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Abstract (up to 175 words, now 164): 

Cellular proliferation is antagonistically regulated by canonical and non-canonical Wnt signals; their 

dysbalance triggers cancers. It is widely believed that the PI3-K→Akt pathway enhances canonical 

Wnt signals by affecting transcriptional activity and stability of β-catenin. Here we demonstrate that 

the PI3-K→Akt pathway also enhances non-canonical Wnt signals by compartmentalizing β-catenin. 

By phosphorylating the phosphoinositide(PI)-binding domain of a multimodular signal transducer, 

Daple, Akt abolishes Daple’s ability to bind PI3-P-enriched endosomes that engage dynein motor 

complex for long-distance trafficking of β-catenin/E-cadherin complexes to pericentriolar recycling 

endosomes (PCREs). Phosphorylation compartmentalizes Daple/β-catenin/E-cadherin complexes 

to cell-cell contact sites, enhances non-canonical Wnt signals, and thereby, suppresses colony 

growth. Dephosphorylation compartmentalizes β-catenin on PCREs, a specialized compartment for 

prolonged unopposed canonical Wnt signaling, and enhances colony growth. Cancer-associated 

Daple mutants that are insensitive to Akt mimic a constitutively dephosphorylated state. This work 

not only identifies Daple as a platform for crosstalk between Akt and the non-canonical Wnt 

pathway, but also reveals the impact of such crosstalk during cancer initiation and progression. 
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Introduction   

The Wnt signaling pathway plays a crucial role in embryonic development, in tissue regeneration 

and in many other cellular processes including cell fate, adhesion, polarity, migration, and 

proliferation. Dysregulated expression of components within the Wnt pathway triggers many 

diseases, and most importantly, heralds cancer (Klaus & Birchmeier, 2008). The well-characterized 

canonical Wnt signaling pathway enhances the stability, nuclear localization and activity of β-

catenin, and the downstream activation of genes targeted by the TCF/LEF transcription machinery. 

This canonical Wnt pathway is antagonized by a non-canonical Wnt signaling paradigm (Ishitani et 

al, 2003; Olson & Gibo, 1998; Torres et al, 1996), although it is unclear how this occurs. The non-

canonical Wnt pathway induces the elevation of intracellular Ca2+ and activation of the small G 

proteins RhoA and Rac1 (Kuhl et al, 2000; Niehrs, 2001; Winklbauer et al, 2001), which regulate 

polarized cell movements and the planar polarity of epithelial cells (Kuhl et al, 2000; Mayor & 

Theveneau, 2014; Sheldahl et al, 1999). Dysregulation of the non-canonical Wnt pathway is widely 

believed to drive cancer via a two-faceted mechanism (McDonald & Silver, 2009)-- 1) In the normal 

epithelium, non-canonical Wnt signaling is protective; it suppresses tumorigenesis by antagonizing 

the canonical β-catenin/TCF/LEF pathway due in part by compartmentalizing β-catenin at the cell 

membrane to prevent its transcriptional activity (Bernard et al, 2008); how such 

compartmentalization is accomplished remains unknown. What is well-accepted though, is that 

inhibition of non-canonical Wnt signaling fuels neoplastic transformation (Grumolato et al, 2010; 

Ishitani et al, 2003; Medrek et al, 2009); 2) In transformed cells, however, non-canonical Wnt 

signaling enhances cancer invasion/metastasis by activation of Rac1 and remodeling of the actin 

cytoskeleton (Yamamoto et al, 2009) and by upregulating CamKII and PKC (Dissanayake et al, 

2007; Weeraratna et al, 2002). Little is known as to how non-canonical Wnt signaling switches from 

being a protective pathway to one that enhances cancer progression. 

 We recently demonstrated that Daple, a multi-modular signal transducer is an enhancer of 

non-canonical Wnt signaling downstream of Frizzled receptors (FZDRs) (Aznar et al, 2015). 

Mechanistically, Daple serves as a novel guanine-nucleotide exchange factor (GEF) for 

heterotrimeric (henceforth trimeric) G protein, Gαi, and directly binds FZD receptors. By binding 
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both FZD and G protein, Daple and enables ligand-activated receptors to recruit and activate Gi, 

and trigger non-canonical Wnt signaling (Aznar et al, 2015). Activation of Gαi dictates several 

closely intertwined spatial and temporal aspects of post-receptor signaling events, including, 

reduction of cellular levels of cAMP and β-catenin, and release of 'free' Gβγ from heterotrimers, 

which activates non-canonical Wnt signaling pathways involved in cell motility (e.g., PI3K/Akt and 

Rac1). Consequently, Daple suppresses β-catenin/TCF/LEF transcription program, oncogenic 

transformation, anchorage independent growth and anchorage-dependent colony formation; these 

properties of Daple mirror the key anti-growth and anti-transformation phenotypes that define a 

tumor suppressor / anti-oncogene (Cooper, 2000). Daple also enhances all phenotypes that have 

been previously attributed to the prometastatic role of non-canonical Wnt signaling (Minami et al, 

2010), e.g., induction of actin stress fibers, increase in 2D-cell migration after wounding, 3D-

invasion through basement membrane proteins, and upregulation of genes that trigger EMT. Thus, 

the FZD-Daple-G protein signaling axis serves as a double-edged sword-- it functions as an tumor 

suppressor in normal epithelium, but acts as an oncogene in transformed cells to enhance tumor 

invasion and metastasis (Aznar et al, 2015).  

 Here we show that Daple is a downstream target of Akt kinase. Findings presented here not 

only reveal the cellular consequences of this phosphoevent, but also provide mechanistic insights 

into how aberrations, e.g., mutations, copy no. variations (CNVs), etc. in the tumor suppressor 

gene, Daple and the oncogene Akt, and their complex interplay may cooperatively affect β-catenin 

signaling during cancer initiation and progression.   

 

Results and Discussion    

Intracellular pool of Daple localizes predominantly to pericentriolar recycling endosomes 

(PCREs). We previously described that Daple is a cytosolic protein that is recruited to the plasma 

membrane (PM) in cells responding to Wnt5A, where it co-localizes with FZD7 receptor (Aznar et al, 

2015). Although localization to the PM is ligand-dependent and short-lived, we consistently 

observed the presence of an additional intracellular perinuclear pool of myc-tagged Daple by 

confocal immunofluorescence which appeared as clusters of vesicles (arrows; Figure 1A). A similar 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/149351doi: bioRxiv preprint 

https://doi.org/10.1101/149351


5 | P a g e  

 

perinuclear pool was also seen when endogenous Daple was detected with a previously validated 

antibody (Aznar et al, 2015) in HeLa (Figure 1B), HEK and DLD1 (Figure S1A) cells; in some cell 

lines the cluster of vesicles was more compact than others. This perinuclear localization was 

preserved when we expressed mutant Daple constructs that are specifically defective in 

binding/activating Gαi proteins [F1675A, lacks a functional G protein binding and activating motif; 

(Aznar et al, 2015)] or binding Dvl [∆PBM; lacks the C-terminally located PDZ-binding motif; (Oshita 

et al, 2003)] (Figure S1B), indicating that these functional interactions are not essential for Daple’s 

localization. Because perinuclear localization of Daple did not change during Wnt5A stimulation 

(Figure 1A), and was independent of Daple’s ability to bind or activate G proteins or bind Dvl 

(Figure S1B), this localization was deemed constitutive, and hence, all subsequent studies were 

carried out at steady-state in the presence of 10% serum.  

To identify the nature of this perinuclear compartment, we performed immunofluorescence 

studies in Hela cells to look for colocalization between Daple and a variety of organelle markers 

(Figure 1B-C; S1C-E). Both endogenous and exogenously-expressed Daple localized around the 

centrosome (marked by γ-tubulin; Figure 1B), at the point of convergence of the stabilized 

acetylated microtubules (Figure S1C), and colocalized with the Rab GTPase, Rab11; the latter is a 

known coordinator of trafficking out of the pericentriolar recycling compartment to the PM (Grant & 

Donaldson, 2009; Ullrich et al, 1996) (Figure 1C). No colocalization was noted with early or late 

endosome markers, EEA1 and CD63, respectively (Figure S1D), and only partial colocalization was 

noted with autophagosome marker, LC3 (Figure S1E); the latter is consistent with the fact that 

autophagosome membranes coalesce with Rab11-containing recycling endosomes (Longatti & 

Tooze, 2012; Puri et al, 2013; Szatmari et al, 2014). Taken together, these findings pinpoint Daple’s 

localization to Rab11-positive pericentriolar recycling endosomes (PCREs). Furthermore, we 

confirmed that Daple’s ability to localize to PCREs or the appearance of the PCRE compartment 

was not impacted by Daple’s G protein modulatory functions because both WT and a GEF-deficient 

Daple-FA showed similar distributions around the centrosome (Figure 1D) and colocalized with 

Rab11-positive vesicles (Figure 1E). We conclude that a significant pool of Daple localizes to the 

PCREs, and that such localization is independent of ligand stimulation or its G protein modulatory 
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function.  

 

Identification of putative phosphoinositide-binding domain and Akt phosphorylation site in 

Daple that is mutated in cancers. To determine which domain is important for the localization of 

Daple to PCREs, we generated two truncated myc-Daple constructs (Figure 2A) and analyzed their 

localization in HeLa cells by confocal immunofluorescence. Full length Daple WT or a short Daple 

construct corresponding to only a region of the coiled coil domain (aa 1194-1491) localized to the 

perinuclear compartment, whereas expression of the C-terminus alone (aa 1476-2028) localized 

predominantly at the PM and homogenously in the cytoplasm; no discernible enrichment was noted 

in any perinuclear compartment (Figure 2A). These findings suggest that a region within aa 1194-

1491 may be sufficient and required for targeting Daple to PCREs.  

A closer assessment of the sequence within the region between 1194-1491 revealed that 

Daple has a putative phosphoinositide(PI)-binding domain, much like its closely related paralogue, 

GIV/Girdin. Daple and GIV are members of the CCDC88 family; they share high degree of 

homology in their N-terminal Hook and coiled-coil domains, but are highly divergent in their C-

terminal domains. Within the homologous N-terminal region, GIV has been shown to contain a PI-

binding domain (aa 1381-1420), which specifically binds phosphoinisitol 4-phosphate at the PM and 

on Golgi membranes (PI4-P) (Enomoto et al, 2005). This GIV-PI4-P interaction is regulated by a 

single phosphoevent, i.e., phosphorylation of GIV at Ser(S)1416 by Akt dissociates the interaction 

(Enomoto et al, 2005; Ghosh et al, 2008). Alignment of Daple (aa 1194-1491) with the 

corresponding region on GIV revealed the presence of an evolutionarily conserved putative PI-

binding domain containing a Akt consensus site (1425RXXS1428) (Figure 2B; S2A). Several high-

throughput LCMS studies conducted in a variety of cell types using Akt phospho-substrate 

antibodies (Cell Signaling Inc.) had previously reported that S1428 within this consensus on Daple 

is phosphorylated in cells (Figure S3). Multiple kinase prediction programs (Scansite Motif Scan, 

MIT; NetPhos 2.0, Denmark; KinasePhos, Taiwan; Phospho-Motif Finder, HPRD) were also in 

agreement that Akt is predicted to phosphorylate Daple at Ser1428. These findings raised 3 

possibilities: 1) that like GIV, Daple may bind PI (lipid) via this putative PI-binding motif; 2) Akt may 
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phosphorylate the conserved S1428 within the PI-binding motif on Daple; and 3) that this 

phosphoevent may regulate Daple’s ability to bind PI.  

Furthermore, because Daple is a key regulator of tumor initiation and progression (Aznar et 

al, 2015), we looked for clues into how perturbation of Daple’s putative PI-binding domain affects 

cancer progression. A search of the comprehensive catalog of somatic mutations (COSMIC) 

database curated by genome sequencing in the Cancer Genome Atlas (TCGA) revealed that the 

sequence within the Akt-consensus site is recurrently mutated (Figure 2B; S2B-C). Of those, two 

mutations were of utmost interest to us : Ser(S)1428>Phe(F) [S1428F; which should render Daple 

non-phosphorylatable] and Arg(R)1425>Cys(C) [R1425C ; henceforth, RC], which is predicted to 

disrupt the Akt consensus site, and hence also predicted to be non-phosphorylatable. These 

revelations suggest that the newly identified putative PI-binding and Akt phosphorylation sites on 

Daple could be key regulators of the newly identified intracellular localization to PCREs, the 

previously defined Daple’s functions in cells and its role in tumor initiation and progression (Aznar et 

al, 2015). 

 

Phopshorylation of the phosphoinositide-binding domain by Akt regulates Daple’s ability to 

bind PI3-P. First, we wanted to confirm if Daple is indeed a substrate of Akt kinase. In vitro kinase 

assays confirmed that recombinant Akt kinase phosphorylated bacterially expressed His-tagged 

Daple-WT protein (aa 1194-1491), but not the non-phosphorylatable S1428A mutant [SA; in which 

Ser1428 is mutated to Ala], demonstrating that Akt can phosphorylate Daple in vitro at S1428. 

Disruption of the 1425RXXS1428 consensus in the tumor-associated His-Daple-RC mutant also 

abolished phosphorylation, demonstrating that the consensus sequence is essential for Akt-

dependent phosphorylation in vitro (Figure 3A). These findings also held true in cells because when 

Daple was immunoprecipitated from cells with an anti-Akt phosphosubstrate, only Daple-WT, but 

not SA or RC mutants could be detected in the immunoprecipitates (Figure 3B). These findings 

demonstrate that- 1) Daple is phosphorylated at S1428; 2) the site is phosphorylated by Akt; and 3) 

that S1428 is the only site on Daple that is phosphorylated by Akt, much like the corresponding 

S1416 in GIV (Enomoto et al, 2005).  
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Next we asked if Daple’s putative PI-binding motif is functional, i.e., capable of binding lipids, 

and if so, how this function may be impacted by the newly identified phosphoevent. To answer 

these questions, we generated an additional mutant, S1428> Asp(D), to mimic a constitutively 

phosphorylated state. Protein-lipid binding assays, as determined by lipid dot blots carried out using 

in vitro translated His-Daple protein revealed that Daple primarily binds to two types of lipids, PI3-P 

and PI3,5-P2 (Figure 3C); additional weaker interactions were seen also with PI4-P >> PI4,5P2, in 

decreasing order for affinity. No binding was seen for PIP3, PI3,4-P2, and PI5-P. Binding of Daple 

to PI3,5-P2 remained unchanged across WT and mutants. In the case of PI3-P, Daple-WT and the 

non-phosphorylatable SA and RC mutants bound equally, but binding was specifically reduced for 

the phosphomimicking Daple-SD mutant (Figure 3C). These findings indicated that Daple binds 

PI3-P and perhaps also PI3,5-P2 in vitro, but phosphorylation at S1428 selectively reduce the 

Daple-PI3-P interaction, without perturbing the Daple-PI3,5-P2 interaction.  

To determine if these findings hold true in cells, we asked if Daple-WT and mutants 

associate with PI3-P enriched membranes isolated from cells using detergent-free homogenates of 

crude membrane fractions and previously validated PI3-P binding probes, GST-2xFYVE domains of 

EEA1 and Hrs (Gillooly et al, 2000). Daple-WT and SA were detected in these PI3-P enriched 

membranes, whereas binding was reduced in the case of Daple-SD (Figure 3D-E). These findings 

demonstrate that Daple binds PI3-P, and that binding is reduced when S1428 is phosphorylated. 

We conclude that phosphorylation of Daple by Akt within its lipid binding domain inhibits its affinity 

to PI3-P-enriched membranes. It is noteworthy that despite the homology, Daple’s PI-binding profile 

was strikingly different from that of GIV; the latter preferentially binds PI4-P (Enomoto et al, 2005), 

but not PI3-P. These differential preferences, however, are consistent with the differential patterns 

of their intracellular pools-- GIV primarily localizes to Golgi membranes (Le-Niculescu et al, 2005) 

that are enriched in PI4-P (Di Paolo & De Camilli, 2006), whereas Daple localizes to endosomes, 

which are enriched in PI3-P (Di Paolo & De Camilli, 2006; Haucke & Di Paolo, 2007). Although the 

determinants of such divergent PI-preferences of GIV and Daple is unclear, the parallelism between 

the two family members is striking; both GIV and Daple enhance Akt signaling (Anai et al, 2005; 

Aznar et al, 2015) and both are also substrates of Akt kinase [this work and (Enomoto et al, 2005)]; 
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Akt phosphorylates both their PI-binding motifs, at one specific residue within the entire protein, and 

that single phosphoevent is sufficient to disrupt protein-lipid binding in both cases.  

 

Phosphoregulation of Daple’s PI-binding domain by Akt regulates the co-distribution of 

Daple and β-catenin at cell-cell junctions and PCREs. Next we asked what cargo proteins may 

be shuttled via the Daple-labeled PCREs. We previously showed that Daple is essential for the 

maintenance of low cytosolic levels of β-catenin; in cells without Daple, β-catenin is stabilized and 

levels of this protein rise (Aznar et al, 2015). Immunofluorescence studies in extensively validated 

Hela cell lines (Aznar et al, 2015) with (control; shLuc) of without (shDaple) Daple revealed that the 

distribution pattern of β-catenin in both cells is similar, i.e., at the PM and in clusters of perinuclear 

vesicles (Figure 4A; left). The perinuclear vesicular cluster, however, was more diffuse and the 

intensity of signal was increased both at the PM and in the perinuclear compartment in Daple-

depleted cells, consistent with the previously reported ~3-fold elevated levels of β-catenin in these 

cells (Aznar et al, 2015). Because β-catenin/E-cadherin macrocomplexes are known to be shuttled 

to and from the PM via Rab11 positive PCREs (Horgan et al, 2010; Kam & Quaranta, 2009; Lock & 

Stow, 2005), we hypothesized that Daple may colocalize with these macrocomplexes and impact 

their trafficking between the PM and the PCREs.  

First, we confirmed that Daple colocalizes with β-catenin and E-cadherin in the pericentriolar 

compartment (Figure 4A; right), as determined by confocal immunofluorescence analyses on 

endogenous proteins in HeLa cells. Next, we transfected Daple-WT or mutants in HeLa cells 

depleted of endogenous Daple, and looked for β-catenin distribution in cells. We found that two 

distinct patterns of localization were seen for Daple-WT at equal frequency, i.e., predominantly at 

the PM in ~ 50% cells (Figure 4B; top left) or predominantly within PCREs in ~ 50% cells (Figure 

4B; top right); Daple colocalized with β-catenin at both locations. In the case of Daple-SD, this 

mutant also showed two patterns of localization, at the PM and cell-cell contact sites (~ 80%) and in 

PCREs (~ 20%). Unlike Daple-WT, Daple-SD colocalized with β-catenin exclusively at the PM 

(Figure 4B; bottom left) in 100% of the cells; no β-catenin was found in the PCREs (Figure 4B; 

bottom right). In the case of the non-phorphorylatable SA and RC mutants, Daple was found 
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exclusively in PCREs (~ 100% of the cells), where it colocalized with β-catenin (Figure 4C); neither 

Daple, nor β-catenin was found at the PM or at cell-cell contact sites. These findings reveal a 

pattern—1) in cells expressing Daple-WT, β-catenin is distributed between 2 compartments at equal 

frequency, the PCREs and the cell-cell contact sites at the PM; 2) in cells expressing the 

phosphomimicking Daple-SD mutant, the distribution of β-catenin is skewed, i.e., shifted to the PM 

and cell-cell contacts, suggesting a failure to undergo endocytosis and reach the PCREs; 3) in cells 

expressing the non-phosphorylatable Daple-RC mutant, the distribution of β-catenin is skewed 

again, i.e., shifted to the PCREs, suggesting either a failure to be retained at the PM (i.e., rapidly 

endocytosed) or a failure to exit the PCREs and get exocytosed to the cell-cell contact sites at the 

PM. We also found that Daple and β-catenin interact in cells, as determined by co-

immunoprecipitation of endogenous proteins from HeLa cells (Figure 4D), suggesting that these 

proteins likely interact within the macrocomplexes. We also confirmed that excess of β-catenin that 

accumulates in the expanded PCRE compartment of Daple-depleted HeLa cells (Figure 4A; left) is 

not complexed with E-cadherin, as determined by coimmunoprecipitation of endogenous E-

cadherin/β-catenin complexes (Figure 4E). Because both phosphomimicking and non-

phosphorylatable mutants distort the subcellular distribution of β-catenin, we conclude that 

reversible phosphoregulation of Daple’s PI3-P binding function by Akt is essential for normal co-

distribution of Daple/β-catenin/E-cadherin complexes in cells (see working model; Figure 4F). 

Phosphorylated Daple preferentially localizes at the PM and compartmentalizes β-catenin to cell-cell 

contact sites. Dephosphorylation is necessary to trigger endocytic trafficking of β-catenin from the 

PM to PCREs, likely because only dephosphorylated Daple can then engage with PI3-P on 

endosomes that enter the long-recycling pathway laden with these complexes. Daple that is 

constitutively dephosphorylated preferentially localizes to the PCREs and compartmentalizes β-

catenin in that location. 

 

Daple binds and colocalizes with dynein at PCREs; phosphorylation of Daple by Akt alters 

dynein localization. The co-distribution of Daple/β-catenin/E-cadherin complexes at the PM and on 
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PCREs raises the possibility that directed endocytic traffic of these complexes over long-distances 

between these compartments must use motor proteins. In fact, prior studies have shown that during 

the endocytosis of β-catenin/E-cadherin complexes, clathrin/AP-2 is released from endocytic 

vesicles, allowing dynein recruitment for retrograde transport (Skanland et al, 2009); dynein directly 

binds β-catenin, captures and tethers microtubules at cell-cell contact sites to initiate long-distance 

transport (Ligon & Holzbaur, 2007; Ligon et al, 2001). We found that both endogenous and 

exogenously expressed Daple colocalizes with dynein on PCREs (Figure 5A; S4A); such 

colocalization is preserved in the case of Daple-FA and Daple-∆PBM (Figure 5A), indicating that 

Daple colocalizes with dynein regardless of its ability to bind or activate G proteins or bind Dvl. Co-

immunoprecipitation studies confirmed that endogenous Daple and dynein interact (Figure 5B). 

Exogenous expression of Daple in either control (shLuc) or Daple-depleted HeLa cells resulted in a 

robust enrichment of endogenous dynein at PCREs (Figure S4B), suggesting that the interaction 

between Daple and dynein may enhance the activity of dynein. In wake of these findings, we 

hypothesized, that phosphoregulation of Daple by Akt may impact the localization of 

dynein/dynactin complex, and could account for the failure of endocytic trafficking of β-catenin from 

the PM to the PCREs in cells expressing Daple-SD. We found that is indeed the case, because 

while Daple-WT (Figure 5C), and both the non-phosphorylatable SA (Figure 5D) and RC (Figure 

5E) mutants displayed robust enrichment of endogenous dynein in the PCREs, but Daple-SD did 

not (Figure 5F-G). Cells expressing Daple-SD formed cell-cell contacts frequently, where Daple-SD 

and dynein colocalized (Figure 5F). In cells that did not make contacts, Daple-SD was localized in 

vesicular structures in the cell periphery and in a pericentriolar compartment (likely PCREs), but 

dynein did not colocalize with Daple in these vesicles (Figure 5G). What may be the significance of 

Daple’s ability to bind and regulate the distributions of β-catenin and dynein in PCREs? We have 

confirmed that the PI3-P binding domain we identify here is not required for binding to dynein 

(unpublished data). Because Hook-domain containing proteins, Hook1 and 3 serve as adaptors that 

enhance the assembly and activation of dynein motor complex (Schroeder & Vale, 2016) to support 

unidirectional, long-range processive motility at high velocity (Olenick et al, 2016), it is possible that 

Daple, which has a Hook-domain at its N-terminus, also does the same. In fact, HkRP3, a 
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paralogue of Daple has already been shown to bind dynein/dynactin complex and trigger the 

transport of lytic granules in cytotoxic natural killer (NK)-cells (Ham et al, 2015); whether Daple 

serves as a specific adaptor for dynein motor proteins for shuttling of β-catenin/E-cadherin cargo 

proteins remains to be seen.  

Based on our findings and the existing literature, we propose the following working model 

(Figure 5H): During the endocytosis of β-catenin/E-cadherin complexes, dynein/dynactin complexes 

are recruited to the β-catenin/E-cadherin complexes via a direct interaction with β-catenin (Ligon et 

al, 2001). Daple binds β-catenin and dynein, and colocalizes with β-catenin/E-cadherin complexes 

at cell-cell contact sites. PI3-K/Akt signaling that is initiated either by growth factors (Aznar et al., 

2017; accompanying manuscript), or by Wnt5A/FZD7 (Aznar et al, 2015), or by E-cadherin within 

junctional complexes (Pece et al, 1999) phosphorylates Daple at S1428; phosphorylation helps 

Daple maintain β-catenin/E-cadherin complexes at cell-cell contacts, inhibit endocytosis of 

complexes, and thereby, facilitates adhesion. Dephosphorylation is required for Daple to bind PI3-P 

and facilitate endocytic trafficking of Daple-bound macrocomplexes [dynein/β-catenin/E-cadherin] 

via the long-recycling pathway through Rab11-positive PCREs. Dephosphorylation also allows 

Daple to trigger the activation of dynein motor complex (Olenick et al, 2016) and movement of 

vesicles to minus ends of microtubules via mechanisms that currently remain poorly understood.  

 

Phosphorylation of Daple by Akt suppresses the canonical Wnt/β-catenin pathway and 

growth in colonies, but enhances Rac1 activity, triggers migration and EMT. We previously 

demonstrated that Daple suppresses proliferation but enhances cell migration via activation of the 

non-canonical Wnt5A/FZD7 pathway (Aznar et al, 2015); it also does the same downstream of 

growth factor RTKs such as EGFR (Aznar et al., 2017; accompanying manuscript). To study the 

impact of phosphorylation of Daple at S1428 on those phenotypes, we generated HeLa cell lines 

stably depleted of endogenous Daple and rescued by expressing shRNA-resistant Daple-WT or 

various mutants at close to endogenous levels (Figure 6A). Rac1 activity, as determined in 

pulldown assays using the p21 binding domain (PBD) of PAK1, was enhanced in cells expressing 

the phorphomimicking SD mutant, and suppressed in those expressing the non-phosphorylatable 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/149351doi: bioRxiv preprint 

https://doi.org/10.1101/149351


13 | P a g e  

 

SA and RC mutants (Figure 6B-C). These changes in Rac1 activity was accompanied also by 

changes in chemotactic migration of cells, as determined by transwell chemotaxis assays along a 0-

10% serum gradient (Figure 6D-E); compared to cells expressing Daple-WT, cells expressing the 

phosphomimicking Daple-SD migrated more, whereas those expressing the non-phosphorylatable 

SA or RC mutants migrated less. We conclude that phosphorylation of Daple at S1428 by Akt is 

required for enhancing Rac1 activity and chemotactic cell migration. The effect of this 

phosphorylation was reversed when it came to either anchorage-independent (Figure 6F, G; S4B) 

or anchorage-dependent (Figure 6J, K, S4C) colony formation; Daple-SA or RC mutants enhanced 

colony growth, whereas the Daple-SD mutant suppressed anchorage-dependent and virtually 

abolished anchorage independent colony growth.  

Prior studies by us (Aznar et al, 2015); Aznar et al., 2017; accompanying manuscript) and 

others (Ara et al, 2016; Ishida-Takagishi et al, 2012) have shown that non-canonical Wnt signaling 

that is enhanced by Daple displays a bifaceted transcriptional response: 1) it antagonistically 

suppresses canonical Wnt signaling and reduces the expression of β-catenin/TCF/LEF target 

genes; and 2) it enhances the expression of genes that trigger EMT. We found that constitutive 

phosphoactivation of Daple by Akt [mimicked by SD mutation] supresses several key canonical Wnt 

responsive β-catenin/TCF/LEF target genes (MYC, CCND1 and SFRP1; Figure 6J), consistent with 

its observed growth suppressive properties. Surprisingly, two other targets of β-catenin, osteopontin 

[OPN; which is known as a master regulator of EMT (Kothari et al, 2016) via its ability to stabilize 

vimentin (Dong et al, 2016)] and Axin2 [AXIN2, which enhances EMT via induction of Snail (Yook et 

al, 2006)] were not suppressed, and instead were increased in Daple-SD cells (Figure 6K), also 

consistent with its promigratory phenotype. Constitutive inactivation of the Akt→pS1428-Daple axis 

[as mimicked by SA and RC mutants] was associated with enhanced transcription of β-

catenin/TCF/LEF target genes (MYC and CCND1; Figure 6J) and suppression of key inducers of 

EMT (AXIN2 and VIM; Figure 6K); all consistent with the pro-growth and poorly motile phenotype of 

these cells. It is noteworthy that all 3 cell lines expressing Daple mutants [SD, SA and RC] had 

elevated levels of β-catenin compared to cells expressing Daple-WT (Figure S4D), suggesting that 

the differential effects of phosphomimicking and non-phosphorylatable Daple mutants on the β-
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catenin/TCF/LEF axis is largely due to the differential localization of β-catenin. Selective 

enhancement of some EMT-associated β-catenin/TCF/LEF–dependent target genes (OPN and 

AXIN2) and suppression of other proliferation-associated transcriptional targets (MYC, CCND1 and 

SFRP1) in Daple-SD cells (Figure 6J, K), despite the relatively lower levels of β-catenin in these 

cells compared to SA/RC cells (Figure S4D) was an unexpected observation. Such differential 

response of β-catenin/TCF/LEF target genes in Daple-SD cells could be due to crosstalk with 

alternative pathways that can affect OPN and AXIN2, such as the Hippo signaling pathway (Lu et al, 

2010; Park et al, 2015) or Rac1; the latter has been implicated in transcriptional upregulation of 

genes involved in EMT and cell invasion (Iwai et al, 2010; Jamieson et al, 2015; Wu et al, 2008). 

Regardless of the mechanisms involved, our findings demonstrate that phosphorylation of 

Daple on residue Ser1428 is a key determinant of cellular phenotype (Figure 6L); a constitutively 

phosphorylated state in which β-catenin localizes to cell-cell contact sites, suppresses the β-

catenin/TCF/LEF pathway, suppresses colony formation, but confers migratory advantage and 

triggers EMT. By contrast, a constitutively dephosphorylated state in which β-catenin predominantly 

localizes to PCREs, enhances key β-catenin/TCF/LEF target genes (MYC and CCND1), 

suppresses EMT, and thereby, confers a proliferative advantage over migration. We conclude that 

the skewed redistribution of β-catenin we see in phosphomimic (SD) or non-phosphorylatable 

(SA/RC) mutants may in part be responsible for the observed cellular phenotypes.  

 

Daple and Akt enhance non-canonical Wnt signaling within a feed-forward loop; implications 

in normal vs. transformed cells.  Non-canonical Wnt signaling via Daple has been shown to serve 

as a double-edged sword; it serves as a tumor suppressive pathway in normal cells and early during 

tumorigenesis, but enhances EMT and metastatic progression later during cancer progression 

(Aznar et al, 2015). Based on our current findings, we propose the following model (Figure 7A): 

When phosphorylated by Akt, Daple’s ability to maintain large pools of β-catenin within E-

cadherin/β-catenin complexes at the cell-cell contact sites and enhance non-canonical Wnt 

signaling may primarily serve as a check and balance for the canonical Wnt pathway and to 

suppress proliferation. We previously showed that activation of Gαi proteins by Daple downstream 
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of Wnt5A/FZD7 receptor enhances the PI3-K/Akt signaling pathway (Aznar et al, 2015). We 

hypothesized that the Akt→Daple axis we defined here may serve as a forward-feedback loop for 

the previously defined Daple→Akt axis. To test that, we analyzed Akt-mediated phosphorylation of 

Daple-WT or Daple-FA; the latter cannot activate G proteins and is defective in enhancing Akt 

signaling. We found that Akt phosphorylated Daple-WT ~2.5 fold more efficiently than it did Daple-

FA (Figure 7B), indicating that the Akt↔Daple crosstalk is indeed bidirectional and capable of 

serving as a feedforward loop in cells.  

As for transformed cancer cells, which accumulate multiple genetic anomalies, frequently 

involving constitutive hyperactivation of the PI3-K/Akt cascade (e.g., activating mutations in PIK3CA 

or Akt and inactivating mutations in PTEN) and within the canonical Wnt/β-catenin signaling axis 

(e.g., APC, Axin, β-catenin, or GSK3β), the impact of the Akt↔Daple crosstalk may fuel cancer 

initiation and/or progression. When Daple is low or the Akt→Daple axis is disrupted, as in tumors 

harboring Daple-R1425C or S1428F mutations (Figure 2B), β-catenin cannot be retained at cell-cell 

contact sites within E-cadherin/β-catenin complexes, and instead reaches the PCREs. 

Consequently, non-canonical Wnt signals cannot be enhanced and canonical β-catenin-dependent 

Wnt signaling goes unchecked. When Daple levels are high and it is hyperphosphorylated by Akt, a 

large pool of β-catenin is maintained within E-cadherin/β-catenin complexes at the cell-cell contact 

sites, non-canonical Wnt pathways (Rac1 and EMT) are triggered, while maintaining cell adhesion, 

perhaps enabling collective tumor cell migration during cancer invasion. This form of migration, in 

which groups of cells invade the peritumoral stroma while maintaining cell–cell contacts, is the 

predominant form of migration displayed in invasive solid tumours (Clark & Vignjevic, 2015; Friedl et 

al, 2012) and involves activation of Rac1 and PI3-K/Akt signals (Yamaguchi et al, 2015); two 

pathways that are hallmark of Daple-dependent signaling (Aznar et al, 2015).  

 

Conclusions:   

The major finding in this work is the discovery of a novel crosstalk between the PI3-K/Akt and the 

non-canonical Wnt pathways via Daple which results in compartmentalization of β-catenin. Widely 

assumed as an enhancer of the canonical Wnt signaling pathway, Akt has been implicated in 
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enhancing the TCF/LEF transcription machinery by either directly phosphorylating β-catenin (Fang 

et al, 2007), or by inhibiting GSK3β, a negative regulator of β-catenin stability (Aberle et al, 1997; 

Salic et al, 2000). Here we show how a single phosphoevent triggered by Akt targets Daple’s PI-

binding domain and imparts spatial regulation of non-canonical signaling via Daple. In doing so, Akt 

directly impacts Daple’s ability to associate with PI3-P-enriched endosomes that engage dynein 

motor complex for long-distance travel to PCREs. These PCREs carry β-catenin/E-cadherin 

complexes as cargo proteins whose localization is impacted by spatially regulated signaling via 

Daple. Phosphorylation by Akt compartmentalizes Daple and β-catenin/E-cadherin at cell-cell 

contact sites, which suppresses the canonical β-catenin/TCF/LEF transcriptional machinery and 

thereby, suppresses growth. These findings are in agreement with prior work showing that the 

tumor suppressive effects of non-canonical Wnt signaling is due, in part, to its ability to sequester β-

catenin at the PM (Bernard et al, 2008). It is also in keeping with the widely-accepted role of β-

catenin/E-cadherin complexes at the cell junctions in the maintenance of cell polarity, which is a 

gatekeeper against cell proliferation and cancer initiation (Royer & Lu, 2011). We conclude that 

compartmentalization of β-catenin at cell-cell contact sites inhibits proliferation in part by prolonging 

non-canonical Wnt signals and tonic suppression of canonical Wnt signals. When the Akt→Daple 

axis is disrupted, both Daple and β-catenin cannot be maintained at cell-cell contact sites, and 

instead, they are endocytosed and trafficked to PCREs; consequently, the non-canonical Wnt 

signals are inhibited, canonical Wnt pathway goes unopposed, and cells proliferate. That Daple/β-

catenin/E-cadherin/dynein complexes compartmentalize to PCREs is not surprising because prior 

work has documented the presence of multiple components of the Wnt signalosome on PCREs 

[e.g., β-catenin/Amotl2 complexes (Li et al, 2012), Dvl, (Smalley et al, 2005), FZD7 (Egea-Jimenez 

et al, 2016; Pradhan-Sundd & Verheyen, 2015)] and the role of endocytosis and recycling via 

Rab11 positive PCREs in the regulation of the Wnt signalosome (Feng & Gao, 2015), and 

specifically, in the termination of non-canonical Wnt signals (Gagliardi et al, 2008). Because 

canonical signal transduction (via β-catenin stabilization) requires endocytosis, and endosomes are 

believed to serve as critical platforms for spatially restricted canonical Wnt signaling  (Disanza et al, 
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2009), we conclude that compartmentalization of β-catenin in PCREs triggers proliferation in part by 

prolonging unopposed canonical Wnt signaling.  

It is noteworthy that all findings reported here were observed at steady-state without 

subjecting cells to acute stimulation with ligands, largely because Daple’s localization to the PCREs 

appeared to be constitutive and independent of its ability to bind G proteins or Dvl, two partners that 

have been shown to be critical for Daple’s role in Wnt5A/FZD7 (Aznar et al, 2015) and growth factor 

RTK (Aznar et al., accompanying manuscript, 2017) signaling. Which begs the question, that in the 

absence of acute ligand stimulation, or activating mutations, what other alternative pathways for Akt 

activation is responsible for the observed effects. Prior studies have shown that much like FZD7 and 

RTKs, E-cadherin/β-catenin complexes are capable of initiating outside-in PI3-K/Akt signaling that is 

critical for aggregation-dependent cell survival (Pece et al, 1999); E-cadherins at cell-cell contact 

sites trigger rapid PI3-K-dependent activation of Akt. It is possible that the Akt→Daple→β-catenin 

redistribution pathway we define here is initiated by E-cadherins within E-cadherin/β-catenin 

complexes at cell-cell contact sites.  

In conclusion, we provide the first direct evidence here that Akt can not only enhance the 

canonical Wnt pathway, but also enhance the non-canonical Wnt pathway by phosphorylating 

Daple. Insights gained also reveal how this crosstalk in the setting of aberrant activation of the PI3-

K/Akt pathway impacts cancer initiation and/or progression by modulating both Wnt pathways.  
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Materials and Methods 
Detailed Methods can be found in Supplementary Information.  
 
Protein Expression and Purification— GST and His-tagged recombinant proteins were 
expressed in E. coli strain BL21 (DE3) (Invitrogen) and purified as described previously (Garcia-
Marcos et al, 2011; Ghosh et al, 2010; Ghosh et al, 2008).   
 
Transfection; Generation of Stable Cell Lines and Cell Lysis— Transfection was carried out 
using either polyethylenimine (PEI) as previously described (Aznar et al, 2016) or Genejuice from 
Novagen for DNA plasmids following the manufacturers’ protocols. Selection or stable cells, triton 
extracts and whole cell lysis were carried out as mentioned before (Aznar et al, 2015).  
 
Quantitative Immunoblotting—Infrared imaging with two-color detection and band densitometry 
quantifications were performed using a Li-Cor Odyssey imaging system exactly as done previously 
(Aznar et al, 2015). All Odyssey images were processed using Image J software (NIH) and 
assembled into figure panels using Photoshop and Illustrator software (Adobe). 
 
In vitro GST pulldown and Immunoprecipitation Assays – These assays were carried out 
exactly as previously (Aznar et al, 2015) and are detailed in Supplementary Information.  
 
In vitro and in-cellulo Kinase Assays— In vitro kinase assays were performed using bacterially 
expressed His (6 x His, hexahistidine) tagged Daple (aa 1194-1491) proteins (~3-5 μg per reaction), 
and ~50 ng recombinant kinases which were obtained commercially (SignalChem, Canada). The 
reactions were started by addition of ATP (5 μCi/reaction γP32-ATP and 6�μM cold ATP) and 
carried out at 30°C in 30�μl of kinase buffer (20�mM Tris·HCl, pH 7.5, 2�mM EDTA, 10�mM 
MgCl2 and 1�mM DTT). Phosphorylated proteins were separated on 10% SDS-PAGE and 
detected by autoradiography.  

For in cellulo phosphorylation assays anti-phosphoAkt substrate Ab was used to 
immunoprecipitated phosphoproteins from cell lysates [prepared using RIPA buffer], and analysing 
the precipitates for Daple by immunoblotting.   
 

Lipid blot assay— 
The lipid blots were performed as previously described (Dippold et al, 2009). PVDF membranes 
spotted with lipids were incubated with in vitro translated 35S-labeled Daple (aa 1194-1491).  
 
Rac1 activity, transwell migration, colony growth, and qPCR assays— 
These assays were carried out exactly as outlined before (Aznar et al, 2015). 
 
Statistical analysis— 
Each experiment presented in the figures is representative of at least three independent 
experiments. Displayed images and immunoblots are representative of the biological repeats. 
Statistical significance between the differences of means was calculated by an unpaired student’s t-
test or one-way ANOVA [whenever more than two groups were compared]. A two-tailed p value of 
<0.05 at 95% confidence interval is considered statistically significant. All graphical data presented 
were prepared using GraphPad or Matlab. 
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Figures and Legends 

 

Figure 1: Daple localizes to peri-centriolar recycling endosomes (PCRE). (A) Serum-starved 

HeLa cells expressing myc-Daple WT were stimulated with Wnt5a for various time points, fixed, 

stained and analyzed for localization of myc-Daple (Green) by confocal microscopy. Myc-Daple 

localizes predominantly within an intracellular perinuclear pool (arrows) at steady-state. Upon Wnt5a 

stimulation, Daple transiently localizes to the plasma membrane (PM) (arrowheads; 15 min). (B) HeLa 

cells were fixed and stained for endogenous Daple (red), γ-tubulin (green) and DAPI (blue; nuclei) and 

analyzed by confocal microscopy. RGB plot, generated using ImageJ at the bottom shows how red 

pixels (Daple) flank green pixels (γ-tubulin; a centrosomal marker). (C) HeLa cells expressing GFP-

Rab11-QL (a marker of recycling endosomes) were fixed and stained for endogenous Daple (red) and 

DAPI (blue; nuclei) and analyzed by confocal microscopy. RGB plot shows the degree of 

colocalization of red and green pixels. (D, E) HeLa cells transfected with either wild-type (WT) or GEF-

deficient (FA) mCherry-Daple constructs were analyzed by confocal microscopy for their co-

localization with either γ-tubulin (D) or GFP-Rab11-QL (E). RGB plots show that mCherry-Daple 

colocalized with Rab11 and around the centrosome regardless of a functional GEF motif.  

 

Figure 2: Identification of a putative lipid binding domain within Daple. (A) (Top) schematic 

showing the various functional modules of full length Daple and other truncated constructs used to 

identify domains regulating its subcellular localization. From the N- to the C-terminus the domains 

are– a predicted Hook-domain (red), which binds microtubules; a long coiled-coil domain (blue) 

assists in homo/oligomerization (Oshita et al, 2003); an evolutionarily conserved GEF motif (green) 

which binds and activates Gαi (Aznar et al, 2015) and releases ‘free’ Gβγ. The C-terminal ~ 150 aa of 

Daple (orange) also has key domains that enable Daple to bind FZD7 Receptor (Aznar et al, 2015), 

and bind DVL (Oshita et al, 2003). (Bottom) HeLa cells transfected with either myc-Daple full length 

(aa 1-2028) or myc-Daple short constructs (aa 1476-2028 and aa 1194-1491) were analyzed for 

localization of myc-Daple (Green) and DAPI (blue; nuclei). (B) Sequence analysis revealed a motif in 

Daple similar to the PI4-P binding motif previously described in GIV (Enomoto et al, 2005). A 

previously described Akt phosphorylation site within GIV, S1416 is conserved on Daple (S1428) within 

a consensus sequence (RXXS) predicted to be phosphorylated by Akt. Schematic also lists mutations 

within or flanking the putative Akt phosphorylation site of Daple that have been reported in The 

Cancer Genome Atlas (TCGA) database. Numbers in parenthesis = total events.  

 

Figure 3: Daple binds PtdIns(3)P and  PtdIns(3,5)P2; phosphorylation by Akt on Ser1428 

regulates Daple’s ability to bind PI3-P. (A) In vitro kinase assays were carried out using 

recombinant Akt and bacterially expressed and purified His-Daple (aa 1194-1491) WT or the non-
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phosphorylatable (S1428A) or the cancer-associated (R1425C) proteins and γ-32P [ATP]. 

Phosphoproteins were analyzed by SDS-PAGE followed by autoradiography (top). Equal loading of 

substrate proteins was confirmed by staining the gel with Coomassie blue (bottom). (B) Daple is 

phosphorylated on Ser1428 by Akt in cells. Daple was immunoprecipitated from equal aliquots of 

lysates of HeLa cells expressing myc-Daple [WT, S1428A or R1425C mutants] using anti-Akt-

substrate antibody or control IgG. Immune complexes (top) were analyzed by immunoblotting (IB) for 

Daple. (C) Daple binds PI3P and PI3,5-P2. The ability of His-Daple WT and either phosphomimic (SD) 

or non-phosphorylatable (SA and RC) His-Daple mutants to bind to a variety of phophoinositides was 

analysed using a protein–lipid-binding assay. His-PX and His-ATG-18 proteins, which are known to 

bind PtdIns(3)P and  PtdIns(3,5)P2 respectively were used as a positive control. (Bottom left) Amount 

of in vitro-translated His-Daple constructs and controls used were analyzed by autoradiography. (D, E) 

Daple binds to PtdIns(3)P-enriched membranes. Crude membranes isolated from HeLa cells 

expressing Daple-WT, SD (phosphomimic) or SA (non-phosphorylatable) mutants were incubated 

with GST-FYVE domains of EEA1 or Hrs. Bound membranes were analysed for Daple by 

immunoblotting (D). Bar graphs (E) display the fold change in EEA1 (top) or Hrs (bottom)-bound 

Daple in D. Error bars representing mean ± S.D of three independent experiments.  

 

 

Figure 4: Daple binds β-catenin and regulates its distribution in cells. (A) Left: Control (shLuc) or 

Daple-depleted (shDaple) HeLa cells were analyzed for localization of β-catenin (Green) by 

immunofluorescence. Right: HeLa cells were analyzed for localization of endogenous Daple (red) and 

β-catenin or E-cadherin (Green) by immunofluorescence. Scale bar = 10 µm. (B-C) Phosphorylation 

of Daple on Ser1428 by Akt regulates the subcellular localization of β-catenin. Daple-depleted 

(shDaple) HeLa cells expressing myc-Daple-WT (B, top), myc-Daple SD (B, bottom), myc-Daple SA 

(C, top) and myc-Daple RC (C, bottom) were analyzed for localization of myc-Daple (red) and β-

catenin (green) by confocal microscopy. Scale bar = 15 µm. (D) Daple interacts with β-catenin in cells. 

β-catenin was immunoprecipitated from equal aliquots of lysates (bottom) of HeLa cells expressing 

myc-Daple-WT using anti-β-catenin mAb or control IgG. Immune complexes (top) were analyzed for 

Daple, β-catenin and Tubulin by immunoblotting (IB). (E) β-catenin was immunoprecipitated from 

equal amounts of lysates of control (shLuc) and Daple-depleted (shDaple) HeLa cells as in D and 

immune complexes were analysed for E-cadherin by immunoblotting (IB). E-cadherin was detected in 

the β-catenin-bound complexes in the presence of Daple, whereas it was virtually undetectable in 

shDaple cells (right lane) and in control IgG (left lane). (F) Working Model: Schematic summarizing 

the trafficking itinerary (red arrows) of Daple-bound β-catenin-E-cadherin complexes from cell-cell 

contact sites at the PM and the pericentriolar recycling endosomes [PCREs]. The distribution of β-

catenin is regulated by Daple's ability to reversibly bind phosphoinositide PI3P on endosomes, which 
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in turn is regulated by phosphorylation of S1428 on Daple by Akt. In the absence of phosphorylation 

(SA and RC mutants), Daple constitutively remains bound to PI3-P, and is found predominantly at the 

PCREs. When constitutively phosphorylated (SD), β-catenin and Daple preferentially colocalize at 

cell-cell contacts. Key: EE, early endosomes; SE, sorting endosomes; LE, late endosomes; PCRE, 

peri-centriolar recycling endosomes; ER, endoplasmic reticulum; MVB, multi-vesicular bodies; L, 

lysosomes. 

 

Figure 5: Daple binds and localizes with dynein in PCREs; phosphorylation at S1428 by Akt 

abolishes such colocalization. (A) HeLa cells expressing mCherry-Daple-WT (left), FA (middle; 

defective in binding G proteins), or ∆PBM (right; defective in binding Dvl) mutants (red) were analysed 

for endogenous dynein (intermediate chain, IC; green) and DAPI (nucleus) by confocal 

immunofluorescence. RGB plot, generated using ImageJ displayed underneath each image shows the 

degree of colocalization between red (Daple) and green (dynein) along the white line drawn in inset. 

Scale bar = 10 µm. (B) Dynein was immunoprecipitated from lysates of HeLa cells using control or 

anti-Dynein IC antibodies. Immunoprocipitates were analyzed for Daple and dynein IC by 

immunoblotting (IB). (C-E) Daple-depleted HeLa cells expressing myc-Daple-WT (C), SA (D), and RC 

(E) mutants were fixed, stained and analyzed for colocalization between myc-Daple (red) and 

endogenous dynein (green) by confocal immunofluorescence. RGB plots, generated using ImageJ 

displayed underneath each image shows the degree of colocalization between red (Daple) and green 

(dynein) along the white line drawn in inset. (F-G) Daple-depleted HeLa cells expressing myc-Daple-

SD were fixed, stained and analyzed for the distribution of Daple (red) and dynein (green) by confocal 

imaging. Two patterns were noted: among cells with cell-cell contact (F), Daple and dynein 

colocalized primarily at the contact sites (arrowhead); a small pool of Daple was also seen at PCREs 

(arrow). Among cells that were not in contact, Daple-SD localized to PCREs and on peripheral 

vesicles, but dynein was not enriched at these sites. Scale bar = 10 µm. (H) Proposed working model 

for the role of the newly identified Akt→phospho-Daple pathway in the distribution of β-catenin/E-

cadherin complexes between the PM and the PCREs.              

  

 

 

Figure 6: Constitutive phosphoactivation of Daple [mimicked by S1428D mutation] suppresses 

both anchorage-dependent and independent growth of tumor cell colonies, but enhances Rac1 

activity and cell migration. (A) HeLa cell lines stably expressing various Daple constructs (see also 

Methods) were analysed for Daple and Gαi3 expression by immunoblotting. (B) Equal aliquots of 

lysates of HeLa cell lines were analyzed for active Rac1 using GST-PBD in pulldown assays, followed 

by immunoblotting. Compared to cells expressing Daple-WT, activation of Rac1 is impaired in cells 

expressing the non-phosphorylatable Daple SA and RC mutants, but enhanced in cells expressing the 
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constitutively phosphomimicking SD mutant. (C) Bar graphs display the fold change in Rac1 activity. 

Error bars representing mean ± S.D of 3 independent experiments. (D-E) HeLa cell lines expressing 

various Daple constructs were analyzed for their ability to migrate in transwell assays toward a serum 

gradient (0.2% to 10% FBS). Images in D show representative fields of the transwell membrane, 

photographed at 60X mag. Compared to cells expressing Daple-WT, chemotactic migration is 

impaired in cells expressing the non-phosphorylatable Daple SA and RC mutants, but enhanced in 

cells expressing the constitutively phosphomimicking SD mutant. Graphs in E present the 

quantification of the number of migrating cells in D, averaged from 20 field-of view images per 

experiment (see also Figure S4A). Data are presented as mean ± SEM; n = 3. HPF = high-power 

field. (F-I) HeLa cell lines were analyzed for their ability to form colonies either in soft agar (F) or on 

plastic plates (H, 2% FBS; S4C, 10% FBS) for 2–3 weeks prior to fixing, staining, photography, and 

colony counting using an ImageJ Colony counter application (see also Figure S4B-C and Methods). 

Panel F shows representative photographs of the MTT-stained 6-well plates, whereas panel J shows 

representative photographs of colonies stained on plastic with crystal violet. Compared to cells 

expressing Daple WT, anchorage-independent (F, G) and anchorage-dependent (H, I) growth is 

impaired in cells expressing the constitutively phosphomimicking SD mutant, but enhanced in the cells 

expressing the non-phosphorylatable SA and RC mutants. Bar graphs in G and I display the number 

of colonies (y axis) seen in each cell line in F, S4B, S4C and H, respectively. *p < 0.05; **p < 0.01; 

***p < 0.001; ****p < 0.0001. (J-K) HeLa cell lines in A were analyzed by qPCR for the levels of mRNA 

for the indicated canonical β-catenin/TCF/LEF target genes (J) or inducers of EMT (K). Results were 

normalized internally to mRNA levels of the housekeeping gene, GAPDH. Bar graphs display the fold 

change in each RNA (y axis) normalized to the expression in cells expressing Daple-WT (indicated 

with an interrupted grey line at 1.0). Error bars represent mean ± S.D of three independent 

experiments. *p < 0.05; **p < 0.01; ***p < 0.001. (L) Schematic summarizing the impact of 

phosphorylation of Daple at S1428 on non-canonical Wnt signaling pathway and cellular phenotypes.  

 

 

 

Figure 7: Phosphoregulation of Daple by Akt serves as a forward feedback loop for Daple’s 

GEF activity-dependent Akt signaling; this feed-forward loop regulates β-catenin distribution 

in cells. (A) Working model for Akt-Daple crosstalk in normal cells: Activation of the PI3K-Akt axis is 

known to enhance canonical Wnt signaling (right) via the upregulation of both transcriptional activity 

(Fang et al, 2007) and stability [inhibits proteasomal degradation] of β-catenin. Akt also 

phosphorylates Daple and enhances non-canonical Wnt signaling, regulates the intracellular 

distribution of β-catenin between the PCRE and the cell-cell junctions. Daple has previously been 

shown to enhance Akt phosphorylation (Aznar et al, 2015). (B) Daple was immunoprecipitated from 

equal aliquots of lysates of HeLa cells expressing myc-Daple [WT and FA] using anti-Akt-substrate 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/149351doi: bioRxiv preprint 

https://doi.org/10.1101/149351


23 | P a g e  

 

antibody or control IgG. Immune complexes (top) were analyzed by immunoblotting (IB) for Daple 

using anti-Daple and anti-Myc. Compared to Daple WT, Akt-mediated phosphorylation of Daple was 

reduced in Daple FA. (C) Working model for Akt-Daple crosstalk in transformed cells: Mutations 

commonly affect the PI3K-Akt pathway in tumor cells, causing an overall increase in Akt signaling. 

Under these circumstances, canonical Wnt signaling is enhanced via mechanisms mentioned in A. As 

for non-canonical Wnt pathway, the effect of aberrant Akt signaling varies depending on the levels of 

expression or mutations in Daple. Left: If Daple is low or is expressed as a non-phosphorylatable 

mutant, non-canonical Wnt signals are suppressed. Right: If Daple is high and expressed as a WT 

protein, it can get hyperphosphorylated by Akt, in which case, non-canonical Wnt signaling is 

enhanced.  
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