
1 

 

Gene networks provide a high-resolution view of bacteriophage ecology 1 

Jason W. Shapiro1,2,3,*, and Catherine Putonti1,2,3,4 2 

1 Department of Biology, Loyola University of Chicago, Chicago, IL, United States of America 3 

2 Department of Computer Science, Loyola University of Chicago, Chicago, IL, United States of 4 

America 5 

3 Bioinformatics Program, Loyola University of Chicago, Chicago, IL, United States of America 6 

4 Department of Microbiology and Immunology, Loyola University of Chicago, Maywood, IL, United 7 

States of America 8 

*corresponding author email: jshapiro2@luc.edu  9 

 10 

Abstract 11 

Bacteriophages are the most abundant and diverse biological entities on the planet, and new phage 12 

genomes are being discovered at a rapid pace from metagenomes. As more novel, uncultured phage 13 

genomes are published, new tools are needed for placing these genomes in an ecological and 14 

evolutionary context. Phages are difficult to study with phylogenetic methods, because they exchange 15 

genes regularly, and no single gene is conserved across all phages. Instead, genome-level networks 16 

have been used to group similar viruses into clusters for taxonomy. Here, we show that gene-level 17 

networks provide a high-resolution view of phage genetic diversity and offer a novel perspective on 18 

virus ecology. To that end, we developed a method that identifies informative associations between a 19 

phage’s annotated host and clusters of genes in the network. Given these associations, we were able to 20 

predict a phage’s host with 86% accuracy at the genus level, while also identifying genes that underlie 21 

these virus-host interactions. This approach, thus, provides one of the most accurate means of host 22 

prediction while also pointing to directions for future empirical work.  23 

 24 
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Introduction 25 

Bacteriophages (phages) are viruses that infect bacteria, and with over 1031 estimated on the planet, are 26 

often the most abundant and diverse members of any ecosystem (Edwards & Rohwer 2005). Phages act 27 

as predators, drivers of biogeochemical cycles (Wilhelm & Suttle 1999), industrial contaminants 28 

(McGrath et al. 2007), and as important mutualists within bacterial pathogens that cause disease in 29 

plants and animals (e.g. Addy et al. 2012, Waldor & Mekalanos 1996). Phages have also been used as 30 

therapeutics in agriculture (Greer 2005) and for treating antibiotic-resistant bacterial infections (Chan et 31 

al. 2016, Biswas et al 2002). Similar to bacteria, the majority of phages cannot be propagated in the lab, 32 

either because their host cannot be grown or because their host is not known. Nonetheless, new 33 

metagenomes from diverse environments are being published regularly, and the rate of uncultured, 34 

novel virus discovery has increased rapidly in the past decade (e.g., Simmonds et al. 2017, Paez-Espino 35 

et al 2016, Bruder et al. 2016, Roux et al. 2015, Dutilh et al 2014). Coping with this deluge of data 36 

requires new computational methods for both classifying virus diversity and for inferring key features 37 

of virus ecology and evolution. 38 

 Except for strain-level variation of a particular virus, traditional phylogenetic methods cannot 39 

be applied to derive a “species” tree for phages. There are no universal genes shared by all phages, and 40 

horizontal gene transfer (HGT) between viruses is common. In essence, every phage genome is a 41 

mosaic that reflects the often disparate evolutionary histories of its genes (Pedulla et al. 2003, Hendrix 42 

et al. 1999), and genome-level classification is, therefore, difficult. To overcome these challenges, 43 

network-based approaches have been used to depict the relationship between phage genomes on the 44 

basis of the similarity of their genic content or overall sequence identity (Cresawn et al. 2011, Halary et 45 

al. 2010, Lima-Mendez et al. 2008, Roux et al. 2015, Paez-Espino et al. 2016).  46 

 Genome-level network analyses are appealing, because they make it possible to visualize phage 47 

relationships in place of traditional phylogenies (e.g. Paez-Espino et al 2016, Lima-Mendez et al 2008). 48 
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At the same time, these whole-genome analyses continue to ignore the mosaic architecture of phage 49 

genomes and take the focus away from the actual targets of selection: genes. As a result, it is unclear 50 

how to apply these genome networks to questions beyond taxonomy. In the present work, we instead 51 

build a network of genes, where genes are connected if they are ever found within the same genome. 52 

By extending network analyses from genomes to genes, it is possible to address questions directly 53 

related to virus ecology and evolution, such as how particular genes affect the mode of infection, 54 

virulence, and host range of a virus.  55 

 Host range, in particular, constrains viral ecology and evolution, and predicting a virus’ host is a 56 

key challenge when characterizing novel, uncultured genomes. Host range typically depends on 57 

individual virus-host gene interactions (Labrie et al. 2010), and both phages and their hosts can acquire 58 

genes that alter these interactions through HGT (Meyer et al. 2016, Sachs & Bull 2005, Tzipilevich et 59 

al. 2016). Methods for predicting virus host range from genomes commonly rely on comparing 60 

genomic properties such as k-mer frequencies, codon usage, or, when possible, host CRISPR content. 61 

The best of these methods, however, are rarely better than 80% accurate for predicting a phage’s host at 62 

the genus level (Ahlgren et al. 2016, Villaroel et al. 2016, Edwards et al. 2016). Here, we build a gene-63 

level network representing the co-occurrence of genes across phage genomes. In addition to providing 64 

a robust view of virus genetic diversity, clusters within this network can be associated with virus host 65 

range. By identifying genes that increase the correspondence between phages and their hosts, we are 66 

able to predict virus host range at the genus level with over 85% accuracy for many host genera. 67 

 68 

Building Genome- and Gene-Level Networks 69 

We built genome- and gene-level networks for a set of 945 phage RefSeq genomes, consisting of 70 

92,801 gene sequences. In the genome network (Figure 1a), nodes represent virus genomes, and two 71 

nodes are connected if they share at least one gene. In the gene network (Figure 1b), nodes represent 72 
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homologous phage protein sequences, and two nodes are connected if these genes are found in the 73 

same genome. Homologous genes were identified with as low as 35% identity via clustering by usearch 74 

(Edgar 2010). Singleton and doubleton clusters were removed from consideration to increase the 75 

reliability of connections between genes. This filter yielded a final set of 8,847 gene clusters from 76 

across 913 phage genomes, dropping 32 phage genomes from primarily under-sampled, tailless phage 77 

families, which are often underrepresented in metaviromes (Steward et al. 2013). 78 

 In each network, there exist subsets of nodes that form subgraphs in which members have more 79 

connections in common with each other than with the rest of the network. We formally identified these 80 

subsets of interconnected nodes using the Markov Clustering Algorithm (MCL) (Enright et al. 2002). 81 

MCL relies on an inflation parameter that transforms the adjacency matrix of the underlying network. 82 

Higher inflation values generally yield more clusters from a network, and others have previously used a 83 

measure of cohesion within subgraphs, the “intracluster clustering coefficient” (ICCC), to optimize this 84 

parameter choice for virus taxonomy (Roux et al. 2015, Lima-Mendez et al. 2008). Using this metric, 85 

we chose an inflation factor of 6 for the genome network and 4.1 for the gene network (see Figure S1). 86 

These values correspond to 209 clusters in the genome network and 135 clusters in the gene network. 87 

As seen in Figure 2, the MCL clusters in the gene network appear to provide a cleaner visualization of 88 

virus diversity than clusters in the genome network. 89 

 90 

Clusters of phage genes are associated with phage host genera  91 

Given the gene and genome networks, we then recolored the nodes according to the phage host genus 92 

(Figure 3). In the gene network, each node represents a set of homologous genes, and only the most 93 

common host associated with these homologs is indicated for each node. As can be seen in Figure 3, 94 

phage host was poorly associated with graphical clustering in the genome network but maps closely to 95 

graphical clusters in the gene network. In fact, for several hosts, distinct clusters could be identified in 96 
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the gene network that correspond at the species or strain-level of the phage host (see Figure 4).  97 

 In the case of Bacillus phages, genes are found in clusters corresponding to their annotated host 98 

species: B. anthracis, B. subtilis, B. thuringiensis, B. pumilus, or B. cereus. Further, overlap exists 99 

between B. anthracis and B. thuringiensis, closely related pathogens belonging to the B. cereus group 100 

(Priest et al. 2004).  Host associations at the species level are also visible within the genera 101 

Prochlorococcus and Streptococcus.  102 

Not all graphical clusters, however, correspond to a specific host species or strain. Lactococcus 103 

lactis, for instance, is frequently used in dairy starter cultures as L. lactis subsp. lactis and L. lactis 104 

subsp. cremoris, and phages have been well-sampled from both hosts (Deveau et al. 2006). Genes from 105 

these diverse phages occur across three clusters of phage genetic diversity in the gene network, with no 106 

clear associations with either host subspecies. Notably, these phages often are found to infect multiple 107 

strains of L. lactis (Mahony et al. 2013), and recombination between dairy phages may be frequent 108 

(Brüssow and Desiere 2001). Interestingly, one cluster of Lactococcus-associated genes shares many 109 

connections with a cluster of Streptococcus thermophilus, another common member of dairy 110 

fermentations. 111 

 The largest and most distinct cluster of phage genes corresponds to phages infecting 112 

Mycobacterium smegmatis, a non-pathogenic and more readily-cultured relative of M. tuberculosis. 113 

These phages have been heavily sampled compared to other hosts because of the SEA-PHAGES 114 

program, in which undergraduates isolate and sequence phage genomes (Jordan et al. 2014). Though 115 

phages of other species of Mycobacterium have not been thoroughly studied, genes from phages 116 

infecting M. tuberculosis are also present across MCL clusters found within this subgraph. This 117 

observation suggests it may be worthwhile, if technically difficult, to test more of the phages of M. 118 

smegmatis on M. tuberculosis, as has been previously suggested (Hatfull 2014). 119 

 Though not as well-sampled as phages of Mycobacterium, genes from phages infecting 120 
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Escherichia coli and Pseudomonas species appear across the network, often more closely related to 121 

phages infecting other genera. Genes from phages of Salmonella, Shigella, Acinetobacter, and 122 

generically-identified Enterobacteria can all be found within clusters that are largely associated with E. 123 

coli. There is a distinct cluster of phage genes affiliated with Pseduomonas fluorescens, but other 124 

species-specific designations are not readily-observed. Iranzo et al. (2016) recently introduced a 125 

bipartite network connecting phage genes to phage genomes, which may provide further insight into 126 

how recombination events have structured phage host range.  127 

 128 

Quantifying and optimizing associations between network clusters and phage hosts 129 

We next sought to quantify the reliability of these visible associations and to ask if subsets of genes 130 

could be used to predict a phage’s host. We estimated the degree of overlap between graphical clusters 131 

and host associations in each network by determining their mutual information (see Supplemental 132 

Methods). This metric suggested that clusters in the genome network may, in fact, be more closely 133 

associated with host annotations than clusters in the gene network (MIgenome = 2.18, MIgene = 1.42). This 134 

effect likely arises, however, because each node in the genome network corresponds to exactly one 135 

host, and each MCL cluster in the genome network has, on average, only 4.36 members. In contrast, 136 

there are an average of 65.5 genes within each MCL cluster in the gene network, and each node within 137 

these clusters corresponds to at least 3 homologous genes from different phage genomes. More 138 

importantly, many genes are not directly linked to host specificity, and homologs represented by a 139 

single node in the gene network may come from phages that infect different hosts. Thus, graphical 140 

clusters built from the gene network will contain many genes with variable host associations, whereas 141 

those within the genome network are buffered from this noise. In the gene network, this variation 142 

reduces the mutual information between cluster membership and host. This effect would also imply that 143 

there exists a subset of genes within the gene network that would provide greater correspondence with 144 
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host associations.  145 

 To address this hypothesis, we developed an evolutionary algorithm, mimax, to identify the 146 

subset of genes that maximizes the mutual information of MCL clusters and hosts. The mimax 147 

algorithm works as follows: in each iteration, an MCL cluster in the gene network is removed from a 148 

matrix of cluster-host associations at random. If doing so would result in removing a phage genome 149 

from the dataset, the deletion is rejected. If no genomes are lost, then the mutual information of the new 150 

matrix is calculated. If this value exceeds the value from the previous iteration, the deletion is retained, 151 

otherwise it is rejected. Because the mimax algorithm depends on removing uninformative clusters of 152 

genes, it should be more effective when there are more clusters from which to choose. When applied to 153 

the 135 clusters previously found in the gene network, mimax removed 47 clusters containing 1375 154 

genes (~15% of the dataset), resulting in a modest improvement in mutual information but still falling 155 

short of the value observed in the genome network.  156 

Three methods have been suggested to increase the granularity of MCL clusters (see 157 

https://micans.org): increasing the inflation factor, removing highly connected nodes before finding 158 

clusters, and introducing noise to the network. Initially, we chose an inflation factor of 4.1 to optimize 159 

the ICCC, a measure of within-cluster cohesion. The ICCC, though, is largely of interest when clusters 160 

represent naturally distinct sets of nodes, such as for taxonomic classification using genome-level 161 

networks. Here, we are more interested in subdividing genes into co-occurring subsets, and optimizing 162 

ICCC comes at the cost of sensitivity for the mimax algorithm. We tested each of the three methods 163 

described above (see Supplemental Methods and Figure S2), finding the best results, 1355 clusters, 164 

with an inflation factor of 15 and adding 5 random edges per node. Given this new set of clusters, we 165 

ran mimax 10 times and retained the resulting matrix with the highest mutual information. In each 166 

replicate, the mutual information between MCL membership and host associations converged to a 167 

higher value than found in the genome network (Figure S3). On average, mimax reduced the number of 168 
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MCL clusters and associated genes within the gene network to 483.5 and 4070.6, respectively. These 169 

deletions suggest that over half of the genes in the gene network are uninformative with respect to host 170 

range.  171 

 Two questions emerge from maximizing the mutual information between graphical clusters and 172 

host associations: 1) Are the retained genes more closely associated with functions characteristic of 173 

phage-host interactions? and 2) can the resulting gene network be used as a tool for predicting the 174 

primary host of phages?  175 

 To address the first question, we annotated the complete and mimax-reduced sets of genes using 176 

RAST (Aziz et al. 2008). We then compared the frequency of common annotations of non-hypothetical 177 

proteins for each set of genes (see Table S1 and Figure S3). Phage baseplate, neck, replication, and 178 

DNA synthesis genes are over-represented following mimax, whereas phage packaging and regulatory 179 

genes are under-represented. Phage baseplate proteins directly affect virus adsorption to host receptors 180 

(Mahony and van Sinderen 2015), suggesting that gene function does affect mimax results. 181 

 The cluster-host correspondence in the mimax-reduced gene network offers a novel means to 182 

predict a phage’s host. Given a phage’s genome, we identified all genes that belong to the mimax-183 

reduced set. We then recorded how often each potential host was associated with a homolog of one of 184 

these remaining genes (excluding a phage’s own contribution if already within the network). Finally, 185 

we chose the most frequent host affiliated with this subset of genes as the predicted host. (See the 186 

Supplemental Methods for additional details of the procedure.) When applied to all phage in the 187 

network, this approach predicted the host genus with 86% accuracy. If the full gene network is used in 188 

place of the mimax-reduced network, accuracy declines to 72%. This difference confirms that the 189 

mimax procedure reduces the gene network to a set of genes with stronger ties to phage host 190 

determination. 191 

 We deconstructed the host prediction accuracy (from mimax-improved predictions) for each 192 
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host genus in order to account for uneven sampling of phages across hosts (Table 1). Doing so indicates 193 

that accuracy varied with host genus. Predictions for phages of Mycobacterium were nearly 100% 194 

accurate, and this reflects the large, unique space occupied by their genes in the network. In contrast, 195 

host predictions were less accurate for hosts with few representatives in the dataset, such as 196 

Clostridium and Yersinia. Accuracy also declined for well-sampled hosts, such as Escherichia, where 197 

phages have been sampled from closely-related genera (e.g. Salmonella, Shigella, and Yersinia). As has 198 

been seen for other host prediction methods (e.g. Villaroel et al. 2016), incorrect host predictions 199 

tended to predict that phage infect closely-related hosts (see Table 1). Improving the accuracy of 200 

predictions within these groups requires additional sampling and wet lab characterization of phages 201 

from across host genera. We should also be careful when assessing the quality of negative predictions. 202 

While phage host range can be exceptionally specific, many phages infect multiple genera (Hamdi et 203 

al. 2017, Jensen et al. 1998) or even across phyla (Malki et al. 2015), and additional lab work is 204 

required to confirm that putatively incorrect predictions are not, in fact, false negative results. 205 

 We next tested this approach with a set of novel phages not included in the original gene 206 

network. Over 1000 new phage genomes have been published since we built our original network. We 207 

chose 500 phage genomes at random from this new set. Of these, 185 were annotated as infecting hosts 208 

already included in our network. The genes in these phages were assigned to the mimax-reduced set of 209 

MCL clusters identified previously. While 52 of these phages shared no genes in the mimax set with 210 

any phages in our original dataset, for the remaining 133 phage, our procedure predicted the host genus 211 

67.7% of the time (see Table S2). Moreover, accuracy remained high for well-sampled hosts, such as 212 

Mycobacterium and Escherichia, but was low for others, such as Bacillus, that we could previously 213 

predict with over 90% accuracy. This discrepancy suggests that a gene network approach to host 214 

prediction should be updated regularly to account for the frequent addition of new virus genomes to 215 

repositories. 216 
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 217 

Conclusion  218 

In this work, we have shown that gene-level networks provide both a high-resolution view of viral 219 

genetic diversity and a means to connect specific groups of genes to broad patterns in viral ecology. 220 

When applied to virus host range, phage gene clusters correlated with a phage’s annotated host, and 221 

proximity of clusters in the network reflected the evolutionary relatedness of these hosts. Using an 222 

evolutionary algorithm, mimax, we were then able to identify specific groups of genes with the 223 

strongest correlation to virus host range. The mimax-reduced dataset was enriched for genes known to 224 

affect host recognition, and the enhanced network offers one of the most accurate means of host 225 

prediction to date.  226 

This approach should be extensible to aspects of viral ecology beyond host range, including 227 

isolation source (e.g. freshwater, marine, soil, leaf, gut, hospital, etc.) and abiotic or biotic factors that 228 

vary across locations (e.g. temperature, pH, O2, nutrient concentrations, and available host diversity). 229 

Moreover, phage have a direct impact on the growth of their host bacteria, and knowing a phage’s 230 

ecological and evolutionary history is critical to understanding how that phage affects an ecosystem. 231 

Gene network analysis should facilitate new discoveries in any environment, be it a dairy vat, a 232 

freshwater lake, or the human gut.     233 
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Table 1: Host accuracy varies with genus and sampling 419 

 420 

Host Genus Accuracy Top Mistake 
Total 
Count 

Chlamydia 1 N/A 4 

Lactococcus 1 N/A 36 

Mycobacterium 0.991 Lactococcus 226 

Bacillus 0.97 Chlamydia 66 

Streptococcus 0.947 Bacillus 38 

Escherichia 0.906 Salmonella 138 

Prochlorococcus 0.905 Synechococcus 21 

Staphylococcus 0.897 Bacillus 87 

Pseudomonas 0.847 Escherichia 85 

Burkholderia 0.833 Pseudomonas 30 

Salmonella 0.804 Escherichia 56 

Vibrio 0.686 Escherichia 51 

Clostridium 0.667 Streptococcus 21 

Acinetobacter 0.583 Escherichia 12 

Shigella 0.273 Escherichia 11 

Yersinia 0.273 Escherichia 11 

Anabaena 0 Escherichia 1 

Microcystis 0 Escherichia 1 

Chlamydophila 0 Chlamydia 1 

Synechococcus 0 Prochlorococcus 15 

Bdellovibrio 0 Escherichia 2 

 421 
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Figure Captions 423 

 424 

Figure 1 425 

Genome-level (a) and gene-level (b) networks for a set of 913 phage. In the genome network, nodes are 426 

genomes, and two nodes are connected by an edge if they share any genes. Inversely, in the gene 427 

network, nodes are genes, and two nodes are connected if they are found in the same genome. 428 

 429 

Figure 2 430 

The genome (a) and gene (b) networks are identical to those in Figure 1, except nodes have been 431 

colored based on their membership in graphical clusters identified using MCL with inflation set to 6 for 432 

the genome network and to 4.1 for the gene network.  433 

 434 

Figure 3 435 

The genome (a) and gene (b) networks are identical to those in Figures 1 and 2, except nodes have now 436 

been colored to reflect the host genus associated with each phage. In the gene network, each node 437 

signifies a set of homologous sequences, and colors match the most common host for the genomes 438 

containing these homologs. 439 

 440 

Figure 4 441 

The gene network shown is identical to the network in Figures 1b and 2b, but with nodes recolored 442 

according to the host species, where annotation was available. Labels and arrows indicate specific cases 443 

highlighted in the main text. 444 

  445 
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Figure 1: Uncolored genome (a) and gene (b) networks 446 

 447 
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Figure 2: Genome (a) and gene (b) networks colored by MCL clustering 449 

 450 
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Figure 3: Genome (a) and gene (b) networks colored by annotated host genus 452 
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Figure 4: Gene network highlighting clusters that vary by host species 454 
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