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Abstract 18 

Cytotoxic T cells are of central importance in the immune system’s response to disease. They 19 
recognize defective cells by binding to peptides presented on the cell surface by MHC (major 20 
histocompatibility complex) class I molecules. Peptide binding to MHC molecules is the single 21 
most selective step in the antigen presentation pathway. On the quest for T cell epitopes, the 22 
prediction of peptide binding to MHC molecules has therefore attracted large attention. 23 
In the past, predictors of peptide-MHC interaction have in most cases been trained on binding 24 
affinity data. Recently an increasing amount of MHC presented peptides identified by mass 25 
spectrometry has been published containing information about peptide processing steps in the 26 
presentation pathway and the length distribution of naturally presented peptides. Here, we 27 
present NetMHCpan-4.0, a method trained on both binding affinity and eluted ligand data 28 
leveraging the information from both data types. Large-scale benchmarking of the method 29 
demonstrates an increased predictive performance compared to state-of-the-art when it comes to 30 
identification of naturally processed ligands, cancer neoantigens, and T cell epitopes.  31 
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 32 

Introduction 33 

Cytotoxic T cells play a central role in the immune regulation of pathogenesis and malignancy.  34 
They perform the task of scrutinizing the surface of cells for the non-self peptides presented in 35 
complex with MHC (major histocompatibility complex) molecules. In cases such peptides are 36 
recognized, an immune response can be initiated potentially leading to killing of the infected 37 
(mal-functioning) cell. The most selective step in the pathway leading to this peptide 38 
presentation is the binding to MHC.  39 
 40 
Over the last decades, large efforts have been dedicated to the development of computational 41 
methods capable of accurately predicting this event. The accuracy of these methods has 42 
improved substantially over the last years, and most recent benchmark results demonstrate that 43 
more than 90% of naturally presented MHC ligands are identified at an impressive specificity of 44 
98% (1). This gain in performance is achieved partly by the extended experimental binding data 45 
sets made available in the IEDB (2), and partly by the development of novel machine-learning 46 
algorithms capable of capturing the information in the experimental binding data in a more 47 
effective manner. One such novel method is NNAlign-2.0, allowing the integration of peptides of 48 
variable length into the machine-learning framework (3). This novel training approach allows 49 
both the incorporation of a larger set of training data, but also and maybe more importantly 50 
enables the method to directly learn the length preference presented peptides for each MHC 51 
molecule from the experimental binding data (4). Even though most presented MHC class I 52 
ligands are of length 9 amino acids, the ability to incorporate length preferences directly into the 53 
model is critical as experimental data demonstrate that the length profiles of presented ligands 54 
can vary substantially between MHC molecules; prominent examples are the mouse H-2-Kb, 55 
with a preference for eight amino acids-long peptides (5) and HLA-A*01:01, where close to one 56 
third of MHC presented peptides have a length longer than nine amino acids (6).   57 
 58 
Some of the most well documented and applied of methods for predicting peptide binding to 59 
MHC class I include NetMHC (4,7), and NetMHCpan (1,8). These tools have over the last years 60 
gained increasing interest due to the recent focus on neoantigen identification within the field of 61 
personalized immunotherapy (9,10). However, as underlined in several studies including the 62 
recent Nature Biotechnology Editorial (11), “neoantigen discovery and validation remains a 63 
daunting problem”, mostly due to the relative high false positive rate of predicted epitopes.  64 
 65 
One potential cause for this relatively high rate of false positive epitope predictions is the fact 66 
that most methods are trained on binding affinity data, and as a consequence only model the 67 
single event of peptide-MHC binding. As stated above this binding to MHC is the most selective 68 
step in peptide antigen presentation. However, other factors including antigen processing (12) 69 
and the stability of the peptide:MHC complex (13) could influence the likelihood of a given 70 
peptide to be presented as an MHC ligand. Similarly, the length distribution of peptides available 71 
for binding to MHC molecules is impacted by other steps in the processing and presentation 72 
pathway, such as TAP transport and ERAP trimming, which are not reflected in binding data in 73 
itself (6). Advances in mass spectrometry (MS) have allowed the field of MS peptidomics to 74 
move forward. In this context, recent studies (14,15,16)  have suggested that training prediction 75 
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methods on such data rather than binding affinity data could improve the ability to accurately 76 
identify MHC ligands. As such, MS peptidome data would contain the comprehensive signal of 77 
antigen processing and presentation rather than just MHC binding affinity. Moreover, MS 78 
peptidome data generated by immunopeptidomic studies would contain precise information 79 
about the allele-specific peptide length profile preferences not available in the MHC binding 80 
affinity data sets.  81 
 82 
Identification of MHC bound peptides by mass spectrometry thus holds great promise for the 83 
generation of large scale data sets characterizing the peptidome specific for individual MHC 84 
molecules (15,17), and potentially also for the identification of T cell epitopes (18).  It is 85 
however clear that, within the foreseeable future, the number of MHC molecules characterized 86 
by such MS studies will remain limited. In this context, large efforts have over the last decades 87 
been dedicated to experimentally characterize the peptide binding space of MHC molecules 88 
using semi high-throughput MHC-peptide binding affinity assays (19,20), enabling binding 89 
specificity characterization of a large set of MHC molecules from different species.  90 
 91 
The IEDB contains a comprehensive set of MHC binding and ligand data available in the public 92 
domain. While this data set contains binding affinity data characterizing more than 150 different 93 
MHC class I molecules (from human, non-human primates, mouse, and life-stock), at the onset 94 
of this study only 55 MHC class I molecules were characterized by MS peptidome data. This 95 
imbalance made us suggest a novel machine learning approach integrating information from both 96 
types of data (binding affinity and MS ligands) into a combined framework benefitting from 97 
information from the two worlds. The proposed framework is “pan-specific” as it can leverage 98 
information across MHC molecules, data types, and peptide lengths into one single model. We 99 
hence expect this approach to achieve superior predictive performance compared to models 100 
trained on the two data types individually, and also achieve an improved performance when it 101 
comes to predicting length profile preferences of different MHC molecules.  102 
 103 
While recent works have demonstrated the improved ability to identify MHC ligands using 104 
methods trained on MS peptidome data (14,15), limited data is available on their impact for the 105 
identification of T cell epitopes.  In this work, we focus on demonstrating the improved 106 
prediction performance not only on large sets of MS peptidome data but also on T cell epitope 107 
data independent from the data used to train the new predictor. 108 
 109 

Materials and Methods 110 

Data sets 111 

 112 
Data on all class I MHC ligand elution assays available in IEDB database (www.iedb.org) were 113 
collected including the ligand sequence, details of the source protein, position of the ligand in the 114 
source protein and the restricting allele of the ligand. There were 160,527 distinct assays in total 115 
and the length of the ligands ranged from 4-37. All lengths with a count of ligands at least 0.5% 116 
of total ligands were selected for further analysis which included lengths 8-15 and comprised of 117 
99% of the assay entries. 118 
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 119 
The restricting MHC molecule of the ligands were analyzed and entries with alleles listed 120 
unambiguously were selected. For example, some entries where the HLA alleles are listed as just 121 
the gene name and alleles from chicken, horse, cow and mouse for which we did not have 122 
binding prediction algorithms were excluded. Representative alleles were assigned for entries 123 
where only supertypes were listed (e.g. HLA-A*26:01 for HLA-A26). Thus there were 127 class 124 
I molecules from human and mouse in the selected data set. Redundant entries with same ligand 125 
sequence and MHC molecule were removed and MHC molecules with at least 50 ligand entries 126 
were selected. This included 55 class I molecules and the number of available ligands per 127 
molecule varied widely from 50 to 9500.  128 
 129 
We hypothesized that some of the ligands could be artefacts of the elution assays and therefore 130 
their source proteins could be false positive as antigens. A protocol was designed to identify such 131 
false positive antigens and exclude them from the final data selected. The protocol identified 132 
proteins that had significantly lesser number of predicted binders among ligands than expected of 133 
random peptides using binomial probability distribution. Five sets of random peptides were 134 
generated from the ligand sequences by shuffling the amino acid residues within the ligands. 135 
Binding affinity was then predicted for the original ligands and random peptide sets for their 136 
corresponding alleles. The median of the predicted percentile ranks of the five random sets was 137 
estimated and assigned as the binding affinity of the random peptides. Based on a predicted 138 
binding affinity cut-off of percentile rank 1.0, the number of predicted binders among the 139 
original ligands and the random peptide sets were estimated. Five proteins were thus identified as 140 
false positives and ligand entries from these proteins were excluded from the data set. 141 
 142 
The final data set had 85,217 entries in total with ligand length ranging from 8 to 15. The ligands 143 
originated from 14,797 source antigens and were restricted by 55 unique HLA molecules.  144 
 145 
Random artificial negatives were generated for each MHC molecule covered by eluted ligand 146 
data by sampling randomly 10*N peptides of each length 8-15 amino acids from the antigen 147 
source protein sequences, where N is the number of 9mer ligands for the given MHC molecule. 148 

Neural network training 149 

The NNAlign training approach with insertions and deletions (3) was extended by adding a 150 
second output neuron as shown in figure 1. This was done to allow combined training on binding 151 
affinity and MS eluted ligand data. Binding affinity values are measured as IC50 values in nM 152 
(aff) and can be rescaled to the interval [0,1] by applying 1-log(aff)/log(50,000), representing 153 
continuous target values (21). For eluted ligands the strength of the interaction between peptide 154 
and MHC molecules is unknown, therefore a target value of 1 is assigned to binders and 0 to 155 
artificial negative peptides (see above).  156 
 157 
In this network architecture weights between the input and hidden layer are shared between the 158 
two input types (binding affinity/ligand), and weights connecting the hidden and output layer are 159 
specific for each input type. During neural network an example is randomly selected from either 160 
data set and submitted to forward- and backpropagation according to the NNAlign algorithm (3). 161 
In this setting, we define one training epoch as the average number of iterations needed to 162 
process each data point in the smaller data once.  163 
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 164 
A neural network ensemble was trained as described by Andreatta et al. (1) using 5-fold nested 165 
cross-validation. Networks with 60 and 70 hidden neurons were trained leading to an ensemble 166 
of 40 networks in total. 167 
 168 
The inputs to the neural networks consisted of the peptide and the MHC molecule in terms of a 169 
pseudo sequence (8). All peptides were represented as 9-mer binding cores by the use of 170 
insertions and deletions as described by Andreatta et al. (4) and encoded using BLOSUM 171 
encoding (21). As in the earlier work by Andreatta et al. (4), additional features for the encoding 172 
of peptides included: the length of the deletion/insertion; the length of peptide flanking regions, 173 
which are larger than zero in the case of a predicted extension of the peptide outside either 174 
terminus of the binding groove; and the length L of the peptide, encoded with four input neurons 175 
corresponding to the four cases L<=8, L=9, L=10, L>=11. 176 

Performance 177 

In order to benchmark the combined training method described above (referred to as BA+EL), 178 
additional methods with only one output but otherwise identical setup were trained on binding 179 
affinity data only (BA data) and eluted ligand data only (EL method). Performance was 180 
measured as area under the receiver operating curve (AUC), a value of AUC=0.5 indicates 181 
random model performance while an AUC=1 represents a perfect model. AUC values were 182 
calculated for each MHC allele separately and subsequently binomial tests were performed to 183 
compare the different models. 184 

Length preference of MHC molecules 185 

For all MHC molecules shared between the binding affinity and eluted ligand data sets, we 186 
generated predictions for 80,000 random natural peptides of lengths 8-15 amino acids (10,000 of 187 
each length). From the top 2% predictions, the frequency of each peptide length was estimated. 188 
Subsequently Pearson's correlation coefficient was calculated between the frequencies observed 189 
in the eluted ligand data set and the frequencies predicted by 4 models (BA only, EL only, 190 
binding affinity of BA+EL, and eluted ligand predictions of BA+EL) 191 

Leave-one-out validation 192 

Leave-one-out experiments were performed for all MHC molecules present in the eluted ligand 193 
data set. For this, a given MHC molecule was removed from the eluted ligand data set, then the 194 
BA+EL method was trained in five-fold cross-validation as described above, omitting multiple 195 
random initializations, resulting in an ensemble of 10 networks. Performance of the leave-one-196 
out models is compared to an ensemble of neural networks of the same size trained on the 197 
complete data set. Further predictions are made for 80,000 peptides of lengths 8-15 amino acids 198 
derived from natural proteins to evaluate a model’s ability to predict the length preference of an 199 
MHC allele that was not part of the eluted ligand training data. 200 
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The final NetMHCpan-4.0 method implementation 201 

The final neural network ensemble of the NetMHCpan-4.0 method is trained on binding affinity 202 
and eluted ligand data as described above using 5-fold cross-validation. Networks with 56 and 66 203 
hidden neurons (in accordance with earlier NetMHCpan implementations) were trained using 10 204 
distinct random initial configurations, leading to an ensemble of 100 networks in total. 205 
 206 
Percentile rank scores was estimated from predicted EL and BA binding values from a set of 207 
125,000 8-12mer random natural peptides (25,000 of each length) 208 

Validation on external data sets 209 

 210 
A dataset of eluted ligands was obtained from Pearson et al. (17). Also, a set of positive CD8 211 
epitopes was downloaded from the IEDB. The epitope set was identified using the following 212 
search criteria “T cell assays: IFNg", "positive assays only", "MHC restriction Type: Class I". 213 
Only entries with fully typed HLA restriction, peptides length in the range 8-14 amino acids, and 214 
with annotated source protein sequence were included. Positive entries with a predicted rank 215 
score greater than 10% using NetMHCpan-3.0 were excluded to filter out likely noise (6). For 216 
both the T-cell epitope and eluted ligand data sets, negative peptides were obtained by extracting 217 
all 8-14mer peptides from the source proteins of the eluted ligands and subsequently excluding 218 
peptides-MHC combination found with an exact match in the training data (both binding affinity 219 
and eluted ligand data sets). The final eluted data set contained 15,965 positive ligands restricted 220 
to 27 different HLA molecules, and the IEDB T cell epitope data set 1,251 positive T cell 221 
epitopes restricted to 80 HLA molecules.  222 
 223 
A Frank value was calculated for each positive-HLA pair as the ratio between the number of 224 
peptides with a prediction score higher than the positive peptide and the number of peptides 225 
contained within the source protein. The Frank value is hence 0 if the positive peptide has the 226 
highest prediction value of all peptides within the source protein, and a value of 0.5 in cases 227 
where an equal amount of peptides has a higher and lower prediction value compared to the 228 
positive peptide. 229 
 230 
An unfiltered eluted ligand data set was obtained from Bassani-Sternberg et al. (22). This data 231 
sets consisted of eluted ligand data from 6 cell lines each with fully typed HLA-A, B and C 232 
alleles. A data set was constructed for each cell line, including all 8-13mer ligand as positives, 233 
and 5 times the total number of ligands random natural negatives for each length 8-13. That is if 234 
a data set contained 5,000 ligands, 5*5000 = 25,000 random natural peptides of length 8, 9, 10, 235 
11, 12, and 13 were added as negatives arriving at a final data set with 155,000 (5000 + 236 
6*25000) peptides.  237 
  238 

Results 239 

We trained the NetMHCpan method version 4.0 for the prediction of the interaction of peptides 240 
with MHC class I molecules integrating binding affinity and MS eluted ligand data. Combined 241 
training was achieved by adding a second output neuron to the NNAlign approach described 242 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2017. ; https://doi.org/10.1101/149518doi: bioRxiv preprint 

https://doi.org/10.1101/149518
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

previously (3). In this setup, the first output neuron returns a score of binding affinity, and the 243 
second output neuron a score of ligand elution. As described in materials and methods, the model 244 
parameters between the input and hidden layer of the artificial neural network are shared 245 
between the two input types. Thanks to this network architecture, we expect the model to be able 246 
to combine informative patterns found in the two data types, boosting performance for both 247 
output neurons. To demonstrate this, we compared the performance of the BA+EL method to the 248 
BA method, trained only on binding affinity data and the EL method trained only on eluted 249 
ligand data. Figure 2 shows the mean performance per MHC allele of the four methods on four 250 
different data sets given in in terms of AUC (for details see Supplementary Table 1). From this 251 
analysis, it is clear that especially the BA+EL method with EL predictions performs much better 252 
on binding affinity data than the EL only method.  This observation strongly suggests that the EL 253 
only method, as a results of the small number of only 55 different MHC molecules included in 254 
the eluted ligand data set, has limited pan-specific potential compared to the BA+EL EL method 255 
trained on data from 169 MHC molecules included in the combined binding and MS eluted 256 
ligand data set.   257 

Peptide length preference of MHC molecules 258 

We next set out to investigate how well the different methods could capture the peptide length 259 
preferences of individual MHC molecules. For this, we predicted binding scores for a set of 260 
random natural peptides of lengths 8-15 amino acids and calculated the frequencies of peptides 261 
of different lengths in the top 2% of predictions. In figure 3a-c, we visualize examples of such 262 
peptide length preference profiles predicted by the BA, BA+EL BA, BA+EL EL, and EL only 263 
methods. The depicted MHC molecules are known to have preferences for different peptide 264 
lengths. All HLAs have a preference for 9mer peptides. However, HLA-A*01:01 has an 265 
increased preference for 10-mers compared to average, HLA-A*02:01 has a strong preference 266 
for  9-mers only, and HLA-B*51:01 has an increased preference for 8-mers compared to average 267 
(6). Binding affinity predictors often overestimate the amount of binding 10-mer peptides due to 268 
their over-representation in the binding affinity data set (4), which is also visualized in figure 3. 269 
 270 
Next, we extended the analysis to all MHC molecules included in the eluted ligand data set, 271 
calculating the correlation between observed and predicted length frequencies for each prediction 272 
method. This analysis (figure 3d) clearly confirms the results obtained from the 3 case examples, 273 
namely that the two methods BA+EL EL and EL only show significantly higher power for 274 
predicting the peptide length preference of individual MHC molecules compared to the two 275 
methods trained to predict binding affinity (BA, and BA+EL BA).    276 
 277 
The predictions for the two eluted ligand likelihood models only show low performance for one 278 
molecule; HLA-B41:04. This molecule is however only characterized by 52 eluted ligands, 279 
whose length profile forms an unusual bimodal distribution with peaks at length 9 and 11 (data 280 
not shown).   281 

Leave-one-out experiments on eluted ligand data 282 
In the above experiment, the MHC molecules used for the peptide length preference evaluation 283 
were also included as training data of the EL prediction methods. This naturally leads to a bias 284 
in the performance evaluation. To address this, and to access the pan-specific potential of the 285 
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BA+EL EL prediction method, we conducted a leave-one-out experiment. Here, a given MHC 286 
molecule was removed from the eluted ligand data set, and the BA+EL method retrained as 287 
described in material and methods. Next, both the predictive performance (estimated in terms of 288 
AUC for separating the known ligands from the artificial negatives) and the ability to predict the 289 
peptide length preference were evaluated. The result of the benchmark is shown in figure 4. 290 
This figure clearly confirms the pan-specific power of the BA+EL method. In terms of the 291 
predictive performance (figure 4a), the LOO methods display, as expected, a slight decrease in 292 
performance compared to a method trained and evaluated on all data (the all data method). 293 
When looking at the performance for predicting the peptide length profile (figure 4b), the LOO 294 
methods display a very high performance. Only in one case, the EL LOO method shows a 295 
substantial drop in performance for the left out MHC molecule. This case is H2-Kb, the only 296 
mouse molecule in the MS ligand data set with a strong preference for 8mer ligands. The 297 
BA+EL EL LOO method is able to predict the length profile of H2-Kb due to the H2-Kb affinity 298 
data present in the BA training data set. 299 

The NetMHCpan-4.0 method 300 

Having demonstrated the increased predictive power of the BA+EL method when it comes to 301 
prediction of peptide binding affinity (the BA+EL BA model), likelihood of being an eluted ligand 302 
(BA+EL EL model), and the ability of capturing the MHC specific peptide length binding 303 
preferences (also the BA+EL EL model), we set out to construct the final NetMHCpan-4.0 304 
method. This method was trained as the BA+EL method, using 5 fold cross-validation as 305 
described in materials and methods. The method is accessible at 306 
www.cbs.dtu.dk/services/NetMHCpan-4.0. The functionality is identical to the earlier 307 
NetMHCpan implementations with the important additional functionality that two different output 308 
options (binding affinity and eluted ligand likelihood) are available. By default, the program 309 
returns eluted ligand likelihood scores. An example of the output of the method is shown in 310 
Supplementary figure 1.  311 

Validation on external data sets 312 

The performance of the updated NetMHCpan method was assessed on two independent external 313 
data sets; one consisting of 15,965 eluted ligands covering 27 HLA molecules, and another 314 
consisting of 1,251 validated CTL epitopes covering 80 HLA molecules reported in the IEDB. 315 
The validation data sets were constructed as described in materials and methods. The source 316 
protein sequence was identified for each ligand/epitope, and all overlapping 8-14 mer peptides 317 
except the ligand/epitope were annotated as negatives. All data points included in the binding 318 
affinity and eluted ligand training data sets were excluded from the validation data set. A Frank 319 
value was calculated for each positive-HLA pair as described in materials and methods as the 320 
ratio of the number of peptides with a prediction score higher than the positive peptide to the 321 
number of peptides contained within the source protein. In this manner, we can construct the 322 
sensitivity curves presented in figure 5. Two observations are striking from these results. First 323 
and foremost, the results clearly demonstrated the increased predictive power of integrating 324 
eluted ligand data into the training data of NetMHCpan. In the left panel (the analysis of the 325 
eluted ligand data), we can observe that the gain in sensitivity at a Frank threshold of 1% for the 326 
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EL models (NetMHCpan-4.0 EL or EL only) compared to NetMHCpan-3.0 is 10% (95% versus 327 
85%), and 15% at a Frank threshold of 0.5% (90% versus 75%). These numbers mean that a 328 
ligand will have a prediction score within the top 0.5% of its source protein peptides in 90% of 329 
the cases using the EL models, compared to only 75% using NetMHCpan-3.0. The results shown 330 
in the left panel of figure 5 however also suggest that the two EL models achieve very similar 331 
predictive performance when it come to identification of eluted ligands. This is in strong contrast 332 
to the results obtained from the IEDB epitope data set (figure 5, right panel). Here, only the 333 
NetMHCpan-4.0 EL model demonstrates an improved predictive performance compared to 334 
NetMHCpan-3.0.  335 
 336 
There are several potential explanations for the improved performance of the EL models on the 337 
eluted ligand evaluation data including i) a bias against cysteins specific for the eluted ligand 338 
training and evaluation data, ii) as suggested earlier (15) differences in the MHC binding motifs 339 
contained within the eluted ligand and in-vitro binding data, and iii) the improved prediction 340 
accuracy of the ligand length preference (see figure 3d). To investigate i) we repeated the 341 
experiment displayed in figure 5, removing all peptides containing one of more cysteins. If the 342 
bias against cysteins in the eluted ligand data had any impact on the predictive performance of 343 
the proposed method, the bias would be reflected in an altered predictive performance on the 344 
reduced data sets. This turned out not to be the case (data not shown) hence suggesting that 345 
cysteine bias is not the influencing the relative predictive performance of the different methods. 346 
Looking into the differences in the binding motif derived from binding affinity and eluted ligand 347 
data respectively for specific HLA molecules, we find differences for most MHC molecules. A 348 
few examples are shown in figure 6.. 349 
 350 
These results demonstrated that eluted ligands tend to share more conserved anchor motifs 351 
compared to affinity-defined binders. This observation is in agreement with earlier findings 352 
suggesting eluted ligands to be more stably bound to MHC-I molecules compared with other 353 
affinity matched peptides (13,23). In summary, these analyses suggest that the gained predictive 354 
performance of the EL method on the eluted ligand evaluation data is driven by at least two 355 
factors; differences in binding preferences between eluted ligand and affinity-defined peptide 356 
binders, and the improved prediction accuracy of ligand length preference of the EL methods.  357 

To be or not to be a ligand 358 

We investigated what prediction threshold to use to best separate ligand from non-ligand 359 
peptides. Earlier work by others and us  suggests that different MHC molecules present peptides 360 
at different predicted binding affinity thresholds (1,24). Given this, it was interesting to 361 
investigate to what degree a similar observation could be made for the eluted ligand likelihood 362 
predictions produced by the NetMHCpan-4.0 method. To address the question, we compared the 363 
predicted ligand likelihood scores of all 15,965 ligands in the Pearson data set. The result of this 364 
analysis is displayed as box-plots in the left panel of figure 7.  365 
 366 
This figure reveals that the likelihood prediction scores for known ligands come out very 367 
different for different HLA molecules. The large difference in prediction values between HLA 368 
molecules can to a high degree be linked to their absence from the eluted ligand training data. 369 
The molecules with lowest median eluted ligand likelihood scores in this figure are molecules 370 
absent from the eluted ligand training data set.  However, as demonstrated in figure 4 and 5, the 371 
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fact that an HLA molecule has not been characterized with eluted ligand training data does not 372 
impair its predictability. Given this, a natural measure to correct for this great imbalance in 373 
prediction score is use percentile rank scores to reconcile and make prediction score comparable 374 
between different MHC molecules. The right panel of figure 7 shows the results of such a 375 
transformation. Here, eluted ligand likelihood prediction values for each ligand in the Pearson 376 
data are transformed to percentile rank scores, and the score distribution is visualized as box 377 
plots for each HLA molecule. Given that percentile rank values fall in the range 0-100%, it is 378 
apparent that transforming the prediction values into such rank scores, allows for a direct score 379 
comparison between HLA molecules.  380 
 381 
In light of these results, we next investigated what percentile rank threshold to apply to optimally 382 
identify MHC ligands. We assess this by calculating sensitivity/specificity curves as a function 383 
of the percentile rank score threshold for a balanced set (max 100 ligands per HLA) of eluted 384 
ligands and source protein negatives from the Pearson evaluation data set. The results are shown 385 
in figure 8 and confirm earlier findings that the vast majority (96.5%) of natural ligands are 386 
identified at a very high specificity (98.5) using a percentile rank threshold of 2%.  387 

Evaluation on unbiased data sets 388 

Most eluted ligand data potentially suffer from biases towards current prediction methods. This 389 
is because many eluted ligand studies, including the Pearson data used here, assign MHC 390 
restriction based on predicted binding. To address the impact of this bias, we here benchmark our 391 
method against sets of unfiltered eluted ligand data. These data sets were obtained from Bassani-392 
Sternberg et al. (22), and cover eluted ligands obtained from 6 cell lines each with typed HLA 393 
expression. From these data, we constructed 6 benchmark data sets by enriching each positive 394 
eluted ligand data set with a set of random natural negative peptides (for details see materials and 395 
methods). After filtering out data included in the training data of NetMHCpan-4.0, we next 396 
benchmarked the predictive power of the different prediction methods. The result of the 397 
benchmark is shown in figure 9. 398 
 399 
 400 
These results clearly confirm the improved performance of the proposed NetMHCpan-4.0 eluted 401 
ligand likelihood predictions over both the NetMHCpan-4.0 and NetMHCpan-3.0 binding 402 
affinity predictions. Also, the results show that in the majority of cases the percentile rank 403 
predictions achieve improved predictive performance compared to the raw prediction scores. 404 

Identification of cancer neoantigens 405 

A research field where prediction of naturally processed and presented eluted ligand has attracted 406 
large recent attention is rational identification of cancer neoantigens. In contrast to tumor-407 
associated self-antigens, cancer neoantigen are naturally presented ligands containing tumour-408 
specific mutations. Such neoantigens are attracting large attention since these peptides are new to 409 
the immune system and not found in normal tissues, and hence are ideal potential cancer vaccine 410 
candidates or targets for adoptive T cell therapy. Depending on the mutational load, the number 411 
of potential tumour-specific neopeptides (peptides containing one or more missense mutations) 412 
can be in the order of many thousands (25). This large number of potential peptide candidates 413 
clearly underlines the need for tools to rationally downsize the peptide space in the search for 414 
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cancer neoepitopes. A recent study by Bassani-Sternberg et al. (14) demonstrated how this 415 
downsizing could be effectively achieved by a prediction method trained on a large set of MS 416 
eluted ligands. Here, we repeated this benchmark analysis using NetMHCpan-4.0. The results are 417 
shown in figure 10 and confirm the finding by Bassani-Sternberg et al. (14), that predictors 418 
trained on MS eluted ligand data information in most cases show very high predictive power for 419 
the identification of cancer neoantigens. Both the NetMHCpan-4.0 and MixMHCpred method 420 
proposed by Bassani-Sternberg et al. (14) identify the known neoantigens within the top 25 421 
peptides in 6 out out 10 cases. NetMHCpan-3.0 only achieves this in 2 out of 10 cases. The 422 
results also confirm the earlier findings presented here, that NetMHCpan-4.0 achieves improved 423 
performance compared to that of version 3.0, and that the ligands in all cases are predicted with 424 
very strong eluted ligand likelihood values (all percentile rank values are less than 1, and the 425 
majority are less than or equal to 0.02).  426 

Discussion 427 

In this work, we have demonstrated how a relatively simple pan-specific machine learning 428 
method based on the NNAlign framework can be constructed integrating information from 429 
binding affinity data with MS peptidome data. Benefitting from the larger set of peptide binding 430 
affinity data with very broad MHC coverage (more than 150 molecules), and the additional 431 
information contained within MS peptideome data (information about both antigen processing 432 
and presentation, and allele specific peptide length profile), we could demonstrate that the 433 
proposed method, NetMHCpan-4.0, achieved improved predictive performance not only when it 434 
comes to characterizing the binding specificity of a given MHC molecule, but also when it 435 
comes to predicting the peptide length profile. Due to the pan-specific potential of the method, 436 
the improved performance was extended beyond the relatively few MHC molecules 437 
characterized by MS binding data included in the training of the method. Given this, we thus 438 
conclude that the proposed framework is able to benefit from the best of the two data sets; MHC 439 
coverage from the binding affinity data, and antigen processing and presentation, and allele 440 
specific peptide length profile from the MS data.  441 
 442 
Our benchmarks confirmed earlier findings that prediction values for known ligands vary 443 
substantially between MHC molecules (26), and that only by the use of percentile rank scores 444 
can predictions between different MHC molecules be readily compared.  445 
 446 
The improved peptide-MHC tool is made publicly available at 447 
www.cbs.dtu.dk/services/NetMHCpan-4.0. The tool was benchmarked on two large independent 448 
data sets; one consisting of ~16,000 MS identified MHC restricted ligands (17) and one 449 
consisting of more than 1,250 validated T cell epitopes described in the IEDB. For both data sets, 450 
the updated version 4.0 of NetMHCpan significantly outperformed the earlier NetMHCpan 3.0 451 
method. In particular, the benchmark on T cell epitope data - to the best of our knowledge - 452 
demonstrated for the first time how integration of MS peptidome data into a prediction method 453 
of MHC peptide presentation, can lead to improved predictive performance for T cell epitope 454 
discovery. The improved performance on this data set was only observed for the method trained 455 
on the combined data, and was not observed for the method trained on MS peptidome data alone. 456 
This observation underlines the large benefit of merging the two data types.    457 
 458 
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Investigating potential causes for the observed improved performance of the proposed tool for 459 
identification of eluted ligands confirmed earlier findings that eluted ligands share a reduced 460 
amino acid diversity at the MHC anchor positions (13). This observation is consistent with the 461 
notion that ligands are more stably bound to MHC-I molecules compared with average affinity-462 
defined bound peptides. We postulate that this difference in binding preferences between eluted 463 
ligand and affinity-defined peptide binders, combined with the improved prediction accuracy of 464 
ligand length preference of the EL methods are the main factors driving the improved predictive 465 
performance.  466 
 467 
When benchmarking the predictive performance for identification of T cell epitopes, we 468 
observed that only the NetMHCpan-4.0 EL model trained on the combined eluted ligand and 469 
binding affinity data set demonstrated an improved predictive performance compared to 470 
NetMHCpan-3.0. This observation was surprising at first, as we would expect an improved 471 
performance also by the method trained on the eluted ligand only due to the reasons outlined 472 
above. One likely explanation for this result is the bias in the T cell epitope data towards 473 
predicted binding affinity motifs. Most T cell epitopes have been identified using some kind of 474 
HLA binding predictions as a filter prior to experimental validation hence giving a bias towards 475 
prediction methods trained based on binding affinity data. Given this, the source of the improved 476 
performance of the NetMHCpan-4.0 EL method compared to NetMHCpan-4.0 BA on the T cell 477 
epitope benchmark data set is thus primarily driven by its improved prediction of the ligand 478 
length preference. 479 
 480 
It is clear that even with the improved predictive performance of the NetMHCpan-4.0 tool 481 
reported here, not all MHC ligands and T cell epitopes will be captured by a prediction 482 
workflow. Likewise, it is clear that very few if any experimental workflows enable the 483 
exhaustive identification of the ligandome or epitope set contained within a given sample. Given 484 
the two workflows to work in concert and use in-silico screens as a guide to the experimental 485 
setup to effectively boost the sensitivity of the combined workflow.  Such an approach where in-486 
silico predictions were used to reduce the search space has with success been used to improve the 487 
sensitivity of MHC class I ligand discovery (27) and we expect other similar applications to 488 
appear in the future.  489 
 490 
The machine-learning framework proposed here is not limited to the integration of MHC class I 491 
peptide binding affinity and MS peptidome data. The approach can readily be extended to 492 
integrate other types of relevant data including MHC binding stability (28), and epitope data. 493 
Also, the approach can in its current form be directly applied to the MHC class II system. The 494 
only critical limitation for such data integrations is the criteria that each data point must be 495 
associated with a specific MHC element. This information is not always readily available, but 496 
can in most cases be inferred by unsupervised clustering of the available data (using 497 
GibbsCluster (29), position weight matrix mixture models (16), or similar approaches), and 498 
association of each cluster to an MHC molecule of the given host.  499 
 500 
In conclusion, we have here described a new framework for training of prediction methods for 501 
MHC peptide presentation prediction integrating information from two data sources (MS eluted 502 
ligand and peptide binding affinity). The framework was used to develop an updated version of 503 
NetMHCpan (version 4.0, available at www.cbs.dtu.dk/services/NetMHCpan-4.0) with 504 
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improved predictive performance for identification of validated eluted ligands, cancer 505 
neoantigens and T cell epitopes. 506 
 507 
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Figures 601 

 602 
Figure 1: Visualization of the neural networks with two output neurons used for combined 603 
training on binding affinity and eluted ligand data. 604 
 605 

 606 
Figure 2: Mean performance per MHC molecule measured in terms of AUC for the four 607 
methods; BA (trained on binding affinity data only), EL (trained on eluted ligand data only), 608 
BA+EL BA (the binding affinity prediction value of the model trained on the combined binding 609 
affinity and eluted ligand data), and BA+EL EL (the eluted ligand likelihood prediction value of 610 
the model trained on the combined binding affinity and eluted ligand data) The methods were 611 
evaluated on all binding affinity (all_BA) data and all eluted ligand (all_EL) data including 612 
negative peptides derived from source proteins, and on data sets restricted to alleles occurring in 613 
both binding affinity and eluted ligand data sets (shared_BA, and shared_EL).  614 
 615 
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 616 
Figure 3:  a-c) Predicted length preference of selected MHC molecules according to different 617 
models. Binding to selected HLA molecules was predicted for 80,000 8-15-mer peptides and the 618 
frequency of peptide lengths in the top 2% predicted peptides calculated. d) Correlation of 619 
predicted and observed ligand length for different models. Binding to all HLA alleles present in 620 
both binding affinity and eluted ligand data sets was predicted using the four different prediction 621 
methods for 80,000 8-15-mer peptides. Subsequently, the occurrence of different peptide lengths 622 
in the top 2% predicted peptides for each molecule was calculated, and the correlation coefficient 623 
between these frequencies and the length frequencies in the eluted ligand data set calculated. 624 
 625 
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 626 
Figure 4: Eluted ligand leave-one-out experiments. a) Performance per MHC allele of a model 627 
trained on all data and a model where the eluted ligand data of a given allele was left out of the 628 
training process. b) Correlation of predicted and observed ligand length for a model trained on 629 
all data and the leave-one-out models. 630 
 631 

 632 
Figure 5: Sensitivity of different models as a function of the Frank threshold on a) eluted ligands 633 
published by Pearson et al. (17) and b) T-cell epitope data downloaded from IEDB. 634 
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 636 
Figure 6: Binding motifs for HLA molecules derived from (upper panel) in-vitro binding 637 
affinity data using a binding threshold of 500 nM, (lower panel) eluted ligand data. Logos were 638 
made using Seq2Logo with default parameters (30). 639 
 640 

 641 
Figure 7: Motivation for using percentile rank score predictions. Box-plot representation of 642 
prediction values for the ligands in the Pearson data set. Left panel: Eluted ligand likelihood 643 
prediction scores. Right panel: Percentile rank values.  644 
 645 
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 646 
Figure 8: Sensitivity and specificity performance curves for the NetMHCpan-4.0 eluted ligand 647 
likelihood predictions. Curves are estimated from a balanced set of eluted ligands from the (17) 648 
data set. The insert shows the complete sensitivity and specificity curves as a function of the 649 
percentile rank score. The main plot shows the curves in the high-scoring range for 0-5 percentile 650 
scores. Dotted vertical and horizontal lines are guides to the eye indicating sensitivity and 651 
specificity and the 2% rank score threshold. 652 
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 654 
Figure 9: Predictive performance measured in terms of AUC on the Bassani-Sternberg unfiltered 655 
eluted ligand data sets. Prediction values are assigned to each peptide in a given data set as the 656 
lowest percentile rank score / highest prediction score to each of the HLA molecule expressed by 657 
the given cell line. The six methods included are: EL RNK (NetMHCpan-4.0 eluted ligand 658 
percentile rank), EL SCO (NetMHCpan-4.0 eluted ligand likelihood score), BA RNK 659 
(NetMHCpan-4.0 binding affinity percentile rank), BA SCO (NetMHCpan-4.0 binding affinity 660 
score), 3.0 RNK (NetMHCpan-3.0 percentile rank, and 3.0 SCO (NetMHCpan-3.0 binding 661 
affinity score). 662 
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 666 
Figure 10: Predictive performance evaluated in terms of rank of neo-antigens identified in four 667 
melanoma samples. A rank value of 1 corresponds to the ligand obtaining the highest score 668 
(lowest percentile rank) of all peptides from the given sample. Data and performance values for 669 
MixMHCFpred are from (31). NetMHCpan-4.0 and NetMHCpan-3.0 are performance values 670 
obtained by assigning to each peptide in the given data set the lowest percentile rank score to 671 
each of the HLA-A and B molecules expressed by the given cell line. The values in parentheses 672 
for NetMHCpan-4.0 are the predicted percentile rank values.  Lowest rank value for each ligand 673 
is highlighted in bold.  674 
 675 


