

in machine learning (Schwarz, 1978). BIC favors models that best fit the data, while 

also penalizing models with more parameters. The BIC for the author-topic model is 

given by: 

 

𝐵𝐼𝐶 = log 𝑝 𝒗	 	𝜃, 𝛽, 𝝉) −
1
2 𝑘} + 𝑘~ log 𝒗 	 (20) 

 = log
1
𝝉'

𝛽UgOY𝜃VU
V∈𝝉O

[

UPQ

NO

,PQ

R

'PQ

−
1
2 𝑘} + 𝑘~ log 𝒗'

R

'PQ

 (21) 

 

where the first term is the log likelihood of the activation foci 𝒗 given the model 

parameters estimates 𝜃 and 𝛽, and the second term is the penalty based on the number 

of model parameters. |𝒗𝒆| and |𝝉𝒆| are the number of foci and tasks employed in the 

𝑒 -th experiment. 𝑘}  and 𝑘~  are the number of free model parameters. 𝑘}  is the 

number of free parameters in the 𝑀×𝐾 matrix 𝜃, which is equal to 𝑀×(𝐾 − 1) since 

each row sums to one. 𝑘~ is the approximated number of independent elements in the 

𝐾×𝑉 matrix 𝛽. Each row of 𝛽 can be interpreted as a spatially smoothed brain image 

(see Appendix A5). Therefore we approximated the number of independent elements 

in each row of 𝛽 by the number of resolution elements (resels) in the corresponding 

brain image (Worsley et al. 1992) using AFNI (Cox 1996). 
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Models with a higher number of components 𝐾 fit the data better, resulting in 

a higher data log likelihood (first term of Eq. (20)). On the other hand, a higher 𝐾 also 

increases the number of free parameters 𝑘} + 𝑘~ , which results in a higher penalty 

(second term of Eq. (20)). A higher BIC values indicates a better model. 

 

A5. Implementation details 

Each experimental contrast reported a set of coordinates of statistically 

significant local maxima in the activation images.  The spatial locations of the 

activation foci were reported in or transformed to the MNI152 coordinate system 

(Lancaster et al., 2007). Using standard meta-analysis procedure (Wager et al. 2007; 

Yarkoni et al. 2011; Yeo et al. 2015), a 2-mm-resolution binary activation image was 

created for each experimental contrast, in which a voxel was given a value of 1 if it 

was within 10mm of any activation focus, and 0 otherwise. Thus, the set of 𝐹' 

activated voxels of the 𝑒-th experiment in the author-topic model corresponds to the 

set of voxels with a value of 1 in the corresponding 2-mm-resolution binary activation 

image. 

The model’s hyperparameters were set to be 𝛼 = 100 and 𝜂 = 0.01 across all 

experiments. Perturbing 𝛼  and 𝜂  by two orders of magnitude did not significantly 

change the results. The posterior distribution 𝜙 was randomly initialized. The CVB 

algorithm then updated the posterior distribution 𝜙  (Eq. (14)) until convergence. 

Given the estimate of 𝜙, CVB algorithm then computed the model parameters 𝜃 and 

𝛽 (Eq. (16) and Eq. (17)). For a given number of components 𝐾, the procedure was 

repeated with 100 random initializations resulting in 100 estimates. The estimate 

resulting in the maximum lower bound of the data log likelihood (Eq. (1)) was taken 

as the final estimate. 

We repeated the procedure with for different number of cognitive components 

𝐾. BIC was computed for each value of 𝐾 (Appendix A4). Higher BIC implied better 

model parameters estimates. The model parameters with the highest BIC were 

presented in the Results and Discussion sections. 

 

A6. Approximation of Pr(co-activation pattern | task) 

For the co-activation analysis of IFJ, each experiment was treated as its own 

unique task. To help interpret the co-activation pattern in terms of BrainMap task 
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categories (also known as paradigm classes), we estimated the the probability of the 

𝑐-th co-activation pattern being utilized by the 𝑡-th task  posthoc: 

 

Pr 𝑐𝑜 − 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛	𝑐	 𝑡𝑎𝑠𝑘	𝑡) 	∝ 	
𝜃'U𝕝 𝑡 ∈ 𝝉'

𝝉'

R

'PQ

, 
 

(22) 

 

where 𝜃'U was the estimated probability that the 𝑒-th experiment would recruit the 𝑐-

th co-activation pattern, 𝝉' was the set of tasks utilized in the 𝑒-th experiment, and 

𝕝 𝑡 ∈ 𝝉'  is an indicator function that was equal to 1 if the 𝑡-th task was one of the 

collection of tasks 𝝉' utilized by the 𝑒-th experiment and 0 otherwise. Eq. (22) can be 

interpreted as weighted average of 𝜃'U across all experiments utilizing task 𝑡 with the 

weight being smaller if an experiment utilizes many tasks. For example, if the 3rd 

experiment utilized “n-back” and “Stroop” tasks, the probability contributed by this 

experiment to the computation of the probability of “n-back” recruiting co-activation 

pattern C1 (Pr 𝑐𝑜 − 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛	𝐶1	 "𝑛 − 𝑏𝑎𝑐𝑘")) would be the probability of the 

experiment recruiting co-activation pattern C1 (i.e., 𝜃�Q), divided by the number of 

tasks, which is two.  
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Table S1: Definitions of 26 BrainMap paradigm classes tagged to experiments activating the IFJ. Only 
paradigm classes tagged to at least 5 experiments were included. The definitions were extracted from 
BrainMap lexicon, available at http://www.brainmap.org/scribe/BrainMapLex.xls 
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Table S1 (cont.): Definitions of 26 BrainMap paradigm classes tagged to experiments activating the 
IFJ. Only paradigm classes tagged to at least 5 experiments were included. The definitions were 
extracted from BrainMap lexicon, available at http://www.brainmap.org/scribe/BrainMapLex.xls 
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Table S2: Top 5 tasks with the highest probabilities of recruiting a co-activation pattern 
involving the IFJ 
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Table S3-A: Experiments with the highest probabilities of recruiting co-activation pattern C1 of IFJ 

Each row shows one of the top 3 experiments with the highest probabilities of recruiting co-activation pattern 
C1 of IFJ and recruiting one of the top 3 tasks with the highest probabilities of recruiting C1, namely 
“Phonological Discrimination”, “Semantic Monitoring/ Discrimination”, and “Covert Reading”. The “PMID” 
and “Title” columns list the PubMed ID and title of each study respectively. The “Author” column lists the 
surname of the first author and the year of publication of each study. The “Exp” column lists the experiment’s 
order in the respective study as reported in BrainMap. The “Contrast” column lists the experimental contrast 
of each experiment. The “Pr” column shows the probability that each experiment would recruit the co-
activation pattern C1. 
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Table S3-B: Experiments with the highest probabilities of recruiting co-activation pattern C2 of IFJ 

Each row shows one of the top 3 experiments with the highest probabilities of recruiting co-activation pattern 
C2 of IFJ and recruiting one of the top 3 tasks with the highest probabilities of recruiting C2, namely “Task 
Switching”, “Counting/ Calculation”, and “Wisconsin Card Sorting Test”. The “PMID” and “Title” columns 
list the PubMed ID and title of each study respectively. The “Author” column lists the surname of the first 
author and the year of publication of each study. The “Exp” column lists the experiment’s order in the 
respective study as reported in BrainMap. The “Contrast” column lists the experimental contrast of each 
experiment. The “Pr” column shows the probability that each experiment would recruit the co-activation 
pattern C2. 
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Table S3-C: Experiments with the highest probabilities of recruiting co-activation pattern C3 of IFJ 

Each row shows one of the top 3 experiments with the highest probabilities of recruiting co-activation pattern 
C3 of IFJ and recruiting one of the top 3 tasks with the highest probabilities of recruiting C1, namely “Go/No-
Go”, “Stroop – Color Word”, and “Reward”. The “PMID” and “Title” columns list the PubMed ID and title 
of each study respectively. The “Author” column lists the surname of the first author and the year of 
publication of each study. The “Exp” column lists the experiment’s order in the respective study as reported 
in BrainMap. The “Contrast” column lists the experimental contrast of each experiment. The “Pr” column 
shows the probability that each experiment would recruit the co-activation pattern C3. 
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Figure S1: Illustration of the IFJ (Muhle-Karbe et al., 2015) in the sagittal, coronal and transversal plane. 

x = -37 y = 5 z = 31 
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Figure S2: Volumetric slices suggesting the co-activation patterns overlap within the IFJ. The yellow areas 
delineate the IFJ. The colored dots correspond 2-mm-radius spheres centered about the activation foci 
reported by the top 3 experiments which have the highest probabilities of recruiting co-activation patterns 
of IFJ and recruit one of the top 3 tasks with the highest probabilities of recruiting the given co-activation 
pattern. Blue, red and green dots correspond to the activation foci associated with co-activation pattern C1, 
C2, and C3, respectively. 
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