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Abstract

Do local conditions influence evolution’s ability to produce
new traits? Biological data demonstrate that evolutionary
processes can be profoundly influenced by local conditions.
However, the evolution of novel traits has not been addressed
in this context, owing in part to the challenges of performing
the necessary experiments with natural organisms. We con-
duct in silico experiments with the Avida Digital Evolution
Platform to address this question. We created eight different
spatially heterogeneous environments and ran 100 replicates
in each. Within each environment, we examined the distribu-
tion of locations where nine different focal traits first evolved.
Using spatial statistics methods, we identified regions within
each environment that had significantly elevated probabili-
ties of containing the first organism with a given trait (i.e.
hotspots of evolutionary potential). Having demonstrated the
presence of many such hotspots, we explored three potential
mechanisms that could drive the formation of these patterns:
proximity of specific resources, variation in local diversity,
and variation in the sequence of locations the members of an
evolutionary lineage occupy. Resource proximity and local
diversity appear to have minimal explanatory power. Lineage
paths through space, however, show some promising prelim-
inary trends. If we can understand the processes that create
evolutionary hotspots, we will be able to craft environments
that are more effective at evolving targeted traits. This capa-
bility would be useful both to evolutionary computation, and
to efforts to guide biological evolution.

Introduction
Understanding the evolutionary processes that facilitate the
evolution of complex traits is at the heart of many open ques-
tions in artificial life, evolutionary computation, and evolu-
tionary biology. Numerous studies have suggested that spa-
tially complex environments can drive the evolution of com-
plex traits (Doebeli and Dieckmann, 2003; Wagner et al.,
2013; Dolson et al., 2017), but it is unknown whether this
result is a global pattern that is only visible at the scale of
the entire environment, or whether it is driven by local spa-
tial dynamics. If sub-regions exist that disproportionately
promote the evolution of specific adaptive traits (evolution-
ary hotspots), they would be a valuable phenomenon to un-
derstand. Understanding what factors produce evolutionary

hotspots should help us design environments that are more
likely to evolve complex traits. This ability would also en-
able us to build more interesting artificial life systems, more
effective evolutionary algorithms, and biological environ-
ments that promote desirable evolutionary outcomes.

Where should we expect to find evolutionary hotspots?
Instinctively, we might expect a trait to arise only in regions
where it is beneficial. However, selection can only favor
traits once they appear, not promote that initial appearance,
so other aspects of the environment must play a critical role.
At the other extreme, hotspots seem unlikely in a homoge-
neous environment with no spatial structure. However, few
environments in nature are truly homogeneous, and almost
all have some form of spatial structure. Even among digital
systems, once we consider the fact that any kind of interac-
tion between neighboring individuals introduces spatial het-
erogeneity, few are truly spatially homogeneous. Thus, un-
derstanding if and how evolutionary potential varies across
space could be important for understanding evolutionary dy-
namics in a variety of systems.

Why should we expect evolutionary hotspots to exist? To
better understand this idea, it is useful to consider Wright‘s
fitness landscape metaphor (Wright, 1932). At its simplest, a
fitness landscape is a three-dimensional surface representing
two traits (x and y) with varying values, and the fitness of an
organism having a given combination of those trait values
(z). When there are gradients in this space, we expect popu-
lations to climb to a fitness peak over time. Typically, pop-
ulations will then get stuck at the peak of a local gradient,
regardless of whether it is the highest location in the land-
scape. As such, the topography of the local fitness landscape
plays a pivotal role in determining what traits will evolve in
a population. A wide variety of factors can influence what
part of a fitness landscape a population ends up in at a given
point in time (Wilke et al., 2001). We predict that spatial
variation across the environment is one such factor. A spa-
tially heterogeneous environment can be conceptualized as a
network of different fitness landscapes, one for each location
in space. However, in a dynamic, interdependent ecological
community, these fitness landscapes shift over time. Some
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local landscapes will tend to guide portions of the population
toward regions of mutational space from which new traits
are more easily accessible.

Of course, this network of fitness landscapes may not
guide evolving populations in a consistent direction. While
it is possible that landscapes could align to perfectly guide
a lineage through the most challenging steps in the evolu-
tion of a complex trait, this condition seems unlikely. We
might just as easily expect that the lack of a constant land-
scape will only serve to increase stochasticity, rather than
having a predictable effect. Perhaps the fitness landscapes
in adjacent locations even work at cross-purposes, with each
guiding the population in opposite directions. Given this
uncertainty, the primary goal of this paper will be to de-
termine whether hotspots actually occur with sufficient fre-
quency and strength to be worthy of further consideration.
Addressing this question requires vast numbers of repeti-
tions of experimental evolution in complex spatial environ-
ments. Conducting such an experiment in a wet lab system
would not be worth this immense effort until additional the-
ory has been developed. Once we have generated concrete
hypotheses about what we would expect to see in biology,
more targeted follow-up experiments in a wet lab system
may be worthwhile. Here, we lay the groundwork for such
theory by performing experiments in a digital system, where
we will be able to precisely control the spatial distribution
of environmental conditions and measure the drivers behind
any spatial variation in evolutionary potential that we detect.

Here, we focus on a simple environment to avoid adding
unnecessary complications to an already complex question.
To this end, we use sessile, asexual organisms in an un-
changing abiotic environment where different sets of traits
are advantageous in different regions. Importantly, these
traits are related to each other. This set-up is roughly anal-
ogous to a wide variety of scenarios within biology, ranging
from bacteria surviving on a surface treated with a range of
antibiotics (similar to (Baym et al., 2016)) to plants adapting
to survive on different soil types within a region.

Biological Background
Biologists have traditionally studied patterns of diversifica-
tion rather than patterns of novel trait evolution (but see
(Baym et al., 2016)). These processes have important dis-
tinctions from each other; diversification usually requires
either physical separation of sub-populations or conflict-
ing selection pressures, whereas novel trait evolution does
not. Moreover, they are maximized by different condi-
tions (Walker and Ofria, 2012). Nevertheless, diversifica-
tion and novel trait evolution are closely related, as diver-
sity is thought to increase evolutionary potential (Rouzic
and Carlborg, 2008). The most well-studied biological pat-
tern pointing to spatial variation in evolutionary processes is
the latitudinal diversity gradient: a consistent pattern of high
biodiversity near the tropics, and progressively less toward

the poles (Hillebrand, 2004). While it remains impossible
to perform controlled evolution experiments on a planetary-
scale, progress has been made on untangling the drivers of
this pattern. Most importantly for the purposes of this paper,
evidence is mounting that diversification rates are higher in
the tropics (Mittelbach and others, 2007). The drivers of this
variation are still debated, but many hypothesized drivers are
related to spatial dynamics within the environment, most no-
tably the idea that the tropics may contain more environmen-
tal gradients, barriers to gene flow, and other spatial prop-
erties that promote speciation (Moritz et al., 2000; Doebeli
and Dieckmann, 2003). Although these dynamics are more
complex than those addressed here, particularly given that
many rely on sexual reproduction, they suggest that spatial
variation in evolutionary processes has broad relevance.

In related work, conservation biologists have sought to lo-
cate regions with an elevated intensity of evolutionary pro-
cesses. This research stemmed from an increasing recogni-
tion that preserving the processes that generate diversity is
at least as important as preserving existing diversity (Moritz,
2002; Ferrire et al., 2004). In accordance with this motiva-
tion, these studies tend to focus on small regions of land,
making them more directly comparable to the research pre-
sented here. At a global scale, certain regions simply lack
the genetic background for a given trait to have a chance
of evolving (e.g. a novel heat tolerance mechanism seems
unlikely to evolve in the arctic). Our question centers on
more localized regions that are spatially heterogeneous with
regard to the extent to which various related traits are use-
ful. The results from conservation biology suggest that vari-
ation in evolutionary potential on such a local scale is plausi-
ble; even within relatively small regions, these studies have
demonstrated substantial spatial variation in phylogenetic
diversity (Forest et al., 2007; Vandergast et al., 2008).

Most of the processes that are hypothesized to be involved
in the formation of hotspots of phylogenetic diversity are
based on insights from simpler systems, most notably island
groups. Islands represent clearly delineated spatial patterns
and processes, making them an excellent context in which to
build up insights about how eco-evolutionary dynamics will
play out across space. For example, islands are known to
promote diversification via adaptive radiation (Losos, 2010),
and the formation of new islands within a system has sub-
stantial impacts on the assembly of ecological communities
over evolutionary time (Gillespie, 2004). Island systems are
also a particularly pronounced example of variation in spa-
tial structure. Spatial population structure has a profound
effect on how evolution will proceed; more structured popu-
lations (i.e. those with more constraints on where offspring
end up relative to their parents) are generally more diverse
and more likely to reach the highest peak in a fitness land-
scape (Tomassini, 2005; Nahum et al., 2015). The theory of
island biogeography makes various shorter timescale predic-
tions (MacArthur and Wilson, 1967). More recently, biolo-
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gists have begun to translate theory developed for island sys-
tems to more continuous land masses, often by treating re-
gions of a species’ preferred habitat as ”islands” (also called
patches) within a matrix of less suitable habitat (Forman,
1995). Many have argued this approach is likely an over-
simplification (McGarigal et al., 2009; Franklin and Linden-
mayer, 2009). A better understanding of the relationship
between the dynamics observed in island systems and the
dynamics that occur in more continuously varying environ-
ments will likely be important to understanding the spatial
evolutionary dynamics that create evolutionary hotspots.

Methods
Study System
As previously discussed, addressing this question requires a
system with a relatively complex abiotic fitness landscape.
The Avida Digital Evolution Platform is an obvious choice
for such a system (Ofria and Wilke, 2004). Not only does
it easily allow for the creation of such fitness landscapes, it
also includes a variety of tools for analyzing them. Avida is a
world of self-replicating linear computer programs compet-
ing for space; when a program copies itself, it overwrites one
of its 8 Moore neighbors. This is the only form of interaction
between organisms. Mutations are introduced during the
self-replication process, resulting in evolution via natural se-
lection, with programs that can copy themselves faster hav-
ing higher fitness. Improvements in fitness can either come
from optimizations to the code of the genome (increasing its
efficiency) or from gaining the ability to take in resources by
performing boolean logic operations. Resources give pro-
grams extra CPU cycles, allowing them to copy themselves
faster than competitors. Each of the nine two-input Boolean
logic functions allows organisms to use a different resource,
with more complex functions corresponding to more valu-
able resources. Here, we will use the ability to perform these
functions as the traits of interest, and define organism phe-
notypes as the set of traits they possess.

Programs in Avida inhabit a 60 x 60 grid and offspring
are placed in cells adjacent to their parents. Results pre-
sented here use non-toroidal (bounded) grids for ease of vi-
sualizing lineage trajectories (see 5), but otherwise identi-
cal experiments on a toroidal grids produced similar results.
We create heterogeneous environments by placing different
resources in each cell. For a previous experiment (Dolson
et al., 2017), we created 500 environments by placing a ran-
dom number of randomly-sized circular patches of resources
in random locations across the environment. This technique
produced a variety of environments while maintaining a cor-
relation between the resources present in one cell and the re-
sources present in its neighbors. For this study, we have arbi-
trarily selected eight environments for further study without
examining them beforehand. In each environment, we per-
formed 100 replicate runs of Avida. Each replicate was run
for 100,000 updates (approximately 2,000 generations). We

Figure 1: Hotspot location technique. A) An example
point pattern, generated from 100 runs of Avida within a
single environment. This pattern corresponds to the most
complex trait, EQU. Each point represents the location in
space of the first organism within one of the 100 runs that
was able to perform EQU. B) Kernel intensity map gener-
ated from the point pattern in part A. C) Regions within that
kernel intensity map that are substantially more intense than
observed in the Monte Carlo simulations (i.e. the hotspot).

also performed 100 replicate runs of a homogeneous control
condition where all resources were globally available. From
these results, we extracted the coordinates of the grid cell
in which each trait first appeared within each run. While a
trait may evolve independently multiple times within a run
of Avida, including these subsequent evolutions would intro-
duce various biases into the dataset (especially when traits
were lost and then re-evolved). Thus, we consider only the
first organism ever to display a given trait within a replicate,
before selection has an opportunity to play a role.

Our extracted (x,y) coordinates translate into 81 separate
point patterns (one for each of the 9 traits across each of
the 8 environments plus the control) (see Figure 1A): one
for each of the nine different traits in each of the eight envi-
ronments. Each pattern contains a maximum of 100 points.
Many patterns contain fewer points, as it is not guaranteed
that every trait will evolve in every replicate. Because each
replicate is completely independent of each other replicate,
the only relationship between points in the same pattern is
that they evolved in the same environment.

Statistical Approach
To determine whether or not different regions have differ-
ent evolutionary potential, we need to determine whether the
point pattern is significantly different from complete spatial
randomness. To make it possible to appropriately correct our
statistics for multiple comparisons, we performed the test
for spatial randomness in two steps: 1) a test to see whether
each pattern, as a whole, was random, and 2) a follow-up
test to determine which regions of non-random patterns had
significantly more points than expected by chance.

For the overall randomness test, we calculated a test statis-
tic for various distances, r. For each point in the pattern,
we counted the number of other points falling within r dis-
tance units of it. We then averaged this number across all
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Figure 2: Results of performing the test for spatial clump-
ing on the point pattern from Figure 1A. Observed values
of the test statistic (black line) are well above the values ob-
served in the Monte Carlo simulations (shaded area), indi-
cating a clumping in this pattern. The red line indicates the
theoretically derived expected value for a random pattern.

.

points to get our test statistic for that value of r. For each
point pattern, we generated a range of expected results un-
der the null hypothesis of complete spatial randomness by
running 100 Monte Carlo simulations where we randomly
placed the number of points in our actual data across an area
of the same size. If the value of the test statistic calculated
from our observed data was greater than the highest value
from the Monte Carlo simulations for more than 5% of the r
values, we concluded that the observed pattern was substan-
tially more clumped than we would expect to see by chance
(see Figure 2). A test statistic below the range of those ob-
served for the Monte Carlo simulations would suggest that
the observed data was more uniform than we would expect
by chance; such a result would be unexpected for our experi-
ments. Note for those familiar with spatial statistics: this sta-
tistical test is functionally equivalent to Ripley’s K function
(Ripley, 1981). However, since Ripley’s K function assumes
first-order spatial stationarity and our data is exclusively the
result of first-order trends, we do not expect to see the same
patterns traditionally observed in Ripley’s K function.

For those point patterns that were significantly more
clumped than we would expect by chance, we performed a
follow-up test to determine the location of the hot spot. We
calculated a kernel intensity surface (essentially a heat map
of point density across the environment) for each of these
point patterns using the spatstat library (Baddeley et al.,
2015) (see Figure 1B). Then, to determine whether the pat-
terns within the data were significantly more intense than
we expect from a random process, we performed a Monte
Carlo hypothesis test with 100,000 simulations. We simu-
lated patterns generated under the assumption of complete
spatial randomness (our null hypothesis) by randomly se-
lecting points from a uniform 60x60 lattice grid approxi-
mating the lattice of cells in Avida. For each point pattern,
we selected the number of points observed in the original
pattern. Kernel intensity values were created for each of

these simulations. For each cell in the grid, we compared the
experimentally-derived intensity to the distribution of simu-
lated intensity values. Cells in which our observed value was
higher than 99.999% of the simulated values were labeled as
hotspots of evolutionary potential for a given trait. This sig-
nificance threshold (p < .00001) was selected to ensure all
results are significant after a sequential Bonferroni correc-
tion for multiple comparisons across all 3600 grid cells.

Code and data availability
Avida is open source and freely available at
https://github.com/devosoft/avida. Scripts used to gen-
erate environment files are available via Zenodo with DOI
10.5281/zenodo.162981. All statistical analyses were
performed using the spatstat library, the qqtest library,
and the R Statistical Computing Language (Baddeley
et al., 2015; Oldford, 2016; R Core Development Team,
2013). Data and scripts used in this project are available at
https://github.com/emilydolson/evo in space.

Results and Discussion
Existence of evolutionary hotspots
Out of the 81 point patterns, 43 differed significantly from
random. All 43 of these non-random patterns showed sig-
nificant clumping of points. For 40 of these 43 non-random
patterns, the kernel density map had at least one region of
higher intensity than we would expect to see by chance
(hotspot) (see Figure 3). It is possible that the three pat-
terns without hotspots instead had areas of significantly de-
creased evolutionary potential. Alternatively, these patterns
may contain hotspots that were too weak to be detected by
our highly conservative threshold for significance. Every
test environment had hotspots for at least two traits, while
none of the point patterns from the spatially homogeneous
control displayed significant clumping, suggesting that these
hotspots are a product of the spatially heterogeneous envi-
ronment. These results provide clear evidence that hotspots
of evolutionary potential not only exist but are relatively
common; some regions of the environment promote the evo-
lution of new traits to a greater extent than others.

In most environments, there appears to be strong overlap
in hotspots for the evolution of different traits (see Figure 3).
However, there are some environments in which this is not
the case, and even the environments with the neatest over-
lap have some traits with non-overlapping hotspots. Some
amount of overlap is to be expected, for three reasons: 1) If
any trait is easier to evolve in a given region, then lineages
living in that region are more likely to be successful as a
result of having evolved the trait, giving them an older evo-
lutionary history, 2) many traits serve as building blocks for
other traits, so possessing some traits is an indicator that a
lineage is in a part of the fitness landscape from which other
traits are easier to reach, and 3) some traits are close to each
other within the fitness landscape (for example, the two most
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Figure 3: Hotspots across all traits and all environments. Each panel represents a different environment. Background
colors represent the different combinations of resources that are present in each location; each color represents a different
combination, with colors assigned such that higher hue values roughly correspond to more complex environments (either in
number of resources or complexity of traits associated with resources). Each polygon color represents the outline of hotspots
for the trait specified in the legend. Note that only hotspots significant at an alpha-level of .00001 are shown. This conservative
value was necessary to be certain that hotspots are present despite the large number of hypothesis tests performed. However, in
practice, it likely translates to an underestimation of the true size of many of the hotspots.

complex traits, XOR and EQU, which often have hotspots in
nearly identical locations). The fact that the overlap is not
universal suggests that the local environment has effects on
the likelihood of evolving a trait that go above and beyond
the ability of lineages to perform other traits.

Potential drivers of hotspots
Now that we have established that a spatial pattern exists in
the locations where traits first evolve, the obvious next ques-
tion is: what causes this pattern? Since all traits have poten-
tial to serve as building blocks for each other, the simplest
explanation would be that locations with more resources
have higher evolutionary potential. Note that because we
are considering only the first mutation to confer each trait,
the resource for that trait cannot exert selective pressure.

To test this explanation, we performed a multi-variate lin-
ear regression attempting to predict the value of each po-
sition in the kernel intensity map from a series of boolean
variables indicating which resources were present in a cell.
We tried such regressions on various subsets of the data: a
single trait within a single environment, a single trait across
environments, and all traits across all environments. Models

built from data on a single trait in a single environment var-
ied wildly in the percent of variation that they explained, but
many explained a high percentage (R2 values ranged from
.11 to .95). However, little (if any) of this explanatory power
generalizes across environments. Resources that increase
evolutionary potential for a given trait in one environment
(as indicated by a regression coefficient significantly greater
than 0) may decrease it in a different environment (as in-
dication by a regression coefficient significantly less than
0). Linear models calculated across environments were un-
able to reconcile these differing patterns, explaining minimal
variation in evolutionary potential (R2 values ranged from
.03 to .13). A similar set of models in which the predictor
variables were the distance to each resource was similarly
ineffective. While high degrees of spatial autocorrelation in
the kernel intensity maps mean that the assumption of inde-
pendence is violated for these linear models, such a reduc-
tion in degrees of freedom should only inflate the apparent
variation explained. The failure of this simple mechanism
to explain our observed results suggests that more complex
processes are driving these effects. Note: Interestingly, there
does appear to be a correlation between hotspot location and
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Figure 4: Quantile-quantile plot comparing the distribu-
tion observed diversity percentiles for the most complex
trait (EQU) to a uniform distribution (Oldford, 2016).
The shaded area represents the 95% confidence interval for
where we would expect this line to fall if these distributions
were identical. Since the line is mostly within this area, we
conclude that the distribution of ranks does not deviate sub-
stantially from a uniform distribution. This finding suggests
that there is nothing special about the level of diversity in
the regions where traits are more likely to evolve. Results
for other complex traits are similar.

the pink background color in figures 3 and 5. This suggests
that the color selection algorithm may be making useful gen-
eralizations that are worth further exploration. Nevertheless,
it does not appear to be a complete explanation (not all pink
regions are hotspots and not all hotspots are in pink regions)
and further exploration will be necessary to determine what
factors are driving the correlation.

Many hotspots appear to overlap with borders between
different combinations of resources. Such regions likely
have elevated local diversity, as different phenotypes will be
better adapted to the different regions. As discussed above
(see Background), there is reason to believe that diversity
leads to increased evolutionary potential. Thus, variation
in local diversity is another possible driver of evolutionary
hotspots. To test this hypothesis, we calculated local diver-
sity across the environment for time points immediately be-
fore a novel trait first appeared. Specifically, we measured
local diversity as the Shannon entropy of phenotypes within
the 25 cells in the 5x5 patch around a given focal cell. We
performed this calculation for each cell in the environment
at a given time point, producing a map of local diversities.
Within each of these maps, we calculated a percentile for
each of the 3600 local diversity values, based on the propor-
tion of sites that had a lower diversity.

Next, we located the cell in which a novel trait was about
to evolve and recorded its percentile. If diversity has no im-
pact on the probability of a new trait evolving, we would
expect all percentile values to be equally likely (i.e. follow
a uniform distribution). If, on the other hand, new traits are
more likely to evolve in areas with elevated local diversity,

we would expect high percentiles to be overrepresented.
To test this hypothesis, we compared the distribution of

observed percentiles to a uniform distribution. For the sim-
plest traits, low percentiles were overrepresented due to the
presence of populations that contained large swaths of area
populated by minimally evolved organisms with none of the
traits. However, among the five most complex traits, we
found no substantial deviation from a uniform distribution
(see Figure 4). This result suggests that traits did not evolve
more frequently in more diverse regions. While it is possible
that this lack of an effect is the result of the specific diversity
metric used, it strongly suggests that local diversity is not an
important driver of hotspot location. This result may also
cast doubt on the idea that hotspots of diversity are hotspots
of all evolutionary processes, but we would need to examine
phylogenetic diversity to fully address that point.

A third potential driver of evolutionary hotspots is the
temporal series of local conditions that lineages experience
over evolutionary time as each offspring is born in a slightly
different location than its parent. Perhaps some sequences of
environments are more conducive to the evolution of certain
traits than others. To explore this idea, we located the first
organism with each trait across all replicates and traced the
spatial path of their lineages. We then overlaid these paths
on the corresponding environment (see Figure 5). While a
thorough statistical analysis of the variation in paths is be-
yond the scope of this paper, we do see some qualitative pat-
terns. Indeed, some traits display consistent patterns that are
not seen in paths generated from the control data. These pat-
terns include the middle portions of paths, indicating that not
just the ending conditions are likely to matter. For instance,
in the three environments in which most of the hotspots are
overlapping and in the center (D, E, and G in Figure 5), it
is rare for any lineage that has ever gone through the lower
right corner to be the first one to evolve the most complex
task (EQU). This pattern is almost certainly related to the
fact that all replicates are seeded with a single organism in
the upper left corner; in these environments, successful lin-
eages go directly to the hotspots and don’t leave. In other
environments, however, successful lineages appear to travel
through different sequences of regions (see Figure 5F, as
an example). While more research is required to under-
stand the mechanisms behind such patterns, this effect is the
most promising explanation for the existence of evolution-
ary hotspots.

Conclusions
We have demonstrated the existence of spatial variation in
evolutionary potential across a heterogeneous environment.
Research on what specific aspects of a local region are
responsible for elevated evolutionary potential is ongoing.
The failure of obvious explanations, such as resource pres-
ence/absence and local diversity, to predict the location of
hotspots suggests that the actual drivers are complex and
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Figure 5: Spatial paths taken by the first lineages to evolve the most complex trait (EQU) from five arbitrarily-selected
replicates from each environment. The path from each replicate is colored a different shade of gray. As in Figure 3, back-
ground colors represent the set of resources in each part of the environment. I) shows the homogeneous control environment.

nuanced. Preliminary investigations of the sequence of lo-
cations that a lineage passes through suggest that this av-
enue is promising for further exploration; there appear to be
broad commonalities among paths of lineages that evolved
the same trait in the same environment.

Understanding the drivers of spatial variation in evolu-
tionary potential would give us a valuable tool for control-
ling evolutionary trajectories. The most immediate appli-
cations are in evolutionary computation. Many evolutionary
algorithms vary the fitness landscape over time, starting with
easy problems and working up to more challenging prob-
lems (Hornby, 2006; Ovaska et al., 2009). This approach of-
ten requires hand-tuning of the different problems and when
they appear in the environment. Varying the fitness land-
scape across space instead could achieve the same outcome.
If we can purposefully build spatial networks of fitness land-
scapes to promote the evolution of a solution to the problem,

that would make such an approach even more powerful.
In the longer term, once our findings have been replicated

in a biological system, we hope to use these same concepts
to promote the evolution of biological traits of interest. For
example, we may be able to engineer habitats that increase
the chances of species adapting to climate change through
evolutionary rescue. Conversely, we may also be able to
arrange environments to inhibit the evolution of undesirable
traits, such as antibiotic resistance in bacteria. Overall, this
line of research presents a variety of promising applications.
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