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Abstract

In serial cognitive tasks, information from preceding trials can bias performance in the current trial, a
phenomenon referred to as interference. Recent experiments by Papadimitriou et al. (2015) demonstrated
such biases in spatial working memory tasks, wherein subjects recalled the location of a target presented
in continuous space. Analyzing response correlations in serial trials, they found the recalled location in
the current trial is biased in the direction of the target presented on the previous trial. We build on their
heuristic computational model to: (a) provide a Bayesian interpretation of the history-dependent bias;
and (b) derive a mechanistic model demonstrating short-term facilitation accounts for the dynamics of
the observed bias. Our computational model is a bump attractor network whose architecture is reshaped
dynamically during each trial, linking changes to network connectivity with a predictive distribution based
on observations of prior trials. Applying timescale separation methods, we can obtain a low-dimensional
description of the trial-to-trial bias based on the history of target locations. The model still has response
statistics whose mean is centered at the true target location in the limit of a large number of trials.
Furthermore, we demonstrate task protocols for which the plastic model performs better than a model
with static connectivity. Thus, our work presents a testable hypothesis for the persistence of interference
in uncorrelated spatial working memory trials.

Introduction 1

Parametric working memory experiments serve as a testbed for behavioral biases and errors, and help 2

identify the neural mechanisms that underlies them (Funahashi et al., 1989; Romo et al., 1999; Pesaran 3

et al., 2002). For instance, in spatial working memory, subjects identify, store, and recall target locations 4

in continuous space. Responses tend to exhibit error that is normally distributed (White et al., 1994; 5

Ploner et al., 1998; Wimmer et al., 2014), and most of this error is accumulated during the delay period, 6

while subjects retain the target location in memory (Funahashi et al., 1989; Constantinidis et al., 2001; 7

Wimmer et al., 2014). Networks that model the behavioral error and neural activity recorded from these 8

tasks typically utilize stimulus-tuned neurons with slow excitation and broad inhibition (Goldman-Rakic, 9

1995; Camperi and Wang, 1998; Compte et al., 2000). Persistent activity emerges as a tuned pattern of 10

activity called a “bump” state, whose peak or center-of-mass is thought to encode the remembered target 11

position (Renart et al., 2003; Wimmer et al., 2014). 12

Most computational models of spatial working memory account for ensemble statistics of behavior and 13

neural recordings, ignoring serial correlations that may exist across trials (Constantinidis and Klingberg, 14

2016). Recently, Papadimitriou et al. (2015) demonstrated a consistent serial bias by analyzing the impact 15

that a target within one trial had on a subject’s response in the subsequent trial (Fig. 1A). On average, 16

a subject’s response on a trial was biased toward the target presented on the previous trial (Fig. 1B). 17

This effect was reduced by increasing the time interval between trials (Fig. 1C), while the effect increased 18

for longer delay times within the current trial (Fig. 1D). To account for these data, Papadimitriou et al. 19
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Fig 1. Interference in spatial working memory observed by Papadimitriou et al. (2015), and our
corresponding recurrent network model with STF. (A) A spatial working memory task was administered
in consecutive trials. The subject fixates on the central (blue) dot and a target (red dot) appears (θn and
θn+1, 0-360◦). The target then disappears, and the subject retains a memory of the target location
during the delay period (TnD and Tn+1

D , 0-6000ms). Lastly, the subject makes a saccade (rn and rn+1) to
the remembered target location. Papadimitriou et al. (2015) found a systematic impact of the relative
location (θn − θn+1) of the trial n target on the trial n+ 1 response rn+1. (B) Response errors in trial
n+ 1 (〈rn+1 − θn+1〉θn+1) depend on the relative location of the target (θn − θn+1) in trial n. Responses
err in the direction of the previous target θn, but this tendency is non-monotonic in θn − θn+1. (C,D)
The maximum average error in trial n+ 1 decreases with intertrial interval TnI (panel C) and increases
with the trial n+ 1 delay period Tn+1

D (panel D). (E) Schematic of our recurrent network model, showing
excitatory (triangle) and inhibitory (circles) neurons. Connections between excitatory cells are
distance-dependent. Effects of the inhibitory population are fast and spatially uniform, so excitatory and
inhibitory populations are merged into single variable u(x, t). STF increases the strength of recently used
synapses, described by the variable q(x, t). (F) A tuned input during the cue period (TC) generates a
bump of neural activity u(x, t) centered at x = θn that persists during the delay period of trial n (TnD)
and ceases after the response. After the intertrial interval (TnI ), the bump initially centered at x = θn+1

drifts towards the position of the bump in the previous trial (dotted line) due to the attractive force of
STF. Input fluctuations are ignored here to highlight the bias in a single trial.
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(2015) proposed a bump attractor model whose connectivity was impacted by two heuristic “memory 20

stores,” one which persists between trials and the other persists only within trials. 21

This previous study of interference leaves several open questions. First, what evidence accumulation 22

strategy can account for the current trial response being biased by the previous trial’s target? We will 23

show that such biases emerge naturally in observers employing sequential Bayesian updating to predict 24

the most likely next location of the target (Fig. 2). Bayesian inference has been used to account for both 25

behavior and recorded neural activity in decision making experiments (Gold and Shadlen, 2002; Bogacz 26

et al., 2006; Beck et al., 2008). Such models are obtained by iteratively applying Bayes’ rule to a stream 27

of noisy measurements to update an observer’s belief of the most likely choice. In static environments, 28

each measurement is given equal weight. In changing environments, older measurements are discounted at 29

a rate that increases with the change rate of the environment (Glaze et al., 2015; Veliz-Cuba et al., 2016). 30

Thus, if an observer believes the environment is changing rapidly, they may only use their most recent 31

observation to determine the present state of the environment. 32

These principles can be applied to a sequence of spatial working memory trials, where the target in 33

each trial is treated as a noisy observation. Depending on the observer’s belief about the rate at which the 34

environment is changing, the most recent trial may be weighted much more than the ensemble of previous 35

trials. Our Bayesian model is based on the assumption that subjects erroneously integrate evidence as if 36

only the most recent trial is relevant. Such suboptimal inference has been observed in experiments for 37

which subjects have been trained extensively (Navarro and Newell, 2014; Summerfield and Tsetsos, 2015), 38

and may be inevitable due to the complexity and time requirements of optimal strategies (Beck et al., 39

2012; Acerbi et al., 2014). 40

What neurophysiological processes can account for the slow relaxation of saccade bias within a trial 41

and the transfer of the bias between trials? Note, the timescale of the buildup of the bias within a trial is 42

roughly 1-5s (See Fig. 1D and Papadimitriou et al. (2015)). The decay timescale of slow-inactivating 43

NMDA receptors is too short (roughly 100ms (Lester and Jahr, 1992)) to account for such dynamics. 44

However, short-term synaptic plasticity can act on longer timescales (roughly 1s (Markram and Tsodyks, 45

1996; Tsodyks and Markram, 1997)). Thus, we propose short-term facilitation (STF) can slow the 46

drift of a persistent bump of activity representing the stored target angle during the delay period (Fig. 47

1E). Previous models have also identified STF as a mechanism for lengthening the timescale of working 48

memory (Mongillo et al., 2008; Itskov et al., 2011; Mi et al., 2017). Furthermore, STF can account for 49

the latent bias present from the previous trial. Since the previous trial would have facilitated synapses 50

originating from neurons tuned to the previous target, STF will attract the activity bump in the subsequent 51

trial (Fig. 1F). Thus, as opposed to Papadimitriou et al. (2015), who employ two separate memory 52

stores, we find that the slow timescale of the stored bias and incorporation of the bias into the subsequent 53

response can be described by the same process. 54

Our neurocomputational model can account for the experimental observations of Papadimitriou et al. 55

(2015). Due to the separation in timescales between the neural activity dynamics and the plasticity 56

variable, we can derive a low-dimensional model that accounts for the bump position’s interaction with 57

the network’s evolving synaptic weights. Subsequently, an analysis of the ensemble statistics of our model 58

allows us to determine protocol conditions for which the mean estimated position of a target will still be 59

at the true target position. Conversely, we propose target protocol sequences that will lead to a biased 60

distribution in recalled target positions. Such biases may be advantageous in more complex tasks, where 61

information from previous trials provides information about the target location in subsequent trials, as we 62

show. Finally, we demonstrate that a recurrent network with STF will tend to support bump attractors 63

whose diffusion time course possesses two distinct phases, an experimental prediction we propose to 64

validate our model. 65
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Results 66

Our study presents two distinct frameworks for generating interference in a sequence of spatial working 67

memory trials. Both models use information about the target location on the previous trial to bias 68

the response on the current trial. First, we derive a probabilistic model that infers a distribution of 69

possible target angles on the current trial based on observations of past trials (Fig. 2). In the limit 70

of a rapidly-changing environment, the previous trial’s target is the only information that shapes the 71

prediction of the current trial’s distribution. Second, we analyze a recurrent network model with STF 72

wherein a localized bump of activity represents the observer’s belief on the current trial and the profile of 73

the STF variable represent the observer’s evolving predictive distribution for the subsequent target (Figs. 74

1E,F and 3B). We show that these models can be directly related, and account for the bias inherited from 75

the previous trial. 76

Suboptimal inference model for updating target predictions 77

Interference can arise as a suboptimal probabilistic prediction of the target location in subsequent trials. 78

There are two key features of our model. First, an observer computes a function describing the likelihood 79

of having observed θj on the jth trial, assuming the target is θn+1 on the (n + 1)th trial (j < n + 1) 80

and the distribution of targets sn(θ) is the same between those trials (sn+1(θ) ≡ sj(θ)) (Wilson et al., 81

2010). Thus, the observer has an internal model of the conditional probability fθ(θ
′) := P(θj = θ′|θn+1 = 82

θ, sn+1(θ) ≡ sj(θ)). Second, observers assume the distribution from which presented targets are drawn 83

changes stochastically at a fixed rate ε := P(sn+1(θ) 6≡ sn(θ)). Static environments have a change rate 84

ε = 0 while a constantly changing environment has ε = 1. Most spatial working memory protocols fix 85

the distribution of target angles throughout the task (ε = 0) (Funahashi et al., 1989; Pesaran et al., 86

2002; Wimmer et al., 2014; Papadimitriou et al., 2015), so note that we suppose the observer employs an 87

incorrect model to estimate this distribution (ε > 0). As recently shown in (Glaze et al., 2015), subjects 88

in psychophysical tasks can have a strong bias toward assuming environments change on a timescale of 89

several seconds, and this bias is not easily trained away (Beck et al., 2012; Navarro and Newell, 2014). 90

Our model successively updates the distribution of possible target angles in trial n+ 1: θn+1. This 91

algorithm is based on models recently developed to compute a predictive distribution for a stochastically 92

moving target, given a sequence of noisy observations (Adams and MacKay, 2007; Wilson et al., 2010). 93

The predictive distribution is computed using sequential analysis (Busemeyer and Townsend, 1993; Wald 94

and Wolfowitz, 1948; Veliz-Cuba et al., 2016): The observer sees the target θj ∈ [−180, 180)◦ at the 95

beginning of the jth trial (j < n+ 1). We thus define the likelihood function fθn+1(θj) (Fig. 2B) to be 96

the probability of having observed the target θj in the jth trial assuming: (a) the target θn+1 is observed 97

in the (n+ 1)th trial and (b) the underlying probability distribution from which targets are sampled does 98

not change from trial j to n+ 1 (sn+1(θ) ≡ sj(θ)). Further details on the assumptions and derivation of 99

our probabilistic inference model are given in Methods. 100

We assume the observer utilizes a predictive distribution Ln+1,θ = P(θn+1|θ1:n), which takes the 101

previous targets θ1:n (Fig. 2A) as observations to predict the subsequent target θn+1. If the distribution 102

sn+1(θ) from which targets are drawn in trial n + 1 changes stochastically with a rate ε ∈ (0, 1), then 103

recent observations will be weighted more in determining Ln+1,θ (Wilson et al., 2010; Glaze et al., 2015; 104

Veliz-Cuba et al., 2016). Each observation θj contributes to the current estimate of Ln+1,θ via the 105

likelihood function fθ(θj) (Fig. 2B). The weighting of each observation is determined by assuming the 106

observer has a fixed belief about the value ε, which specifies the average number of trials they expect the 107

distribution sn(θ) to remain the same. Leveraging techniques in probabilistic inference (See Methods), we 108
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Fig 2. Updating the predictive distribution. The observer infers the predictive distribution for the
subsequent target θn+1 from prior observations θ1:n: P(θn+1|θ1:n). (A) A sequence of presented targets:
θ1:3. (B) Self-conjugate likelihood function fθ(θj) ≡ fθj (θ), peaked and centered at θj , showing the
probability of observing θn+1 = θ if θj is observed on trial j and the distribution remains the same in
between (sn+1(θ) ≡ sj(θ)). (C) Evolution of the predictive distribution P(θn+1|θ1:n) for static (ε = 0);
slowly-changing (ε = 0.1); and rapidly-changing (ε = 0.8) environments. In static environments, all
observations θ1:3 are weighted equally whereas in the rapidly-changing environment, the most recent
observation dominates.

find that the predicted probability of seeing a target at location θ during trial n+ 1 is: 109

Ln+1,θ = P̄0 ·

 (1− ε)n
P(θ1:n)

n∏
j=1

fθ(θj) + ε
n−1∑
r=0

(1− ε)r
P(θn−r+1:n)

n∏
j=n−r+1

fθ(θj)

 . (1)

To understand Eq. (1), it is instructive to examine limits of the parameter ε that admit approximations or 110

simple exact updates. 111

112Static environments (ε→ 0). In the limit ε→ 0, the observer assumes the environment is static, so 113

the predictive distribution is comprised of equal weightings of each observation (Fig. 2C and (Wald and 114

Wolfowitz, 1948; Gold and Shadlen, 2002; Bogacz et al., 2006)): 115

Ln+1,θ =
P̄0

P(θ1:n)

n∏
j=1

fθ(θj). (2)
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As has been shown previously, Eq. (2) can be written iteratively (Beck et al., 2008): 116

Ln+1,θ =
P(θ1:n−1)

P(θ1:n)
fθ(θn)Ln,θ,

suggesting such a computation could be implemented and represented by neural circuits. Most oculomotor 117

delayed-response tasks use a distribution of targets s(θ) that is constant across trials (Funahashi et al., 118

1989; Pesaran et al., 2002; Wimmer et al., 2014; Papadimitriou et al., 2015). Therefore, Eq. (2) is the 119

optimal strategy for obtaining an estimate of s(θ), assuming the observer has a correct representation of 120

the likelihood fθ(θj). 121

122Constantly changing (ε→ 1). Sequential computations are trivial in the limit of a constantly-changing 123

environment ε→ 1, since the observer assumes the environment is reset after each trial. Prior observations 124

provide no information about the present distribution, so the likelihood is always only comprised of the 125

uniform prior P̄0: 126

Ln+1,θ = P̄0. (3)

Between these limits (0 < ε < 1), the observer believes the environment probabilistically changes after 127

each trial. Recently observed targets will be weighted more strongly than older targets. Veliz-Cuba et al. 128

(2016) showed previously observed targets should be discounted at a rate that increases with ε. 129

130Rapidly-changing environment (ε ≈ 1). Our work focuses on the limit where the environment changes 131

rapidly, 0 < (1− ε)� 1 (ε ≈ 1), to account for biases that depend chiefly on the previous trial’s target θn. 132

Note that in the limit of slowly changing target distributions, 0 < ε� 1, the observer builds a predictive 133

distribution that accounts for evidence in the multiple trial history θ1:n (See Fig. 2C and Methods). 134

On the other hand, when ε ≈ 1, the observer assumes the environment changes fast enough that each 135

subsequent target is likely drawn from a new distribution (sn+1(θ) 6≡ sn(θ)). Applying this assumption to 136

Eq. (1), the formula for Ln+1,θ is dominated by terms of order (1− ε) and larger. Truncating to O(1− ε) 137

and normalizing the update equation (See Methods) then yields 138

L̃n+1,θ = εP̄0 + (1− ε)fθ(θn). (4)

Thus, the dominant contribution from θ1:n to Ln+1,θ in the limit of rapidly-changing environments is the 139

target θn observed during the previous trial n (Fig. 2C), similar to findings of Papadimitriou et al. (2015). 140

In summary, a suboptimal probabilistic inference model that assumes the distribution of targets is 141

predictable over short timescales lead to response biases that depend mostly on the previous trial. We now 142

demonstrate that this predictive distribution can be incorporated into a low-dimensional attractor model 143

commonly used to describe the degradation of target memory during the delay period of a spatial working 144

memory task (Brody et al., 2003; Renart et al., 2003; Burak and Fiete, 2012; Kilpatrick et al., 2013). 145

Incorporating suboptimal predictions into working memory 146

We model the loading, storage, and recall of a target angle θ using a low-dimensional attractor model 147

spanning the space of possible target angles θ ∈ [−180, 180)◦. These dynamics can be implemented in 148

recurrent neuronal networks with local excitation and effective inhibition that is broad and fast (Amari, 149

1977; Camperi and Wang, 1998; Compte et al., 2000). Before examining the effects of neural architecture, 150

we discuss how to incorporate the predictive distribution update, Eq. (4), into the low-dimensional 151

model. Our analysis draws a clear link between the update of the predictive distribution, and the spatial 152

organization of attractors in a network. Importantly, working memory is degraded by dynamic input 153

fluctuations that cause the recalled target angle to wander diffusively during the delay period (Compte 154

et al., 2000; Burak and Fiete, 2012; Kilpatrick et al., 2013; Wimmer et al., 2014). 155
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Fig 3. Encoding the predictive distribution in the potential function of an attractor network. (A) In a
rapidly-changing environment, the predictive distribution is determined by the likelihood fθ(θn). In the
low-dimensional system, with dynamics described by Eq. (5), this likelihood is represented by a potential
function Un+1(θ) whose peak (valley) corresponds to the valley (peak) of fθ(θn), so the state θ(t) drifts
towards the minimum of Un+1(θ) during the delay period. (B) A recurrent network with neurons
distributed across x ∈ [−180, 180)◦ with STF (Fig. 1E) can implement these dynamics. The position of
the trial n target is encoded by the peak location of the STF variable q(x, t) during the early portion of
trial n+ 1, attracting the neural activity u(x, t) bump during the delay period.

Bump position θ(t) evolves according to a stochastic differential equation (Renart et al., 2003): 156

dθ(t) = −dU(θ(t))

dθ
dt+ σθdξ(t). (5)

Here θ(t) is restricted to the periodic domain θ ∈ [−180, 180)◦ and dξ is a standard white noise process. 157

The potential gradient −U ′(θ) in Eq. (5) models spatial heterogeneity in neural architecture that shapes 158

attractor dynamics. During trial n, the potential U(θ) ≡ Un(θ). Classic models of bump attractors on a 159

ring assume distance-dependent connectivity (Amari, 1977; Compte et al., 2000). The case U ′n+1(θ) 6≡ 0 160

describes spatial heterogeneity in connectivity that may arise from a combination of training and synaptic 161

plasticity (Renart et al., 2003; Klingberg, 2010), or random components of synaptic architecture (Wang 162

et al., 2006). Our simplified model treats the working memory of the target angle θ(t) as a particle evolving 163

on a potential landscape Un+1(θ) (Fig. 3A). We assume the potential landscape can be updated during 164

each trial, so at the beginning of trial n+ 1 it has the form Un+1(θ). Thus, two qualitatively different 165

scenarios are that the potential Un(θ) is: (a) always flat, so θ(t) evolves along a line attractor: Un(θ) ≡ 0 for 166
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all n = 1, 2, 3, ... (Burak and Fiete, 2012); or (b) heterogeneous, consisting of a combination of θ-dependent 167

functions arising from some plasticity process acting during each trial: Un+1(θ) =
∑n
j=1 Fj(θ) (Renart 168

et al., 2003; Kilpatrick et al., 2013). Prior information obtained from observing previous targets is 169

incorporated by updating the potential Un(θ) after each trial. 170

To reflect the spatial working memory protocols, we assume that the observer receives θ̃n(0) = θn, 171

the target, via sensory channels at the beginning of trial n. Thus, the observer initially estimates the 172

angle perfectly. Eq. (5) evolves during the storage period of the working memory task, lasting for a delay 173

time of TD. After the delay period, θ̃n(TD) will be the recalled angle of the memory layer. Typically, in 174

non-human primate oculomotor tasks, the recalled angle is indicated via a saccade to a specific angle on a 175

screen (Funahashi et al., 1989; Wimmer et al., 2014). Depending on the underlying potential Un(θ), there 176

will be a strong bias to a subset of possible targets θ. 177

We derive a correspondence between the probabilistic inference model and attractor model by first 178

ignoring kinetics of Un(θ) within a certain trial (See Methods). In the recurrent network model (Fig. 1E), 179

we take these within-trial dynamics into account. Freezing Un(θ) during a trial allows us to relate the 180

statistics of the position θ(t) to the shape of the potential. Specifically, we relate the stationary density of 181

Eq. (5) to the desired likelihood function Ln+1,θ (See Methods). In this way, if information about the 182

current trial’s target θn+1 is completely degraded, the probability of recalling the target angle θ is Ln+1,θ. 183

Focusing on the case suggested by experiments on interference, we aim to have the attractor structure 184

of Eq. (5) represent the likelihood formula in Eq. (4). Our calculations yield the following relationship 185

between the potential function prior to trial n+ 1 and the likelihood function generated by the trial n 186

target (Fig. 3A): 187

Un+1(θ) ∝ −fθ(θn). (6)

This suggests the potential update Un+1(θ) could be implemented by a decaying plasticity process that 188

will potentiates portions of the network that represent the previous target. As we will show, this can be 189

accomplished via STF (Fig. 3B). 190

Short-term facilitation generates interference in working memory 191

We now show a neuronal network model comprised of neural activity u(x, t) subject to STF q(x, t) can 192

incorporate predictive distribution updates we derived above. Predictions are stored in the dynamically 193

changing synaptic weights of a recurrent neuronal network as the network is reshaped by STF. The 194

recurrent network model spatially labels neurons and assigns each location in the network to a specific 195

target preference, which determines the distance-dependent structure of inputs to the network. This is 196

captured by a network with local excitation and effective inhibition that is fast and broad. Connectivity 197

is impacted dynamically by STF (Fig. 1E). See Methods for more details on the recurrent network model. 198

A sequence of delayed-response protocols is implemented in the recurrent network by specifying a 199

spatiotemporal input I(x, t) across trials (top of Fig. 1F). Each trial (n) has a cue period of time length 200

TC ; a delay period of time length TnD; and a subsequent intertrial period of time length TnI before the 201

next target is presented. The network receives a peaked current centered at the neurons preferring the 202

presented target angle θn during the cue period of trial n; no external input during the delay period; and 203

a strong inactivating current after the delay period (See Methods) (Camperi and Wang, 1998; Compte 204

et al., 2000; Kilpatrick et al., 2013; Wimmer et al., 2014). The same protocol is applied during trial n+ 1 205

for a different target angle θn+1. The resulting bump attractor drifts in the direction of the bump from 206

trial n, due to the STF at the location of the trial n bump (Figs. 1F and 3B). 207

The mechanism underlying intertrial bias is determined by projecting our recurrent network model 208

to a low-dimensional system that extends the attractor model, Eq (5), to account for STF. To reduce 209

the recurrent network, we project the fast dynamics of bump solutions to an approximate equation for 210

the bump’s position (center-of-mass) θ(t) in trial n (Itskov et al., 2011; Kilpatrick and Ermentrout, 2013; 211
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Fig 4. Low-dimensional system (green box) captures the motion of the bump (θ(t)) and the evolving
potential, U(θ, t), shaped by the STF variable. The center-of-mass of the neural activity bump θ(t) is
attracted by the most facilitated region of the network, argminθ [U(θ, t)]. Both the previous trial’s target
θn and the current trial’s bump location θ(t) attracts the center-of-mass of the STF variable’s
center-of-mass θq(t). The evolving potential U(θ, t) is then comprised of the weighted sum of the
potential arising from the previous target U(θ − θn) and the current bump U(θ − θq(t)). See Methods for
a complete derivation.

Kilpatrick et al., 2013). This yields an evolving potential function U(θ, t) of the network, determined by 212

the STF variable q(x, t) (Fig. 4). We use perturbation theory and timescale separation (See Methods) to 213

derive a set of stochastic differential equations, which approximates the motion of the bump’s position 214

θ(t) along with the location of the STF variable, θq(t): 215

dθ(t) = −An(t)
dŪ(θ(t)− θn)

dθ
dt−An+1(t)

dŪ(θ(t)− θq(t))
dθ

dt+ dW(t),

τ θ̇q(t) = −d(θq(t)− θ(t)),

during trial n+ 1 (tn < t < tn+1). The slowly-evolving potential gradient − ∂
∂θU(θ, t) is a mixture of STF 216

contributions from trial n (decaying An(t)) and trial n + 1 (increasing An+1(t)). The bump position 217

θ(t) moves towards the minimum of this dynamic potential during trial n + 1, argminθ [U(θ, t)]. The 218

center-of-mass of the STF variable θq(t) in trial n+ 1 slowly moves toward the bump location θ(t). 219

The presence of STF provides two contributions to the slow dynamics of the bump position θ(t). The 220

memory of the previous trial’s target θn is reflected by the potential Ū(θ− θn), whose effect decays slowly 221

during trial n+ 1. This attracts θ(t), but the movement of θ(t) towards θn is slowed by the onset of the 222

STF variable initially centered at θn+1. The STF variable’s center-of-mass θq(t) must slowly drift towards 223

θn to allow θ(t) to drift there as well, Ū(θ − θq(t)). This accounts for the slow build-up of the bias that 224

increases with the length of the delay period (Papadimitriou et al., 2015). 225
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Fig 5. Intertrial bias is shaped by (A) the angle between targets θn+1 and θn; (B) the interval between
trials n and n+ 1 (ITI); and (C) the delay period during trial n+ 1. (A) Responses in trial n+ 1 are
biased in the direction of the previous trial target (θn), with a peak bias occurring when |θn+1− θn| ≈ 90◦.
Simulations of the recurrent network (red circles) are compared with the low-dimensional model (blue
line). Shaded region indicates one standard deviation (See Methods for details). (B) The peak bias
decreases with the intertrial interval (ITI), due to the temporal decay of STF. (C) The peak bias increases
with the delay since the bump drifts towards the equilibrium position determined by the STF profile.

Target- and time-dependent trends match experimental observations 226

We now demonstrate that the effects observed in the behavioral experiments of Papadimitriou et al. (2015) 227

can be accounted for by our recurrent network model (Fig. 1E) and our low-dimensional description 228

of bump motion dynamics (Fig. 4). A sequence of targets (θ1, θ2, θ3, ...) was presented to the recurrent 229

network at the beginning of each trial, and the remembered target location (response rn) was determined 230

by calculating the center-of-mass of the bump at the end of each delay period (See Methods). We computed 231

the means and variances of the bias effect under each condition. Responses (r1, r2, r3, ...) were biased if 232

the mean response 〈rn〉 for a condition was different than the mean target angle 〈θn〉. 233

Our results are summarized in Fig. 5, focusing on three conditions considered by Papadimitriou et al. 234

(2015). First, we calculated the bias when conditioning on the angle between the trial n and trial n+ 1 235

targets, θn − θn+1 (Fig. 5A). Positive (negative) angles lead to positive (negative) bias; i.e. the bump 236

drifts in the direction of the previous target θn. To expose this effect, we averaged across trials, since 237

the recurrent network incorporates dynamic input fluctuations, consistent with typical bump attractor 238

models of spatial working memory (Compte et al., 2000; Kilpatrick et al., 2013; Wimmer et al., 2014). We 239

also calculated the peak bias as a function of the intertrial interval (ITI), the time between the trial n 240

response (rn) and the trial n+ 1 target presentation. Consistent with Papadimitriou et al. (2015), the 241

peak bias decreased with the ITI (Fig. 5B). The mechanism for this decrease is the decay in the STF of 242

synapses utilized by the previous trial’s persistent activity. Finally, the peak bias increased with the delay 243

within a trial, since persistent activity was slowly attracted to the location of the previous target (Fig. 244

5C). This slow saturation arises due to the slow kinetics of STF within a trial. 245

Not only did our recurrent network model recapitulate the main findings of Papadimitriou et al. (2015), 246

we also found our low-dimensional description of the bump and STF variable dynamics also had these 247

properties (blue curves in Fig. 5). The mechanics underlying the bias can be described using a simple 248

model of a particle evolving in a slowly changing potential (Fig. 4), due to the dynamics of STF. Having 249

established a mechanism for the bias, we consider how different protocols shape the statistics of responses, 250

not conditioned with sequential trial information. 251
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Fig 6. Response distribution is shaped by correlations between target angles in adjacent trials
P(θn|θn+1). (A) Spatial working memory protocols typically use a sequence of target angles with no
trial-to-trial correlations (uniform P(θn|θn+1)) (Compte et al., 2000; Wimmer et al., 2014). Relative
response angles (rn − θn) are normally distributed about the true target angle. (B) Prior target angle θn
is correlated with the subsequent target angle θn+1 according to a locally peaked distribution (P(θn|θn+1)
shown for θn+1 = 0◦). The response distribution narrows (note decreased standard deviation σ), since the
target θn+1 is often close to the previous target θn. (C) Prior target θn is skewed counter-clockwise from
current angle θn+1. The resulting response distribution is similarly skewed (note average response r̄ is
shifted). Numerical methods are described in Methods.

Task protocol shapes ensemble statistics 252

Spatial working memory tasks are often designed such that sequential target locations are uncorre- 253

lated (Compte et al., 2000; Wimmer et al., 2014). In such protocols, there is no advantage in using 254

previous trial information to predict targets within the current trial. Nonetheless, such biases seem to 255

persist in the extant intertrial response correlations discussed in Papadimitriou et al. (2015) and Fig. 256

5. On the other hand, such biases might be advantageous for tasks protocols with correlations between 257

successive target angles, θn and θn+1. Consider object motion tracking tasks, where an object is transiently 258

occluded (Scholl and Pylyshyn, 1999; Bennett and Barnes, 2006), so the object’s location prior to occlusion 259

predicts its subsequent location following occlusion. Memory of object location that persists beyond a 260

single trial can therefore be useful for naturally-inspired tasks. 261

We demonstrate this idea by comparing the recurrent network’s performance in working memory 262

tasks whose targets are drawn from distributions with different intertrial correlation profiles (Fig. 6). As 263

a control, we consider the case with no correlation between target θn and target θn+1 (Fig. 6A). The 264

distribution of responses is normally distributed about the true target angle. The dynamics of the bump 265

encoding the target are shaped by both input fluctuations and a bias in the direction of the previous target 266
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Fig 7. Recurrent networks with STF (panels A-C) exhibit two timescales of delay period dynamics in
contrast to the single timescale of networks with static synapses (panels D-F). (A) STF strengthens
synapses that were recently utilized. (B) In a facilitating network, bump trajectories (lines) stray less
from their initial position due to the locally attractive effect of STF. Large ensemble standard deviation
shown in red. (C) STF generates two phases of variance scaling. An initial fast phase is followed by a
slower phase due to the dampening effect of STF in both neuronal network (red dashed) and
low-dimensional (blue solid) simulations. (D) Network with static synapses. (E) Bump trajectories obey
linear diffusion, due to the spatial homogeneity of the network. (F) Variance grows linearly with time, a
hallmark of pure diffusion.

on individual trials. However, the directional bias is not apparent in the entire distribution of response 267

angles, since it samples from all possible pairs (θn, θn+1). An ensemble-wide measure of performance is 268

given by the standard deviation of the response distribution (σ ≈ 4.42). When target angles are correlated 269

between trials, the relative response distribution narrows (Fig. 6B). Memory of the previous trial’s target 270

θn stabilizes the memory of the current trial’s target θn+1, decreasing the standard deviation of responses 271

(σ ≈ 3.20). However, such effects can be deleterious when the previous angle θn is skewed in comparison to 272

the current angle θn+1. Protocols with this correlation structure lead to a systematic bias in the relative 273

response distribution, so its peak is shifted away from zero (Fig. 6C). 274

Our neuronal network model therefore predicts that, if an intertrial bias is present, it should be 275

detectable by varying the intertrial correlation structure of target angles θn. Furthermore, when there are 276

strong local correlations between adjacent trials (P(θn|θn+1) is large for |θn − θn+1| small), the network 277

will tend to perform better than for protocols with uncorrelated adjacent trial angles. 278

Two timescales of memory degradation 279

Bump attractor models are useful for linking observations from neurophysiology to behavioral psychophysics 280

in oculomotor delayed-response tasks (Compte et al., 2000; Wimmer et al., 2014). Wimmer et al. (2014) 281

showed that the normal distribution of saccade endpoints along with observed changes in neural firing rates 282

during the delay period can be accounted for by a diffusing bump attractor model (Wimmer et al., 2014). 283

Their analysis ruled out two other candidate models: a bump attractor whose amplitude decays during the 284
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delay period and a bump attractor in a network with strongly discretized attractor structure. However, 285

they did not consider mixed models, to see if bump attractor networks with mild spatial heterogeneities 286

might provide a better fit to data (Kilpatrick et al., 2013). 287

We have shown that the recurrent network with STF (Fig. 1E) still leads to a normal distribution 288

of predicted response angles (Fig. 6A). Furthermore, this model provides novel predictions for the 289

internal dynamics of memory degradation, which we compare with the standard diffusing bump attractor 290

model (Compte et al., 2000; Burak and Fiete, 2012; Kilpatrick and Ermentrout, 2013; Wimmer et al., 291

2014) (Fig. 7). In the network with STF (Fig. 7A), bump trajectories evolve in a history-dependent 292

fashion (Fig. 7B). Initially, bumps diffuse freely, and are then attracted toward their starting location by 293

the resulting facilitated synapses (See also Fig. 4). This results in two distinct phases of diffusion, as 294

shown in plots of the bump variance (Fig. 7C). Rapid diffusion occurs initially as the bump equilibrates to 295

the quasistationary density determined by the slowly evolving potential (Fig. 4). Slower diffusion occurs 296

subsequently, as the spatial heterogeneity in synaptic architecture gradually responds to changes in bump 297

position via STF. Stabilizing effects of STF on bump attractors have been analyzed previously (Itskov 298

et al., 2011), but our identification of these multiple timescale dynamics in memory degradation is novel. 299

This feature of the bump dynamics is not present in networks with static synapses (Fig. 7D). Bumps 300

evolve as a noise-driven particle over a flat potential landscape (Fig. 7E), described by Brownian motion, 301

a memoryless stochastic process (Brody et al., 2003; Burak and Fiete, 2012). Variance in the bump 302

position scales purely linearly with time (Fig. 7F), and the diffusion coefficient can be computed using a 303

low-dimensional approximation (Kilpatrick and Ermentrout, 2013). 304

The qualitative differences we have identified between the bump attractor with and without dynamic 305

synapses should be detectable in both behavioral and neurophysiological recordings (Wimmer et al., 306

2014). Moreover, the observed intertrial bias identified in recent analyses of behavioral data requires some 307

mechanism for transferring information between trials that is distinct from neural activity (Papadimitriou 308

et al., 2015), as dynamic synapses are in our model. In total, our model provides both an intuition for the 309

behavioral reason and potential neural and synaptic mechanisms behind such interference. 310

Discussion 311

Typical neural circuit models of spatial working memory tend to only consider neural activity variables as 312

the encoders of target locations. We presented a computational model for interference in spatial working 313

memory that arises through both suboptimal Bayesian inference and can be accounted for by STF acting 314

on a recurrent network model of delay-period activity. The timescale and prior target dependence of 315

attractive biases in our computational model correspond to psychophysical observations of behavioral 316

experiments in monkeys (Papadimitriou et al., 2015). STF evolves dynamically over seconds (Hempel 317

et al., 2000; Wang et al., 2006), apparently matching the kinetics of recently observed interference. The 318

link we have drawn between our two models suggests neural circuits can implement probabilistic inference 319

using short term plasticity. 320

Experimental predictions 321

A more complete description of the neural mechanics of spatial working memory can be captured by 322

modulating and analyzing the effects of correlations in sequential target presentations. Since responses in 323

subsequent trials are shaped by the previous trial’s target (Papadimitriou et al., 2015), computational 324

models can be validated by determining how well their response distributions reflect trial-to-trial target 325

correlations (Fig. 6). Furthermore, our model predicts multiple timescales emerge in the statistics of 326

memory degradation during the delay period of a working memory task (Fig. 7). Variance of recall error 327

increases sublinearly in our model, consistent with a recent reanalysis of psychophysical data of saccades 328

to remembered visual targets (White et al., 1994; Qi et al., 2015). The dynamics of our model are thus 329
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inconsistent with the purely linear diffusion of recall error common in bump attractor models with static 330

synapses (Compte et al., 2000; Wimmer et al., 2014). 331

The idea that STF may play a role in working memory is not new (Barak and Tsodyks, 2007; Mongillo 332

et al., 2008), and there is evidence that prefrontal cortex neurons exhibit dynamic patterns of activity 333

during the delay period, suggestive of an underlying modulatory process (Stokes et al., 2013). However, 334

it remains unclear how the presence of STF may shape the encoding of working memories. Our model 335

suggests STF as a plausible mechanism for transferring attractive biases between trials. Recent findings 336

on the biophysics of STF could be harnessed to examine how blocking STF shapes behavioral biases in 337

monkey experiments (Jackman et al., 2016; Jackman and Regehr, 2017). We predict that reducing the 338

effects of the STF should both decrease the systematic bias in responses and increase the amplitude of 339

errors, since the stabilizing effect of STF on the persistent activity will be diminished (Itskov et al., 2011). 340

Alternative physiological mechanisms for intertrial bias 341

Our study was motivated by a specific behavioral data set (Papadimitriou et al., 2015), which identified an 342

attractive bias between the previous target and current response. Strengthening synapses that originate 343

from recently active neurons can attract neural activity states in subsequent trials. This is consistent with 344

recent experiments showing latent and “activity-silent” working memories can be reactivated in humans 345

using transcranial magnetic stimulation (Rose et al., 2016), suggesting working memory is maintained 346

by mechanisms other than target-tuned persistent neural activity (Mongillo et al., 2008; Stokes et al., 347

2013). The principle of using short term plasticity to store memories of working memory targets could be 348

extended to account for longer timescales and more intricate statistical structures. For instance, short-term 349

depression (STD) could effect a repulsive bias on subsequent responses, since neural activity would be less 350

likely to persist in recently-activated depressed regions of the network (York and Van Rossum, 2009). In 351

this way, STD could encode a predictive distribution for targets that are anti-correlated to the previously 352

present target. 353

Other physiological mechanisms could also serve to shape network responses to encode past observations 354

in a predictive distribution. Long-term plasticity is a more viable candidate for encoding predictive 355

distributions that accumulate observations over long timescales. Consider a protocol that uses the 356

same distribution of target angles throughout the entire experiment, but this distribution is biased 357

towards a discrete set of possible angles (Kilpatrick et al., 2013). For a recurrent network to represent 358

this distribution, it is necessary to retain information about the series of target presentations over a 359

long timescale. Numerous biophysical processes underlying plasticity have slow enough timescales to 360

encode information from such lengthy sequences (Bhalla, 2014; Benna and Fusi, 2016). Furthermore, the 361

distributed nature of working memory suggests that there may indeed be brain regions whose task-relevant 362

neural activity partially persists from one trial to the next (Christophel et al., 2017). Such activity 363

could then shape low-level sensory interpretations of targets in subsequent trials via mechanisms like 364

feature-based attention that would tend to bias working memory. 365

Memory and training across timescales 366

Modeling and analysis of working memory storage often focuses on statistics that ignore between-trial 367

correlations in both behavioral responses and neural circuit activity (Wimmer et al., 2014; Constantinidis 368

and Klingberg, 2016). Our work, along with previous experimental findings (Papadimitriou et al., 2015), 369

suggests models of working memory should account for interference arising from the previous trial history. 370

More generally, the multiple timescales of memory storage and degradation appear to not be separable 371

into distinct modules. Neural and synaptic mechanisms for memory storage overlap in an interconnected 372

network (Hasson et al., 2015; Benna and Fusi, 2016). Prior information that is less relevant to the 373

present environment can still corrupt the storage and recall of current information, similar to the impact 374

of distractors on task-relevant information (Vogel et al., 2005). An important next step in developing 375
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theories for working memory lies in linking its storage and recall across timescales to incorporate the 376

effects of long-term memory (Cowan, 2008). Such work would benefit from analysis of behavioral data 377

and physiological recordings during the training phase of working memory experiments, when long term 378

memory consolidation occurs. Learning during working memory can generate small populations of highly 379

selective neurons as task performance improves (Meyer et al., 2011; Meyers et al., 2012), and extensive 380

training can lead to significant changes in working memory capacity that persists for months or even 381

years (Klingberg, 2010). Synaptic plasticity on multiple timescales likely plays a major role in the neural 382

underpinnings of these changes (Bhalla, 2014; Benna and Fusi, 2016). 383

Synaptic plasticity can stabilize working memory 384

The idea of incorporating synaptic dynamics into computational theories of working memory is not 385

new (Barak and Tsodyks, 2014). Previous computational models proposed that short-term plasticity 386

can help stabilize or encode working memory (Mongillo et al., 2008; Itskov et al., 2011). For instance, 387

STF can prolong the lifetime of working memories in spatially heterogeneous networks, since facilitated 388

synapses slow the systematic drift of bump attractor states (Itskov et al., 2011; Rolls et al., 2013). This 389

is related to our finding that STF reduces the diffusion of bumps in response to dynamic fluctuations 390

(Fig. 7B), generating two distinct timescales of memory degradation corresponding to the bump variance 391

(Fig. 7C). This scaling may be detectable in neural recordings or behavioral data, since recall errors may 392

saturate if stabilized by STF. Facilitation has also been shown to account for experimentally observed 393

increases in spike train irregularity during the working memory retention period in neural circuit models 394

that support tuned persistent activity (Hansel and Mato, 2013). Alternatively, homeostatic synaptic 395

scaling has been suggested to compensate for spatial heterogeneity, which would otherwise cause persistent 396

states to drift (Renart et al., 2003). However, the short homeostatic timescales often suggested in models 397

do not often match experimental observations (Zenke and Gerstner, 2017). 398

Models of working memory have also replaced persistent neural firing with stimulus-selective STF, so 399

that neuronal spiking is only required for recall at the end of the delay period (Mongillo et al., 2008). 400

One advantage of this model is that multiple items can be stored in the dynamic efficacy of synapses, 401

and the item capacity can be regulated by external excitation for different task load demands (Mi 402

et al., 2017). Our model proposes that STF plays a supporting rather than a primary role, and there 403

is extensive neurophysiological evidence corroborating persistent neural activity as a primary working 404

memory encoder (Wimmer et al., 2014; Markowitz et al., 2015). 405

Robust working memory via excitatory/inhibitory balance 406

Fast synaptic feedback is another recently proposed mechanism for balancing cortical circuitry, so networks 407

can encode continuous parameters. Computational models have demonstrated that a balance of fast 408

inhibition and slow excitation can stabilize networks, so they accurately integrate inputs. Drift in the 409

representation of a continuous parameter can be reduced by incorporating negative-derivative feedback into 410

the firing rate dynamics of a network, similar to incorporating strong friction into the kinetics governing 411

a particle motion on a sloped landscape (Lim and Goldman, 2013). Fast inhibition balanced by slower 412

excitation produces negative feedback that is proportional to the time-derivative of population activity. 413

A related mechanism can be implemented in spiking networks wherein fast inhibition rapidly prevents 414

runaway excitation, and the resulting network still elicits highly irregular activity characteristic of cortical 415

population discharges (Boerlin et al., 2013). Mutually inhibiting balanced networks are similarly capable 416

of representing working memory of continuous parameters (Shaham and Burak, 2017), and extending our 417

framework by incorporating STF into such paradigm would be a fruitful direction of future study. 418
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Multi-item working memory 419

Working memory can store multiple items at once, and the neural mechanisms responsible for interference 420

between simultaneously stored items are the focus of ongoing work (Ma et al., 2014; Nassar et al., 421

2017). While there is consensus that working memory is a limited resource allocated across stored items, 422

controversy remains over whether resource allocation is quantized (e.g., slots) (Zhang and Luck, 2008; Luck 423

and Vogel, 2013) or continuous (e.g., fluid) (Bays and Husain, 2008; Ma et al., 2014). Spatially-organized 424

neural circuit models have been successful in recapitulating inter-item biases observed in multi-item 425

working memory experiments, and provide a theory for how network interactions produce such errors (Wei 426

et al., 2012; Almeida et al., 2015). In these models, each remembered item corresponds to an activity 427

bump, and the spatial scale of lateral inhibition determines the relationship between recall error and item 428

number (Bays, 2015). The model provides a theory for attractive bias and forgetting of items in that 429

nearby activity bumps tend to merge with one another. This is related to the mechanism of attractive 430

bias in our model, but a significant difference is that ours is generated by STF whereas previous models 431

only required localized excitation. It would be interesting identify the temporal dynamics of biases in 432

multi-item working memory, to see if they require slower timescale processes like short-term plasticity. 433

Tuning short term plasticity to the environmental timescale 434

We have not identified a mechanism whereby our network model’s timescale of inference could be 435

dynamically tuned through learning about the inherent timescale of the environment. There is recent 436

evidence from decision making experiments that humans can learn the timescale on which their environment 437

changes, and can use this information to weight their observations toward a decision (Glaze et al., 438

2015; Kim et al., 2017). Our model suggests that the trial-history inference the subjects utilize in 439

Papadimitriou et al. (2015) is significantly suboptimal, so it may be difficult to infer the timescale of 440

relevant past-trial information. There is also evidence that humans tend to be biased towards employing 441

suboptimal and heuristic methods for accumulating evidence when they are much simpler than the optimal 442

strategy (Gigerenzer and Gaissmaier, 2011; Beck et al., 2012; Glaze et al., 2015). Plasticity processes 443

that determine the timescale of evidence accumulation may be shaped across generations by evolution, or 444

across a lifetime of development. Nonetheless, metaplasticity processes can internally tune the dynamics 445

of plasticity responses in networks without changing synaptic efficacy itself, and these changes could occur 446

in a reward-dependent way (Abraham, 2008; Hulme et al., 2014). Recently, a model of reward-based 447

metaplasticity was proposed to account for adaptive learning observed in a probabilistic reversal learning 448

task (Farashahi et al., 2017). Such a process could modify the timescale and other features of short-term 449

plasticity in ways that improve task performance in working memory as well. 450

Conclusions 451

In total, our results suggest that interference observed in spatial working memory tasks can be accounted 452

for by a persistently active neural circuit with STF. This is in contrast to the model of Papadimitriou 453

et al. (2015), which required the use of two memory stores. Importantly, interference is graded by the time 454

between trials and during a trial. The interplay of synaptic and neural processes involved in interference 455

may have arisen as a robust system for processing visual information that changes on the timescale of 456

seconds. More work is need to determine how information about the environment stretches across multiple 457

timescales to shape responses in cognitive tasks. We expect that understanding how such biases arise will 458

improve our understanding of how working memory fits into the brain’s information-processing hierarchy. 459
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Methods 460

Assumptions of the inference model 461

Before trial n, the observer assumes the next target θ will be drawn from a specific distribution sn(θ|ζ), 462

parameterized by an unknown parameter set ζ ∈ Ω that is distributed according to Z(ζ). We assume that 463

marginalizing over all such distributions yields the uniform density P̄0 =
∫

Ω
sn(θ|ζ)Z(ζ)dζ = 1/360. One 464

possibility is that the distribution sn(θ|η) is constructed by drawing N -tuples a and ψ (so ζ = (a,ψ)) 465

from a uniform distribution over the hypercubes [0, amax]N and [−180◦, 180◦)N and using the entries to 466

construct an exponential distribution of a sum of cosines: 467

sn(θ|ζ) = Ns exp

 N∑
j=1

aj cos(ωj · (θ − ψj))

 ,
where ωj = jπ/180 and Ns is a normalization constant. For instance, when N = 1, 468

sn(θ|ζ) = Ns exp [a1 cos(ω1 · (θ − ψ1))] ,

peaked at ψ1. For the main instantiation and reduction of our model, knowing the specific family of 469

distributions is unnecessary. We simply assume the average over all possible distributions sn(θ|ζ) is 470

P̄0 = 1/360. 471

The likelihood function fθ(θ
′) := P(θn = θ′|θn+1 = θ, sn+1(θ|ζ) ≡ sn(θ|ζ)) is defined under static 472

conditions (sn+1(θ|ζ) ≡ sn(θ|ζ)) to separate out the dynamic effects of sampling distribution sn(θ) changes. 473

Conjugate distributions fθ(θ
′) are not a necessary assumption of our model, but aid in conceptualizing 474

the link between P(θn+1|θn) and P(θn|θn+1). Several univariate priors on periodic domains are self- 475

conjugate (Diaconis et al., 1979). To illustrate, we consider a family of distributions given by an 476

exponential of cosines: 477

fθ(θ
′) = Nθ exp

 N∑
j=1

aj cos(ωj · (θ′ − θ))

 , (8)

which is self-conjugate: fθ(θ
′) ≡ fθ′(θ) (Diaconis et al., 1979). The example fθ(θ

′) we use for comparison 478

with our recurrent network with STF is close to the case of Eq. (8) with N = 1. 479

Derivation of the probabilistic inference model 480

The observer’s predictive distribution Ln+1,θ = P(θn+1|θ1:n) is derived by marginalizing over possible 481

run lengths rn = r, corresponding to the number of trials the assumed underlying distribution sn(θ|ζ) 482

has remained the same (Adams and MacKay, 2007; Wilson et al., 2010). Thus, rn = n indicates the 483

environment has remained the same since the first trial, and rn = 0 indicates the environment changes 484

between trial n and n+ 1. Summing over all possible run lengths, the marginal predictive distribution is 485

Ln+1,θ =
n∑
r=0

P(θn+1|rn = r, θr1:n)P(rn = r|θ1:n), (9)

where P(θn+1|rn = r, θr1:n) is the conditional predictive distribution assuming run length rn = r and
P(rn = r|θ1:n) is the conditional probability of the run length rn = r given the series of target angles θ1:n.
We further simplify Eq. (9) as follows: First, utilizing sequential analysis, we find that if the present run

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/149435doi: bioRxiv preprint 

https://doi.org/10.1101/149435
http://creativecommons.org/licenses/by-nc-nd/4.0/


length is rn = r, the conditional predictive distribution is given by the product of likelihood functions
corresponding to the last r observations (Veliz-Cuba et al., 2016):

P(θn+1|rn = r, θr1:n) =
P̄0

P(θn−r+1:n)

n∏
j=n−r+1

fθ(θj). (10)

Next, we assume that observations provide no information about the present run length rn, which would
be a consequence of the observer making no a priori assumptions on the overall distribution from which
targets θ1:n are drawn. Thus, the observer primarily uses their knowledge of the change rate of the
environment ε to determine the probability of a given run length rn = r, and the conditional probability
can be computed

P(rn = r|θ1:n) = P(rn = r) =

{
ε(1− ε)r, r < n,
(1− ε)n, r = n.

(11)

Plugging Eqs. (10–11) into the update Eq. (9), we find the likelihood of the next target being at angle 486

θn+1 = θ, given that the previous n targets were θ1:n, is: 487

Ln+1,θ = P̄0 ·

 (1− ε)n
P(θ1:n)

n∏
j=1

fθ(θj) + ε
n−1∑
r=0

(1− ε)r
P(θn−r+1:n)

n∏
j=n−r+1

fθ(θj)

 .
Limit of slowly-changing environment (small ε) 488

Here, we examine the case 0 < ε� 1, where the environment changes very slowly. Assuming independence 489

of the target angles selected on each trial θ1:n (Bogacz et al., 2006), P(θn−r:n) = P(θn−r:n−1)P(θn), we can 490

split the probabilities over the target sequences θn−r:n into products: P(θn−r:n) =
∏n
j=n−r P(θj) = P̄r+1

0 . 491

The last equality holds since the family of possible distributions sn(θ|ζ) averages to a constant P̄0, the 492

uniform density. Applying this assumption to Eq. (1) and truncating to O(ε), we have 493

L̃n+1,θ = Ns ·

(1− nε)
n∏
j=1

fθ(θj)

P̄0
+ ε

n−1∑
r=0

n∏
j=n−r+1

fθ(θj)

P̄0

 ,
noting we must choose Ns so

∫ 180

−180
Ln+1,θdθ = 1, normalized at each step. 494

Limit of rapidly-changing environment (ε ≈ 1) 495

Here, we examine the case ε ≈ 1 (0 < (1 − ε) � 1), a rapidly-changing environment. Applying this 496

assumption to Eq. (1), we find Ln+1,θ is dominated by terms of order (1− ε) and larger. Terms of order 497

(1− ε)2 are much smaller. For instance, we can approximate 498

L3,θ = εP̄0 +
1− ε
P(θ2)

fθ(θ2)

[
εP̄0 +

1− ε
P(θ1)

fθ(θ1)P̄0

]
≈ εP̄0 ·

[
1 +

(1− ε)
P(θ2)

fθ(θ2)

]
,

dropping the term of O((1− ε)2). Extending to arbitrary n, this reduces Eq. (1) to 499

Ln+1,θ ≈ εP̄0

[
1 +

1− ε
P(θn)

fθ(θn)

]
. (12)
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Furthermore, if we apply a uniform assumption to the unconditional probability of each observed target, 500

P(θn) = P̄0, we ensure the expression in Eq. (12) is normalized by writing 501

L̃n+1,θ =
P̄0 + (1− ε)fθ(θn)

2− ε ,

since
∫ 180

−180

[
P̄0 + (1− ε)fθ(θn)

]
dθ = 2 − ε. Alternatively, we can truncate by multiplying through by 502

[1− (1− ε)]/[1− (1− ε)], truncating to O(1− ε) and renormalizing to yield 503

L̃n+1,θ = εP̄0 + (1− ε)fθ(θn),

which is the key update equation we focus upon in our Results (Figs. 2 and 3A). Higher order approxi- 504

mations are obtained by keeping more terms from Eq. (1). For instance, a second order approximation 505

yields 506

Ln+1,θ ≈ εP̄0 + ε(1− ε)fθ(θn) +
ε(1− ε)2P̄0

P(θn−1:n)
fθ(θn)fθ(θn−1),

successively downweighting likelihood products from previous observations (θn−1). 507

Relating likelihood to potential function of attractor model 508

We can understanding how a likelihood might be represented by an attractor model by determining the 509

formula of the stationary distribution of Eq. (5), given an arbitrary potential function Un(θ). Eq. (5) 510

can be reformulated as an equivalent Fokker-Planck equation for the represented angle θn during trial n 511

assuming the present potential function is Un(θ) (Risken, 1996), 512

∂pn(θ, t)

∂t
=

∂

∂θ

[
dUn(θ)

dθ
pn(θ, t)

]
+
σ2
θ

2

∂2pn(θ, t)

∂θ2
, (13)

where pn(θ, t) is the probability density corresponding to the target angle estimate θ̃n = θ at time t. 513

We now derive the specific form of Un+1(θ) that would lead to a stationary density corresponding the 514

predictive distribution Ln+1,θ in the limit t→∞ in Eq. (13). The stationary density p̄n+1(θ) is analogous 515

to a likelihood function represented by Eq. (5) because it is the probability distribution represented by 516

the system when no information about the current trial’s target remains. Thus, we build a rule to update 517

Un+1(θ) to mirror the update of Ln+1,θ. To obtain this result, we seek to match the stationary density for 518

Eq. (13) to the updated likelihood: 519

lim
t→∞

pn+1(θ, t) = p̄n+1(θ) = Ln+1,θ. (14)

Solving Eq. (13) for its stationary solution, we find that during trial n+ 1: 520

p̄n+1(θ) = χn+1 exp

[
−2Un+1(θ)

σ2
θ

]
, (15)

where χn+1 is a normalization factor chosen so that
∫ 180

−180
p̄n+1(θ)dθ = 1. Plugging Eq. (15) into Eq. (14) 521

and solving for Un+1(θ), we obtain 522

Un+1(θ) =
σ2
θ

2
ln

χp
Ln+1,θ

. (16)
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In the case of a rapidly changing environment 0 < (1− ε)� 1, we employ the approximation given by 523

Eq. (4) so that 524

Un+1(θ) =
σ2
θ

2

[
lnχp − ln

(
εP̄0 + (1− ε)fθ(θn)

)]
≈ σ2

θ

2

[
ln
χp
P̄0
− (1− ε)fθ(θn)− P̄0

P̄0

]
,

where we have linearized in (1− ε). However, for Eq. (5), only the derivative of Un+1(θ) will impact the 525

dynamics, so we drop the additive constants and examine proportionality 526

Un+1(θ) ∝ −fθ(θn),

so in the limit of weak interactions between trials, the potential Un+1(θ) should be shaped like the negative 527

of the likelihood fθ(θn) based on the previous trial’s target θn. 528

Bump attractor model with short-term facilitation 529

Our neuronal network model is comprised of two variables evolving in space x ∈ [−180, 180)◦, corresponding 530

to the stimulus preference of neurons at that location, and time t > 0 531

τudu(x, t) =

[
−u(x, t) +

∫ 180

−180

w(x− y)(1 + q(y, t))F (u(y, t))dy

]
dt+ dJ(x, t), (17a)

τ q̇(x, t) = −q(x, t) + βF (u(x, t))(q+ − q(x, t)), (17b)

where u(x, t) describes the evolution of the normalized synaptic input at location x. The model Eq. (17) can 532

be derived as the large system size limit of a population of synaptically coupled spiking neurons (Bressloff, 533

2012), and similar dynamics have been validated in spiking networks with lateral inhibitory connectiv- 534

ity (Compte et al., 2000; Wimmer et al., 2014). We fix the timescale of dynamics by setting τu = 10ms, 535

so time evolves according to units of a typical excitatory synaptic time constant (Häusser and Roth, 536

1997). This population rate model can be explicitly analyzed to link the architecture of the network to a 537

low-dimensional description of the dynamics of a bump attractor. 538

Each location x in the network receives recurrent coupling described by the weight function w(x− y). 539

We expect this to be peaked when x = y and decreasing as the distance |x − y| grows, in line with 540

anatomical studies of delay period neurons in prefrontal cortex (Goldman-Rakic, 1995). We do not 541

separately model excitatory and inhibitory populations, but Eq. (17) can be derived from a model with 542

distinct excitatory and inhibitory populations in the limit of fast inhibitory synapses (Amari, 1977; Carroll 543

et al., 2014). Thus, we have combined excitatory and inhibitory populations, so w(x − y) takes on 544

both positive and negative values. Our analysis can be applied to a general class of distance-dependent 545

connectivity functions, given by an arbitrary sum of cosines w(x− y) =
∑∞
n=0 αn cos(ωn(x− y)) where 546

ωn = nπ/180, and we will use a single cosine to illustrate in examples: w(x− y) = cos(ω1(x− y)). The 547

nonlinearity F (u) converts the normalized synaptic input u(x, t) into a normalized firing rate, F (u) ∈ [0, 1]. 548

We take this to be sigmoidal F (u) = 1/
[
1 + e−γ(u−κ)

]
(Wilson and Cowan, 1973), with a gain of γ = 20 549

and a threshold of κ = 0.1 in numerical simulations. In the high-gain limit (γ → ∞) a Heaviside step 550

function F (u) = H(u− κ) allows for explicit calculations (Amari, 1977; Bressloff, 2012). 551

Recurrent coupling is shaped by STF in active regions of the network (F (u) > 0), as described by 552

the variable q(x, t) ∈ [0, q+]; q+ > 0 and β determine the increase in synaptic utilization and the rate 553

at which facilitation occurs (Tsodyks and Markram, 1997; Tsodyks et al., 1998). For our numerical 554

simulations, we consider the parameters values q+ = 2 and β = 0.01, consistent with previous models 555

employing facilitation in working memory circuits (Itskov et al., 2011; Mongillo et al., 2008; Mi et al., 556

2017) and experimental findings for facilitation responses in prefrontal cortex (Hempel et al., 2000; Wang 557
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et al., 2006). The timescale of plasticity is slow, τ = 1000ms � 10ms, consistent with experimental 558

measurements (Tsodyks and Markram, 1997). Our qualitative results are robust to parameter changes. 559

Information from the previous trial is maintained by the slow-decaying kinetics of the facilitation variable 560

q(x, t), even in the absence of neural activity (Mongillo et al., 2008; Mi et al., 2017). 561

External inputs and dynamic input fluctuations are described by dJ(x, t) = I(x, t)dt + dW (x, t), 562

a spatially-extended noisy process. The effects of the target and the response are described by the 563

deterministic spatiotemporal process I(x, t), which we discuss more in detail below. The noise process 564

W (x, t) is white in time and has an increment with mean 〈dW (x, t)〉 ≡ 0 and spatial correlation function 565

〈dW (x, t)dW (y, s)〉 = C(x− y)δ(t− s)dtds. In numerical simulations, we take our correlation function 566

to be C(x− y) = σ2
W cos(x− y) with σW = 0.005, so the model recapitulates the typical 1-5% standard 567

deviation in saccade endpoints observed in oculomotor delayed response tasks with delay periods from 568

1-10s (Funahashi et al., 1989; White et al., 1994; Wimmer et al., 2014). 569

Implementing sequential delayed-response task protocol 570

A series of oculomotor delayed-response tasks is executed by the network Eq. (17) by specifying a schedule 571

of peaked inputs occurring during the cue periods of length TC , no input during trial n’s delay period of 572

length TnD, and brief and strong inhibitory input of length TA after the response has been recorded, and 573

then no input until the next trial. This is described by the spatiotemporal function 574

I(x, t) =


I0 exp [I1(cos(x− θn)− 1)] , t ∈ [tn, tn + TC),
0, t ∈ [tn + TC , tn + TC + TnD),
−IR, t ∈ [tn + TC + TnD, tn + TC + TnD + TA),
0, t ∈ [tn + TC + TnD + TA, tn+1),

for all n = 1, 2, 3, ..., where tn is the starting time of the nth trial which has cue period TC , delay period 575

TnD, inactivation period TA, and subsequent intertrial interval TnI . Note that the delay and intertrial 576

interval times may vary trial-to-trial, but the cue is always presented for the same period of time as in 577

Papadimitriou et al. (2015). The amplitude of the cue-related stimulus is controlled by I0, and I1 controls 578

is sharpness. Activity from trial n is ceased by the global inactivating stimulus of amplitude IR. 579

In numerical simulations, we fix the parameters TC = 500ms; TA = 500ms; I0 = 1; I1 = 1; and IR = 2. 580

Target locations θn are drawn from a uniform probability mass function (pmf) for the discrete set of angles 581

θn ∈ {−180◦,−162◦, ..., 162◦ to generate statistics in Figs. 5A, which adequately resolves the bias effect 582

curves for comparison with the results in Papadimitriou et al. (2015). Intertrial intervals are varied to 583

produce Fig. 5B by drawing TnI := tn+1 − (TC + TnD + TA) randomly from a uniform pmf for the discrete 584

set of times TnI ∈ {1000, 1200, ..., 5000}ms and θn randomly as in Fig. 5A and identifying the θn that 585

produces the maximal bias for each value of TnI . Delay periods are varied to produce Fig. 5C by drawing 586

TnD randomly from a uniform pmf for the discrete set of times TnI ∈ {0, 200, ..., 5000}ms and following a 587

similar procedure to Fig. 5B. Draws from a uniform density function P(θn), defined on θn ∈ [−180, 180)◦ 588

are used to generate the distribution in Fig. 6A and plots in Fig. 7. Nontrivial correlation structure in 589

target selection is defined by a von Mises distribution P(θn|θn+1) = Nve25 cos(θn−θn+1−µ) with µ = 0 for 590

local correlations (Fig. 6B) and µ = 90 for skewed correlations (Fig. 6C). 591

The recurrent network, Eq. (17), is assumed to encode the initial target θn during trial n via the 592

center-of-mass θ̃n(t) of the corresponding bump attractor. Representation of the cue at the end of the trial 593

is determined by performing a readout on the neural activity u(x, t) at the end of the delay time for trial n: 594

t = tn + TC + TnD. One way of doing this would be to compute a circular mean over x weighted by u(x, t), 595

but since u(x, t) is a roughly symmetric and peaked function in x, computing θ̃n(t) = argmaxxu(x, t) 596

(when t ∈ [tn, tn + TC + TnD)) is an accurate and efficient approximation (Kilpatrick et al., 2013; Wimmer 597

et al., 2014). Bias (relative saccade endpoint) on each trial n is then determined by computing the 598

difference θ̃n(t)− θn (Figs. 5, 6, and 7). 599
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Deriving the low-dimensional description of bump motion 600

We analyze the mechanisms by which STF shapes the bias on subsequent trials by deriving a low- 601

dimensional description for the motion of the bump position θ(t). To begin, note that in the absence 602

of facilitation (β ≡ 0), the variable q(x, t) ≡ 0. In the absence of noise (W (x, t) ≡ 0), the resulting 603

deterministic Eq. (17) has stationary bump solutions that are well studied and defined by the implicit 604

equation (Amari, 1977; Camperi and Wang, 1998; Bressloff, 2012; Kilpatrick and Ermentrout, 2013): 605

U(x) =

∫ 180

−180

w(x− y)F (U(y))dy.

Assuming the stimulus I(x, t) presented during the cue period of trial n (t ∈ [tn, tn+TC)) is strong enough 606

to form a stationary bump solution, the impact of the facilitation variable q(x, t) and noise W (x, t) on 607

u(x, t) during the delay period (t ∈ [tn + TC , tn + TC + TnD)) can be determined perturbatively, assuming 608

|q| � 1 and |dW | � 1. Since τ � τu, u(x, t) will rapidly equilibrate to a quasi-steady-state determined by 609

the profile of q(x, t). We thus approximate the neural activity dynamics as u(x, t) ≈ U(x− θ(t)) + Φ(x, t), 610

where θ(t) describes the dynamics of the bump center-of-mass during the delay period (|θ| � 1 and 611

|dθ| � 1), and Φ(x, t) describes perturbations to the bump’s shape (|Φ| � 1). Plugging this approximation 612

into Eq. (17) and truncating to linear order yields 613

dΦ(x, t)− LΦ(x, t)dt = U ′(x)dθ +

∫ 180

−180

w(x− y)q(y + θ, ts)F (U(y))dydt+ dW, (18)

where Lu = −u+
∫ 180

−180
w(x− y)F ′(U(y))u(y)dy is a linear operator and q(x, ts) is the facilitation variable 614

evolving on the slow timescale ts = τut/τ � t, quasi-stationary on the fast timescale of u(x, t). We ensure 615

a bounded solution by requiring the right hand side of Eq. (18) is orthogonal to the nullspace V (x) of the 616

adjoint linear operator L∗v = −v+F ′(U)
∫ 180

−180
w(x−y)v(y)dy. Orthogonality is enforced by requiring the 617

inner product 〈u, v〉 =
∫ 180

−180
u(x)v(x)dx of the nullspace V (x) with the inhomogeneous portion of Eq. (18) 618

is zero. It can be shown V (x) = F ′(U(x))U ′(x) spans the nullspace of L∗ (Kilpatrick and Ermentrout, 619

2013). This yields the following equation for the evolution of the bump position: 620

dθ(t) = K(θ(t), ts)dt+ dW(t), (19)

where the slowly evolving nonlinearity 621

K(θ, ts) =

∫ 180

−180

∫ 180

−180
w(x− y)q(y + θ, ts)F (U(y))dyF ′(U(x))U ′(x)dx∫ 180

−180
U ′(x)2F ′(U(x))dx

(20)

is shaped by the form of q(x, ts) and the noise 622

dW(t) =

∫ 180

−180
V (x)dW (x, t)dx∫ 180

−180
U ′(x)V (x)dx

is a standard Wiener process that comes from filtering the full spatiotemporal noise process dW (x, t). 623

Eq. (19) has the same form as Eq. (5), up to the scaling of the noise dW. Thus, if the facilitation 624

variable q(x, ts) evolves trial-to-trial such that K(θ, ts) has similar shape to −dUn
dθ

(θ) at the beginning 625

of the nth trial (t = tn), the dynamics of the network Eq. (17) can reflect a prior distribution based 626

on the previous target(s). Given the approximation we derived in Eq. (6), we enforce proportionality 627

K(θ, tn+1) ∝ −dUn+1

dθ (θ): 628

K(θ, tn+1) = α
dfθ(θn)

dθ
, (21)
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where α is a scaling constant and tn+1 is the starting time of trial n + 1 in the original time units 629

t = τts/τu. The form of the likelihood fθ that can be represented is therefore restricted by the dynamics 630

of the facilitation variable q(x, t). We can perform a direct calculation to identify how q(x, t) relates to 631

the likelihood it represents in the following special case. 632

Explicit solutions for high-gain firing rate nonlinearities 633

To explicitly calculate solutions, we take the limit of high-gain, so that F (u) → H(u − κ) and w(x) = 634

cos(ω1x), note ω1 = 180/π. In this case, the bump solution U(x− x0) = (2 sin(a)/ω1) cos(ω1(x− x0)) for 635

U(±a) = κ and null vector V (x− x0) = δ(x− x0 − a)− δ(x− x0 + a) (without loss of generality we take 636

x0 ≡ 0) (Kilpatrick and Ermentrout, 2013). Furthermore, we can determine the form of the evolution of 637

q(x, t) by studying the stationary solutions to Eq. (17) in the absence of noise (W ≡ 0). For a bump U(x) 638

centered at x0 = 0, the associated stationary form for Q(x) assuming H(U(x)− κ) = 1 for x ∈ (−a, a) 639

(modulo the 360◦ period) and zero otherwise is Q(x) = βq+/(1 + β) for x ∈ (−a, a) and zero otherwise. 640

Thus, if the previous target was at θn, we expect q(x, t) to have a shape resembling Q(x− θn) after trial 641

n. Assuming the cue plus delay time during trial n was TC + TnD and the intertrial interval is TnI , slow 642

dynamics will reshape the amplitude of q(x, t) so An(Tn) = (1−e−(TC+TnD)/τ )e−T
n
I /τ (Tn = TC +TnD+TnI 643

is the total time block of each trial) and so q(x, t) ≈ An(Tn) ·Q(x− θn) at the beginning of trial n+ 1. A 644

lengthy calculation of Eq. (20) combined with the relation Eq. (21) yields: 645

α
dfθ(θn)

dθ
=

βq+An(Tn)

2(1 + β) tan(a)
[sign(θ − θn)(1− cos(ω1(θ − θn)))− tan(a) sin(ω1(θ − θn))] ,

for |θ − θn| < 2a, and dfθ(θn)
dθ ≡ 0 otherwise. Integrating, we find this implies 646

fθ(θn) ∝ |θ − θn| − sin |θ − θn|+ tan(a) cos(θ − θn),

for |θ − θn| < 2a, and fθ(θn) constant otherwise. Thus, with the STF dynamics we have incorporated 647

into our network, the network architecture will represent a prior that is peaked at the previous target 648

location and decays for |θ − θn| increasing (Fig. 3). The amplitude of the θ-dependent portion of the 649

likelihood during trial n+ 1 is then controlled by cue, delay, and intertrial times (TC , T
n+1
D , Tn+1

I ) and 650

the facilitation parameters (β, q+, τ). 651

To derive a coupled pair of equations (Fig. 4) describing the dynamics of the bump location θ(t) and 652

the slow evolution of the nonlinearity K(θ, t), we continue to focus on the limit in which F (u) ≡ H(u− κ). 653

Our approximation for q(x, t) is constructed by summing the contributions from each of the n+ 1 trials 654

up to trial n+ 1. This yields 655

q(x, t) ≈
n∑
j=1

Aj(t)Q(x− θq(tj + TC + TnD)) +An+1(t)Q(x− θq(t)) (22)

where the slowly evolving function An(t) defines the rising and falling kinetics of the facilitation variable 656

originating in trial n: 657

τȦn(t) =

{
1−An(t) tn < t < tn + TC + TnD,
−A(t) t > tn + TC + TnD,

increasing towards saturation (An → 1) during the cue and delay period [tn, tn + TC + TnD) and decaying 658

afterward (An → 0). The variable θq(t) describes the slow movement of the center-of-mass of the saturating 659

portion of the facilitation variable q(x, t) due to the drift of the neural activity u(x, t) described by θ(t). 660

However, since A1(t) � A2(t) � · · · � An(t), we only keep the terms An(t) and An+1(t) in Eq. (22). 661

Furthermore, since An(t) becomes much smaller than An+1(t) for most times t > tn+1 in trial n+ 1, we 662
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approximate θq(tn + TC + TnD) ≈ θn. This provides intuition as to why it is sufficient to only consider 663

the previously presented target rather than the response in trial n as the variable influencing the bias 664

in Papadimitriou et al. (2015). Therefore, we start with the following ansatz for the evolution of the 665

facilitation variable during trial n+ 1: 666

q(x, t) = An(t)Q(x− θn) +An+1(t)Q(x− θq(t)). (23)

A bump centered at θ(t), U(x−θ(t)), will attract a facilitation variable to the same location q → Q(x−θ(t)), 667

but the dynamics of q are much slower (τ � 1). Thus, we model the evolution of θq(t) by linearizing the 668

slow dynamics of Eq. (17b) about (u, q) = (U(x− θ(t)), Q(x− θ(t))) + (0, φ(x, t)) (with |φ| � 1) to find 669

τ φ̇(x, t) = −φ(x, t)− βF (U(x− θ(t)))φ(x, t). (24)

The perturbation φ(x, t) describes the displacement of the variable q away from its equilibrium position. 670

Following (Kilpatrick and Bressloff, 2010), we introduce the field Φ(x, t) =
∫ 180

−180
w(x− y)φ(y, t)F (U(y − 671

θ(t)))dy, which reduces Eq. (24) to 672

τ Φ̇(x, t) = −(1 + β)Φ(x, t),

so separating variables Φ(x, t) = Φ̄(x)eλt we see that perturbations of the facilitation variable’s center-of- 673

mass θq(t) away from θ(t) should relax at rate λτ = −(1 + β)/τ . 674

Therefore, the slow evolution of the potential gradient function K(θ, ts) in Eq. (19) can be described 675

by integrating Eq. (20) using the ansatz Eq. (23) for q(x, t). Our low-dimensional system for the dynamics 676

of the bump location θ(t) and leading order facilitation bump θq(t) during the delay period of trial n+ 1 677

(t ∈ [tn+1 +TC , tn+1 +TC +Tn+1
D )) is given by the set of non-autonomous stochastic differential equations: 678

679

dθ(t) = −An(t)
dŪ(θ − θn)

dθ
dt−An+1(t)

dŪ(θ − θq(t))
dθ

dt+ dW(t), (25a)

τ θ̇q(t) = −d(θq(t)− θ(t)), (25b)

where we have defined a parametrized time-invariant potential gradient dŪ(θ−θ′)
dθ corresponding to the 680

stationary profile of the facilitation variable centered at θ′: Q(x− θn). For our specific choices of weight 681

function and firing rate nonlinearity, we find the potential gradient is: 682

−dŪ(θ − θ′)
dθ

=
βq+

2(1 + β) tan(a)
[sign(θ − θ′)(1− cos(θ − θ′))− tan(a) sin(θ − θ′)] ,

and 683

d(θq − θ) = (1 + β)

{
θq − θ, |θq − θ| ≤ π
sign(θq)(2π − |θq − θ|), |θq − θ| > π

calculates the shorter difference on the periodic domain. As in the neuronal network model, we use the 684

parameters κ = 0.1; q+ = 2; β = 0.01; and τ/τu = 100 for comparisons with the full network simulations 685

in Fig. 5. 686

Numerical simulations of the neuronal network model 687

Numerical simulations of the neuronal network model Eq. (17) were done in MATLAB using an Euler- 688

Maruyama method with timestep dt = 0.1ms and spatial step dx = 0.18◦ with initial conditions generated 689

randomly by starting u(x, 0) ≡ q(x, 0) ≡ 0 and then allowing the system to evolve in response to the noise 690
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input for t = 2s prior to applying the sequence of stimuli I(x, t) described for each numerical experiment 691

in Figs. 5, 6, and 7. Numerical simulations of Eq. (25) were also performed using an Euler-Maruyama 692

method with timestep dt = 0.1ms. The effects of the target θn on each trial n were incorporated by 693

holding θ(t) = θn during the cue period t ∈ [tn, tn + TC). Otherwise, the dynamics were allowed to evolve 694

as described. 695

Data Analysis 696

MATLAB was used for statistical analysis of all numerical simulations. The bias effects in Fig. 5 were 697

determined by identifying the centroid of the bump at the end of the delay period. Means were computed 698

across 105 simulations each, and standard deviations were determined by taking the square root of the 699

var command applied to the vector of endpoints. Histograms in Fig. 6 were computed for 105 simulations 700

using the hist and bar commands applied to the vector of endpoints for each correlation condition. Bump 701

positions were computed in Fig. 7 by determining the centroid of the bump at each timepoint, and 105
702

simulations were then used to determine the standard deviation and variance plots (using var again). 703
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