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Summary  21 

Despite the great advances in microbial ecology and the explosion of high throughput 22 

sequencing, our ability to understand and integrate the global biogeochemical cycles is still 23 

limited. Here we propose a novel approach to summarize the complexity of the Sulfur cycle 24 

based on the minimum ecosystem concept, the microbial mat model and the relative entropy 25 

of protein domains involved in S-metabolism. This methodology produces a single value, 26 

called the Sulfur Score (SS), which informs about the specific S-related molecular 27 

machinery. After curating an inventory of microorganisms, pathways and genes taking part 28 

in this cycle, we benchmark the performance of the SS on a collection of 2,107 non-29 

redundant RefSeq genomes, 900 metagenomes from MG-RAST and 35 metagenomes 30 

analyzed for the first time. We find that the SS is able to correctly classify microorganisms 31 

known to be involved in the S-cycle, yielding an Area Under the ROC Curve of 0.985. 32 

Moreover, when sorting environments the top-scoring metagenomes were hydrothermal 33 

vents, microbial mats and deep-sea sediments, among others. This methodology can be 34 

generalized to the analysis of other biogeochemical cycles or processes. Provided that an 35 

inventory of relevant pathways and microorganisms can be compiled, entropy-based scores 36 
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could be used to detect environmental patterns and informative samples in multi-genomic 37 

scale.  38 

 39 

INTRODUCTION 40 

Despite their fundamental importance in sustaining life on Earth, understanding the fluxes of 41 

fundamental elements (C, H, O, N, S, and P) through the Earth’s surface has been challenging 42 

for several reasons (Li et al., 2012; Newman and Banfield, 2002). First, the global 43 

biogeochemical cycles are enormously complex as they are an interconnected network of 44 

biological, chemical and geophysical processes that have been coevolving in the biosphere 45 

since the apparition of the first metabolic processes on Earth (~3.8 billion years ago) 46 

(Falkowski et al., 2008). Since then, the evolutionary history of life on Earth has been shaped 47 

by a complex synergistic cooperation of multispecies assemblages that differ in terms of 48 

ecological and metabolic capabilities (Canfield 2005). Secondly, although these assemblages 49 

are often spatially and temporally separated, they effectively couple electron transfer (i.e., 50 

redox) reactions that transform elements and energy derived from several abiotic processes 51 

(Falkowski et al., 2008). Thirdly, these abiotic processes involve the continuous supply and 52 

removal of elements from various Earth surface reservoirs, such as geothermal processes 53 

derived from mantle and crust, tectonics and rock weathering, and photochemical processes in 54 

the atmosphere including the constant flux of solar energy (Hedges, 1992).  55 

  As a result of these challenges, the fluxes of fundamental atoms through Earth have 56 

been studied and approached using different disciplines that address specific layers of 57 

complexity. For instance, geochemistry and atmospheric sciences have been focused on 58 

addressing the major abiotic process at global planetary scales, i.e., processes influencing the 59 

flux of elements to and from the various Earth surface reservoirs and atmosphere (Canfield et 60 

al., 2005, Falkowski et al., 2008).  61 

 Moreover, microbial ecology has emphasized in understanding the links between 62 

microbial catalyzed activities and ecosystem and biogeochemical processes (Morales and 63 

Holben, 2011). Current approaches for establishing metabolic relationships in situ are based on 64 

targeting coding-sequences involved in specific biochemical pathways related to carbon, 65 

nitrogen, sulfur, and phosphorus cycling. In this way, DNA or RNA extracted directly from 66 
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natural environments is sequenced and quantified with conventional PCR and Sanger 67 

sequencing or microarray analyses (Loy et al., 2004; Khodadad and Foster, 2012) for example 68 

the GeoChip (Tu et al., 2014); or other ‘omics’ techniques such as metagenomics (Quaiser et 69 

al., 2011; Swingley et al., 2012; Llorens-Marès et al., 2015) or metatranscriptomics (Stewart et 70 

al., 2011; Chen et al., 2015).  71 

 However, despite the great advances in microbial ecology and high throughput 72 

sequencing, our ability to understand and integrate the global biogeochemical cycles is still 73 

limited. Here, we propose a new comprehensive approach to evaluate, compare, and facilitate 74 

the study of such cycles based on the metabolic machinery of the microorganisms responsible 75 

for driving element fluxes throughout the Earth. The approach is based mainly on three aspects: 76 

i) the minimum ecosystem concept: which considers the properties, forces (outside energy), 77 

flow pathways (energy and matter), interactions, and feedback loops or circuits for the flow of 78 

matter or energy (Odum,1993); ii)  the microbial mats, which are nearly closed and self-79 

sustaining ecosystems that comprise the major biogeochemical cycles, trophic levels and food 80 

webs in a vertical laminate pattern (Bolhuis et al., 2014); and iii) the mathematical 81 

rationalization of Kullback-Leibler divergence, also known as relative entropy H’ (Kullback 82 

and Leibler, 1951). Relative entropy has been widely applied in physics, communication theory 83 

and statistical inference, and is interpreted as a measure of disorder, information and 84 

uncertainty, respectively (Commenges, 2015). Here we use the communication theory concept 85 

of H’ to summarize the information conveyed by the protein domains (metabolic machinery) 86 

encoded by environmental DNA sequences. The application of this measure in biology was 87 

originally developed by Stormo and colleagues to identify binding sites that regulate gene 88 

transcription sites (Hertz and Stormo, 1999). 89 

In this context, the compartmentalization of microbial mats provides clear, natural or 90 

arbitrary boundaries that evoke the concept of "minimum ecosystem”, which can be delimited 91 

in a natural or arbitrary sense (Odum, 1993). Therefore, specific parts of the cycle may be seen 92 

as parts of a whole. For instance, the redox level, reduced-oxidized compounds or even genes 93 

and enzymes implicated in certain routes can be used as ecosystem boundaries. These 94 

assemblies set up a unit that represents the minimum ecosystem with the minimum 95 

requirements to be functional, therefore this can be applied to measure the information derived 96 

from the complexity inside any biogeochemical cycle.  97 
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To test and evaluate the performance of our conceptualization, we focused on the 98 

biogeochemical Sulfur cycle (from now on S-cycle), due to its critical role in the 99 

biogeochemistry of the planet - i.e., respiration of sedimentary organic matter, oxidation state 100 

of the atmosphere and oceans, and the composition of seawater (Halevy et al., 2012). Despite 101 

the extensive biochemical knowledge of both oxidative and reductive microorganisms (Rabus 102 

et al., 2013; Canfield, 2015; Dahl, 2017), there are no studies aiming to integrate all the 103 

microbiological and geochemical transformations and their corresponding metabolic pathways 104 

of the sulfur cycle.  Our study proposes a general computational approach that can be easily 105 

modified and used to compare and measure other biogeochemical cycles. This procedure 106 

generates measurable scores to evaluate these cycles and their importance and ecological 107 

weight on a global scale. 108 

 109 

MATERIALS AND METHODS  110 

The computational analysis addressing the different levels of complexity of the S-cycle was 111 

divided into four stages illustrated in Figure 1. The corresponding scripts and documentation 112 

are available for download from: https://github.com/eead-csic-compbio/metagenome_Pfam_score.  113 

 114 

STAGE 1: The biogeochemical complexity of S-cycle and ‘omic’-datasets. 115 

Taxonomic representatives of sulfur cycle: the microbial mat model. According to the 116 

minimum ecosystem concept, we consider microbial mats as models of a minimum ecological 117 

system (Microbial Mat Model). Based on the metabolic guilds found in microbial mats and 118 

other S-derived environments (i.e., hot springs, black smokers, sludge, etc.), we reviewed 119 

primary literature and the MetaCyc database (Caspi et al., 2012) to select S-based 120 

microorganisms (at genus or species level) with experimental evidence of the physiology of 121 

degradation, reduction, oxidation, or disproportionation of organic/inorganic S-compounds. 122 

The list of S-based prokaryotes is found in Table S1. The non-redundant list of these S-based 123 

microorganisms with fully sequenced genomes (December 2016) was called the Sulfur list 124 

(Suli), which currently contains 161 genomes used as input of the pipeline. 125 

 126 

Random taxonomic representatives (RList): In order to build negative control sets of organisms 127 

that are not particularly enriched on metabolic preferences, 1,000 random lists of 128 
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microorganisms were drawn using the genomic dataset explained below as reference, with the 129 

same number of microorganisms included in Suli.  130 

 131 

Metabolic pathways and genes: We gathered and classified the metabolic pathways involved in 132 

the S-cycle from the primary literature and expert-curated databases KEGG (Kanehisa and 133 

Goto, 2000) and MetaCyc (Caspi et al., 2012). This molecular information was integrated into 134 

a single database named Sulfur cycle (Sucy), which currently contains 152 genes and 48 135 

enzyme classification numbers annotated in the Enzyme classification 136 

(http://enzyme.expasy.org) (Table S2). The 152 FASTA sequences of the peptides encoded by 137 

these genes were downloaded from UniProt (Magrane and Consortium, 2011) and used as the 138 

input of the pipeline. 139 

 140 

Omic datasets. In order to test, compare and evaluate the importance of the S-cycle in ‘omic’ 141 

datasets, we generated the following databases: 142 

 i) Genomic dataset (Gen): Due to the redundancy of complete genomes deposited in 143 

RefSeq (https://www.ncbi.nlm.nih.gov/genome/browse/reference; 4,158 genomes at the time of 144 

the analysis, December 21, 2016), we decided to reduce the set of genomic data by using a 145 

web-based tool, that uses “genomic similarity scores” (Moreno-Hagelsieb et al., 2013). 146 

Selecting values of genomic similarity of 0.95 and a DNA signature of 0.01, we obtained a total 147 

of 2,107 non-redundant genomes in FASTA format.  148 

 ii) Metagenomic dataset (Met): We selected metagenomes from the MG-RAST server 149 

version 3.6 that met the following conditions: i) publicly available; ii) metadata associated; and 150 

iii) environmental samples (isolated from defined environments o features like rivers, soil, 151 

biofilms), discarding microbiome host-associated metagenomes (i.e., to human, cow, chicken). 152 

In addition, we also included 35 unpublished metagenomes derived from sediment, water and 153 

microbial mats from Cuatro Ciénegas (Coahuila, Mexico), which were also submitted to the 154 

MG-RAST pipeline.  155 

 Using the above-mentioned conditions, a total of 935 metagenomes were downloaded in 156 

FASTA format (http://api.metagenomics.anl.gov/api.html, coding regions within the reads, 157 

December, 2016). Then, we measured the Mean Size Length (MSL) of the peptide coding 158 

regions of the Met FASTA files (Figure S1A). Taking into account that the 152 sulfur proteins 159 
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(Sucy) have lengths ranging from 49 to 1,020 amino acid residues (aa), their detection in 160 

metagenomic samples will likely be affected by MSL (Figure S1B). For example, the 161 

identification of long proteins harboring several domains (i.e., catalytic, cofactor binding etc.) 162 

might be impaired in metagenomes with short MSL.   163 

iii) Fragmented genomic dataset (GenF). We used the genomic dataset as a reference 164 

for benchmarking the detection limits of the protein families. The peptide FASTA-format files 165 

of the 2,107 non-redundant genomes were in silico sheared into seven categories of increasing 166 

fragment length, taking into account the variation in read sizes of the metagenomic dataset 167 

(Figure S1A).    168 

 169 

STAGE 2: Domain composition of the sulfur proteins  170 

We used Interproscan 5.21-60.0 (Jones et al., 2014) to annotate the protein domains encoded in 171 

the 152 Sucy genes, according to the Pfam-A database v30 (Finn et al., 2008). In total, 112 172 

Pfam domains where identified and subsequently scanned against the ‘omic’ datasets with 173 

HMMER 3.0 (Finn et al., 2011).  174 

 175 

STAGE 3: Relative entropy and its use to detect informative sulfur-related protein 176 

domains  177 

In order to obtain an estimate of how protein families are represented in S-based 178 

microorganisms, we used a derivative of the Kullback-Leibler divergence (Kullback and 179 

Leibler, 1951) — also known as relative entropy H’(i) — to measure the difference between 180 

probabilities P and Q (see Eq. 1 below). In this context, P(i) represents the frequency of protein 181 

domain i in Suli genomes (observed frequency), while Q(i) represents the frequency in the 182 

complete genomic dataset (expected frequency). H’, in bits, captures the extent to which a 183 

domain informs specifically about sulfur metabolism. H’ values that are close to 1 correspond 184 

to the most informative Pfam domains (enriched among S-based genomes), whereas low H’ 185 

values (close to zero) describe non-informative ones. Negative values correspond to proteins 186 

observed less than expected.  187 

 188 

𝑯′ = 𝑃(𝑖) log2
𝑃(𝑖)

𝑄(𝑖)
 189 Eq. 1  
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As a control, H’ was recalculated both in Gen and GenF datasets replacing Suli with 1,000 190 

equally sized lists of random-sampled genomes (Rlist). Using these procedures, we evaluated 191 

the variation of relative entropy of each Pfam domain in order to i) short-list those that could be 192 

used as markers in metagenomic dataset (regardless of their MSL) and ii) to generate a score 193 

which could be used to compare the importance of S-metabolism in ‘omic’-samples (either in 194 

Gen or Met). 195 

 196 

Clustering of Pfam domains according to their entropy: The following clustering algorithms 197 

were tested: K-Means, Affinity propagation, Mean-shift Spectral, Ward hierarchical, 198 

Agglomerative, DBSCAN and Birch. These methods are part of the scikit-learn Machine 199 

Learning Python module (http://scikit-learn.org/stable/modules/clustering.html). 200 

 201 

STAGE 4: The Sulfur Score (SS): origin, interpretation, properties and benchmark  202 

We propose to evaluate the importance of biogeochemical S-cycle in ‘omic’-datasets using a 203 

single metric that we call “Sulfur Score” (SS) (Eq. 2). By this approach, sulfur informative 204 

protein domains would contribute to higher SS, whereas non-informative ones would decrease 205 

it. This is an extension of procedures originally developed for the alignment of DNA and 206 

protein motifs, in which individual positions are independent and additive, and can be simply 207 

summed up to obtain the total weight or information content (Hertz and Stormo, 1999). Instead 208 

of aligning sequences, in our context we compare a presence/absence string of Pfam domains, 209 

from which a total weight (SS) is computed.  210 

 211 

𝑺𝑺 =∑𝑯′

112

𝑖=1

 212 

 213 

If we compare total SS across several genomes or environments, those in which the majority of 214 

metabolic pathways of S-cycle are represented will thus have a high SS; in contrast, low SS 215 

values should be expected if proteins involved in the S-cycle are not particularly enriched.  216 

 217 

 Eq. 2  
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Calibration: We took into account the MSL of each metagenome to compute the SS. Briefly; 218 

we gathered the entropy values (H’) of the 112 Pfams in Gen and GenF (Figure S2A). H’ 219 

estimates vary among the different GenF categories, with the major differences observed for 220 

fragments of 30 and 60 aa (Figure S2B) and estimates converging with increasing MSL. 221 

Therefore, the SS algorithm considers the MSL of the ‘omic’-sample and chooses the 222 

appropriate baseline H’ values pre-computed on the GenF dataset. The GenF fragment size 223 

ranges (30, 60, 100, 150, 200, 250 and 300) match the observed MSL in real metagenomic sets 224 

(see Figure S1). 225 

 226 

Properties and performance of SS: Because the outcome of the SS depends on i) the list of S-227 

related Pfam domains and ii) the curated list of S-genomes, we measured its reproducibility 228 

with several approaches. First, scores computed in 2014 (Pfam v27, 1528 non-redundant 229 

genomes, 156 species in Suli) were compared to the current results (Pfam v30, 2017 non-230 

redundant genomes, 161 curated species in Suli). Second, we compared the outcomes of the SS 231 

using a random sampling experiment. Briefly, we computed SS 1000 times both in the Gen and 232 

the Met datasets sorted in terms of their GenF size category. In each test, ≈50% of the 112 S-233 

related Pfam domains were randomly selected to compute SS. Finally, we benchmarked the 234 

predictive capacity of the SS in order to accurately classify the genomes of S-related organisms 235 

(Suli, n=161, positive instances) in contrast with a larger set of non-redundant genomes (Gen - 236 

Suli, n=1.946, negative instances). True Positive Rates (TPR), False Positive Rates (FPR) and 237 

the resulting of Receiver Operating Characteristic (ROC) plots were produced with the scikit-238 

learn module (http://scikit-learn.org/stable/modules/model_evaluation.html), and finally the 239 

Area Under the ROC Curve (AUC) was computed. 240 

 241 

RESULTS AND DISCUSSION  242 

Defining the biogeochemical S-cycle  243 

What parameters define a biogeochemical cycle, and what are its limits and scope? Which 244 

elements should be considered necessary for each cycle? The study of element fluxes between 245 

rocks, atmosphere, oceans and biological activity can be extremely complex in terms of space 246 

and time, ranging from single living cells to entire ecosystems, and can be completed in 247 

microseconds or instead developed over geological time scales (Hedges, 1992; Falkowski et 248 
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al., 2008; Zhao et al., 2014; Olson et al., 2016; Widder et al., 2016). Currently, microbial 249 

ecology techniques are insufficient to capture the integral complexity of the biogeochemical 250 

cycles by selecting a few marker genes to evaluate the importance of any given element in the 251 

environment. Here, we argue that a comprehensive description of the relationship between 252 

complex biotic an abiotic process is crucial to describe and understand the importance of global 253 

biogeochemical cycles and provide a method to do so by taking advantage of ‘omic’-era data.  254 

 We propose a new approach to analyze, compare, evaluate and quantify the importance 255 

of biogeochemical cycles in ‘omic’ datasets summarized in Figure 1, focusing, as a case-study, 256 

on the S-cycle. The first step consists on the systematic acquisition of the molecular and 257 

ecological information required to describe the cycle of interest. This information can be 258 

considered an inventory (Odum, 1993).  259 

 With the manual curation effort, we obtained both: a list of microorganisms (Suli), and a 260 

list of genes encoding enzymes (Sucy) related to the S-cycle. The Suli list includes the 261 

microorganisms involved in the global S-cycle using the microbial mats as ecological model. 262 

Microbial mats are compartmentalized organizations that were the first ecosystems to appear on 263 

Earth and have evolved over more than three billion years into the complex ecosystems that we 264 

know today (Herman EK and Kump LR, 2005). Functionally, microbial mats are self-sufficient 265 

structures that support most of the major biogeochemical cycles within a vertical dimension of 266 

only a few millimeters in a multilayer space (Pinckney and Paerl, 1997) (Figure 2A). These 267 

assemblies represent ecosystems with the minimum requirements to be functional and therefore 268 

can be used to explore the complexity of biogeochemical cycles. In contrast with the compact 269 

nature of microbial mats, the distribution of the metabolic S-guilds is widely dispersed at 270 

planetary scale, being found in rivers and estuaries, lagoons, oceans, sediments and deep 271 

hydrothermal vents (Halevy et al., 2012).  272 

 The distribution of S-related bacterial taxa can be analyzed in terms of redox potential 273 

and Gibbs Energy of Free Formation of S-compounds, resembling the compact layout of the 274 

metabolic guilds in the microbial mat (Figure 2B). Therefore, Suli includes three main groups 275 

of microorganisms belonging to the S-metabolic guilds in microbial mats i) chemolithotrophic 276 

color less sulfur bacteria (CLSB), ii) anaerobic phototrophs: purple sulfur bacteria (PSB), green 277 

sulfur bacteria, (GSB), and iii) sulfate reducing bacteria (SRB) as well as deep-branch sulfur 278 
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hyperthermophile microorganisms found in extreme conditions (hot springs, black smokers, 279 

etc.), such as elemental sulfur reducing (SRM) and oxidizer (SO) microorganisms.  280 

 The other manually curated list of the inventory, Sucy, contains the metabolic pathways, 281 

genes and enzyme activity numbers involved in the S-fluxes (Table S2). To the best of our 282 

knowledge, this is the first attempt to integrate the biotic and abiotic processes involved in the 283 

mobilization of inorganic/organic S-compounds through microbial-catalyzed reactions at global 284 

scale; we gathered and classified all the metabolic pathways involved in the S-cycle according 285 

to three key aspects described in Figure 2B, i) S-compound: either organic or inorganic, derived 286 

from abiotic or biotic processes, ii) standard Gibbs free energy of formation (GFEF), and iii) 287 

metabolic role of the S-compound. The metabolic pathways involved in these S-compounds 288 

were systematically divided into 28 pathways (Table S3). We included the pathways involved 289 

in a) the oxidation/reduction of inorganic S-compounds, used as source of energy, electron 290 

donor or acceptor, b) the degradation of organic S-compounds  such as aliphatic sulfonates 291 

sulfur amino acids, and organosulfonates, c) methanogenesis from methylated thiols such 292 

dimethyl sulfide DMS, metylthio-propanoate and methanethiol, which are generated in nature 293 

by different biogeochemical processes (Caspi et al., 2012), and d) the biosynthesis of 294 

sulfolipids (SQDG), because it has been observed that some bacteria living in S-rich and P-295 

lacking environments, are able to synthetized sulfolipids instead of phospholipids in the 296 

membrane as an adaptation of the selective pressures of the environment (Alcaraz et al., 2008). 297 

 Once we integrated the metabolic inventory (genes, enzymatic numbers and major 298 

metabolic complexes), we linked all the enzymatic steps and S-compounds into a 299 

comprehensive representation of the S-cycle in a single cell (Figure 3), with the following 300 

features i) the comprehensive interconnection of pathways in terms of energy flow, ii) the 301 

direction of the reactions of the important biogeochemical S-compounds, iii) the interplay of 302 

the redox gradient (organic/inorganic) of the intermediate compounds that act as key axes of 303 

organic and inorganic reactions (i.e., sulfite), and iv) the molecular reconstruction of S-cycle at 304 

different levels (genes, abiotic sulfur-derived compounds and  enzymatic steps).  305 

 In order to benchmark the entropy-based approach described below, we used available 306 

data in both genome and metagenome databases. We also included 35 unpublished 307 

metagenomes derived from microbial mats, water and sediment from an ultra-oligotrophic 308 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2017. ; https://doi.org/10.1101/148775doi: bioRxiv preprint 

https://doi.org/10.1101/148775
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

shallow lake in Cuatro Cienegas, Coahuila (CCC), Mexico. Altogether, these 935 metagenomes 309 

set up the Met dataset. The Gen dataset was  sheared with different fragment sizes taking into 310 

account the Mean Size Length (MSL) of Met (Figure S1), producing dataset GenF, which was 311 

used for estimating the detection limits of sulfur protein families. We describe the computation 312 

approach step-by-step below. 313 

 314 

Relative entropy as a way to identify protein domains that inform about the S-cycle 315 

After the first step of collecting the datasets, the second step involved the annotation of the 316 

coding sequences of the 152 genes in Sucy, yielding a total of 112 Pfam domains (Pfam Sucy 317 

in Figure 1). The third step consisted in measuring the relative entropy (H’) of each Pfam using 318 

Equation 1. The presence of each Pfam domain in Suli (genome list) and in the genomic 319 

datasets (Gen and GenF) was used as observed and expected frequencies respectively. The 320 

obtained H’ values are shown in Figure S2.  321 

 As negative control, we tested to what extent those H’ values depend on the particular 322 

genomes curated in Suli. To do so, we replaced Suli by 1,000 lists of random-sampled genomes 323 

and used them to compute the observed frequencies. As expected, there was a clear difference 324 

between the H’ computed using random genomes (Figure S3A), and those obtained with the 325 

manually curated list of S- based microorganisms (Figure S3B). In particular, entropy values 326 

derived from the random test were found to be approximately symmetric and consistently low 327 

among the GenF size categories, yielding values of -0.09, and 0.1 as 5% and 95% percentiles, 328 

respectively (Table S4).   329 

 We then evaluated the behavior of the H’ values in both Gen and GenF to test whether 330 

informative Pfam domains can be used as molecular markers of S-cycle in metagenomic 331 

sequences of variable MSL. In order to be considered as a marker gene, each Pfam domain had 332 

to fulfill three requirements 1) produce consistently high mean H’ values in Gen and GenF, 2) 333 

display low standard deviation (std), and 3) obtain H’ values clearly separated from the random 334 

distribution. We tested several clustering methods, summarized in Figure S4; among them, the 335 

Birch and Ward methods grouped together the informative protein domains with low std 336 

(Figure S5). However, Ward clustering included a few protein domains relevant in the S-cycle, 337 

which were otherwise discarded by the Birch method. Therefore, we selected the Ward method, 338 

which produced three clusters of protein domains described in Figure 4. 339 
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 Cluster 0 includes 94 domains with entropies in the range [-0.4, 0.4], thus overlapping 340 

those obtained in the negative control explained earlier. Cluster 1 identifies 12 Pfam domains 341 

listed in Table 1, with high entropy and low std, and can therefore be proposed as molecular 342 

markers. Among the proposed molecular marker protein domains are APS-Reductase 343 

(PF12139: H’=1.2), ATP-sulfurilase (PF01747: H’=1.03) and DsrC (PF04358: H’=0.52), key 344 

protein families in metabolic pathways involved in both sulfur oxidation/reduction processes. 345 

Finally, cluster 2 groups 6 domains (described in Table S5) with high entropy values and high 346 

std, such as PUA-like domain (PF14306: H’=1). We presume that the protein domains listed in 347 

Table S5 are key players in S-metabolism and their presence in almost all complete-sequenced 348 

S-associated microorganisms suggests their important roles.  349 

Despite their different properties, all the 112 Pfam domains mentioned in those clusters were 350 

subsequently used in the next sections to detect peptides related to the S-cycle in ‘omic’ 351 

datasets. 352 

 353 

Table 1 Informative Pfam domains with high H’ and high std. Novel proposed molecular 

marker domains in metagenomic datasets of variable mean size length (MSL)   
Pfam 

 ( Suli 

ocurrences) 

H’ 

mean 

H’  

std 

Description 

PF12139 

58/161 

 

1.2 0.01 Adenosine-5'-phosphosulfate reductase beta subunit: Key protein domain for both sulfur 

oxidation/reduction metabolic pathways. Has been widely studied in the dissimilatory sulfate 

reduction pathway. In all recognized sulfate-reducing prokaryotes, the dissimilatory process 

is mediated by three key enzymes: Sat, Apr and Dsr. Homologous proteins  are also present 

in the anoxygenic photolithotrophic and chemolithotrophic sulfur-oxidizing bacteria (CLSB, 

PSB, GSB), in different cluster organization (Meyer and Kuever, 2007).  
PF00374 

135/161 

1.1 0.09 Nickel-dependent hydrogenase: Hydrogenases with S-cluster and selenium containing Cys-

x-x-Cys motifs involved in the binding of nickel. Among the homologues of this hydrogenase 

domain  is the alpha subunit of the sulfhydrogenase I complex of Pyrococcus furiosus, that 

catalyzes the reduction of polysulfide to hydrogen sulfide with NADPH as the electron donor 

(Pedroni et al., 1995).  
PF01747 

103/161 

1.03 0.06 ATP-sulfurylase: Key protein domain for both sulfur oxidation and reduction processes. The 

enzyme catalyzes the transfer of the adenylyl group from ATP to inorganic sulfate, producing 

adenosine 5′-phosphosulfate (APS) and pyrophosphate, or the reverse reaction (Taguchi et 

al., 2004).   
PF02662 

62/161 

0.82 0.03 Methyl-viologen-reducing hydrogenase, delta subunit: Is one of the enzymes involved in 

methanogenesis and encoded in the mth-flp-mvh-mrt cluster of methane genes in 

Methanothermobacter thermautotrophicus. No specific functions have been assigned to the 

delta subunit  (Finn et al., 2008).  
PF10418 

122/161 

0.78 0.06 Iron-sulfur cluster binding domain of dihydroorotate dehydrogenase B: Among the 

homologous genes in this family are asrA and asrB from Salmonella enterica enterica 

serovar Typhimurium, which encode 1) a dissimilatory sulfite reductase, 2) a gamma subunit 

of the sulfhydrogenase I complex of Pyrococcus furiosus and, 3) a gamma subunit of the 

sulfhydrogenase II complex of the same organism (Caspi et al., 2012). 
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PF13247 

149/161 

0.66 0.06 4Fe-4S dicluster domain: Homologues of this family include: 1) DsrO,  a ferredoxin-like 

protein, related to the electron transfer subunits of respiratory enzymes, 2) dimethylsulfide 

dehydrogenase β subunit (ddhB ), involved in dimethyl sulfide degradation in Rhodovulum 

sulfidophilum and 3) sulfur reductase FeS subunit (sreB) of Acidianus ambivalens, involved 

in the sulfur reduction  using H2 or organic substrates as electron donors (Caspi et al., 2012). 
PF04358 

73/161 

0.52 0 DsrC like protein: DsrC is present in all organisms encoding a dsrAB sulfite reductase 

(sulfate/sulfite reducers or sulfur oxidizers). The physiological studies suggest that sulfate 

reduction rates are determined by cellular levels of this protein. The dissimilatory sulfate 

reduction couples the four-electron reduction of the DsrC trisulfide to energy conservation 

(Santos et al., 2015). DsrC was initially described as a subunit of DsrAB, forming a tight 

complex; however, it is not a subunit, but rather a protein with which DsrAB interacts. DsrC 

is involved in sulfur-transfer reactions; there is a disulfide bond between the two DsrC 

cysteines as a redox-active center in the sulfite reduction pathway. Moreover, DsrC is among 

the most highly expressed sulfur energy metabolism genes in isolated organisms and meta- 

transcriptomes (Santos et al., 2015). 
PF01058 

158/161 

0.45 0.01 NADH ubiquinone oxidoreductase, 20 Kd subunit: Homologous genes are found in the 

delta subunits of both sulfhydrogenase complexes of Pyrococcus furiosus (Caspi et al., 

2012). 
PF01568 

156/161 

0.4 0.05 Molydopterin dinucleotide binding domain: This domain corresponds to the C-terminal 

domain IV in dimethyl sulfoxide (DMSO) reductase (Finn et al., 2008).  
PF09242 

39/161 

0.38 0.04 Flavocytochrome c sulphide dehydrogenase, flavin-binding: Enzymes found in S-

oxidizing bacteria such as the purple phototrophic bacteria Chromatium vinosum (Finn et al., 

2008). 

PF04879 

151/161 

0.37 0.05 Molybdopterin oxidoreductase Fe4S4 domain: Is found in a number of 

reductase/dehydrogenase families, which include the periplasmic nitrate reductase precursor 

and the formate dehydrogenase alpha chain, i.e., Wolinella succinogenes polysulfide 

reductase chain. Salmonella typhimurium thiosulfate reductase (gene phsA). 

PF08770 

45/161 

0.35 0.03 Sulphur oxidation protein SoxZ: SoxZ sulfur compound chelating protein, part of the   

complex known as the Sox enzyme system (for sulfur oxidation) that is able to oxidize 

thiosulfate to sulfate with no intermediates in Paracoccus parantropus (Caspi et al., 2012) . 

 354 

Identification of S-based genomes using the Sulfur Score 355 

To test whether Pfam entropies can be combined to capture the S-related metabolism, we 356 

calculated the Sulfur Score (SS) with Equation 2 for all non-redundant genomes in dataset Gen. 357 

The obtained SS and the corresponding taxonomy according in NCBI for each genome can be 358 

found in Table S6. Then we classified all the genomes according to their metabolic capabilities 359 

in three subsets: Suli) containing manually 161 curated genomes; Sur) Sulfur unconsidered or 360 

related microorganisms not included in Suli with SS > 4 (in total 192), which were curated 361 

afterwards, and NS) including 1,754 Non-Sulfur species, comprehends the subset Gen – (Suli + 362 

Sur). Boxplots summarizing the scores for these subsets are plotted in Figure 5A.  363 

 In order to measure the predictive value of SS, we computed a Receiver Operator 364 

Characteristic (ROC) curve by calling positive instances those annotated in Suli and negative 365 

the rest of the genomes, while iterating along increasing values of SS. The results are shown in 366 

Figure 5B, with an estimated Area Under the Curve (AUC) of 0.985, and the cut-off values of 367 

SS for several False Positive Rates (FPR). With this training Gen dataset, SS=8.705 is required 368 
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to rule out all false positives. However, SS=5.231 is sufficient to achieve a FPR < 0.05. Figure 369 

5C breaks down the species in Suli according to the metabolic guilds of the microbial mat 370 

model observing the clear difference between the distribution of SS in NS and Sulfur-related 371 

genomes (Suli and Sur). Finally, the SS values of candidate genomes in Sur are also plotted to 372 

show that they are comparable to the metabolic guilds of the S-cycle. Figure 5D shows the 373 

result of manually assigning candidate genomes in Sur to classes in terms of their ecological 374 

capabilities (see Table S7).  375 

 Out of 192 Sur genomes, 68 are known to metabolize S-compounds under culture 376 

conditions in literature reports. For instance, Sideroxydans lithotrophicus ES-1, a 377 

microaerophilic Fe-oxidizing bacterium has been observed to grow using thiosulfate as an 378 

energy source (Emerson et al., 2013). Another 59 Sur organisms were isolated from Sulfur-rich 379 

environments such as hot springs or solfataric muds, including uncultured species with 380 

genomes assembled from metagenomic sequences. For instance, Candidatus Desulforudis 381 

audaxviator MP104C was isolated from basalt-hosted fluids of the deep subseafloor (Jungbluth 382 

et al., 2016). Moreover, an unnamed endosymbiont of a scaly snail was sampled from a black 383 

smoker chimney (Nakagawa et al., 2014). Finally, the archaon Geoglobus ahangari was 384 

isolated from a 2,000m depth hydrothermal vent (Manzella et al., 2015).  385 

Combining these two subsets, 68% of species in Sur were confirmed by curation to be S- 386 

based.  387 

 We additionally confirmed the importance of S-cycle in gastrointestinal microbes of the 388 

genus Campylobacter by detecting 20 genomes with high SS values. This result is consistent 389 

with the implication of S-metabolism in the low oxygen environment of the host guts, where 390 

several inorganic (e.g., sulfates, sulfites) or organic (e.g., dietary amino acids and host mucins) 391 

S-compounds originate and are metabolized by several microorganisms. Among the microbes 392 

involved in colonic S-metabolism are SRB, many methanogens and Campylobacter genus 393 

(Carbonero et al., 2012). Furthermore, some species of Campylobacter have been isolated from 394 

deep sea hydrothermal vents (Nakagawa et al., 2007), suggesting that this genus plays an 395 

important role in the S cycle. The remaining species in Sur were classified in these categories: 396 

biorremediation (7), Fe-environment (2), marine (2), peatlands (2) and other environments 397 

(32). 398 
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 Overall, these results highlight the broad applicability of our proposed entropy-based 399 

score to accurately predict, classify and measure the importance of the S-cycle in both in 400 

culture-derived and novel sequenced genomes without prior culture and biochemical 401 

knowledge. 402 

 403 

Detecting key sulfur metagenomic environments with the Sulfur Score 404 

Encouraged by the genomic benchmark results described above, we set out to evaluate the 405 

importance of the S-cycle across 935 metagenomes in dataset Met. We calculated the SS for each 406 

metagenome taking into account its Mean Size Length (MSL) and the corresponding entropies 407 

calculated in dataset GenF (Table S8). The global distribution of Met is mapped in Figure 6A, 408 

with SS scores colored from yellow to red. To discriminate the most important S-related 409 

environments, those with SS values equal or larger than the 95th percentile of the corresponding 410 

MSL category are shown with blue borders.  411 

 In order to analyze some ecological patterns of the metagenomes they were further sorted 412 

by their environmental features as proposed by the Genomic Standards Consortium [GSC] and 413 

implemented in MG-RAST. Each feature corresponds to one of 13 environmental packages (EP) 414 

that standardize metadata describing particular habitats that are applicable across all GSC 415 

checklists and beyond (Field et al., 2014). The EPs represent a broad and general classification 416 

containing particular features. For example, the “water” EP includes 330 metagenomes from our 417 

dataset belonging to several features such as freshwater, lakes, estuarine, marine, hydrothermal 418 

vents, etc. Each of these features has different ecological capabilities in terms of biogeochemical 419 

cycles; therefore, will likely yield different SS values. The results are shown in Figure 6B. In 420 

general, all the metagenomes derived from hydrothermal vents (2), marine benthic (6), intertidal 421 

(8), and our CCC microbial mats had SS values above the 95th percentile, highlighting the 422 

importance of the S-cycle in these environments. In contrast, the metagenomes belonging to 423 

features such as sub-terrestrial habitat (7), saline evaporation pond (24) or organisms associated 424 

habitat (7) displayed consistently low or even negative SS values, indicating an insignificant 425 

presence of S-metabolic pathways in those environments. The remaining features have 426 

intermediate median SS values and contain occasionally individual metagenomes with SS values 427 

above the 95th percentile, such as freshwater, marine, ocean or biofilm environments.   428 
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 Using our approach, we identified and annotated a total of 50 high-scoring metagenomes 429 

(Table S9). According to their corresponding literature and associated metadata, all these 430 

environments can be described as Sulfur-related as they are reported to be involved in 431 

mineralization, uptake, and recycling processes of S-compounds, for example: 432 

i) Metagenome 4525341.3 (MSL=172aa, SS=9.287) sequenced from costal Oligochaete 433 

worm Olavius algarvensis, from which metabolic pathway reconstruction revealed the presence of 434 

gamma proteobacteria symbionts that are S-oxidizing and SRB. The chemoautotrophic symbionts 435 

provide their hosts with multiple sources of nutrition such as organic carbon from autotrophic CO2 436 

fixation driven by oxidation of reduced inorganic S-compounds (Woyke et al., 2006).  437 

ii) Metagenome 4441663.3 (MSL=158aa, SS=9.986) sampled from an hydrothermal vent 438 

in the Mariana Trough in 2003 (depth: 2,850 m, fluid temperature:106°C)  (Nakai et al., 2011). 439 

The hydrothermal vents are highly productive ecosystems fueled by a number of reduced 440 

inorganic substances (e.g., reduced S-compounds, hydrogen or methane) contained in the deep 441 

hydrothermal fluids. Through the oxidation of such compounds, chemolithoautotrophic 442 

microorganisms gain energy, which can be used for the fixation of inorganic carbon, mediating the 443 

transfer of energy from the geothermal source to higher trophic levels and thus form the basis of 444 

the unique food chains existing in these environments (Hügler et al., 2010) . 445 

iii) Metagenomes 4510162.3, 4510168.3 and 4510170.3, with MSL=32, and SS 7.676, 446 

7.781 and 7.772, respectively, were sampled from the marine deep-sea surface sediments around 447 

the Deep-water horizon spill in the Gulf of Mexico. They belong to ocean feature of EP sediment. 448 

The activity of key hydrocarbon degradation pathways was confirmed in these metagenomic deep-449 

sea sediments and the presence of metabolic pathways involved in C, N and S cycles were also 450 

confirmed in the metagenomic analysis described in (Mason et al., 2014). 451 

iv) Microbial mats from CCC were also detected above the 95th percentile (MSL: 100 and 452 

SS: 8.945, 9.093, 9.0, and 8.978). Samples were obtained from an ultra-oligotrophic shallow lake 453 

recovered from a desiccation event due to water over-exploitation. The sequenced microbial mats 454 

showed a clear layered visual pattern structure following the S-metabolic guilds described in 455 

Figure 2A. These were assigned to EP and feature “microbial_mat_ccc”. 456 

v) Metagenomes 4516637.3 and 4516803.3 (MSL=30, SS=7.762 and 7.753 respectively), 457 

belong to EP and feature “air”. Their high SS are consistent with the biogeochemical S-cycle, 458 

since the importance of gas-phase reactions of S-compounds and the formation and subsequent 459 
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involvement of sulfate aerosols as cloud-forming nuclei is well established. While these reactions 460 

can be carried out without microbial intervention, it has been suggested that microbial 461 

communities might contribute to the degradation of some of these S-compounds (Cao et al., 462 

2014). 463 

 To test the reproducibility and robustness of the Sulfur Score, we conducted two further 464 

analyses. In the first one, summarized in Figure S6, we compared SS estimates of the Met dataset 465 

which combined Pfam entropies computed in 2014 and 2017. Despite the changes of both, the 466 

Pfam database and the Suli list, overall we find a strong correlation, yielding an R2=0.912 (Figure 467 

S6 A). A kernel density analysis of the comparison suggests a different behavior of low and high 468 

SS scores, with the latter being more reproducible (see Figure S6B). In the second analysis, we 469 

quantitatively tested to what extent the entropy estimates of the set of 112 Pfam domains affect the 470 

outcome of the SS in Gen and Met. To do so, we subsampled randomly ≈50% of those domains to 471 

compute the SS 1,000 times for each of the 2,017 nr-genomes and 935 metagenomes. The results, 472 

summarized in Table S10, confirm that SS values computed with random subsets of Pfam domains 473 

are generally lower than SS derived from the full list (n=112) of S-related Pfam domains in Sucy, 474 

regardless of MSL. However, as shown in Figure S7 for MSL=60, the overall ranking of 475 

metagenomes produced by computing SS values only with a subset of Pfam domains is broadly 476 

equivalent. Altogether, these analyses suggest that the choice of protein domains does affect the 477 

absolute scores obtained. However, high scoring metagenomes are ranked highly, even when only 478 

a reduced set of Pfam domains are employed. 479 

The latter result confirms that a comprehensive database of protein-coding genes derived from 480 

a systematic reconstruction of global biogeochemical cycles, is necessary to apply the 481 

algorithm to quantify the importance of any given elements biogeochemical cycle in a given 482 

environment.  483 

 484 

CONCLUSIONS 485 

In this study, we proposed a computational approach to address the complexity of global 486 

biogeochemical cycles on a multi-genomic scale. This methodology requires the curation of an 487 

inventory of biotic players (including genes, molecular pathways and microorganisms) and 488 

abiotic compounds involved in the cycle of interest. We focused on the S-cycle due to is 489 
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importance on the biogeochemistry of the planet, but in principle this approach could be 490 

applied to any other cycle with microbial participation.  491 

 For the first time, we systematically build two databases that describe the complexity of 492 

the S-cycle based on the minimum ecosystem concept and the microbial mat model. We 493 

compiled available non-redundant fully sequenced S-based microorganisms (Suli), and all the 494 

known metabolic pathways involved in the S-cycle, taking into account also relevant abiotic S-495 

compounds (Sucy). We used these databases as the input of a computational entropy-based 496 

approach that works in two stages. First, we used the individual entropies of protein domains 497 

annotated in Sucy to propose a list of 12 molecular markers of the S-cycle and then combined 498 

these in order to produce the Sulfur Score, a measure that informs about the presence of the 499 

molecular machinery involved in S metabolism. We benchmarked the predictive value of the 500 

Sulfur Score by producing a ROC curve, and tested its robustness with simulations against 501 

randomly subsampled subsets of the curated protein domains. 502 

 Altogether, we propose that this method can be used to evaluate other global 503 

biogeochemical cycles or complex molecular pathways across genomic and metagenomic 504 

sequence datasets, therefore allowing the detection of environmental patterns and informative 505 

samples using a single score. 506 

 507 
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 516 

Figure Legends 517 

Figure 1. Computational pipeline for the analysis of the different levels of complexity of the 518 

sulfur cycle (S-cycle). The first step is to obtain the datasets. The biogeochemical processes of 519 
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the S-cycle were compiled in two lists. First, the most important S-compounds involved in 520 

abiotic or abiotic reactions were curated to produce a database of metabolic pathways, redox 521 

reactions, enzymatic numbers and their corresponding coding genes (Sucy). Second, a list of S-522 

based microorganisms (Suli) was also curated and compiled using the information of the 523 

Microbial Mat Model described in Figure 2. Then a total of 1,000 list of random genomes were 524 

used as negative control (Rlist).  The information gathered was then used to evaluate the ‘omic’ 525 

datasets (Gen, GenF, Met). Stages 2 to 4 summarize the determination of the Sulfur Score (SS) 526 

with sets of peptide sequences of increasing mean size length (MSL, in this example A, B and 527 

C). SS is calculated by summation of the entropy of 112 scanned protein domains, each one 528 

with a certain entropy value (H’).  529 

Figure 2. Sulfur cycle in small and planetary scale. A) Microbial Mat Model:  Simplified 530 

scheme of the relevant reactions carried out in microbial mats according to the redox potential. 531 

The redox couples (at pH 7) are approximate; the exact values depend upon how the reactions 532 

are coupled. 1) oxygenic photosynthesis by Cyanobacteria 2) chemosynthesis by 533 

chemolithotrophic color-less sulfur bacteria (CLSB), anoxygenic photosynthesis by 3) purple 534 

sulfur bacteria (PSB) and 4) green sulfur bacteria (GSB). sulfate reduction performed by 5) 535 

sulfate reducing bacteria (SRB). B) Sulfur cycle at planetary scale. Most important organic and 536 

inorganic S-compounds derived from biogeochemical processes arranged according to the 537 

Standard Gibbs free energy of formation described in Caspi et al., (2012). The left column 538 

indicates whether specific microorganisms are able to use those S-compounds, as a source of 539 

Carbon (C), Nitrogen (N), Energy (E) or Electron donors (°). Double asterisks indicate if the S-540 

compound is used as sole source, of C, N, or E. The corresponding electron acceptors in redox-541 

coupled reactions using the S-compound as electron donor are not show. The right column 542 

indicates whether the S-compounds are used as fermentative substrate (F) or terminal electron 543 

acceptor in respiratory processes (R). Colored boxes summarized the metabolic guilds involved 544 

in the metabolism of S-compounds, in oxidation (i.e., CLSB, SOM, PSB, and GSB) or 545 

reduction (SR, SRB) process. Some redox coupling reactions carried out by the latter metabolic 546 

guilds are showed in panel A. The complete list of S-based microorganisms (Suli) is found in 547 

Table S1. Figure based on annotations from MetaCyc (Caspi et al., 2012). 548 
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Figure 3. Comprehensive representation of the global biogeochemical S-cycle assembled from 549 

many metabolic pathways found in a variety of organisms combined in a single cell. To the 550 

best of our knowledge, all the molecular pathways involved in the metabolism of sulfur 551 

compounds, described in Figure 2B, are included. The enzymatic steps are depicted as 552 

rectangles followed by arrows indicating the direction of the reaction. Green hexagons 553 

represent metabolic links to other metabolisms. Bold dashed arrows indicate bidirectional 554 

reactions. Inorganic S-compounds have been arranged according to their reduction potential, 555 

from the most oxidized (yellow) to the most reduced (red) compounds. Grey rectangles indicate 556 

enzymes acting in disproportionation processes in which a reactant is both oxidized and 557 

reduced in the same chemical reaction, forming two separate compounds. Input biogeochemical 558 

S-compounds are shown outside and connected with bold arrows. Dashed arrows indicate S-559 

compounds excreted out of the cell. The upper half of the modelled cell depicts the processes 560 

involved in the use of organic S-compounds (orange circles) found in natural environments and 561 

used as source of carbon, sulfur and/or energy in several aerobic/anaerobic strains described in 562 

Figure 2.   563 

Figure 4. Clustering of the Pfam relative entropies obtained in Gen and GenF produced with 564 

the Ward method. Log frequency of the entropy values computed in the random test is colored 565 

in purple (see scale bar). Cluster 0 (blue) groups protein domains with low relative entropy that 566 

overlap with the random distribution. Cluster 1 (green) includes the Pfam domains that fulfill 567 

the requirements to be used as molecular markers (high H’ and low standard deviation, std). 568 

Red dots (cluster 2) correspond to Pfam domains with high H’ and std.  569 

 570 

Figure 5.  Distribution of Sulfur Score (SS) in genomes of dataset Gen. A) Subsets of non-571 

redundant genomes: i) genomes annotated in Suli (n=161); ii) Sur, genomes not listed in Suli 572 

with SS > 4 and candidates to be S-related microorganisms (n=192); iii) rest of the genomes in 573 

Gen (NS, n=1,754). According to the curated species, True Positives can be defined as 574 

genomes with SS > max (SSNS) distribution, whereas True Negatives are those with SS < 575 

min(SSSuli).  B) ROC curve with Area Under the Curve (AUC) indicated together with 576 

thresholds for some False Positive Rates (FPR). C) Distribution of SS for different S-metabolic 577 
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guilds according to the microbial mat model (Figure 2A) and also the genomes in Sur. D) 578 

Assignment of the 192 genomes in Sur to ecological categories based on literature reports.  579 

 580 

Figure 6. Distribution of Sulfur Score (SS) in the metagenomic dataset Met. A) Geo-localized 581 

metagenomes sampled around the globe are colored according to their SS values. The following 582 

cut-off values correspond to the 95th percentiles of seven Mean Size Length classes (30, 60, 583 

100, 150, 200, 250 and 300 aa): 7.66, 9.70, 8.81, 8.51, 8.18, 8.98 and 7.61, respectively. Circles 584 

with thick blue border indicate metagenomes with SS  the 95th percentile. B) Distribution of 585 

SS values observed in 935 metagenomes classified in terms of features (X-axis) and colored 586 

according to their environmental packages. Features are sorted according to their median SS 587 

values. ccc: metagenomes from Cuatro Cienegas, Coahuila, Mexico. Green lines indicate the 588 

lowest and largest 95th percentiles observed across MSL classes. 589 

 590 

 591 

References 592 

Alcaraz, L.D., Olmedo, G., Bonilla, G., Cerritos, R., Hernández, G., Cruz, A., et al. (2008) The 593 

genome of Bacillus coahuilensis reveals adaptations essential for survival in the relic of an 594 

ancient marine environment. Proc. Natl. Acad. Sci. U. S. A. 105: 5803–8. 595 

Bolhuis, H., Cretoiu, M.S., and Stal, L.J. (2014) Molecular Ecology of Microbial Mats. FEMS 596 

Microbiol. Ecol. 3: 1–16. 597 

Canfiel. DE, Thamdrup B, Kristensen E. (2005) Aquatic Geomicrobiology, Volume 48 598 

(Advances in Marine Biology). Elsevier Academic Press. 599 

Cao, C., Jiang, W., Wang, B., Fang, J., Lang, J., Tian, G., et al. (2014) Inhalable 600 

Microorganisms in Beijing ’ s PM 2.5 and PM 10 Pollutants during a Severe Smog Event. 601 

Enviromental Sci. Technol. 48: 1499–1507. 602 

Carbonero, F., Benefiel, A.C., Alizadeh-Ghamsari, A.H., and Gaskins, H.R. (2012) Microbial 603 

pathways in colonic sulfur metabolism and links with health and disease. Front. Physiol. 604 

3: 1–11. 605 

Caspi, R., Altman, T., Dreher, K., Fulcher, C. a, Subhraveti, P., Keseler, I.M., et al. (2012) The 606 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2017. ; https://doi.org/10.1101/148775doi: bioRxiv preprint 

https://doi.org/10.1101/148775
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of 607 

pathway/genome databases. Nucleic Acids Res. 40: D742-53. 608 

Chen, L., Hu, M., Huang, L., Hua, Z., Kuang, J., Li, S., and Shu, W. (2015) Comparative 609 

metagenomic and metatranscriptomic analyses of microbial communities in acid mine 610 

drainage. ISME J. 9(7): 1579–1592. 611 

Commenges, D. (2015) Information Theory and Statistics: an overview. ARXIV preprint 612 

arXiv:1511.00860. 613 

Dahl (2017) Modern Topics in the Phototrophic Prokaryiotes. Metabolism, Bioenergetics and 614 

Omics. Springer International Publishing pp 27-66, 10.1007/978-3-319-51365-2_2. 615 

Emerson, D., Field, E.K., Chertkov, O., Davenport, K.W., Goodwin, L., Munk, C., et al. (2013) 616 

Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, 617 

ecology, and systematics. Front. Microbiol. 4: 254. 618 

Falkowski, P.G., Fenchel, T., and Delong, E.F. (2008) The microbial engines that drive Earth’s 619 

biogeochemical cycles. Science 320: 1034–9. 620 

Field, D., Sterk, P., Kottmann, R., Smet, J.W. De, Amaral-zettler, L., Cole, J.R., et al. (2014) 621 

Genomic Standards Consortium Projects The Genomic Standards Consortium Initiating 622 

and Maintaining a Project within the GSC The GSC Project Description template provides 623 

a References : Stand. Genomic Sci. 599–601. 624 

Finn, R.D., Clements, J., and Eddy, S.R. (2011) HMMER web server: interactive sequence 625 

similarity searching. Nucleic Acids Res. 39: W29-37. 626 

Finn, R.D., Tate, J., Mistry, J., Coggill, P.C., Sammut, S.J., Hotz, H.-R., et al. (2008) The Pfam 627 

protein families database. Nucleic Acids Res. 36: D281-8. 628 

Halevy, I., Peters, S.E., and Fischer, W.W. (2012) Sulfate burial constraints on the Phanerozoic 629 

sulfur cycle. Science 337: 331–4. 630 

Hedges, J.I. (1992) Global biogeochemical cycles: progress and problems. Mar. Chem. 39: 67–631 

93. 632 

Herman EK and Kump LR (2005) Biogeochemistry of microbial mats under Precambrian 633 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2017. ; https://doi.org/10.1101/148775doi: bioRxiv preprint 

https://doi.org/10.1101/148775
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

environmental conditions : a modelling study. Geob 3: 77–92. 634 

Hertz, G.Z. and Stormo, G.D. (1999) Identifying DNA and protein patterns with statistically 635 

significant alignments of multiple sequences. Bioinformatics 15: 563–77. 636 

Hügler, M., Gärtner, A., and Imhoff, J.F. (2010) Functional genes as markers for sulfur cycling 637 

and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field. 638 

FEMS Microbiol. Ecol. 73: 526–537. 639 

Jones, P., Binns, D., Chang, H.Y., Fraser, M., Li, W., McAnulla, C., et al. (2014) InterProScan 640 

5: Genome-scale protein function classification. Bioinformatics 30: 1236–1240. 641 

Jungbluth SP, Glavina del Rio T, Tringe SG, Stepanauskas R, Rappé MS. (2016) Genomic 642 

comparisons of a bacterial lineage that inhabits both marine and terrestrial deep subsurface 643 

systems. PeerJ Preprints 4:e2592v1https://doi.org/10.7287/peerj.preprints.2592v1 644 

Kanehisa, M. and Goto, S. (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic 645 

Acids Res. 28: 27–30. 646 

Khodadad, C.L.M. and Foster, J.S. (2012) Metagenomic and metabolic profiling of 647 

nonlithifying and lithifying stromatolitic mats of Highborne Cay, The Bahamas. PLoS One 648 

7: e38229. 649 

Kullback, S. and Leibler, R.A. (1951) On Information and Sufficiency. Ann. Math. Stat. 22: 650 

79–86. 651 

Li, Y., Yu, S., Strong, J., and Wang, H. (2012) Are the biogeochemical cycles of carbon, 652 

nitrogen, sulfur, and phosphorus driven by the “FeIII–FeII redox wheel” in dynamic redox 653 

environments? J. Soils Sediments 12: 683–693. 654 

Llorens-Marès, T., Yooseph, S., Goll, J., Hoffman, J., Vila-Costa, M., Borrego, C.M., et al. 655 

(2015) Connecting biodiversity and potential functional role in modern euxinic 656 

environments by microbial metagenomics. ISME J. 9(7): 1579–92. 657 

Loy, A., Ku, K., Lehner, A., Drake, H.L., and Wagner, M. (2004) Microarray and Functional 658 

Gene Analyses of Sulfate-Reducing Prokaryotes in Low-Sulfate , Acidic Fens Reveal 659 

Cooccurrence of Recognized Genera and Novel Lineages. Appl. Environ. Microbiol. 70: 660 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2017. ; https://doi.org/10.1101/148775doi: bioRxiv preprint 

https://doi.org/10.1101/148775
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

6998–7009. 661 

Magrane, M. and Consortium, U.P. (2011) UniProt Knowledgebase: A hub of integrated 662 

protein data. Database 2011: 1–13. 663 

Manzella, M.P., Holmes, D.E., Rocheleau, J.M., Chung, A., Reguera, G., and Kashefi, K. 664 

(2015) The complete genome sequence and emendation of the hyperthermophilic, obligate 665 

iron-reducing archaeon “Geoglobus ahangari” strain 234T. Stand. Genomic Sci. 10: 77. 666 

Mason, O.U., Scott, N.M., Gonzalez, A., Robbins-Pianka, A., Bælum, J., Kimbrel, J., et al. 667 

(2014) Metagenomics reveals sediment microbial community response to Deepwater 668 

Horizon oil spill. ISME J. 8: 1464–75. 669 

Meyer, B. and Kuever, J. (2007) Molecular analysis of the diversity of sulfate-reducing and 670 

sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene. 671 

Appl. Environ. Microbiol. 73: 7664–79. 672 

Morales, S.E. and Holben, W.E. (2011) Linking bacterial identities and ecosystem processes: 673 

Can “omic” analyses be more than the sum of their parts? FEMS Microbiol. Ecol. 75: 2–674 

16. 675 

Moreno-Hagelsieb, G., Wang, Z., Walsh, S., and ElSherbiny, A. (2013) Phylogenomic 676 

clustering for selecting non-redundant genomes for comparative genomics. Bioinformatics 677 

29: 947–9. 678 

Nakagawa, S., Shimamura, S., Takaki, Y., Suzuki, Y., Murakami, S., Watanabe, T., et al. 679 

(2014) Allying with armored snails: the complete genome of gammaproteobacterial 680 

endosymbiont. ISME J. 8: 40–51. 681 

Nakagawa, S., Takaki, Y., Shimamura, S., Reysenbach, A.-L., Takai, K., and Horikoshi, K. 682 

(2007) Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of 683 

pathogens. Proc. Natl. Acad. Sci. U. S. A. 104: 12146–12150. 684 

Nakai, R., Abe, T., Takeyama, H., and Naganuma, T. (2011) Metagenomic Analysis of 0.2-μm-685 

Passable Microorganisms in Deep-Sea Hydrothermal Fluid. Mar. Biotechnol. 13: 900–686 

908. 687 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2017. ; https://doi.org/10.1101/148775doi: bioRxiv preprint 

https://doi.org/10.1101/148775
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

Newman, D.K. and Banfield, J.F. (2002) Geomicrobiology: how molecular-scale interactions 688 

underpin biogeochemical systems. Science 296: 1071–7. 689 

Odum EP (1993) Ecology and our endangered life-support systems, 2nd edn. Sinauer 690 

Associates Inc., Sunderland, Massachusetts. 301 pp. 691 

 692 

Olson, K.R., Straub, K.D., and Straub, K.D. (2016) The Role of Hydrogen Sulfide in Evolution 693 

and the Evolution of Hydrogen Sulfide in Metabolism and Signaling The Role of 694 

Hydrogen Sulfide in Evolution and the Evolution of Hydrogen Sulfide in Metabolism and 695 

Signaling. Physiology 31: 60–72. 696 

Pedroni, P., Volpe, A.D., Galli, G., Mura, G.M., Pratesi, C., and Grandi, G. (1995) 697 

Characterization of the locus encoding the [Ni-Fe] sulfhydrogenase from the archaeon 698 

Pyrococcus furiosus: Evidence for a relationship to bacterial sulfite reductases. 699 

Microbiology 141: 449–458. 700 

Pinckney, J.L. and Paerl, H.W. (1997) Anoxygenic photosynthesis and nitrogen fixation by a 701 

microbial mat community in a bahamian hypersaline lagoon. Appl. Environ. Microbiol. 702 

63: 420–6. 703 

Quaiser, A., Zivanovic, Y., Moreira, D., and López-García, P. (2011) Comparative 704 

metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara. 705 

ISME J. 5: 285–304. 706 

Rabus, R., Hansen, T., and Widdel, F. (2013) “Dissimilatory sulfate- and sulfur-reducing 707 

prokaryotes,” in The Prokaryotes, eds E. Rosenberg, E. Delong, S. Lory, E. Stackebrandt, 708 

and F. Thompson. Heidelberg: Springer. 309–404. 709 

Santos, A.A., Venceslau, S.S., Grein, F., Leavitt, W.D., Dahl, C., Johnston, D.T., and Pereira, 710 

I.A.C. (2015) A protein trisulfide couples dissimilatory sulfate reduction to energy 711 

conservation. Science (80-. ). 350: 1541–1545. 712 

Stewart, F.J., Dmytrenko, O., Delong, E.F., and Cavanaugh, C.M. (2011) Metatranscriptomic 713 

analysis of sulfur oxidation genes in the endosymbiont of solemya velum. Front. 714 

Microbiol. 2: 134. 715 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2017. ; https://doi.org/10.1101/148775doi: bioRxiv preprint 

https://doi.org/10.1101/148775
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

Swingley, W.D., Meyer-Dombard, D.R., Shock, E.L., Alsop, E.B., Falenski, H.D., Havig, J.R., 716 

and Raymond, J. (2012) Coordinating environmental genomics and geochemistry reveals 717 

metabolic transitions in a hot spring ecosystem. PLoS One 7: e38108. 718 

Taguchi, Y., Sugishima, M., and Fukuyama, K. (2004) Crystal Structure of a Novel Zinc-719 

Binding ATP Sulfurylase from Thermus. Biochemistry 43: 4111–4118. 720 

Tu, Q., Yu, H., He, Z., Deng, Y., Wu, L., Van Nostrand, J.D., et al. (2014) GeoChip 4: A 721 

functional gene-array-based high-throughput environmental technology for microbial 722 

community analysis. Mol. Ecol. Resour. 14: 914–928. 723 

Widder, S., Allen, R.J., Pfeiffer, T., Curtis, T.P., Wiuf, C., Sloan, W.T., et al. (2016) 724 

Challenges in microbial ecology: building predictive understanding of community 725 

function and dynamics. ISME J. 10: 2557–2568. 726 

Woyke, T., Teeling, H., Ivanova, N.N., Huntemann, M., Richter, M., Gloeckner, F.O., et al. 727 

(2006) Symbiosis insights through metagenomic analysis of a microbial consortium. 728 

Nature 443: 950–5. 729 

Zhao, M., Xue, K., Wang, F., Liu, S., Bai, S., Sun, B., et al. (2014) Microbial mediation of 730 

biogeochemical cycles revealed by simulation of global changes with soil transplant and 731 

cropping. ISME J. 8(10): 2045–55. 732 

 733 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2017. ; https://doi.org/10.1101/148775doi: bioRxiv preprint 

https://doi.org/10.1101/148775
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2017. ; https://doi.org/10.1101/148775doi: bioRxiv preprint 

https://doi.org/10.1101/148775
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2017. ; https://doi.org/10.1101/148775doi: bioRxiv preprint 

https://doi.org/10.1101/148775
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2017. ; https://doi.org/10.1101/148775doi: bioRxiv preprint 

https://doi.org/10.1101/148775
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2017. ; https://doi.org/10.1101/148775doi: bioRxiv preprint 

https://doi.org/10.1101/148775
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2017. ; https://doi.org/10.1101/148775doi: bioRxiv preprint 

https://doi.org/10.1101/148775
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2017. ; https://doi.org/10.1101/148775doi: bioRxiv preprint 

https://doi.org/10.1101/148775
http://creativecommons.org/licenses/by-nc-nd/4.0/

