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Abstract: 26 

Quantitative genetics experiments aim at understanding and predicting the evolution of phenotypic 27 

traits. Running such experiments often bring the same questions: Should I bother with maternal 28 

effects? Could I estimate those effects? What is the best crossing scheme to obtain reliable estimates? 29 

Can I use molecular markers to spare time in the complex task of keeping track of the experimental 30 

pedigree? 31 

We explored those practical issues in the desert locust, Schistocerca gregaria using morphologic and 32 

coloration traits, known to be influenced by maternal effects. We ran quantitative genetic analyses 33 

with an experimental dataset and used simulations to explore i) the efficiency of animal models to 34 

accurately estimate both heritability and maternal effects, ii) the influence of crossing schemes on the 35 

precision of estimates and iii) the performance of a marker-based method compared to the pedigree-36 

based method. 37 

The simulations indicated that maternal effects deeply affect heritability estimates and very large 38 

datasets are required to properly distinguish and estimate maternal effects and heritabilities. In 39 

particular, ignoring maternal effects in the animal model resulted in overestimation of heritabilities 40 

and a high rate of false positives whereas models specifying maternal variance suffer from lack of 41 

power. Maternal effects can be estimated more precisely than heritabilities but with low power. To 42 

obtain better estimates, bigger datasets are required and, in the presence of maternal effects, increasing 43 

the number of families over the number of offspring per families is recommended. Our simulations 44 

also showed that, in the desert locust, using relatedness based on available microsatellite markers may 45 

allow reasonably reliable estimates while rearing locusts in group.  46 

In the light of the simulation results, our experimental dataset suggested that maternal effects affected 47 

various phase traits. However the statistical limitations, revealed by the simulation approach, didn’t 48 

allow precise variance estimates. We stressed out that doing simulations is a useful step to design an 49 

experiment in quantitative genetics and interpret the outputs of the statistical models. 50 
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Introduction  51 

Trait evolution directly depends on the phenotypic variation transmitted across generations by genetic 52 

inheritance, parental effect or even cultural and ecological inheritance (Danchin, Charmantier, 53 

Champagne, et al., 2011). Therefore, predicting the evolutionary potential of a phenotypic trait 54 

requires quantifying the amount of phenotypic variation due to genetic, maternal (or more generally 55 

parental) and environmental effects, which is the general objective of quantitative genetics (Lynch & 56 

Walsh, 1998). Quantitative genetics experiments rely on the phenotypic resemblance of related 57 

individuals and are therefore based on controlled crossings and phenotypic measurements of 58 

individuals of known pedigree. Running a quantitative genetics experiment for the first time on a new 59 

model species can be challenging and requires a careful consideration of the crossing scheme, pedigree 60 

inference and statistical model. 61 

 First, heritability is estimated by measuring phenotypes of individuals of known degrees of 62 

relatedness. To obtain such data, it is necessary to use a population with a pedigree data ranging over 63 

several generations or to design an experiment with specific relatedness classes. Thus, in the 64 

laboratory, controlled crosses are required and the chosen crossing scheme has a real impact on the 65 

nature and precision of the estimates. For example, full-sib design only gives an estimate of the broad-66 

sense heritability (H²) that contains all the genetic variance in the form of additive, dominance and 67 

epistatic allele effects (divided by the phenotypic variance) whereas a half-sib/full-sib design gives an 68 

estimate of the narrow-sense heritability (h²) containing only the additive effect of the genetic variance 69 

(Lynch & Walsh, 1998). Since response to selection depends only on the additive effects of genes, h² 70 

is the privileged estimated parameter (Visscher, Hill & Wray, 2008). In addition, quantitative genetic 71 

studies require keeping track of individual’s identity over the whole experiment either by rearing each 72 

individual separately or by marking them from birth to phenotypic measurement. This may be either 73 

very time and space consuming or technically challenging, in some species, and creates a practical 74 

limit to the obtainment of an adequate sample size. Therefore, for a given sample size, it seems crucial 75 

to optimize the crossing scheme (paternal or maternal half-sibs, number of families and offspring per 76 

family…) towards more statistical power, which depends on which components of the phenotypic 77 

variance are estimated (Lynch & Walsh, 1998).  78 

Second, pedigree-free methods can release the constraints of keeping track of each phenotyped 79 

individual during the whole experiment. From a dataset of genotypes, one can either compute pairwise 80 

values of genetic relatedness or reconstruct the whole pedigree to incorporate in quantitative genetic 81 

models. These methods have been successfully used for quantitative genetic analyses in natural 82 

populations where pedigree information is generally not available except for long-term studies. In this 83 

field context, many simulation studies have explored their potential and limits, including quality and 84 

quantity of molecular markers and performance of relatedness coefficients (Visscher, Hill & Wray, 85 

2008; Gay, Siol & Ronfort, 2013). Overall, performance of these methods rely mainly on the number 86 

and quality of molecular markers (Wang, 2006) and on relatedness composition of the sampled 87 
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population (Csilléry, Johnson, Beraldi, et al., 2006; DiBattista, Feldheim, Garant, et al., 2009). 88 

Laboratory populations are closed systems where the relatedness composition can be optimized either 89 

by a total control of mating or with free mating of a chosen set of breeders. This latter option is 90 

particularly useful to maximize the probability of obtaining successful crosses when mating among 91 

designated individuals is not guaranteed, for example when mate choice is strong. 92 

Third, the inheritance of various traits may be very complex. Since heritability estimates are 93 

based on the phenotypic resemblance of related individuals, they can be artificially inflated by 94 

resemblance caused by maternal effects (Kruuk & Hadfield, 2007). Using animal models, which are 95 

linear mixed models with the relatedness matrix as random factor, Wilson et al. (2005) estimated that 96 

maternal effects accounted for 21% of the total phenotypic variation in the birth weight of Soay sheep, 97 

compared to 12% for the heritability itself. Maternal effects can further be distinguished between 98 

environmental effects experienced by the mother, genetic variation among mothers and finally 99 

genotype-by-environment interactions. Accordingly, in Soay sheep, the maternal environmental 100 

effects and the maternal genetic effects represent respectively 11% and 12% of the phenotypic 101 

variation of birth weight (Wilson, Coltman, Pemberton, et al., 2005)). To our knowledge, few studies 102 

have precisely quantified how heritability estimates can be biased by the presence of non-estimated 103 

maternal effects and even fewer have explored the precision of maternal effect estimates (but see 104 

Kruuk & Hadfield, 2007; Holand & Steinsland, 2016; De Villemereuil, Gimenez & Doligez, 2013). 105 

Even if the main motivation when considering maternal effect is to control this potential statistical 106 

nuisance in heritability estimates, maternal effects are also of considerable evolutionary interest to 107 

understand the evolution of traits. For example, theoretical models showed that maternal genetic 108 

effects represent an additional source of genetic variation which can affect the rate of trait evolution 109 

(Kirkpatrick & Lande, 1989). 110 

In view of these considerations, and despite a vibrant field, some important methodological 111 

challenges still remain to be solved prior to address the quantitative genetics of a new model species: 112 

Can I omit maternal effects? What is the best statistical model to estimate the genetic basis of 113 

phenotypic traits? What are the sample size and structure of data required? Can pedigree-free 114 

approaches alleviate some of the technical constraints in quantitative genetics designs? We here 115 

addressed these four questions in the case study of the desert locust.  116 

To this aim, we ran quantitative genetic analyses on an experimental dataset of body size, 117 

shape and color measured in late stages of a laboratory nature-derived population of the desert locust, 118 

Schistocerca gregaria, reared under controlled isolation conditions. We also used computer 119 

simulations to assess, along varying levels of heritability and maternal effects, the performance of two 120 

statistical animal models under various crossing schemes and relatedness inferences, derived from the 121 

experimental design. We finally interpreted phase trait data in the desert locust, illustrated how 122 

cautious one should be when interpreting this kind of data, and suggested directions for future research 123 

investigations. 124 
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Locusts are renowned for their nymphal marching bands and winged adult swarms that 125 

threaten food security in large areas (Sword, Lecoq & Simpson, 2010). This striking gregarious 126 

behavior is one aspect of the locust phase polyphenism, an extreme case of phenotypic plasticity. At 127 

low population densities, individuals tend towards a solitarious phenotype. On the contrary, at 128 

critically high population densities, locusts become gregarious. This fascinating phenotypic plasticity 129 

involves many traits (often called "phase traits"), amongst which behavior, morphometry, coloration, 130 

physiology and life-history traits (Pener & Simpson, 2009). The substantial variation in phase traits 131 

observed between natural populations, reared under standardized laboratory conditions might indicate 132 

that these traits have an evolutionary potential (Nolte, 1966; Chapuis, Estoup, Augé-Sabatier, et al., 133 

2008; Yerushalmi, Tauber & Pener, 2001; Botha, 1967; Schmidt & Albütz, 1996). However, the 134 

genetic contribution to phenotypic variance of key phase traits has never been assessed in locusts; and 135 

their potential to respond to selection is unknown. In this attempt, it would be informative to carry 136 

quantitative genetics experiments on both isolated and crowd-reared locusts, as phase polyphenism is a 137 

response to density. However, marking locusts throughout their development and successive molts is 138 

not feasible (Gangwere, Chavin & Evans, 1964), which makes methods based on molecular markers 139 

(i.e. pedigree-free methods) a promising alternative to estimate variance components of phase traits in 140 

crowd-reared locusts. Over and above that, for more than 50 years it has been known that parental 141 

rearing density also affect phase traits such as coloration and morphometry of hatchlings. Crowded 142 

parents tend to produce black and larger-headed hatchlings (and inversely for isolated parents), 143 

irrespective of the population density experienced by offspring during their development (see Table 1). 144 

Therefore, estimating maternal effects is of high relevance to the understanding of evolution of phase 145 

polyphenism. 146 

 147 

Material and methods 148 

Quantitative genetics animal models 149 

All quantitative genetics analyses were based on half-sib full-sib designs. We used two different kinds 150 

of animal models: Model 1 in which maternal effects are not specified (i.e. a naive model) and Model 151 

2 which includes maternal effects (i.e. an informed model similar to equation 2 in De Villemereuil, 152 

Gimenez & Doligez, 2013).  153 

Model 1 only specifies a genetic effect as a random pedigree effect: 154 

Yi = µ + Ai + εi   155 

where Yi is the phenotype of individual i, µ is the population mean, Ai is the individual’s additive 156 

genetic value, and εi is the random residual value. Hence, the total phenotypic variance (VP) was 157 

portioned into a variance attributed to additive genetic effects (VA) and a residual variance (VR) such 158 

that VP = VA +VR  159 

Model 2 specifies, in addition to pedigree, a random mother effect Mki (environment of the mother k 160 

on individual i): 161 
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Yi,k = µ + Ai + Mki + εi  162 

In this case, VP = VA + VM + VR. From Model 1 and Model 2, we computed the narrow-sense 163 

heritability h² = VA / VP and similarly, the maternal effect m² = VM / VP. This maternal effect includes 164 

maternal environmental effects, maternal genetic effects as well the interactions between genes and the 165 

environment (McAdam, Garant & Wilson, 2014). The estimation of the maternal genetic component 166 

would have required that individual mothers have female relatives in the dataset which is not the case 167 

in the studied half-sib/full-sib designs.  168 

The random pedigree effect was computed from either a pedigree (pedigree-based method) or 169 

the relatedness between pairs of genotyped individuals (pedigree-free method). Additive genetic and 170 

maternal estimates were obtained by running univariate animal models using Asreml-R (Butler, 171 

Cullis, Gilmour, et al., 2007). Standard errors for h² and m² were obtained by the delta method (Lynch 172 

& Walsh, 1998). P-values for the maternal effect were obtained by likelihood ratio tests (LRTs) 173 

between Model 1 and Model 2 whereas p-values for the pedigree effect were obtained by LRTs 174 

between Model 1 or Model 2 and the same model without the random pedigree effect (Wilson, Réale, 175 

Clements, et al., 2010). 176 

 177 

Empirical data 178 

Experimental design. Our laboratory population derived from fertilized desert locust females 179 

collected in the field (see Pelissie, Piou, Jourdan-Pineau, et al., 2016 for further details). Locusts were 180 

maintained under isolated conditions for four subsequent generations. The fourth generation consisted 181 

in half-sib and full-sib families. The crossing scheme was 8 sires, mated to 2 to 3 females yielding to a 182 

total of 15 maternal families. The use of paternal half-sibs was dictated by our ambition to estimate 183 

maternal effects but also by the presence of multiple paternities in the desert locust (Seidelmann & 184 

Ferenz, 2002). For each maternal family, approximately 13 offspring were evenly distributed, right 185 

after hatching, between two temperature treatments: 28°C or 34°C. Temperature is known to affect 186 

phase traits (see Table 1) and may exert developmental constraints, susceptible to reveal genetic 187 

variation (Charmantier & Garant, 2005). A total of 486 hatchlings were selected and kept until adult 188 

molt. Larval mortality reduced the final sample size to 212 adult offspring. Known maternal effects 189 

were largely controlled with a homogenization of density, temperature and other main environmental 190 

drivers (e.g. humidity, food given ad libitum) (see Table 1 and Pelissie, Piou, Jourdan-Pineau, et al., 191 

2016 for further details on rearing isolation conditions).  192 

 193 

Phenotypic measurements. We considered two commonly used sets of phase characteristics: fifth-194 

instar larval coloration and adult morphometry (Pener & Simpson, 2009). Color differences between 195 

gregarious and solitarious desert locust larvae are the most noticeable phase change ((Nickerson & 196 

others, 1956; Pener & Simpson, 2009). Population density induces modification in the black patterning 197 

and in the green-brown coloration: solitarious late juveniles are typically green whereas gregarious late 198 
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juveniles display a beige or brown background color with black pigmentation (Table 1 and references 199 

within). This is because all larvae have an integument of a beige or brown color, and either a black 200 

pigment, melanin, is deposited after ecdysis in the cuticle of the integument of gregarious insects, or a 201 

green pigment is produced from a yellow carotenoid and a blue bile pigment in the haemolymph of the 202 

integument of solitarious insects (Nolte, 1965). Thus, we measured the level of brightness directly 203 

correlated negatively to the level of black pigmentation and the percentage of green color which is a 204 

direct estimate of the green-brown polyphenism of an individual (see section 1.1 in the Appendix for 205 

details on methods and illustrations).  206 

In adult, five morphometric ratios were considered : (i) the ratio of the length of the fore wing 207 

on the length of the hind femur (E/F) and (ii) the ratio of the length of the hind femur on the maximum 208 

width of the head (F/C), widely used for characterizing phase state in the field (Stower, Davies & 209 

Jones, 1960); (iii) the ratio of the length of the hind femur on the width of the vertex between eyes 210 

(F/V) and (iv) the ratio of the vertical diameter of eyes on the width of the vertex between eyes (O/V), 211 

considered as reliable indicators of phase change (Dirsh, 1953) (see section 1.2 in the Appendix for 212 

details on methods and illustrations). The values of these ratios changes toward gregarious adults with 213 

longer wings, larger heads and shorter eyes (Table 1 and references within).  214 

In addition to larval coloration and adult morphometry, we considered two proxies of body 215 

size that varies with phase but in a sex-dependent manner. We measured the maximal larval weight 216 

(Pélissié et al. 2016) in the fifth-instar larvae and the length of the hind femur (F) in adults (with a low 217 

measurement error; e.g. Chapuis, Foucart, Plantamp, et al., 2017). In adults of S. gregaria, solitarious 218 

females are larger than conspecific gregarious females, but solitarious males are slightly smaller than 219 

gregarious ones (Table 1 and references within). Therefore, the difference in body size between the 220 

females and the males is smaller in the gregarious than in the solitarious phase. 221 

For each adult, we determined its sex to control for sexual dimorphism in body size and shape 222 

(Dirsh, 1953). We also recorded the number of larval molts, since between the third and fourth instars, 223 

desert locusts can undergo an extramolt that influences adult body size, E/F and F/C ratios (Pélissié, 224 

Piou, Jourdan-Pineau, et al., 2016; Maeno, Gotoh & Tanaka, 2004). We summarized the larval color, 225 

adult body shape and size variables by extra-molting, sex, temperature in the section 1.3 in the 226 

Appendix. Details on maternal effects and functions of these density-mediated changes can be found 227 

in Table 1. 228 

 229 

Quantitative genetics analyses. In order to remove non-genetic variation associated with known 230 

effects, we fitted sex, temperature, extramolting and their interactions as fixed effects in animal 231 

models (see section 1.4 in the Appendix). For each trait, we estimated the genetic component of 232 

phenotypic variance by running both Model 1 and Model 2. The random pedigree effect was estimated 233 

using the inverse of the additive genetic relationship matrix (A matrix) computed from a pedigree 234 

spanning 4 generations. Note that we obtained very similar results (data not shown) when using only 235 
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the parental and offspring generations in the pedigree (i.e. 2 instead of 4 generations), indicating that 236 

its level of inbreeding was low (Lynch & Walsh, 1998). Finally, we also ran Model 1 replacing the 237 

pedigree by a marker-based relatedness matrix based on the genotyping of 96 offspring from the 238 

original dataset (all reared at 34°C) with a set of 16 microsatellite markers (SgM51, SgM92, SgM41, 239 

SgM74, SgM66, SgM96, SgM87, SgM88, SgM86, SgR36, DL09, SgR53, DL13, diEST-11, diEST-8 240 

and diEST-40, Yassin et al. 2006, Kaatz et al. 2007, Blondin et al. 2013). Those last results were 241 

compared with analyses run on the same individuals but using the known pedigree instead of the 242 

pairwise relatedness values. To allow a complete comparison, we also ran Model 1 on the subset of 243 

individuals reared either at 28°C or at 34°C. However, the interaction between genotype and 244 

environment will not be treated further in this study. 245 

 246 

 247 

Simulated data 248 

Simulation algorithm. The simulated phenotypic values were computed using Model 2 (which 249 

includes a maternal effect) and following Morrissey et al., (2007): µ, the mean phenotype in the 250 

population, was arbitrarily set to 0; Ai , the breeding value of the individual i, was normally distributed 251 

assuming additive genetic variance VA; Mk, the maternal effect was normally distributed assuming 252 

variance VM, and εi, the residual variation, was normally distributed with variance VR. To compute the 253 

breeding values Ai according to the simulated pedigree and VA, we used the rbv function from the R 254 

package MCMCglmm (Hadfield, 2010), which applies a Mendelian random deviation for each 255 

offspring.  256 

Simulation of phenotypes. In every investigated scenario, we allowed the level of the heritability h² 257 

and of the maternal effect m
2
 to vary among 4 fixed values: 0 (absence), 0.1 (low level), 0.3 (moderate 258 

level) and 0.5 (high level). Those values are realistic in regard to previous studies in insects and, more 259 

generally, in other animals (Mousseau & Roff, 1987; Houle, 1992; Visscher, Hill & Wray, 2008 for h² 260 

values; Räsänen & Kruuk, 2007; Wilson, Coltman, Pemberton, et al., 2005 for m² values). They were 261 

obtained by setting the total phenotypic variance VP to a fixed value while allowing VA, VM and VR to 262 

vary. We generated every possible combination of h
2
 and m

2
, thus leading to the comparison of 16 263 

different phenotypic scenarios. 264 

Simulation based on our experimental design. For each combination of h
2
 and m

2
, we simulated 265 

1,000 phenotypic datasets based on our experimental design, i.e. with exactly the same pedigree and 266 

the same subset of phenotyped individuals (Morrissey, Wilson, Pemberton, et al., 2007). 267 

Simulation based on refined crossing schemes. We tested the sensitivity of estimation to various 268 

paternal half-sib/full-sib designs (see section 2.1 in the Appendix for parameter values of each test 269 

crossing scheme). We first simulated a design very close to our actual experimental design: it resulted 270 

in a crossing scheme of 8 sires, 2 dams by sires and 13 offspring per dams, for a total of 208 offspring 271 

(CS3). We then used this half-sib/full-sib design as a reference to derive 13 more crossing schemes 272 
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with varying numbers of sires (S), dams by sire (D), and of offspring (O) per family (F = D x S), for a 273 

total sample size (N) of 208 offspring. This set of crossing schemes allowed us to compare the distinct 274 

effects of family size and the crossing scheme on our ability to accurately detect h
2
 and m

2
. Finally, we 275 

tested for the effect of doubling the total sampling size by simulating a 15
th
 dataset involving 416 276 

offspring (CS15). This crossing scheme was derived from one of the best performing crossing scheme 277 

(see below) and consisted of 8 sires, 13 dams by sire and 4 offspring per dam instead of 2 (CS12). For 278 

each crossing scheme and for each combination of h
2
 and m

2
, we simulated 400 phenotypic datasets.  279 

Pedigree-free approaches. First, we ran the same type of simulations but replacing pedigree-based 280 

relatedness by marker-based relatedness, on 2 crossing schemes: our experimental design (as if the 281 

212 individuals had been genotyped) and the crossing scheme CS15 with 416 individuals. In each 282 

design, we tested 2 realistic sets of microsatellite markers: 16 (the set used for genotyping in our 283 

experimental design), or 29, that is the maximum number of markers available for the desert locust 284 

(Kaatz, Ferenz, Langer, et al., 2007; Yassin, Heist & Ibrahim, 2006; Blondin, Badisco, Pagès, et al., 285 

2013). Pairwise relatedness based on microsatellite markers were computed using the coefficient 286 

introduced by Loiselle et al. (1995). We used the R package pedantics to simulate molecular 287 

genotypes based on a selection of markers and a given pedigree (Morrissey & Wilson, 2010) and the R 288 

package Ecogenetics to compute Loiselle relatedness coefficients based on the desert locust 289 

microsatellite markers (Roser, Vilardi, Saidman, et al., 2015). The analyses were processed with 290 

Model 1 only since maternal identity could not be inferred from molecular relatedness. We explored 4 291 

scenarios with respective h
2
 values of 0, 0.1, 0.3 and 0.5 and simulated 400 relatedness matrices (based 292 

on Loiselle coefficients) and phenotypic datasets per scenario. 293 

Performances of simulated datasets. We evaluated the performance of the animal models, crossing 294 

schemes and pedigree-free methods using four criteria applied to all simulations within one scenario: 295 

i) the mean values of h² and m² estimates, ii) the 95% confidence intervals; which inform on bias and 296 

dispersion, respectively, iii) the average of the root mean square error (RMSE) between simulated and 297 

estimated values (Bolker, 2008) and iv) the power to detect either pedigree or maternal effect 298 

computed as the percentage of simulated datasets that gave a significant pedigree effect or maternal 299 

effect (when included). To compare the simulated crossing schemes, we tested the influence of dam-300 

to-sire ratio (D:S), of the number of offspring per family (O) and of their interaction, on the RMSE (of 301 

h² and m²) and on the statistical powers to detect pedigree and maternal effect), using linear models 302 

with the levels of h² and m² (respectively) as covariate. 303 

 304 

Results 305 

Empirical dataset on phase traits of the desert locust 306 

Heritability and maternal effects estimates computed from the whole desert locust dataset are given in 307 

Table 2. In the naïve model (Model 1), body size traits, pronotum coloration traits, and the ratio of the 308 

femur length over the head width had significant h² estimates (0.71 ≥ h² ≥ 0.18). Interestingly, the 309 
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same five traits were still significantly heritable when considering insects reared at the low 310 

temperature of 28°C. Conversely, none of the heritabilities turned significant at the high temperature 311 

of 34°C (see section 1.5 in the Appendix). 312 

Adding a maternal effect in the statistical model (i.e. the informed model, Model 2) strongly 313 

lowered additive genetic variances for most traits, due to large maternal variances (Vm) compared to 314 

additive genetic variances. Nevertheless, none of these maternal effects were found to be significant 315 

(p-values ≥ 0.11), due to large standard errors of m
2 

estimates (SE ≥ 0.05). Conversely, the 316 

morphometric ratios E/F and O/V showed almost-null Vm and null m² values, leading to the same 317 

values as in Model 1 for VA, h
2
 and SE(h

2
), although associated p-values were largely increased in 318 

Model 2.  319 

Using the pedigree-free method with 16 microsatellite markers and on a subset of individuals 320 

measured at 34°C, we obtained variance and heritability estimates in the same order of magnitude as 321 

when analyzing the same subset using the real pedigree for most traits. However, E/F has larger 322 

additive genetic variance with the pedigree-free method than when using the pedigree (Table 3). With 323 

both methods, brightness was found significantly heritable (Table 3).  324 

 325 

Simulation based on our experimental design  326 

In the absence of simulated maternal effects (m
2
 = 0; Fig. 1 first column), Model 1 performed better 327 

than Model 2 in estimating heritability. First, h² estimates were biased downward only in Model 2 (e.g. 328 

a simulated h2 of 0.3 was estimated in average at 0.20). Second, both statistical models led to large 329 

dispersion in h² estimates that increased with simulated h² values, and RMSE values were close to h
2
 330 

values (e.g. 0.16 for a simulated h
2
 of 0.3 in Model 1). Finally, in Model 1, the power to detect a true 331 

pedigree effect was low for low simulated h² values (i.e. 30.5% for h² = 0.1), satisfying for 332 

intermediate simulated h² values (i.e. 82% for h² = 0.3) and very high for the highest simulated h² 333 

values (i.e. 95.9% for h² = 0.5). Conversely, in Model 2, the statistical power stayed very low even 334 

when simulated heritability was the highest (i.e. 11.2% for h² = 0.5).  335 

In the presence of simulated maternal effects, the h² estimates became highly biased upward 336 

with Model 1, reaching values of 1 for m
2 

= 0.5 whatever the simulated h², or for m
2 

= 0.3 when 337 

simulated h
2
 was high (≥ 0.3) (Fig. 1, right upper panels). Accordingly, Model 1 generated significant 338 

pedigree effects in all simulations for maternal effects ≥ 0.3, even when the simulated heritability was 339 

null (i.e. 100% of false positives). Adding a simulated maternal effect in Model 2 induced a downward 340 

bias of the same magnitude but a greater dispersion of the h² estimates, with even 95% CI covering the 341 

whole space when maternal effects were large (i.e. ≥  0.3) (Fig. 1, right lower panels). The RMSE 342 

values for h² estimates were however lower with Model 2 than with Model 1. In Model 2, the power 343 

for detecting a pedigree effect of any level was always very low (< 5%).  344 

Estimation of a maternal effect with Model 2 showed a downward bias that decreased with 345 

higher simulated h² (e.g. a simulated m
2
 of 0.3 was estimated in average in the range of 0.2-0.29; Fig. 346 
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2). Whatever the simulated h² values, there was a large dispersion in estimates increasing with 347 

simulated m² values. As for heritability estimates, RMSE values for maternal effects increased with 348 

the simulated m² (0.17 to 0.20 for a simulated m
2
 of 0.3). The power to detect a maternal effect was 349 

low and just reached 50% when maternal effect was 0.5. 350 

 351 

Simulation datasets on the varying crossing schemes 352 

In the absence of maternal effects, the use of Model 1 on crossing schemes with more sires than dams 353 

by sires (D:S < 1) yielded slightly smaller RMSEs for h² estimates ((F1,55=9.52, p-value=0.003) but did 354 

not improve the statistical power to detect a pedigree effect, (Fig. 3a). Conversely, a higher number of 355 

offspring per females (i.e. fewer families) did not impact RMSE values but yielded greater power for 356 

detecting a pedigree effect (F1,55=9.54, p-value=0.003, Fig. 3b). In presence of maternal effects, 357 

refining crossing schemes by the number ratios of dams on sires or of offspring on families did not 358 

help sorting out the upward bias and over power in heritability estimation of Model 1. 359 

Using Model 2 (with maternal effects ≥0), the power for detecting a pedigree effect was 360 

significantly greater in designs with D:S > 1 (F1,223=11.56, p-value<10
-3

, Fig. 3a). RMSE for maternal 361 

effect estimates (m
2
) were significantly lowered with such crossing schemes (F1,223=6.89, p-362 

value=0.001), but the power to detect them remained unaffected. Finally, increasing the number of 363 

families instead of offspring per female significantly increased both the power to detect heritability 364 

and maternal effect (F1,239=100.17 p-value<10
-3

 and F1=105.15 p-value<10-3, respectively) while 365 

decreasing RMSE values (F1,239=52.33 p-value<10
-3

, and F1,239=57.67 p-value<10
-3

 respectively, Fig. 366 

3b). Accordingly, one of the crossing schemes with the highest global performance in an informed 367 

model was composed of 8 families with 13 dams per sire and 2 offspring (CS12). This crossing 368 

scheme did not improve the small downward bias on h
2
 estimation but markedly decreased the 369 

variance in h
2 

estimation (i.e. 95% CI and RMSE criteria; see section 2.2 in the Appendix for details). 370 

This resulted in an increased power to detect a pedigree effect that could reach 62-74% for large 371 

maternal effects (i.e. m
2
=0.5) whereas it reached a limit of 11% under the crossing scheme mimicking 372 

our experimental design (CS3; Figure 1). As for maternal effects, this crossing scheme of a relative 373 

high numbers of families and of dams per sire allowed an unbiased estimation with a lowered variance 374 

(RMSE values ≤ 0.12 and narrower 95% CI) and an increased statistical power reaching 100% in the 375 

best case (m
2
=0.5). 376 

Finally, we explored the gain in performance for a sample of a larger size. To this aim, we 377 

selected the crossing scheme CS12 with a high global performance, doubled the number of offspring 378 

within families (N = 416) and ran additional simulations with this new crossing scheme (CS15). In the 379 

absence of a maternal effect, Model 1 showed good performances, with a slight increase in power to 380 

detect a pedigree effect and a slight decrease in RMSE values (Fig. 4, left upper panel). The 381 

performance of Model 2 in h
2
 estimation was increased, with a reduced downward bias and augmented 382 

power in h² estimates, but still lower than in Model 1 (Fig. 4, left bottom panel). In the presence of 383 
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maternal effects, the performance of Model 1 to estimate the pedigree effect was still poor in line with 384 

previous simulations, without improvements of the strong overestimation and high number of false 385 

positives (Fig. 4, upper right panels). With Model 2, h
2
 estimation was not biased downward anymore 386 

with this large sample size design and the power to detect a pedigree effect considerably increased, 387 

though still low (≤ 72%) when maternal effects were high (≥ 0.3; Fig. 4, lower right panels). In 388 

comparison with the same type of crossing scheme with twice lower sample size, maternal effects 389 

were estimated more precisely (narrower 95% CI) and with greater power (Fig. 5). 390 

 391 

Simulation datasets with pedigree-free method 392 

Overall, simulations based on our experimental dataset and on the large crossing scheme (CS15) 393 

showed very similar outcomes (Fig. 6). Using relatedness values computed from genotypes of 16 or 29 394 

microsatellite markers yielded very close performances of h
2
 estimation, both in terms of RMSE and 395 

power to detect a pedigree effect. Pedigree-free methods performed reasonably well when compared to 396 

using the full pedigree, showing only a slight 2-10% decrease in power, and a 30% increase in RMSE 397 

in the worst case, i.e. the smallest number of microsatellite markers and a high simulated heritability 398 

(h
2
 = 0.5). This increase in RMSE was explained by a downward bias in h² estimates when using 399 

microsatellite markers compared to using the full pedigree (results not shown). 400 

  401 

Discussion 402 

Statistical limitations in quantitative genetics studies may compromise to draw firm conclusions about 403 

the genetic basis of the traits under study. The present study used computer simulations to examine the 404 

validity and limits of a standard quantitative genetics experiment, in the context of the density-405 

dependent phase polyphenism, partly transmitted by maternal effects. We looked at the performance of 406 

animal models in disentangling heritability and maternal effects, and how these performances were 407 

affected by the crossing scheme and the relatedness inference. We interpreted phase trait data in the 408 

desert locust in the light of the simulation results and recommended methodological directions for 409 

future research. 410 

 411 

Performance of a naïve model (Model 1) 412 

In absence of maternal effects, a naive model (without any specified maternal effect) outperformed an 413 

informed model (Model 2) in heritability estimation, whatever the type and sampling size of crossing 414 

schemes. Our experimental half-sib/full-sib design led to unbiased estimation with the naïve model as 415 

well as a satisfying power, except for low levels of heritability (e.g. h
2
=0.1) (Fig. 1). In such situation, 416 

crossing schemes with more sires than dams by sires showed the greatest performances to estimate 417 

heritability (Fig. 3). This result echoes the classical calculation of h² in half-sib/full sib design analyses 418 

where h² is directly derived from the sire variance; therefore more sires should give greater precision 419 

to h² (Lynch & Walsh, 1998). This kind of crossing scheme might also be advantageous in species 420 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 15, 2017. ; https://doi.org/10.1101/149542doi: bioRxiv preprint 

https://doi.org/10.1101/149542


where it is easier to use a large number of males mated to few females each. This is the case for the 421 

desert locust, whose mating can last several hours to several days, strongly decreasing the potential 422 

number of female partners per males (Uvarov, 1966). In addition, in the naive model, the power to 423 

detect pedigree effect was greater with a larger number of offspring per female but this was not 424 

accompanied by any improvement in RMSE values (Fig. 3). In conclusion, a crossing scheme close to 425 

the one we used for the acquisition of experimental data on phase traits of the desert locust is relevant 426 

for the estimation of heritability in absence of a maternal effect (see the summary guideline in Table 427 

4). A standard sample size should provide robust information on moderate and high heritability traits, 428 

even if larger effort would improve the power and precision of estimation.  429 

However, in the naive model, the presence of a maternal effect strongly inflated heritability 430 

estimates (and statistical power), thus producing a large number of false positives, whatever the type 431 

and sample size of crossing schemes (Fig. 2). Two previous studies, using the same restricted 432 

maximum likelihood method, also warned about the overestimation of heritability estimates when 433 

maternal effects are not specified in the animal model (De Villemereuil, Gimenez & Doligez, 2013; 434 

Kruuk & Hadfield, 2007). In Kruuk and Hadfield (2007), the overestimation was large, as in our 435 

study, with a mean estimated h² of 0.52 (bird system) or even 0.6 (ungulate system) for a simulated h² 436 

of 0.3 and m² of 0.2. In comparison, Villemereuil et al. (2013) found smaller bias in h² caused by 437 

maternal effect: for instance, they obtained a simulated h² of 0.2 for a simulated h² of 0.1 and m² of 438 

0.45. This lower effect of maternal effect in the h² estimates may be due low levels of m² in their 439 

simulations (Villemereuil et al (2013)).  440 

 441 

Performance of an informed model (Model 2) 442 

Since maternal effects lead to overestimate heritability in a naive model, under their suspicion, it 443 

seemed appropriate to consider an informed model (specifying maternal effects). With our 444 

experimental dataset, h
2
 estimates were shown to be little biased downward but, the power to detect a 445 

pedigree effect became null or very low (< 11%; Fig. 2). The low performance in h
2
 estimation was 446 

improved by an increased number of families (instead of a large number of offspring per female) and a 447 

number of dams by sire greater than a number of sires (Fig. 3). The former result is in agreement with 448 

theoretical formulae of sampling error and power of heritability estimates (Lynch & Walsh, 1998) 449 

whereas the latter is probably linked to the greater precision of estimation of the maternal effect with 450 

larger numbers of females per male. Villemereuil et al. (2013) showed that parent-offspring 451 

regression, restricted maximum likelihood (tested here), and Bayesian methods (both using an 452 

informed model) performed similarly in estimating heritability in the presence of a maternal effect. 453 

However, parent-offspring regression requires measurements of both parents and offspring and 454 

Bayesian method gives even more biased results with small sample size (De Villemereuil, Gimenez & 455 

Doligez, 2013).  456 
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Our simulations also showed that the informed model estimated maternal effects more precisely than 457 

the heritabilities. However, optimized crossing schemes (Fig S4, Appendix) or large sample sizes 458 

(about 400 offspring, Fig 5) are needed to detect maternal effects with sufficient power. Otherwise, 459 

LRT between nested models should be used with caution to decide whether maternal effects are 460 

significant and which model to use. With the Bayesian approach, Holand and Steinsland (2016) 461 

demonstrated that using the Deviance Information Criterion (DIC, a generalization of the Akaike 462 

Information Criterion) to compare naive and informed models also required a substantial maternal 463 

effect (equal to half the heritability), even with a very large sample size (N=1025).  464 

 465 

Some recommendations regarding models and designs  466 

When sample size or crossing scheme are practically constrained, our simulations confirmed that 467 

specifying the right animal model is crucial to have sufficient power and reliable estimates of pedigree 468 

and maternal effects: omitting a maternal effect in the statistical model generates overestimation of 469 

heritability and false positives whereas inappropriately specifying a maternal effect dramatically wipes 470 

out the power of analyses. Since maternal effect estimation is more accurate than pedigree effect 471 

estimation, we advise to first inform on the maternal effect using an informed model, and then decide, 472 

from the obtained P-values and estimate values, which model should be used. Note that comparing 473 

outputs of both statistical models may also provide an indication on the absence of a maternal effect, 474 

since in such a case, both models should give congruent h² estimates. However, in the case where a 475 

maternal effect is estimated to be present, interpreting results must be done with caution since the 476 

power to detect a pedigree effect would remain low and the study might be inconclusive (see the 477 

summary guideline in Table 4). Furthermore, in the case where a maternal effect is estimated to be 478 

absent, the use of a naïve model might be done with a sub-optimal crossing scheme, as requirements 479 

of this model are opposite in relative numbers of dam by sires to sires and of offspring per family to 480 

family. Thus, without prior knowledge on the presence of a maternal effect, the best option to estimate 481 

h
2
 might be to favor the greatest number of families and a balanced number of sires and dams by sires.  482 

 483 

Use of pedigree-free methods 484 

Analyzing big datasets with strong relatedness structure, in order to get good detection power and 485 

accurate estimates of h
2
 and m

2
, implies being able to rear a lot of individuals in private boxes (to 486 

identify them if they cannot be marked) and to manipulate a lot of mating pairs. Private boxes 487 

represent an obvious constraint on experimental designs: more individuals mean more effort in 488 

sampling, rearing and manipulations. In addition, creating lots of mating pairs can prove to be 489 

challenging, especially in species where successful mating is not straightforward, for example if 490 

sexual selection is strong. In addition, in the context of phase polyphenism, manipulating rearing 491 

density of locust would be a requirement to carry comprehensive quantitative genetics experiments. 492 

Rearing individuals in group cages would alleviate these limitations, both reducing constraints on 493 
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mating (increasing the number of families and the half-sib/full-sib structure) and allowing studying 494 

more individuals effortlessly. However, this removes the possibility to use a classical pedigree since 495 

mating pairs cannot be known exhaustively, calling for the use of pedigree-free methods. 496 

 Our results showed that, using a matrix of molecular pairwise relatedness computed at16 497 

microsatellite markers might be sufficient to obtain reliable heritability estimates, despite slight 498 

decrease and downward bias in estimation precision in comparison with the use of a full pedigree. 499 

These results are more encouraging than those from most simulation studies in a context of natural 500 

populations (but see DiBattista, Feldheim, Garant, et al., 2009) and are probably achieved thanks to (i) 501 

the initial strong relatedness structure in tested datasets (Csilléry, Johnson, Beraldi, et al., 2006; Gay, 502 

Siol & Ronfort, 2013) and (ii) the high versatility of the microsatellite markers developed in the desert 503 

locust (i.e., mean expected heterozygosity of 0.84; see also Blondin, Badisco, Pagès, et al., 2013). A 504 

drawback of this pedigree-free method is that it is not possible to estimate maternal effects since the 505 

identity of mothers are not known. The solution would be to genotype both offspring and parents and 506 

to use a parentage assignment method to reconstruct the entire pedigree which could be used 507 

afterwards in an animal model either naïve or informed for a maternal effect. Thus, we carried out 508 

additional simulations of 100 genotype datasets (still with 16 microsatellite markers), on the crossing 509 

scheme that mimicked our experimental design (CS3) and the large optimized crossing scheme 510 

(CS15). We showed that the R package MasterBayes (Hadfield, Richardson & Burke, 2006) allowed 511 

a perfect reconstitution of the original pedigree (i.e. 100% simulated datasets had 0 errors in the 512 

reconstructed pedigree). This high performance in pedigree reconstruction is explained by the high 513 

levels of information within the Orthopteran microsatellite markers and within the pedigree structures 514 

controlled under laboratory conditions (i.e. strong level of relatedness in a half-sib /full-sib design) 515 

along with the knowledge of all maternal genotypes (Wang, 2006; Blouin, 2003; Visscher, Hill & 516 

Wray, 2008).  517 

 518 

Heritability and maternal effects in phase traits 519 

In order to get first insights into the transmission of phase traits, we measured body color, shape and 520 

size traits of late life stages (last-instar larvae and immature adults) of the desert locust under 521 

homogeneous conditions of isolation and main other environmental drivers (e.g. humidity, food given 522 

ad libitum). These measures were acquired under two controlled temperatures, one suboptimal (28°C) 523 

and one favoring fast growth (34°C). We used a half-sib/full-sib crossing scheme of 212 individuals 524 

maximizing numbers of offspring by family and of dams by sire. Previous studies showed that 525 

maternal effects affect the transmission of the F/C ratio, melanization and body weight of hatchlings in 526 

Schistocerca gregaria (Table 1). The main hypothesis explaining the proximal causes of these 527 

maternal effects involves a factor either controlling primary egg size (and thus the amount of yolk) 528 

which in turn influences hatchling size and color (Maeno & Tanaka, 2010; Maeno, Piou, Ould Babah, 529 
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et al., 2013), or released in the egg foam and influencing offspring behavior (Simpson & Miller, 530 

2007). 531 

Despite the statistical limitations of experimental dataset, we combined the simulation results 532 

to the experimental results to get some first insights into the transmission of phase traits in the desert 533 

locust. First, we showed that the informed model should allow relatively accurate estimates of 534 

maternal effect but with low probability (≤ 20%) of detecting a maternal effect of a low or moderate 535 

magnitude. Accordingly, we found that no trait exhibits a significant maternal effect (P-value ≥ 0.11). 536 

Since maternal variances were very low (thus m²=0) and additive variance estimates were strictly 537 

equal in the the naïve and informed models, we suggest that the transmission of E/F and O/V were not 538 

affected by maternal effect. Conversely, a maternal effect might affect body color (m² estimates ~ 0.2) 539 

and possibly body size and F/C (m² estimates ~ 0.1). Note that these m
2
 estimates were in all cases (at 540 

most twice) lower than the h
2
 estimates from the naïve model. 541 

The relatively low maternal effects estimated from our experimental dataset may be explained 542 

by the standardized rearing of the mothers in isolation condition. Doing so, we might both have 543 

equalized the maternal environment among our population and remove the main environmental source 544 

of maternal effect in the desert locust, i.e. crowding. In addition, maternal effects are expected to be 545 

larger for early offspring traits than for late traits (as the ones measured in this study) but can persist 546 

into adulthood (McAdam, Garant & Wilson, 2014). In locusts, whether maternal effects detected in 547 

hatchlings would persist in later stages is unknown but the colour of the hatchlings changed in the 548 

second stadium through the effect of lifetime rearing density from the first stadium (Tanaka & Maeno, 549 

2006). Therefore the maternal variance should be attributed mainly to genetic variation among 550 

mothers and to gene-by-environment interaction. For example, the morphometrical and behavioral 551 

phases were shown to be transmitted trans-generationally and the genetic variation in this response 552 

may indicate a parental effect mediated by parental genes (Chapuis, Estoup, Augé-Sabatier, et al., 553 

2008).  554 

We showed that it is not possible to conclude on heritability estimates with the informed 555 

model since power of heritability detection was mostly lower than 5%, whatever the actual heritability 556 

of traits. For traits displaying no maternal effect (E/F and O/V), heritability estimates obtained with 557 

the naïve model are more reliable even if the power is still limited for heritabilities under 0.3. 558 

Therefore E/F and O/V seem to not be (highly) heritable. When maternal effects are present, the naïve 559 

model does not allow reliable estimation of heritabilities. Concerning the four traits seemingly affected 560 

by maternal effect (green color, brightness, F and F/C), we cannot safely conclude on their level of 561 

heritability: the observed changes in heritability estimates between the naive and the informed model 562 

could be explained either by a downward bias in h² estimates in the informed model or by an 563 

overestimation of h² in the naive model in the presence of maternal effect, as shown by the 564 

simulations. Finally, since the maximal larval weight and F/V have heritability and maternal effect 565 
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estimates in the same order of magnitude, it is also not possible to draw conclusion about their 566 

transmission. 567 

Overall, even if our experimental results are not fully conclusive, they might indicate that 568 

some phase traits are affected by maternal effects. To increase the probability of formally come to a 569 

conclusion on the transmission of phase traits, maternal effects and heritabilities estimates with 570 

significantly more power and more accuracy are required. We showed that this may be achieved by 571 

optimizing the crossing schemes and more importantly by increasing the sample size. To do so, the use 572 

of a pedigree-free method on the available set of microsatellite markers in the desert locust (Blondin et 573 

al. 2013), would be promising for future quantitative genetic studies on grouped individuals. Note that 574 

this approach requires measuring all traits of interest simultaneously, or at least within the same 575 

developmental stadium if individuals are tagged (since tags are lost during molt, Gangwere et al. 576 

1964), before animals are sacrificed for genotyping.  577 

 578 

Conclusion 579 

Our simulations showed that it is challenging to jointly estimate heritability and maternal effects 580 

because that it requires datasets with a large sample size and number of families. When it is not 581 

possible to get such adequate datasets, conclusions about the heritability of studied traits should 582 

remain very cautious and conservative. In any case, comparing the outcomes of both naive and 583 

informed models can give precious clues about the impact of maternal effects on heritability 584 

assessments. Finally, we want to stress out that 1) simulations are a powerful and convenient tool to 585 

explore the performances of potential experimental designs and/or to determine the reliability of 586 

obtained estimates and 2) pedigree-free methods may help to achieve satisfying experimental design 587 

while limiting the need for time and space.  588 
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Table 1: Literature-based evidence for environmental lifetime and parental effects on the phase traits measured in this study.  714 
Category of phase traits (main 

recognized function) 

Mediated by Lifetime phenotypic plasticity Parental effect (on 

early stage) 

Black pigmentation (disease 

resistance
28,29

, migration ability) 

Density (gregarious) more black marks
9,19,21 more black 

marks
1,9,10,11,14,15,17, 20 

 Temperature (high) less black marks
8,20 more black marks

8 

 Humidity NA NA 

 Food (Dipterygium g.) NA less black marks
12

 

 Infection more black marks
29

 more black marks
8
 

    

Green-brown pigmentation 

(warning, predation resistance
4,5,24

) 

Density (gregarious) lower green coloration
19,20

 NA 

 Temperature (high) brighter green coloration
13,25

 brighter green 

coloration
13

 

 Humidity under 

isolation (high) 

brighter green coloration
25

 NA 

 

 Food NA NA 

    

Body shape (migration ability, 

brain neuronal integration
22

) 

Density (gregarious) larger E/F and smaller F/C, F/V, 

O/V
6,26,27

 (i.e., longer wings, larger 

heads, smaller eyes) 

) 

smaller F/C
 1,3,15

 

 Temperature (high) larger E/F and F/C
7,26

 NA 

 Humidity (low) larger E/F and smaller F/C
 7,26*

 NA 

 Food (low quality) larger E/F and smaller F/C
 16,18

 NA
 

    

Body size (investment to 

reproduction
2
) 

Density (gregarious) smaller size in ♀
6
 larger size

14
 

 Temperature (high) larger size
23

 NA 

 Humidity NA NA 

 Food (low quality) smaller size
16

 smaller size
16

 
1–910

  715 

11–1718
 716 

19–29
 717 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 15, 2017. ; https://doi.org/10.1101/149542doi: bioRxiv preprint 

https://doi.org/10.1101/149542


Note that there are interaction terms between temperature and humidity. The directional changes shown here are valid for an intermediate temperature only (30°C). In our 718 
study, all phase traits were measured in late stages, while parental influences summarized here concern early stages. NA: no data, controversial data or no effect. 1.Bouaïchi, 719 
A. & Simpson, S. (2003). 2.Chapuis, M.-P. et al. (2010). 3.Chapuis, M.-P. et al. (2008). 4.Dirsh, V. M. (1953). 5.Dudley, B. (1964). 6. Elliot, S. L., Blanford, S., Horton, C. 720 
M. & Thomas, M. B. (2003). 7.Hunter-Jones, P. (1958). 8.Islam, M. S., Roessingh, P., Simpson, S. J. & McCaffery,  a R. (1994). 9.Saiful Islam, M., Roessingh, P., Simpson, 721 
S. J. & McCaffery, A. R. (1994). 10.Despland, E. & Simpson, S. J. (2005). 11.Leo Lester, R., Grach, C., Paul Pener, M. & Simpson, S. J. (2005). 12.Maeno, K. & Tanaka, S. 722 
(2010). 13.Maeno, K. & Tanaka, S. (2009). 14.Nolte, D. J. (1965). 15.Pelissié, B. et al. (2016). 16. Sword, G. a, Simpson, S. J., El Hadi, O. T. & Wilps, H. (2000). 17. 723 
McCaffery, A. R., Simpson, S. J., Islam, M. S. & Roessingh, P. (1998). 18.Stower, W. J., Davies, D. E. & Jones, I. B. (1960). 19.Despland, E. & Simpson, S. J. (2005). 724 
20.Jackson, G. J., Popov, G. B., Ibrahim, A. O. & others. (1978). 21.Maeno, K. & Tanaka, S. (2011). 22.Manchanda, S. K., Sachan, G. C. & Rathore, Y. S. (1980). 725 
23.Nickerson, B. & others. (1956). 24.Ott, S. R. & Rogers, S. M. (2010). 25.Nolte, D. J. (1962). 26.Stower, W. J. (1959). 27. Uvarov, B. P. & Hamilton, A. G. (1936). 726 
28.Wilson, K. et al. (2002). 29.Wilson, K., Cotter, S. C., Reeson, A. F. & Pell, J. K. (2001). 727 
 728 

Table 2: Estimated genetic parameters for morphological and colour traits of the desert locust estimated from a model including either pedigree only (model 729 
1) or pedigree and mother (model 2) as random effects. We used the whole experimental dataset and the real pedigree. We presented values for 730 
phenotypic mean and variance (computed on raw data), additive genetic variance (VA), variance associated with maternal identity (VM) and residual 731 
variance (VR), heritability (h²), maternal effect (m

2
) and their standard errors (SE), p-values of the pedigree effect and maternal effect. Brightness: 732 

Level of brightness, which is inversely related to the level of black pigmentation; %Green: Percentage of green color; E: Length of the fore wing; F: 733 
Length of the hind femur; C: Maximum width of the head; H: Height of the pronotum; P: Length of the pronotum; O: Vertical diameter of eyes; V: the 734 
width of the vertex between eyes. 735 

 736 
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Table 3: Estimated genetic parameters for morphological and colour traits, estimated from either the real pedigree or molecular relatedness computed 737 

from 16 microsatellite markers. We used a subset of the experimental dataset constituted of 57 larvae and 96 adults, all reared at 34°C, and a 738 

statistical model including pedigree only as random effect (Model 1 in text). The fixed effects were sex * extramolting for all traits. We presented 739 

values for phenotypic mean and variance (computed on raw data), additive variance (VA), residual variance (VR), heritability (h²), its standard error 740 

(SE(h²)), and p-value associated with the pedigree effect. Brightness: Level of brightness, which is inversely related to the level of black 741 

pigmentation; %Green: Percentage of green color; E: Length of the fore wing; F: Length of the hind femur; C: Maximum width of the head; H: 742 

Height of the pronotum; P: Length of the pronotum; O: Vertical diameter of eyes; V: the width of the vertex between eyes. 743 

 744 
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Figure 1: Performance of heritability estimates evaluated from simulation datasets based on our experimental design. We show mean estimate (h²) 745 

and 95% confidence interval (empty circles and grey area, respectively), root mean square error (RMSE) (black squares) and percentage of 746 

simulations with significant pedigree effect (crosses) (y-axis) as a function of simulated h² (x-axis) and maternal effects (horizontal panels) . We used 747 

either Model 1 (without specified maternal effect, top panels) or Model 2 (specifying a maternal effect, bottom panels). 748 

 749 
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Figure 2: Performance of maternal effects estimation evaluated from simulation datasets based on our experimental design. We show mean estimates 751 

(m²) and 95% confidence intervals (empty circles and grey area, respectively), root mean square error (RMSE) (black squares) and percentage of 752 

simulations with significant maternal effect (crosses) as a function of simulated m² (x-axis) and simulated h² (panels). Estimates were obtained with 753 

Model 2. 754 

 755 

. 756 
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Figure 3: Effects on performance of h² and m² estimation of (a) the relative number of sires and dams by sire (larger: D:S<1 or smaller: D:S>1 ) and 758 

(b) the number of offspring per family for a given total sample size. We plotted the mean RMSE (top) and the mean power to detect h² and m² effects 759 

(bottom), both calculated over all values of h² or m², in relation with animal model (indicated above each panel) and absence or presence of maternal 760 

effect (indicated at the bottom of the graphs). 2, 4, 8, 13 and 26 are the numbers of offspring per family. * denotes a significant effect within a block. 761 

762 
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Figure 4: Performance of heritability estimation evaluated from simulation datasets on the best crossing scheme (CS15, 416 measured offspring). We 763 

show mean estimate (h²) and 95% confidence interval (empty circles and grey area, respectively), root mean square error (RMSE) (black squares) and 764 

percentage of simulations with significant pedigree effect (crosses) (y-axis) as a function of simulated h² (x-axis) and maternal effects (horizontal 765 

panels) We used either Model 1 (without specified maternal effect, top panels) or Model 2 (specifying a maternal effect, bottom panels).  766 
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Figure 5: Performance of maternal effects estimation evaluated from simulation datasets on the best crossing scheme (CS15, 416 measured 769 

offspring). We show mean estimates (m²) and 95% confidence intervals (empty circles and grey area, respectively), root mean square error (RMSE) 770 

(black squares) and percentage of simulations with significant maternal effect (crosses) as a function of simulated m² (x-axis) and simulated h² 771 

(panels). Estimates were obtained with Model 2. 772 
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Figure 6: Performance of heritability estimation evaluated from simulation datasets on marker-based pedigree free method. We analyzed two 774 

different numbers of microsatellite markers (16 or 29), and the pedigree method is also shown as a reference. Simulations were performed on two 775 

designs: the best simulated design (CS15, 416 measured offspring) and our experimental design. Performance was evaluated by the root mean square 776 

error (RMSE) (squares and solid lines) and the power to detect a pedigree effect (crosses and dashed lines). 777 
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