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Abstract 

 

Background: In network science, although different types of centrality measures have been introduced 

to determine important nodes of networks, a consensus pipeline to select and implement the best tailored 

measure for each complex network is still an open field. In the present study, we examine the node centrality 

profiles of protein-protein interaction networks (PPINs) in order to detect which measure is succeeding to 

predict influential proteins. We study and demonstrate the effects of inherent topological features and 

network reconstruction approaches on the centrality measure values.  

Results: PPINs were used to compare a large number of well-known centrality measures. Unsupervised 

machine learning approaches, including principal component analysis (PCA) and clustering methods, were 

applied to find out how these measures are similar in terms of characterizing and assorting network 

influential constituents. We found that the principle components of the network centralities and the 

contribution level of them demonstrated a network-dependent significancy of these measures. We show 

that some centralities namely Latora, Decay, Lin, Freeman, Diffusion, Residual and Average had a high 

level of information in comparison with other measures in all PPINs. Finally, using clustering analysis, we 

restated that the determination of important nodes within a network depends on its topology. 

Conclusions: Using PCA and identifying the contribution proportion of the variables, i.e., centrality 

measures in principal components, is a prerequisite step of network analysis in order to infer any functional 

consequences, e.g., essentiality of a node. Our conclusion is based on the signal and noise modeling using 

PCA and the similarity distance between clusters. Also, an interesting strong correlation between silhouette 

criterion and contribution value was found which corroborates our results. 

 

Keywords: 
 Network science, Centrality analysis, Protein-Protein Interaction Network (PPIN), Clustering, Principal 

Components Analysis (PCA) 
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Introduction  

 

Network modelling of diverse biological complex processes is a pervasive approach in contemporary 

biological researches [1]. This application of modelling is divided into two parts; moving from elements 

and their relationships toward a whole system and getting back from a whole into important and local 

structures among the system [2, 3]. For instance, researchers experimentally or computationally collect 

information about a set of proteins and the interactions between them to reconstruct a protein-protein 

interactions network (PPIN). Then, they define an importance or an influence concept such as degree 

centrality (hub) in order to identify influential structures among the given PPINs which contains individual 

nodes, edges and subgraphs such as cliques or pathways. Not only in the biological networks but also in all 

types of networks such as social or literary, finding center of the network is a chief question which is called 

centrality analysis [4, 5]. By this analysis, the influential parts of the networks which are useful to predict 

the behavior of the whole network could be determined. Any change of these parts could be followed 

through the system and may disturb the whole [6]. Various centrality metrics or measures have been defined 

during last forty years, mostly in the context of social network analyses [5, 7]. Whilst basic concepts of the 

graph theory, including number of links, distances, eigenvalues and local structures, are represented in 

almost all centrality analyses, some of these measures are very popular and mostly used in diverse context 

using specific tools [8]. There is much research in biological areas which has studied the correlation of the 

lethality and essentiality with some centrality measures [4, 9-16]. Additionally, these measures have been 

applied in many social and epidemiological research studies, examples include predicting the details of 

information controlling or disease spreading within a specific network in order to delineate how to 

effectively implement target marketing or preventive healthcare [7, 17-21]. 

However, the selection of the appropriate metric for given networks is still an open question. Which one 

is better in translating  center of the real networks? Do all of them independently highlight the central 

network elements and encompass independent information or are they correlated? Are computations of all 

these measures meaningful in all different network models or do they depend on the network architecture 

and the logic of the network modeling?  

In 2004, Koschützki and Schreiber compared five centrality values in two biological networks and 

showed different patterns of correlations between centralities. They generally concluded that all Degree, 

Eccentrecity, Closeness, random walk Betweenness and Bonacich’s Eigenvector centralities should be 

considered and could be useful in various applications without explaining any preference among them [22]. 

Two years later, they showed the independence behavior of centrality measures in a PPIN using 3D parallel 

coordinates, orbit-based and hierarchy-based comparison [23]. Valente et al. examined the correlation 
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between the symmetric and directed versions of four measures which are commonly used by the network 

analysts. By comparing 58 different social networks, they concluded that network data collection methods 

change the correlation between the measures and these measures show distinct trends [24]. Batool and Niazi 

also studied three social, ecological and biological neural networks and they concluded the correlation 

between Closeness-Eccentricity and Degree-Eigenvector and insignificant pattern of Betweenness. They 

also demonstrated that Eigenvector and Eccentricity measures are better to identify influential nodes [25]. 

In 2015, Cong Li et al. further investigated the question of correlation between centrality measures and 

introduced a modified centrality measure called mth-order degree mass. They observed a strong linear 

correlation between the Degree, Betweenness and Leverage centrality indices within both real and random 

networks [26].  

Similar in methodology but different in networks, all these studies attempted to quantify correlations 

between different well-known centrality measures. In contrast, in this study, we develop a formal 

methodology (besides the correlation analysis) for centrality comparison and usage within network analysis. 

We comprehensively compared 27 distinct centrality measures applied to 14 small to large biological and 

random networks. All biological networks are PPIN among same set of proteins which are reconstructed 

using a variety of computational and experimental methods. We demonstrate how the ranking of nodes (or 

edges) using these measures depends on the network structure (topology) and why this network concept i.e. 

centrality requires  renewed attention.  
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Materials and methods 

 

The workflow of this study is schematically presented in Fig. 1. Our workflow starts by constructing 

and retrieving networks, followed by network global analysis. The centrality analysis and comparing the 

centrality measures using machine learning methods were the next main steps.  

Reconstruction of the networks 

In this study, a UniProtKB reviewed dataset [27] was used to retrieve proteins in  Saccharomyces 

cerevisiae (6721 proteins). UniProtKB accessions were converted to STRING using the STRINGdb R 

package, which resulted in 6603 protein identifiers (3rd Sep2016).  Interactions among proteins were 

extracted based on the STRING IDs . In the 2017 edition of the STRING database the results of these 

interactions are structured in a way to provide maximum coverage; this is achieved by including 

indirect and predicted interactions on the top of the set. Each result is assigned a score which represents to 

what extent the interactions are biological, meaningful, specific and reproducible according to the 

supporting evidence. The STRING database is comprised of channels that are known as "evidence 

channels", which are formed according to the origin and type of evidence [28]. In this study, 13 evidence 

channels indicating PPIN of yeast are present: co-expression, co-expression-transferred, co-occurrence, 

database, database-transferred, experiments, experiments-transferred, fusion, homology, neighborhood-

transferred, textmining, textmining-transferred and combined-score.  

For the purpose of comparison with real network behavior, a null model network was generated. The 

null network is the Erdős–Rényi model [29] and was generated using the igraph R package [30]. The 

generated null network was created with a size similar to the yeast reconstructed PPIN in order to have a 

more fair comparison. 

Fundamental network concepts analysis 

To understand the network structure, we reviewed various network features using several R packages 

[31-33]. First of all, we inquired the score distribution of different channels and whether there is any 

significant correlation among the scores for each PPI. Then the networks were made readable in the R 

environment.  The  network density, clustering coefficient, network heterogeneity, and network 

centralization properties of the network were calculated. The number of  connected components and  graph 

diameter for each network were also computed. Then, the power-law distribution was determined by 

computing α and r values.  
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Centrality analysis 

For this research study, we are only considering undirected, loop-free connected graphs according to the 

PPIN topology. For centrality analysis, the following 27 centrality measures were selected: Average 

Distance [34], Barycenter [35], Closeness (Freeman) [7], Closeness (Latora) [36], Residual closeness [37], 

ClusterRank [38], Decay [39], Diffusion degree [40], Density of Maximum Neighborhood Component 

(DMNC) [41], Geodesic K-Path [42, 43], Katz [44, 45], Laplacian [46], Leverage [47], Lin [48], Lobby 

[49], Markov [50], Maximum Neighborhood Component (MNC) [41], Radiality [12], Eigenvector [51], 

Subgraph scores [52], Shortest-Paths betweenness [7], Eccentricity [53], Degree, Kleinberg's authority 

scores [54], Kleinberg's hub scores [54], Harary graph [53] and Information [55]. All these measures can 

be calculated for undirected networks in a reasonable time. These measures were established using 

the centiserver [8], igraph [30] and sna [56] R packages. We assorted the centrality measures into five 

distinct parts including Distance-, Degree-, Eigen-, Neighborhood-based and miscellaneous groups depend 

on their logic and formulas (Table 1).  

Unsupervised machine learning analysis  

We used principal components analysis (PCA) [57] as a key step to understanding the influence of a 

centrality measure within a network. PCA was performed on normalized computed centrality measures . In 

order to visualize the result of the PCA and clustering analysis, we applied some  R packages [58-60]. After 

normalization, we examined whether the centrality measures in all networks can be clustered by performing 

the clustering tendency procedure. This required calculating the Hopkins’ statistic values and using VAT 

(Visual Assessment of cluster Tendency) plot. We applied the clustering validation measures to get the best 

number of clusters using some other R packages [61, 62]. This will provide silhouette scores in different 

kinds of clustering methods such as hierarchical, k-means, and PAM (Partitioning Around Medoids).. 

Finally, distance metrics could be formed using the Pearson correlation in order to find any relationships 

between two centrality measures in each PPIN. To be able to compare the clustering results in the various 

PPINs, the Jaccard similarity index [63] was used relying on the similarity metrics of the clustering results 

[64]. 
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Results 

 

 Evaluation of network global properties and centrality analysis 

By importing the same set of protein names, the 13 different PPINs were extracted from the STRING 

database using different predictive channels. Note that the PPI scores derived from the neighborhood 

channel of yeast were all zero. The distribution of STRING links and edge scores are presented for each 

channel (Fig. 2). As shown in the figure, all these channels independently identify an interaction for each 

protein pair with specified score or weight. Therefore, we have 13 dissimilar network prediction methods 

and the following results are independent from each other. The independency between evidence channels 

is also shown in Fig. 3 by a pairwise scatterplot and Pearson’s r correlation coefficient. The scores are not 

correlated and most of the coefficients are around the zero.  

In the following, we consider the evidence channel scores as edge weights in each PPIN. So, along with 

the Erdos-Renyi null network, the 14 networks were utilized in order to establish an examination of 

centrality measures. Note that the giant component of each network was calculated to compute 

corresponding measures. To make sense of the networks and their giant component's structure, some 

fundamental network concepts were computed as shown in Table 2. The homology, fusion, co-occurrence 

and database networks contain high numbers of unconnected components. Except the homology network 

which has the smallest giant component, the density of all networks are between 0.01-0.05, as was expected 

as real network are typically sparse. The network diameter of the fusion, co-occurrence, database and co-

expression are one order of magnitude greater than the others. All of the PPINs except homology network 

have high r correlation values to the power-law distribution with the diverse alpha coefficients. The high 

value of the average clustering coefficients of the database and homology indicates the modular structure 

of these networks. Most of the PPINs have the high value of the heterogeneity and network centralization 

compared with the null network. The degree distribution and clustering coefficients for the networks are 

also plotted in Fig. 4 and Fig. 5 respectively. Except the homology network, all the degree distribution are 

left-skewed similar to the scale-free networks. The scale-free property of each network was visualized (See 

Supplementary file 1).  

In the next step, the 27 centrality measures of nodes were computed in all of the 14 networks (Data is 

available upon request). As  shown in Fig. 6, beside the observed correlation between centrality measures 

in both combined-score and Erdos-Renyi networks, their distribution and the level of associations showed 

the vast diversity among all five centrality groups especially in Distance-, Neighborhood-based and 

Miscellaneous groups. The Eccentricity and Leverage centralities which comes from Distance- and Degree-

based groups respectively showed the independent shape of distribution compared to the others. This pattern 

is repeated in all PPINs to some extent (See Supplementary file 2). However, the multimodal distributions 
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of centrality measures are presented in the random network but not in the real networks. Also, the value of 

the associations on average are interestingly higher in the null network than the PPINs. 

 

Dimension reduction and clustering analysis 

In the next step, PCA-based dimensionality reduction was used not only to minimize information loss, 

but to reveal which centrality measures contain the most relevant information and it can effectively identify 

important or influential nodes in networks. As illustrated in Fig. 7, the profile of the distance to the center 

of the plot and their directions are mostly similar except for the homology which is similar to the random 

network. The contribution values of each centrality measure are shown according to rank order in Table 3, 

based on their corresponding principal components. A similar pattern of the contribution of centrality 

measures could be observed in all real networks even in homology networks compared with the random 

null network (See Supplementary file 3). The Closeness centrality Latora is the main contributor of the 

principal components on average and it showed that it contains more information compared with the other 

centrality measures in PPINs. In contrast, other well-known centralities i.e. Betweenness and Eccentricity 

revealed a low contribution value in all PPINs similar to the null network and lower than random threshold. 

On the contrary, the Degree displayed moderate levels of contribution in all real networks whilst it is the 

fourth rank of random network contributors. Although, the overall patterns of contributions are similar, all 

PPINs exhibited this special fingerprint of centrality importance. 

Finally, by performing unsupervised categorization, we aim to cluster centrality measures found on the 

computed values in PPINs. First, by performing the clustering tendency procedure, we find that this data 

set is clusterable. The distance metrics formed with Pearson correlation coefficients using the normalized 

centrality measures can be seen in Fig. 8. Then, we validate the measures to obtain the silhouette scores for 

different clustering methods such as hierarchical, k-means, and PAM (Supplementary files 4 & 5). 

Considering these scores, the hierarchical clustering algorithm was applied to categorize the standardized 

centrality measure results in each PPIN. The output of applying the clustering algorithms and the 

corresponding number of clusters is shown in Table 4. Using the hierarchical algorithm based on Ward's 

method [65], which relies on determining the adequate number of clusters, the centrality measures are 

clustered in each PPINs (Fig. 9). The number of clusters, the distance between centralities and the centrality 

composition in all 13 PPINs displayed independent outcomes and inconstant behavior of each centrality to 

rank nodes within networks. For better visualization, Table 5 displays the pairwise Jaccard similarity index 

values for each network pair. The lowest values are related to the homology, neighborhood-transferred and 

co-occurrence PPINs and among the genome context prediction methods, fusion PPIN is more associated 

to the others. The high similarity between co-expression and co-expression-transferred was expected but 
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the similar centrality clustering of the database with both aforementioned PPINs and combined-score with 

textmining-transferred are remarkable.  

Interestingly, it is also illustrated that silhouette scores (calculated from the centralities in each cluster) 

are related to the contribution value of the corresponding centrality measure. Where there is a high 

silhouette value, a high contribution value is observed, however, a high contribution value will not always 

mean a high silhouette value. Fig. 10 shows the relationship between the silhouette scores and contribution 

values of each centrality measure in the combined-score PPIN. In panel A, each color represents a cluster 

of centrality measures. As shown in the figure, Latora, Radiality, Residual, Decay, Lin, Leverage, Freeman 

and Barycenter centralities have been gathered together in the same cluster where the corresponding 

silhouette scores are all at a high level except the Leverage’s score, while the average silhouette score is 

around 0.66 in that cluster. On the other hand in panel B of Figure 8, we can find the Leverage’s contribution 

value that is under the threshold line and placed in the group with the least amount of contribution. 

Centralities named Lobby index, ClusterRank, Laplacian, MNC, Degree, Markov, Diffusion degree, 

Kleinberg's hub, Eigen vector, Authority score, Katz centralities fell in the same group where all the 

silhouette scores are more than the average equal to 0.61 and in the same way, their corresponding 

contribution values are at high levels, too. On the other hand, we observe that Shortest path Betweenness 

(which is in a separated cluster) and Geodesic k path, Subgraph and DMNC (which are all in one cluster) 

had silhouette values lower than the average 0.03. The silhouette values influence the contribution values, 

which are the lowest. In all other PPINs, the same relationship between silhouette scores and contribution 

values was observed as shown in Supplementary files 3 & 5.  
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Discussion 

 

Network biology is a major part of the relatively young biological research approach called systems 

biology. Topological analysis of biological networks is a basic approach for understanding complex 

behaviors of a cell, which can be classified into three categories, which are collective behaviors, subnetwork 

behaviors and individual behaviors (prioritizing of important nodes by centrality index). It consists of 

various computational methods and algorithms in order to infer biological conclusions such as biomarker 

discovery or drug design and repurposing which are mostly at the stage of introduction or development. 

However, there is no suitable benchmark for network biologists and this could result in inconsistent and 

non-reproducible outcomes. Therefore, reconsidering the computational methods towards recommending 

a standard protocol is needed and inevitable.  

One of the unsolved problems in network biology and PPIN analysis is sorting the proteins with respect 

to their influence based on the centrality-lethality rule [66]. Commonly, high Degree value of a protein in 

PPIN, i.e., a hub is translated to the extent of its corresponding impact on biological functions [67]. 

However, dependency of Degree and vitality role of proteins has been riddled with some controversy. In a 

pioneering work, the authors claimed that the high value of degree centrality in the yeast PPIN is likely to 

be the main protein for the yeast survival [66]. In another study, this rule was re-examined in three distinct 

PPINs of three species which confirmed the essentiality of central proteins for survival [11]. Similar results 

were reported for gene co-expression networks of three different species [68] and for metabolic network of 

Escherichia coli [69, 70]. Ernesto Estrada generalized this rule to six other centrality measures. They 

showed that the subgraph centrality is the best to find important proteins, and using these measures 

performed significantly better than a random selection [13]. However, He and Zhang proposed that the 

relationship between hub nodes and essentiality is not related to network architecture. This finding is 

explained with the involvement of probability theory [67]. Also, regarding modular structure of PPIN, Joy 

et al. concluded that Betweenness centrality is more likely to be essential than Degree [71]. The 

representative power of Betweenness as a topological characteristic was also mentioned in mammalian 

transcriptional regulatory networks which was clearly correlated to Degree [72]. Recently, it has been 

shown that existing hub nodes in a network do not have a direct relationship with prognostic genes across 

cancer types [73].  

Some works revisited the centrality notion and focused on repairing this rule by adding new definitions 

and measures [74]. Tew and Li demonstrated functional centrality and showed that it correlates more 

strongly than pure topological centrality [75]. Recently, Peng et al. introduced localization-specific 

centrality and claimed that their measure is more likely to be essential in different species [76]. Khuri and 
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Wuchty introduced minimum dominating sets of PPIN which are enriched by essential proteins. They 

described that there is a positive correlation between degree and lethality [10]. One of the proposed 

solutions is to apply functional methods in this context according to the type of biological networks to be 

analyzed.  

In this study, we worked on updated versions of PPINs which were built on different approaches and as 

it is shown, while the approaches have different properties, all of them were undirected in a same biological 

category. In addition to improve our network set compared to previous studies, a large number of centrality 

measures was used to explore the proximity and preference of the measures. We demonstrated that a similar 

profile of centrality ranking in PPINs i.e. Latora, Barycenter, Diffusion degree, Freeman, Residual, 

Average, Radiality centralities plays an important role in detecting the center of PPIN models. We inferred 

that the rationale and logic of networking in each network dictates which centrality indices should be taken. 

Also, our results demonstrated the relationship between contribution value derived from PCA and silhouette 

width as a cluster validity index. We are currently working on producing several built-in functions for 

various networks to recognize the most appropriate network-dependent centrality measure. 

However, from this research, we first reasserted that the architecture and global properties of a network 

can impact on the central component detection and that the center of network would be differed according 

to network inherent topology. However, the main step before applying centrality measures for biological 

inference is identifying their ability to demonstrate the distinction between nodes or edges. In other words, 

we consider whether a centrality measure has enough information to be used for ranking the network 

components. Similar to other data mining studies, data reduction and low-dimensional projection help to 

extract interesting features i.e. centralities and corresponding relationships. Thus, in order to quantify 

connectivity in biological networks, we recommended that before calculating any centrality measures, an 

analysis of principal components of these measures should be carried out. The analysis of principal 

components is necessary to find out which measures have the highest contribution values, i.e., which 

measures carry the most important information.  
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Figure legends 

 

Fig. 1. A workflow for studying the centrality measures. This follows the construction of the yeast 

PPIN relying on different kinds of evidence channels as well as the generation of a null network. The 

workflow contains a comparison of the behavior of several centrality measures using machine 

learning methods such as principal components analysis and clustering procedures. 
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Fig. 2. A graphical representation of the distribution of the evidence channel scores presented in 

STRING database for the yeast PPIN. The color spectra from green to red indicates low to high values. 
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Fig. 3. Pairwise scatterplot between the evidence channel scores. The Pearson’s r correlation 

coefficients are also indicated between the evidence channels. The distributions of scores in each 

evidence are presented at the diameters of the figure. 
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Fig. 4. A graphical representation of the degree distributions in each reconstructed PPIN and the 

generated null network. The color spectra from green to red indicates low to high values. 
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Fig. 5. A graphical representation of the clustering coefficient distribution in each reconstructed 

PPIN and the generated null network. The color spectra from green to red indicates low to high 

values. 
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Fig. 6. Pairwise scatterplot between the centrality measures. This figure contains combined-score 

PPIN and the null network. In this figure, the r Pearson correlation coefficients between centralities 

beside the centralities distribution are also presented in both networks. For better representation, 

the scatterplot was divided into three parts corresponding to Table 1 groups. For all networks please 

refer to the supplementary file 2. 
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Fig. 7. Biplot representation of the centrality measures in each network. The first two dimensions 

of multivariate data which can be visualized graphically using PCA. In each plot, nodes are shown as 

points and centrality measures as vectors.  
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Fig. 8. Distance metrics. The dissimilarities between centrality measures in each PPIN are shown 

using colored distance measures found on r Pearson correlation coefficients. Colors from blue to red 

represents distances which vary from 0 to 2. 
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Fig. 9. The clustering dendrograms. In each dendrogram, the colored boxes show ensued clusters 

of centrality measures in each PPIN based on predefined distance threshold. 
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Fig. 10. (A) Clustering silhouette plot of the combined-score PPIN. The colors represent the six 

clusters of the centrality measures in this PPIN. The average silhouette width was equaled to 0.49. 

(B) Contribution values of centrality measures according to their corresponding principal 

components in this PPIN. The number of principal components stand on the network architecture 

was equal to 3. The dashed line indicates the random threshold of contribution. (C) Line plot between 

silhouette and contribution values. R value shows the result of regression coefficient analysis and p 

value has been computed found on Pearson correlation test.  
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Table legends 

 

Table 1.Centrality measures. These measures represented in five groups depend on their logic 

and formulas.   

    

 

Distance_based Degree-based Eigen-based Neighborhood-based Miscellanous

Average Distance Authority_score Eigenvector centralities ClusterRank 
Geodesic K-Path 

Centrality

Barycenter Degree Centrality
Katz Centrality (Katz 

Status Index)

Density of Maximum 

Neighborhood Component 

(DMNC)

Harary Graph Centrality

Closeness Centrality 

(Freeman)
Diffusion Degree Laplacian Centrality

Maximum Neighborhood 

Component (MNC)
Information Centrality

Closeness centrality 

(Latora)

Kleinberg's hub 

centrality scores
Subgraph centrality scores Markov Centrality

Decay Centrality Leverage Centrality
Shortest-Paths 

Betweenness Centrality

Eccentricity of the 

vertices
Lobby Index (Centrality)

Lin Centrality

Radiality Centrality

Residual Closeness 

Centrality
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Table 2. Network global properties of all PPINs and the null network. 
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Table 3. Ranking of the contribution values based on the PCA for each network. The red to green 

highlighted cells represent the top to bottom ranked centrality measures in each network.  The 

underlined ranking values are the centrality measure's contribution value which are less than 

random threshold of contribution. 
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Table 4. Clustering information values for PPINs. The Hopkin’s statistics threshold for 

clusterability is 0.05.   

  

Network
Hopkins 

Statistic

Number 

of 

Clusters

Silhouette 

Average 

Value 

Coexpression 0.25 6 0.36

Coexpression_transferred 0.21 7 0.33

Cooccurence 0.18 6 0.55

Database 0.24 6 0.33

Database_transferred 0.20 9 0.32

Experiments 0.21 9 0.31

Experiments_transferred 0.16 6 0.43

Textmining  0.24 8 0.28

Textmining_transferred 0.20 6 0.35

Neighborhood_transferred 0.26 2 0.39

Fussion 0.16 5 0.48

Combined_score 0.30 7 0.27

Homology 0.23 2 0.46
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Table 5. Jaccard index coefficient values for PPINs. The values represent how similar the 

networks are, in terms of their clustering results. Where a value of 1.00 indicates an exact match, and 

values equal to 0 show dissimilarity.  
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Supplementary data 
Supplementary file 1: Fitted power law distribution. The degree distribution of each network has been 

compared to the power law distribution in order to visualize the scale free property in the structure of each 
network. 

Supplementary file 2: Scatterplots between groups of centralities. Each panel indicates scatterplots 
between centralities groups of two networks. 

Supplementary file 3: Contribution values of centralities in each network. These values were computed 
based on the principal components. The red line shows the threshold used for identifying effective 
centralities. 

Supplementary file 4: Clustering properties results. These properties include connectivity, Dunn and 
Silhouette scores. These scores suggest the sufficient clustering method by a specific number of clusters.  

Supplementary file 5: Clusters silhouette plots. Each color represents a cluster and each bar with specific 
color indicates a centrality.  

Supplementary file 6: Optimal number of clusters. The suitable number of clusters for hierarchical 
clustering method was computed using the average silhouette values.  

Supplementary file 7: Visual assessment of cluster tendency plots. Each rectangular represents the 
clusters of the calculated results of the centrality measures.  
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