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Abstract	

Phasing,	the	process	of	predicting	haplotypes	from	genotype	data,	is	an	important	

undertaking	in	genetics	and	an	ongoing	area	of	research.	Phasing	methods,	and	associated	

software,	designed	specifically	for	pedigrees	are	urgently	needed.	Here	we	present	a	new	

method	for	phasing	genotypes	from	whole	genome	sequencing	data	in	pedigrees:	PULSAR	

(Phasing	Using	Lineage	Specific	Alleles	/	Rare	variants).	The	method	is	built	upon	the	idea	

that	alleles	that	are	specific	to	a	single	founding	chromosome	within	a	pedigree,	which	we	

refer	to	as	lineage-specific	alleles,	are	highly	informative	for	identifying	haplotypes	that	are	

identical-by-decent	between	individuals	within	a	pedigree.	Through	extensive	simulation	

we	assess	the	performance	of	PULSAR	in	a	variety	of	pedigree	sizes	and	structures,	and	we	

explore	the	effects	of	genotyping	errors	and	presence	of	non-sequenced	individuals	on	its	

performance.	If	the	genotyping	error	rate	is	sufficiently	low	PULSAR	can	phase	>	99.9%	of	

heterozygous	genotypes	with	a	switch	error	rate	below	1	x	10-4	in	pedigrees	where	all	

individuals	are	sequenced.	We	demonstrate	that	the	method	is	highly	accurate	and	

consistently	outperforms	the	long-range	phasing	approach	used	for	comparison	in	our	

benchmarking.	The	method	also	holds	promise	for	fixing	genotype	errors	or	imputing	

missing	genotypes.	The	software	implementation	of	this	method	is	freely	available.	

	

Introduction	

Haplotypes,	which	are	combinations	of	alleles	at	different	polymorphic	sites	

occurring	on	the	same	DNA	molecule,	are	important	in	the	study	of	genetics.(Tewhey	et	al.	

2011)	Haplotypes	are	useful	for	imputation	of	alleles	at	ungenotyped	loci,	identification	of	

genomic	regions	shared	identical-by-descent,	genotype	error	identification	and	correction,	

identification	of	compound	heterozygosity,	and	analysis	of	parent-of-origin	effects,	among	

many	other	topics.	Haplotypes	can	also	be	used	in	place	of	alleles	at	individual	variable	sites	
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in	association	testing.	Presently	the	most	popular	sequencing	platforms	and	associated	

software	packages	report	genotypes	for	individual	polymorphisms,	and	thus	haplotypes	

must	be	inferred	algorithmically.	Phasing,	the	process	of	analyzing	genotypes	to	predict	

haplotypes,	is	therefore	an	important	undertaking	in	genetics	and	an	ongoing	area	of	

research.(Browning	and	Browning	2011)		

While	family	studies	have	not	been	popular	for	association-based	gene	mapping	on	

complex	traits	recently,	this	situation	is	changing	with	the	emerging	interest	in	rare	

variants,	which	are	arguably	more	easily	and	more	powerfully	studied	in	family	data.	In	any	

case,	the	increase	in	the	numbers	of	study	subjects	in	a	population	being	sequenced	will	

necessarily	lead	to	inclusion	of	more	–	and	more	closely	–	related	individuals,	by	chance.	For	

phasing,	pedigrees	provide	additional	information	compared	to	unrelated	individuals	

(which	are	in	reality	distantly	related).	The	direct	observation	of	inheritance	of	alleles	from	

one	generation	to	the	next,	which	is	possible	in	families,	can	be	used	to	establish	phase	

empirically,	and	hence	families	conceptually	allow	for	highly	accurate	estimation	of	

haplotypes.	This	also	means	that	phasing	of	family	data	does	not	necessarily	have	to	bear	

the	computational	expense	of	dealing	with	a	vast	number	of	additional	samples	in	the	form	

of	reference	panels,	and	that	family	data	can	be	useful	in	populations	for	which	good	

reference	panels	are	not	available.	However,	pedigree	data	brings	with	it	substantial	and	

unique	computational	challenges.	Thus,	computational	methods	and	ready-to-use	software	

tailor-made	for	phasing	related	individuals	in	pedigrees	using	whole	genome	sequence	data	

are	needed.	

Here	we	describe	a	novel	fast	algorithm,	which	we	have	named	PULSAR	(Phasing	

Using	Lineage	Specific	Alleles	/	Rare	variants),	that	phases	whole	genome	sequencing	data	

in	families.	PULSAR	is	built	upon	the	idea	that	alleles	that	are	specific	to	a	single	founding	

chromosome	within	a	pedigree,	which	we	refer	to	as	lineage-specific	alleles	(LSAs),	are	
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highly	informative	for	identifying	haplotypes	that	are	identical-by-decent	(IBD)	between	

individuals	within	the	pedigree.	In	humans,	each	chromosome	carries	many	such	rare	

variants,	which	we	can	now	interrogate	with	whole	genome	sequencing,	allowing	for	

reasonably	dense	haplotype	maps	comprised	of	LSAs,	from	which	we	can	observe	

inheritance	of	haplotypes	empirically.	This	initial	haplotype	map	can	then	be	expanded	to	

include	non-LSAs,	which	tend	to	be	more	common	variants.	We	demonstrate	the	utility	of	

PULSAR	and	its	software	implementation	on	simulated	data	as	well	as	real	whole	genome	

sequencing	data	and	compare	its	performance	to	long-range	phasing.		

	

Results	

	

Description	of	method	

The	general	steps	of	the	PULSAR	algorithm	are	as	follows:	1)	identify	alleles	that	are	

likely	to	be	lineage-specific	(i.e.,	LSAs);	2)	identify	haplotypes,	their	boundaries,	and	their	

inheritance	using	LSAs;	3)	extend	the	estimated	boundaries	of	these	haplotypes	based	on	

the	observation	that	individuals	will	share	at	least	one	allele	at	loci	where	they	share	a	

haplotype	IBD	(i.e.,	the	idea	behind	long	range	phasing);	and	4)	assign	alleles	to	the	

haplotypes.	Our	method	assumes	that	the	physical	location	of	variants	is	known,	and	

optionally	makes	use	of	external	information	regarding	allele	frequencies.	Below,	we	will	

describe	these	steps	in	more	detail.		

	

Identifying	putative	lineage-specific	alleles	

The	premise	of	the	PULSAR	algorithm	is	that	when	an	allele	is	present	in	a	single	

chromosome	among	the	founders	of	a	given	pedigree,	then	any	direct	descendent	of	that	

founder	also	carrying	the	allele	can	be	assumed	to	share	the	chromosomal	segment	
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harboring	that	locus	IBD,	which	allows	for	empirical	estimation	of	the	inheritance	of	

haplotypes	within	the	pedigree.	Exceptions	to	this	logic,	such	as	de	novo	mutation,	are	real	

but	infrequent	enough	not	to	undermine	the	premise	of	the	approach.	Since	not	all	founders	

will	be	sequenced	in	many	pedigrees,	an	initial	challenge	is	identifying	those	alleles	that	are	

specific	to	a	single	founding	chromosome.	We	identify	potential	LSAs	by	analyzing	the	

pattern	of	individuals	within	a	pedigree	carrying	a	given	allele.	The	implementation	of	this	

approach	is	simple;	we	search	for	alleles	for	which	all	individuals	carrying	the	allele	share	at	

least	one	founder	within	the	known	structure	of	the	pedigree	under	consideration.	We	

check	that	the	direct	lineage	between	each	founder	and	each	person	carrying	the	allele	also	

carries	the	allele	(at	least	for	those	individuals	that	are	sequenced)	and	that	the	allele	is	not	

homozygous	in	any	individuals.	For	now,	the	algorithm	does	not	accommodate	the	presence	

of	inbreeding	loops,	wherein	LSAs	could	be	homozygous	in	inbred	individuals.	Figure	1A	

shows	an	example	of	a	family	where	individuals	carry	an	allele	that	cannot	be	lineage-

specific	since	the	carriers	do	not	share	a	common	founder.	Figure	1B	shows	an	example	of	a	

family	where	individuals	carry	a	putative	lineage	specific	allele.	Note	that	at	this	point	we	

are	only	seeking	to	identify	putative	LSAs.		
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Figure	1.	Inheritance	patterns	of	lineage	specific	alleles.	Panel	A	shows	an	example	of	a	

pattern	of	individuals	carrying	an	allele	in	which	the	allele	cannot	be	lineage-specific	since	

individuals	carrying	the	allele	do	not	share	a	common	founder.	Panel	B	shows	an	example	

where	the	allele	could	be	lineage	specific.	The	individuals	carrying	the	allele	have	two	

common	founders.	

	

Constructing	haplotypes	boundaries	and	establish	haplotype	inheritance	using	LSAs	

Using	the	set	of	putative	LSAs	from	the	previous	step,	we	then	seek	to	establish	

boundaries	within	which	haplotypes	are	shared	IBD	between	a	set	of	related	individuals	in	

a	pedigree.	Note	that	at	this	point	the	putative	LSAs	may	include	some	false	positives.	

However,	for	now,	let	us	assume	that	we	are	dealing	only	with	true	LSAs,	and	relax	this	

assumption	later.	The	set	of	individuals	carrying	a	true	LSA	will	share	an	allele	IBD	at	

nearby	loci,	assuming	absence	of	meiotic	recombination	between	the	loci,	mutation,	or	

genotyping	error.	Conversely,	a	change	in	pattern	(of	which	individuals	share	a	LSA)	from	

A.	

B.	

Figure 1!
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one	locus	to	the	next	indicates	a	recombination	event(s)	within	the	meioses	that	give	rise	to	

the	haplotypic	lineage.	Hence,	by	tracking	which	individuals	share	neighboring	LSAs	along	

the	chromosome	we	can	establishes	the	boundaries	of	a	given	haplotype.	While	the	concept	

is	straightforward,	complications	arise	because	at	any	given	region	of	the	diploid	genome	all	

individuals	carry	two	haplotypes,	one	maternal	and	one	paternal.	Therefore,	it	is	necessary	

to	track	two	separate	haplotypes	simultaneously.	We	implement	this	approach	using	a	

rules-based	algorithm	to	identify	the	changes	in	the	patterns	of	LSA	sharing	along	a	

chromosome.		

If	not	all	individuals	are	sequenced	in	a	given	pedigree,	which	is	often	the	case,	there	

will	likely	be	some	false	positives	among	the	putative	LSAs	identified	in	the	previous	step.	In	

other	words,	some	of	the	putative	LSAs	are	in	reality	not	IBD	but	merely	identical-by-state	

(IBS).	To	reduce	the	risk	of	mistaking	IBS	for	IBD,	and	thus	inferring	wrong	haplotypes,	we	

require	a	predetermined	number	of	neighboring	putative	LSAs	to	be	shared	in	order	to	

demarcate	a	new	haplotype.	A	very	low	number	of	changed	LSA	pattern	observations	are	

required	to	infer,	with	high	confidence,	that	there	is	a	true	recombination	event	because	it	is	

highly	unlikely	that	the	same	individuals	will	share	putative	LSAs	over	a	given	region	of	a	

chromosome	if	the	genotypes	are	a	product	of	chance	(such	as	being	IBS	or	perhaps	due	to	

genotyping	error)	and	not	truly	lineage	specific.	Here	we	set	this	heuristic	to	5	observations	

of	neighboring	putative	LSAs	with	the	same	changed	pattern	of	individuals	sharing	the	

putative	LSAs.		

After	identifying	the	haplotypes	a	proband	carries	along	the	chromosome,	we	

perform	two	procedures	to	establish	chromosomal	length	haplotypes	from	these	smaller	

haplotype	segments.	First,	during	the	course	of	identifying	the	haplotypes	if	a	change	is	

observed	in	one	set	of	individuals	(one	haplotype	segment	changes)	we	assume	that	the	

previous	and	new	haplotype	segments	are	on	the	same	chromosome	in	the	person	where	
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the	pattern	has	changed.	Second,	for	non-founders	with	a	sufficient	number	of	informative	

relatives	with	sequencing	data	we	identify	if	the	haplotype	is	shared	with	the	maternal	or	

paternal	side	of	the	proband’s	relatives.	Since	each	proband	inherits	one	chromosome	from	

each	parent,	haplotypes	that	are	shared	with	either	paternal	or	maternal	relatives	are	

assumed	to	be	on	either	the	paternally	or	maternally	inherited	chromosome,	respectively.		

	

Extension	of	haplotype	boundaries	using	IBS	allele	sharing	

	 While	the	human	genome	contains	a	vast	number	of	rare	variants,	many	of	which	

will	be	lineage-specific	in	a	given	pedigree,	the	density	of	LSAs	nonetheless	limits	the	

precision	with	which	the	boundaries	of	haplotypes	can	be	determined.	We	extend	the	

haplotype	boundaries	observed	in	a	proband	with	a	simple	heuristic,	namely	that	

individuals	sharing	a	haplotype	must	share	an	allele	IBD	(and	thus	also	IBS)	at	each	locus	in	

the	haplotype.	This	same	heuristic	is	central	to	the	rationale	behind	long-range	phasing,	and	

our	implementation	is	similar	in	that	we	search	for	opposing	homozygous	genotypes.	The	

primary	difference	is	that	we	are	not	using	this	rationale	to	discover	shared	haplotypes,	

rather	only	extending	predetermined	haplotypes,	carried	by	known	individuals,	for	

relatively	small	unresolved	segments	of	the	genome	(typically	<1%	of	the	genome;	we	

present	an	investigation	of	the	density	of	LSA	coverage	below).	This	haplotype	extension	

step	proceeds	in	both	directions	into	the	unassigned	gap	between	two	neighboring	

haplotypes	identified	in	the	previous	step,	and	we	extend	haplotypes	only	so	far	that	there	

is	no	overlap.		

	

Mapping	alleles	to	haplotypes	

	 After	establishing	the	haplotype	boundaries	and	inheritance	throughout	the	

pedigree,	we	then	map	alleles	for	all	variants	onto	these	haplotypes.	This	step	could	be	
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integrated	into	the	prior	steps,	but	in	our	implementation	we	assign	alleles	to	haplotypes	

(including	LSAs)	as	a	separate,	final	step	of	the	procedure.	Homozygous	genotypes	are	

straightforward	to	map	onto	haplotypes,	with	each	of	the	two	haplotypes	carrying	the	same	

allele;	this	is	done	first.	Considering	each	variant	independently,	we	then	phase	

heterozygous	genotypes	in	individuals	for	which	at	least	one	allele	has	already	been	

mapped	onto	one	of	the	two	haplotypes	they	carry	at	that	genomic	location.	We	repeat	this	

mapping	process	iteratively,	now	incorporating	the	mapped	alleles	from	heterozygous	

genotypes	from	the	previous	iteration,	until	no	additional	genotypes	can	be	phased.	When	

all	individuals	within	a	pedigree	are	sequenced,	and	all	of	the	haplotypes	each	individual	

carries	are	known,	barring	genotyping	errors	this	procedure	can	resolve	the	phase	of	all	

combinations	of	genotypes	with	exception	of	the	case	where	every	individual	is	

heterozygous,	a	scenario	that	becomes	less	likely	in	larger	pedigrees.		

	 PULSAR	considers	evidence	from	multiple	individuals	(if	multiple	people	carry	the	

haplotype)	when	assigning	alleles	to	haplotypes.	In	the	presence	of	genotyping	errors	it	

becomes	possible	for	the	genotypes	of	multiple	individuals	to	provide	conflicting	support	

for	which	allele	is	carried	on	a	given	haplotype.	As	an	example,	two	individuals	share	a	

haplotype	but	have	opposing	homozygous	genotypes.	In	these	ambiguous	cases,	when	more	

than	one	allele	is	supported	by	the	inferred	haplotype	sharing	and	individual	genotypes,	the	

allele	supported	by	the	majority	of	individuals	is	assigned	to	that	haplotype.	When	the	

correct	alleles	are	assigned	to	both	haplotypes	carried	by	an	individual,	reconstructed	

genotypes	from	these	haplotypes	can	be	used	to	correct	genotyping	errors.	However,	in	

some	cases	there	is	no	majority	of	individuals	with	which	PULSAR	can	correct	genotyping	

errors.	As	an	example,	in	trios	no	haplotype	is	shared	between	more	than	two	people,	and	

thus	no	majority	can	be	formed	in	order	to	correct	genotyping	errors.	This	same	principle	is	

true	for	haplotypes	that	are	shared	between	only	two	or	fewer	individuals	within	larger	
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pedigrees,	such	as	haplotypes	shared	between	married-in	founders	and	only	one	offspring	

when	the	lineage	is	not	passed	on	to	subsequent	generations.		

	

Benchmarking	

	

Coverage	and	allele-frequency	distribution	of	lineage-specific	alleles	

	 As	we	described,	the	PULSAR	algorithm	is	based	on	the	idea	that	variants	that	are	

introduced	into	a	pedigree	via	a	single	founding	chromosome,	i.e.	LSAs,	can	be	used	as	

convenient	tags	to	trace	the	inheritance	of	haplotypes	within	pedigrees.	For	this	approach	

to	be	practical,	it	is	crucial	that	LSAs	exist	in	sufficient	density	in	realistic	pedigree	

structures.	Thus,	we	have	estimated	the	degree	of	LSA	coverage	using	real	sequencing	data	

with	known	phase,	namely	the	X	chromosomes	from	the	British	(GBR)	and	Finnish	(FIN)	

cohorts	from	the	1000	Genomes	Project(Genomes	Project	et	al.	2015).	If	we	view	pedigree	

founders	as	a	random	population	sample,	then	various	key	aspects	of	LSA	coverage	can	

easily	be	determined	by	permutation	for	different	pedigree	structures.	Supplemental	Figure	

1	shows	the	distribution	of	the	number	of	LSAs	per	Mb	along	the	X	chromosome	as	a	

function	of	the	number	of	pedigree	founders	for	the	GBR	and	FIN	cohorts.	In	British,	the	

density	ranges	from	a	median	of	135.4	LSAs	per	Mb	in	2-founder	pedigrees	(median	inter-

LSA	distance	of	874	bp,	with	a	maximum	of	5.14Mb	which	includes	a	gap	in	coverage	caused	

by	the	centromere)	to	14.8	LSAs	per	Mb	with	15	founders	(median	distance	of	19.0Kb,	with	

a	maximum	of	5.39Mb	which	includes	a	gap	in	coverage	caused	by	the	centromere).	We	

estimate	that	a	pedigree	with	170	founders	would	have	~1.0	LSAs	per	Mb.	In	Finns,	a	

population	with	a	lower	genetic	diversity	(primarily	due	to	a	small	founding	population),	

there	are	comparatively	fewer	LSAs,	a	median	of	133.1	LSAs	per	Mb	in	2-founder	pedigrees	

and	13.4	LSAs	per	Mb	with	15	founders.	The	trend	to	fewer	LSAs	in	larger	pedigrees	make	
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sense	since	our	definition	of	LSA	is	based	on	a	single	founding	occurrence	per	pedigree,	and	

thus	fewer	polymorphic	sites	qualify	the	more	founders	a	pedigree	contains.	

With	regard	to	the	allele	frequency	distribution	of	LSAs,	since	the	probability	of	a	

single	founding	event	in	a	pedigree	depends	on	the	population	prevalence	of	an	allele,	rare	

alleles	are	more	likely	to	be	specific	to	a	single	founding	chromosome,	and	the	enrichment	

for	rare	alleles	among	all	LSAs	will	be	greater	in	pedigrees	with	more	founders.	This	is	what	

we	observe.	In	British,	with	2	founders	~13%	of	LSAs	have	minor	allele	frequencies	<5%	

(median	allele	frequency	is	21.7%),	whereas	with	15	founders	~91%	of	LSAs	have	minor	

allele	frequencies	<5%	(median	allele	frequency	is	2.2%).	These	observations	indicate	that	

MAF	estimates,	either	from	the	dataset	in	hand	or	from	a	reference	panel,	are	expected	to	be	

a	useful	filter	for	decreasing	the	false	positive	rate	when	identifying	LSAs	is	ambiguous	

(perhaps	due	to	non-sequenced	individuals).	In	any	case,	the	important	take-home	message	

with	regard	to	our	phasing	method	is	that	in	humans	there	appear	to	be	sufficiently	many	

LSAs	to	make	them	useful	as	a	starting	point	for	phasing	of	WGS	data	in	pedigrees.		

	

Pedigrees	with	complete	sequencing	

We	measured	the	performance	of	PULSAR	and	AlphaPhase1.1	in	pedigrees	varying	

in	size	and	structure	under	the	ideal	scenario	in	which	all	individuals	in	the	dataset	are	

sequenced	without	genotyping	errors.	Table	1	presents	a	comparison	of	the	SER	and	the	

percentage	of	heterozygous	markers	phased	for	these	simulations.	Across	all	simulations,	

PULSAR	produced	lower	SERs	and	a	higher	percentage	of	heterozygous	markers	phased	

than	AlphaPhase1.1.	In	the	case	of	nuclear	pedigrees	some	markers	were	heterozygous	in	

all	individuals	in	a	pedigree,	a	situation	that	is	unresolvable	without	external	data.	

Excluding	these	unresolvable	cases,	the	observed	number	of	phased	heterozygous	

genotypes	was	>99.9%	of	the	theoretical	upper	limit	using	PULSAR.		
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Effect	of	genotyping	errors	

	 We	sought	to	assess	the	robustness	of	PULSAR	to	genotyping	errors.	Table	2	

presents	a	comparison	of	the	switch	error	rate	and	the	percentage	of	heterozygous	markers	

phased	for	simulations	wherein	the	genotyping	accuracy	is	99.0%	(assuming,	for	simplicity,	

an	equal	error	rate	for	all	variants).	Again,	PULSAR	produced	lower	switch	error	rates	and	

higher	percentage	of	heterozygous	markers	phased	than	AlphaPhase1.1.		

Table	1.	Complete	and	Accurate	Data	

	 Switch	Error	Rate	
Percentage	of	Heterozygous	

Genotypes	Phased	
Pedigree	Size	 Founders	 Generations	 PULSAR	 AlphaPhase1.1	 PULSAR	 AlphaPhase1.1	

3	 2	 2	 0	 4.17	x	10-2	 0.8164	 0.7425	

4	 2	 2	 0	 8.46	x	10-2	 0.8499	 0.8193	

5	 2	 2	 1.04	x	10-5	 9.20	x	10-2	 0.9420	 0.8994	

6	 2	 2	 1.28	x	10-5	 8.44	x	10-2	 0.9887	 0.9312	

7	 2	 2	 1.79	x	10-5	 8.93	x	10-2	 0.9998	 0.9398	

8	 2	 2	 1.56	x	10-5	 9.28	x	10-2	 0.9999	 0.9514	

9	 2	 2	 1.68	x	10-5	 7.84	x	10-2	 0.9999	 0.9464	
11	 5	 3	 1.90	x	10-5	 5.52	x	10-2	 0.9996	 0.9794	
14	 6	 4	 4.85	x	10-5	 5.46	x	10-2	 0.9979	 0.9815	
20	 6	 4	 1.07	x	10-4	 4.10	x	10-2	 0.9966	 0.9846	
28	 8	 4	 3.43	x	10-5	 4.73	x	10-2	 0.9989	 0.9849	
55	 17	 6	 1.15	x	10-4	 5.50	x	10-2	 0.9989	 0.9747	
78	 21	 6	 7.15	x	10-4	 5.53	x	10-2	 0.9973	 0.9744	
94	 28	 5	 2.64	x	10-4	 6.26	x	10-2	 0.9966	 0.9696	

	

Table	2.	Genotyping	Errors	

	 Switch	Error	Rate	 Percentage	of	Heterozygous	
Genotypes	Phased	

Pedigree	Size		 Founders		 Generations	 PULSAR	 AlphaPhase1.1	 PULSAR	 AlphaPhase1.1	
9	 2	 2	 1.74	x	10-3	 7.22	x	10-2	 0.9997	 0.8960	
11	 5	 3	 8.33	x	10-3	 6.95	x	10-2	 0.9961	 0.8800	
14	 6	 4	 8.44	x	10-3	 6.22	x	10-2	 0.9837	 0.9093	
20		 6	 4	 6.99	x	10-3	 5.33	x	10-2	 0.9830	 0.9316	
28		 8	 4	 5.95	x	10-3	 6.36	x	10-2	 0.9912	 0.9242	
55		 17	 6	 7.51	x	10-3	 6.71	x	10-2	 0.9629	 0.9149	
78		 21	 6	 9.28	x	10-3	 6.73	x	10-2	 0.9437	 0.9228	
94		 28	 5	 8.41	x	10-3	 7.60	x	10-2	 0.9026	 0.9091	
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For	the	case	of	nuclear	pedigrees,	we	created	multiple	simulated	genotyping	

datasets	with	a	range	of	genotyping	accuracies	(from	99.0%	to	100.0%).	Genotyping	errors	

were	simulated	for	20	datasets	at	each	genotyping	accuracy	level	for	each	pedigree.	As	

shown	in	Figure	2,	as	the	genotyping	error	rate	increases,	the	switch	error	rate	increases	

linearly	in	the	simulated	pedigrees.	Genotyping	errors	had	an	attenuated	negative	affect	on	

switch	error	rate	in	the	pedigrees	with	more	children.	The	reason	being	that	in	a	larger	

pedigree,	more	individuals	potentially	share	genomic	sections	IBD	with	one	another,	

enabling	PULSAR	to	identify	haplotypes	more	reliably	in	the	presence	of	genotyping	errors.		

	

Figure	2.	Effect	of	genotyping	accuracy	and	IBD	sharing	on	switch	error	rate.	The	plot	

shows	the	switch	error	rates	(with	estimated	error	bar)	from	20	simulations	at	varying	

genotyping	accuracies	in	nuclear	pedigrees	with	a	range	of	1-7	children,	in	which	each	

pedigree	with	fewer	children	is	a	subset	of	the	pedigrees	with	more	children.	Genotyping	

errors	increase	the	switch	error	rate	in	a	predictable	manner.	Increased	IBD	sharing	within	

the	pedigree	attenuates	this	effect.	
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Based	on	the	haplotypes	output	by	PULSAR	we	reconstructed	genotypes	and	

compared	them	to	the	true	genotypes	(i.e.,	without	introduced	genotyping	errors).	As	

shown	in	Figure	3,	the	accuracy	of	the	reconstructed	genotypes	decreases	linearly	with	the	

simulated	error	rate	across	pedigrees.	The	reconstructed	genotypes	accuracies	from	the	trio	

pedigree	are	very	similar	to	the	accuracy	of	the	simulated	genotypes,	which	is	expected	

because	the	pedigree	structure	lacks	a	majority	of	haplotypes	with	which	to	correct	

genotyping	errors	(as	outlined	previously).	In	fact,	the	reconstructed	genotype	error	rate	is	

slightly	higher	than	the	true	genotype	error	rate,	because	the	algorithm	introduces	some	

(though	very	few)	errors	when	haplotype	boundary	estimation	is	imperfect.	However,	

PULSAR	is	able	to	correct	genotypes	in	pedigrees	with	2	or	more	children,	performing	

better	in	pedigrees	with	more	children.	Together	these	observations	also	demonstrate	that	

increased	IBD	sharing	between	pedigree	members	improves	the	performance	of	the	

PULSAR	algorithm.		
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Figure	3.	Effect	of	IBD	sharing	on	correcting	genotypes	through	imputation.	The	

plot	shows	the	accuracies	(and	associated	estimated	error)	of	genotypes	

reconstructed	from	haplotypes	produced	by	PULSAR	for	20	simulations	at	varying	

genotyping	accuracies	in	nuclear	pedigrees	with	a	range	of	1-7	children,	in	which	

each	pedigree	with	fewer	children	is	a	subset	of	the	pedigrees	with	more	children.	

The	diagonal	is	present	to	show	the	equivalence	between	the	axes.	Increased	IBD	

sharing	improves	the	ability	of	the	PULSAR	algorithm	to	correct	genotypes	through	

imputation.	

	

Effect	of	ungenotyped	individuals	

	 Ungenotyped	individuals	in	a	pedigree	are	another	frequent	complication	in	real	

datasets.	PULSAR	will	not	phase	heterozygous	genotypes	for	individuals	in	genomic	regions	

where	the	individual	does	not	share	a	chromosomal	segment	IBD	with	another	sequenced	
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individual,	unless	done	erroneously	after	falsely	inferring	IBD	sharing.	Non-sequenced	

individuals	can	affect	the	false	positive	rate	among	putative	LSAs	identified	by	PULSAR,	

which	will	ultimately	decrease	the	accuracy	of	haplotype	boundary	and	sharing	estimation.		

	 Table	3	presents	a	comparison	of	the	switch	error	rate	and	the	percentage	of	

heterozygous	markers	phased	for	simulations	wherein	some	individuals	are	missing	

sequencing	data.	For	the	SAMAFS	pedigrees,	individuals	with	real	sequencing	data	were	

given	sequencing	data	in	the	simulation.	We	performed	two	simulations	involving	the	

nuclear	family,	wherein	one	and	both	parents	were	not	sequenced.	The	comparative	

estimates	for	the	scenario	of	complete	genotyping	of	every	pedigree	member	are	already	

shown	in	Table	1.	The	number	of	ungenotyped	individuals	and,	more	importantly,	the	

location	of	the	ungenotyped	individuals	within	the	pedigree	have	notable	effects	on	the	

haplotype	phasing	results.	In	the	case	of	the	nuclear	families,	children	missing	sequencing	

data	have	only	a	small	negative	effect	on	the	accuracy	of	PULSAR,	as	this	situation	does	not	

lead	to	an	increase	in	the	number	of	falsely	inferred	LSAs,	though	the	number	of	

observations	of	each	haplotype	is	reduced	on	average.	Children	in	a	nuclear	family	missing	

sequencing	data	are	essentially	the	same	as	reducing	the	size	of	the	nuclear	family	by	the	

number	of	unsequenced	children.	A	consequence	is	that	a	higher	portion	of	variants	will	be	

heterozygous	in	all	sequenced	individuals	(this	is	only	of	practical	importance	if	the	number	

of	sequenced	individuals	in	a	pedigree	is	small).	For	that	reason,	the	main	impact	of	missing	

children	in	nuclear	families	is	a	lowered	percentage	of	loci	that	are	phased	because	PULSAR	

does	not	resolve	cases	wherein	all	individuals	are	heterozygous	(see	the	estimates	from	

Table	1	for	nuclear	families	of	different	sizes).	The	effect	of	missing	parents	is	much	greater	

because	this	scenario	leads	to	ambiguity	in	identifying	LSAs.	In	the	simulated	pedigree	with	

one	missing	parent	the	false	positive	rate	among	putative	LSAs	was	15.9%	compared	to	0%	
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when	both	parents	are	sequenced,	and	the	SER	increased	from	1.7x10-5	to	4.0x10-2.	The	total	

number	of	heterozygous	markers	phased	dropped	from	99.99%	to	99.45%.		

	 	

Mitigating	the	negative	effect	of	ungenotyped	individuals	

We	sought	to	mitigate	the	negative	effect	of	ungenotyped	individuals	on	the	performance	of	

PULSAR.	We	investigated	the	extent	to	which	filtering	LSAs	based	on	minor	allele	frequency	

would	help.	Table	3	also	presents	a	comparison	of	the	effects	of	missing	individuals	in	

nuclear	families	wherein	we	have	pre-filtered	putative	LSAs	based	on	a	minor	allele	

frequency	of	<5%.	In	the	nuclear	pedigree	with	7	children	with	one	non-sequenced	parent,	

the	rate	of	falsely	inferred	LSAs	was	15.9%	prior	to	filtering	and	1.50%	afterward.	The	SER	

dropped	from	4.0	x	10-2	to	1.5	x	10-3.	Pre-filtering	is	not	without	cost,	however.	The	total	

number	of	putative	LSAs	dropped	from	61,160	to	7,850.	The	total	percentage	of	

heterozygous	markers	phased	dropped	from	99.45%	to	98.58%.	In	the	nuclear	family,	

considering	the	tradeoffs	between	the	accuracy	of	the	phasing	results	(measured	using	SER)	

and	the	percentage	of	heterozygous	markers	phased,	filtering	based	on	MAF	performed	

better,	improving	the	overall	number	of	heterozygous	markers	phased	correctly,	which	can	

be	measured	by	the	product	of	the	accuracy	(1-SER)	and	the	percentage	of	heterozygous	

markers	phased.		

In	the	largest	pedigree	in	this	study,	wherein	61	of	94	(64.9%)	individuals	have	

sequencing	data,	filtering	using	MAF	<5%	had	only	a	minor	effect	on	the	results.	The	false	

positives	among	putative	LSAs	dropped	from	0.0099	to	0.0091,	the	total	number	of	putative	

LSAs	dropped	from	44889	to	40060,	the	SER	went	up	from	2.54x10-3	to	2.98	x10-3,	and	the	

percentage	of	heterozygous	variants	phased	dropped	from	97.4%	to	97.3%.	In	pedigrees	

with	many	founders,	the	putative	LSAs	that	PULSAR	identifies	already	have	low	allele	

frequencies	for	the	most	part,	and	hence	filtering	at	a	5%	prevalence	threshold	has	little	
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effect.	It	is	possible	that	an	even	lower	MAF	filter	would	be	advantageous,	though	it	is	clear	

that	MAF	filtering	is	more	advantageous	in	smaller	pedigrees	with	fewer	founders.		

Non-sequenced	individuals	have	a	negative	effect	on	the	performance	of	the	

PULSAR	algorithm,	but	not	in	all	cases.	Since	it	is	not	always	straightforward	to	estimate	

which	cases	of	missing	individuals	are	detrimental	to	the	effectiveness	of	the	PULSAR	

algorithm	we	have	created	a	tool	that	uses	a	Monte-Carlo	gene-dropping	approach	to	

estimate	the	expected	percentage	of	the	genome	that	each	individual	will	share	at	least	one	

haplotype	IBD	with	another	sequenced	individual	in	the	pedigree.	This	tool	can	be	used	for	

a	priori	estimation	of	the	applicability	of	the	PULSAR	algorithm	to	a	pedigree	dataset	given	

the	sequenced	individuals	within	the	pedigree.	

Table	3.	Missing	Individuals	

	

Performance	on	data	with	sequencing	errors	and	missing	individuals	

	 We	then	sought	to	benchmark	our	approach	in	realistic	data,	having	both	missing	

individuals	and	genotyping	errors.	To	do	this	we	only	examined	genotypes	for	individuals	

with	whole	genome	sequencing	data	available	in	the	SAMAFS.	The	nuclear	pedigree	was	set	

up	so	that	genotypes	for	one	parent	were	missing.	We	simulated	genotypes	with	a	

conservative	genotype	accuracy	of	99.0%.	Most	sequencing	platforms	outperform	this	

	 	 	 Switch	Error	Rate	 Percentage	of	Heterozygous	
Genotypes	Phased	

Pedigree	Size	
(sequenced)	

Founders	
(sequenced)	

Generations	 PULSAR	 PUSLAR	
w/	pre-
filtering		

AlphaPhase1.1	 PULSAR	 PUSLAR	
w/	pre-
filtering		

AlphaPhase1.1	

9(7)	 2(0)	 2	 1.04	x	10-2	 2.44	x	10-4	 8.75	x	10-2	 0.8021	 0.8048	 0.7677	
9(8)	 2(1)	 2	 4.04	x	10-2	 1.46	x	10-3	 1.41	x	10-2	 0.9945	 0.9858	 0.9443	
11	(4)	 5	(1)	 3	 3.58	x	10-2	 1.52	x	10-3	 8.22	x	10-2	 0.6915	 0.5473	 0.6822	
14	(3)	 6	(0)	 4	 5.30	x	10-5	 5.30	x	10-5	 5.34	x	10-2	 0.3266	 0.3256	 0.4128	
20	(3)	 6	(0)	 4	 5.95	x	10-2	 5.48	x	10-2	 4.54	x	10-2	 0.6601	 0.6587	 0.0040	
28	(16)	 8	(2)	 4	 1.11	x	10-2	 3.08	x	10-3	 6.35	x	10-2	 0.9944	 0.9988	 0.9730	
55	(29)	 17	(3)	 6	 2.00	x	10-2	 1.44	x	10-2	 7.50	x	10-2	 0.9788	 0.9609	 0.8901	
78	(31)	 21	(5)	 6	 8.17	x	10-3	 5.76	x	10-3	 7.21	x	10-2	 0.9945	 0.9873	 0.8989	
94	(61)	 28	(9)	 5	 2.54	x	10-3	 2.98	x	10-3	 6.57	x	10-2	 0.9738	 0.9726	 0.9280	
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benchmark	easily	with	appropriate	read	depth,	and	thus	99.0%	accuracy	is	conservative.	

Results	for	these	simulations	are	presented	in	Table	4.	With	few	exceptions,	PULSAR	

outperformed	AlphaPhase1.1	both	in	accuracy	and	in	completeness.		

Table	4.	Realistic	Data	

	 Switch	Error	Rate	 Percentage	of	Heterozygous	
Genotypes	Phased	

Pedigree	Size	
(sequenced)	

Founders	
(sequenced)	

Generations	 PULSAR	w/	
pre-filtering	

AlphaPhase1.1	 PULSAR	w/	
pre-filtering	

AlphaPhase1.1	

9	(8)	 2	(1)	 2	 1.85	x	10-2	 1.32	x	10-1	 0.9370	 0.8879	

11	(4)	 5	(1)	 3	 1.85	x	10-2	 6.24	x	10-2	 0.5207	 0.5331	

14	(3)	 6	(0)	 4	 1.96	x	10-2	 5.71	x	10-2	 0.3327	 0.3166	

20	(3)	 6	(0)	 4	 7.25	x	10-2	 *	 0.6569	 *	

28	(16)	 8	(2)	 4	 7.71	x	10-2	 7.50	x	10-2	 0.9617	 0.9026	

55	(29)	 17	(3)	 6	 3.83	x	10-2	 8.38	x	10-2	 0.8734	 0.8155	

78	(31)	 21	(5)	 6	 1.93	x	10-2	 8.22	x	10-2	 0.9274	 0.8295	
94	(59)	 28	(9)	 5	 1.45	x	10-2	 7.83	x	10-2	 0.8908	 0.8393	

*Not	phased	successfully	

	

Application	to	real	whole	genome	sequencing	data	

	 Lastly,	we	sought	to	investigate	the	performance	of	PULSAR	when	applied	to	real	

whole	genome	sequencing	data.	To	do	this	we	used	whole	genome	sequencing	genotypes	

for	chromosome	21	from	the	San	Antonio	Mexican	American	Family	Study,	focusing	on	the	

same	multigenerational	pedigrees	that	we	have	used	as	template	pedigree	structures	in	our	

simulations.	This	dataset	contains	all	problems	and	errors	inherent	with	real	world	data,	

including	ungenotyped	individuals,	some	missing	(uncalled)	genotypes	within	sequenced	

individuals,	and	genotyping	errors.	(Gross	errors	in	pedigree	relationships	had	been	

previously	detected	and	corrected,	however,	but	some	low	level	of	kinship	between	

presumed	unrelated	founders	remains	possible.)	The	downside	of	real	data	is	that	the	true	

state,	here	mainly	phasing,	is	unknown.	To	permit	a	more	complete	characterization	of	the	

performance	of	the	PULSAR	algorithm	on	the	real	data,	we	created	artificial	blanks	by	

masking	genotypes	randomly	each	with	a	probability	of	1/1000,	permitting	us	to	compare	
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the	original	genotype	calls	and	the	imputed	genotypes	after	phasing.	We	then	applied	

PULSAR	to	the	manipulated	WGS	genotypes.	We	reconstructed	genotypes	from	the	phased	

haplotypes	produced	by	PULSAR,	and	then	compared	them	to	the	original	genotypes.	Table	

5	summarizes	the	results	for	this	phasing	and	genotype	imputation	experiment.	PULSAR	

was	able	to	phase	the	vast	majority	of	observed	genotypes	(>97%	in	all	pedigrees,	except	in	

one	of	the	sparsely	genotyped	pedigrees).	And	the	genotypes	reconstituted	from	phased	

haplotypes	matched	the	observed,	unblanked	genotypes	well	(>98.5%	concordance).	For	

the	masked	genotypes,	the	concordance	rate	between	the	imputed	genotypes	and	the	

masked	genotypes	ranged	from	95.5%	to	98.6%	across	pedigrees,	indicating	a	high	degree	

of	phasing	accuracy	and	genotype	imputation.	However,	only	a	fairly	small	percentage	of	

the	masked	genotypes	were	imputed	(<50%).	There	were	also	some	actual	missing	

genotypes	in	the	original	sequencing	data.	There	is	a	notable	difference	between	the	

percentages	of	masked	genotypes	and	truly	missing	genotypes	PULSAR	was	able	to	impute.	

This	difference	is	likely	due	to	the	nature	of	how	the	missing	genotypes	are	distributed.	The	

masked	genotypes	were	distributed	randomly,	whereas	the	truly	missing	genotypes	were	

more	likely	to	be	found	at	the	same	marker	in	multiple	individuals.	This	could	be	due	to	any	

number	of	reasons,	with	one	reasonable	hypothesis	being	that	indels	or	copy	number	

variants	disrupt	the	diploid	state	of	these	markers	in	a	subset	of	related	individuals.	In	

summary,	PULSAR	phased	the	vast	majority	of	the	observed	genotypes	accurately.		
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Table	5.	Real	Data	

*No	genotypes	were	imputed	

Computation	time	

	 We	sought	to	estimate	the	scalability	of	our	software	to	larger	pedigrees.	We	

simulated	pedigrees	with	two	parents	and	a	range	of	children	between	1	and	1000.	This	

design	allows	us	to	investigate	the	effect	of	increasing	the	IBD	sharing	within	the	pedigree.	

It	appears	that	the	computation	time	can	be	modeled	well	using	a	second	order	polynomial	

based	on	the	number	of	individuals	in	the	pedigree.	We	estimate,	based	on	the	estimated	

polynomial	function,	that	a	pedigree	with	2	parents	and	1000	children	would	take	roughly	

5.5	days	to	run	on	a	MacBook	Pro	laptop	with	a	2.9	GHz	Intel	Core	i7	processor.	We	also	

simulated	pedigrees	in	which	each	generation	consisted	of	one	offspring	of	the	previous	

generation	and	one	married-in	founder.	This	pedigree	design	was	chosen	because	the	IBD	

sharing	within	the	pedigree	does	not	increase	over	generations.	We	simulated	pedigrees	in	

the	range	of	2-50	generations	in	this	manner.	A	linear	model	appears	to	be	the	best	fit	to	

describe	the	relationship	between	the	number	of	individuals	in	the	pedigree	and	the	time	

PULSAR	took	to	analyze	the	genotypes	created	in	each	simulation.	We	estimate	that	a	

pedigree	with	500	generations	and	999	individuals	would	take	roughly	88	minutes	to	run.	

Pedigree	
Size	

(sequenced)	
	

Founders	
(sequenced)	 Generations	

Concordance	rate	
between	
genotypes	

reconstructed	
from	phasing	

results	and	non-
masked	genotypes	

Percentage	
of	non-
masked	

genotypes	
phased	

Concordance	
rate	between	
genotypes	

reconstructed	
from	phasing	
results	and	
masked	

genotypes	(ie.	
imputed	

genotypes)	

Percentage	of	
masked	

genotypes	
phased/imputed	

Percentage	
of	missing	
genotypes	
imputed	

11	(4)	 5	(1)	 3	 0.9948	 0.9769	 0.9813	 0.1853	 0.0714	
14	(3)	 6	(0)	 4	 1	 0.9297	 *	 0	 0	
20	(3)	 6	(0)	 4	 0.9859	 0.9950	 0.9545	 0.4221	 0.2025	
28	(16)	 8	(2)	 4	 0.9899	 0.9937	 0.9798	 0.4385	 0.3396	
55	(29)	 17	(3)	 6	 0.9873	 0.9885	 0.9689	 0.2450	 0.2074	
78	(31)	 21	(5)	 6	 0.9943	 0.9909	 0.9858	 0.3116	 0.2603	
94	(61)	 28	(9)	 5	 0.9941	 0.9858	 0.9823	 0.2866	 0.1437	
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Thus,	taken	together,	these	results	show	that	both	pedigree	size	and	pedigree	structure	

affect	run	time	of	the	PULSAR	algorithm,	with	a	portion	of	the	increase	in	pedigree	size	

scaling	linearly.	

In	the	runs	on	the	simulated	data	in	the	largest	pedigree	(94	individuals),	

AlphaPhase	(93	seconds)	was	faster	than	PULSAR	(938	seconds)	on	a	server	with	2.40	GHz	

Intel	Xeon	Core	i7	CPUs	running	CentOS	Linux	7.	Although	computation	times	become	

important	with	increasing	volumes	of	data,	we	found	PULSAR	to	be	sufficiently	fast	for	

practical	use	on	whole	genome	sequencing	in	the	size	of	pedigrees	presented	here.		

	

Discussion	

	 Accurate	phasing	information	is	an	essential	step	in	many	genetic	studies.	

Nonetheless,	there	are	currently	few	tools	designed	specifically	to	phase	genotypes	in	a	

broad	range	of	pedigree	sizes	and	structures,	with	most	available	methods	working	only	in	

unrelated	individuals	or	in	nuclear	families.	In	the	benchmarking	studies	we	have	

undertaken,	PULSAR	outperformed	long-range	phasing	(using	the	software	AlphaPhase1.1),	

produced	low	switch	error	rates,	and	phased	a	high	percentage	of	heterozygous	variants.	

While	the	method	clearly	has	merit,	it	has	some	shortcomings	and	limitations.	In	our	

simulations	we	have	explored	the	impact	of	non-sequenced	individuals	and	genotype	

errors,	both	of	which	are	unavoidable	in	real	datasets	and	weaken	the	performance	of	

PULSAR,	as	well	as	alternative	approaches	for	phasing.	From	our	simulations	of	realistic	

data,	we	examined	some	pedigrees	with	very	sparse	sequencing,	such	as	3	out	of	20	

individuals	being	sequenced.	Even	in	these	problematic	pedigrees,	with	many	missing	

individuals,	PULSAR	performed	fairly	well,	erring	on	the	side	of	phasing	fewer	heterozygous	

markers	rather	than	phasing	them	incorrectly.	The	percentage	of	alleles	individuals	share	

IBD	with	at	least	one	other	sequenced	individual	is	the	critical	component	to	predicting	the	
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performance	of	PULSAR.	If	the	individuals	sequenced	within	the	pedigree	are	not	predicted	

to	share	a	high	percentage	of	alleles	IBD	one	should	consider	alternative	phasing	

approaches,	such	as	those	designed	for	singletons.		

Our	simulations,	using	realistic	genotypes	and	chromosomal	haplotypes,	show	that	

PULSAR	is	fairly	robust	to	genotyping	errors.	In	fact	PULSAR	can	be	used	to	correct	some	

genotyping	errors.	PULSAR	“fixes”	incorrect	genotypes	using	a	rudimentary	method,	a	

simple	majorities	vote	among	individuals	sharing	a	haplotype.	A	weighting	scheme	based	on	

the	confidence	of	genotype	calls	or	based	on	the	number	of	reads	supporting	a	given	allele	

call	may	improve	PULSAR’s	ability	to	fix	genotype	errors.	

We	have	not	investigated	the	impact	of	errors	in	the	pedigree	structures	themselves	

on	PULSAR	(including	the	existence	of	unknown	relationships	between	pedigree	founders).	

We	advocate	that	pedigree	relationships	are	confirmed	or	estimated	analytically(Sun	et	al.	

2002;	Sun	and	Dimitromanolakis	2014)	before	one	embarks	on	efforts	to	establish	phase,	

correct	genotyping	errors,	or	impute	missing	genotypes.		

PULSAR	was	designed	specifically	to	work	on	whole	genome	sequence	data,	based	

on	the	rationale	that	the	vast	number	of	rare	sequence	variants	in	the	human	genome	would	

produce	a	high	density	of	LSAs	in	pedigrees.	While	whole	genome	sequencing	clearly	is	the	

preferred	way	to	characterize	the	genome,	at	the	present	time	many	studies	only	involve	

exome	sequencing	data	or	dense	SNP	genotyping,	mainly	due	to	cost.	We	have	not	

investigated	the	performance	of	PULSAR	on	these	other	genotyping	platforms.	SNP	

genotyping	panels	are	biased	towards	common	SNPs.	For	that	reason,	we	anticipate	that	

PULSAR	would	be	of	limited	utility	for	such	data	in	extended	pedigrees,	where	only	very	

few	common	SNPs	would	be	introduced	only	once	into	a	given	pedigree	and	thus	serve	as	

LSAs	to	the	algorithm.	On	small	pedigrees	with	relatively	few	founders	we	expect	that	the	

PULSAR	algorithm	would	be	much	less	impacted	and	work	quite	well.		

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 9, 2017. ; https://doi.org/10.1101/148510doi: bioRxiv preprint 

https://doi.org/10.1101/148510


	 24	

There	are	a	number	of	potential	improvements	and	extensions	to	PULSAR	that	we	

could	present,	but	these	are	beyond	the	scope	of	this	manuscript.	However,	we	did	explore	

the	utility	of	pre-screening	variants	upfront	based	on	allele	frequency	when	identifying	

putative	LSAs.	When	pedigree	founders	are	not	available	for	sequencing,	which	will	often	be	

the	case	in	reality,	then	such	filtering	based	on	minor	allele	frequency	was	shown	to	be	a	

useful	procedure	for	reducing	the	number	of	false	positives	among	putative	LSAs	and	thus	

improve	the	performance	of	the	method.	However,	allele	frequency	estimates	should	be	

reliable	to	be	effective	as	pre-filters.	They	can	be	taken	either	from	the	study	at	hand,	if	

there	are	sufficiently	many	founders,	or	taken	from	reference	panels.	If	one	takes	the	

estimates	from	reference	panels,	one	should	take	care	that	the	ethnicities	be	identical	(or	as	

close	to	it	as	possible),	and	that	the	sequencing	quality	be	high	and,	ideally,	based	on	the	

same	technology	platform	and	methods.		

The	algorithm	that	we	have	presented	is	a	rules-based	procedure,	rather	than	a	

maximum	likelihood	approach.	Conceptually,	there	are	many	methods	that	can	be	used	to	

infer	phase	in	pedigrees	using	maximum	likelihood.	For	example,	one	could	use	the	Elston-

Stewart	algorithm(Elston	and	Stewart	1971),	as	implemented	in	LINKAGE(Lathrop	et	al.	

1984)	or	FASTLINK(Cottingham	et	al.	1993),	to	infer	phase.	The	practical	difficulty	is	that	

the	Elston-Stewart	algorithm	is	very	limited	in	the	number	of	variants	that	can	be	jointly	

analyzed,	which	would	make	it	necessary	to	break	the	genome	up	into	a	vast	number	of	

overlapping	segments,	whose	phased	haplotype	data	would	then	have	to	be	patched	

together.	Alternatively,	the	Lander-Green	algorithm(Lander	and	Green	1987),	as	

implemented	in	the	software	package	MERLIN(Abecasis	et	al.	2002),	can	analyze	many	

variants	simultaneously,	but	are	limited	in	the	number	of	individuals	that	can	be	handled.	

For	large	pedigrees,	this	would	then	necessitate	breaking	them	into	overlapping	

subcomponents,	followed	by	re-combining	the	phased	genotypes.	These	are	not	trivial	
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tasks,	since	joining	marker	segments	of	pedigree	fragments	may	lead	to	Mendelian	

inconsistencies	and	other	problems.	To	overcome	some	of	the	limitations	of	the	Elston-

Stewart	algorithm	and	the	Lander-Green	algorithm,	a	number	of	Monte	Carlo	Markov	Chain	

methods	have	been	developed,	including	LOKI(Heath	1997)	and	SimWalk2(Sobel	and	Lange	

1996).	However,	these	methods	are	extremely	computationally	intensive	and	are	not	

readily	applicable	on	whole	genome	sequence	data.	All	of	these	methods	are	also	impacted	

by	genotyping	errors	and	missing	genotype	data	to	varying	degrees,	and	are	no	panacea.		

There	are	also	a	number	of	methods	for	phasing	of	singleton	individuals(Browning	

and	Browning	2011),	which	are	often	based	on	hidden	Markov	models,	such	as	

BEAGLE(Browning	and	Browning	2007).	Currently,	the	most	prominent	phasing	method	for	

singleton	individuals	are	variants	of	the	approximate	coalescent	models,	such	as	

SHAPEIT(Delaneau	et	al.	2011)	and	MACH(Li	et	al.	2010).	Their	accuracy	and	computational	

speed	has	greatly	improved	recently,	aided	by	the	availability	of	ever-larger	reference	

panels	for	some	of	the	major	ethnic	groups.	The	problems	with	applying	these	methods	to	

pedigrees	is	that	suitable	reference	panels	are	not	presently	available	in	many	smaller	

populations,	which	are	particularly	suitable	for	pedigree	studies.	Without	large	reference	

panels,	statistical	phasing	methods	perform	much	worse.	In	addition,	treating	family	

members	as	unrelated	individuals	during	phasing	will	often	result	in	phased	data	that	is	

inconsistent	with	Mendelian	rules	of	inheritance.	As	part	of	our	research	for	this	paper,	we	

have	investigated	the	utility	of	duoHMM(O'Connell	et	al.	2014),	which	is	implemented	

within	the	program	SHAPEIT2(Delaneau	et	al.	2011),	which	seeks	to	correct	haplotypes	

produced	by	statistical	phasing	using	the	restrictions	on	inheritance	observed	in	duos.	

However,	when	applied	to	the	simulations	described	in	this	study	this	method	frequently	

failed	to	run	on	most	of	the	simulated	pedigree	structures,	and	thus	we	chose	to	exclude	it	

from	the	benchmarking	results	that	were	presented.		
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Given	the	different	weaknesses	and	limitations	of	the	various	alternative	phasing	

methods	when	applied	to	pedigree	data,	there	appears	to	be	a	need	for	a	rational	method	of	

combining	phase	results	from	multiple	methods,	especially	those	with	different	premises.	

Results	from	a	combination	of	methods	may	prove	to	be	more	accurate	and	complete,	yet	

also	practical.	For	example,	the	phasing	output	from	PULSAR	could	be	used	as	input	for	

Monte	Carlo	Markov	Chain	methods,	providing	an	initial	plausible	phased	genotyping	state	

that	could	then	be	refined	by	MCMC.	Or	the	output	from	statistical	phasing	for	singletons	

may	be	taken	as	input	for	pedigree-based	phasing	methods.	In	this	way,	one	could	harness	

the	high	accuracy	of	methods	that	directly	observe	inheritance	within	pedigrees	with	

statistical	phasing	methods	that	are	capable	of	inferring	phase	in	segments	of	the	genome	

where	inheritance	is	not	directly	observable	given	the	individuals	that	are	sequenced.		

Here	we	have	presented	a	novel	algorithm,	PULSAR,	with	associated	software,	for	

phasing	WGS	genotypes	in	a	broad	range	of	pedigree	sizes	and	structures.	The	high	

accuracy	of	the	haplotypes	produced	by	the	PULSAR	algorithm,	which	often	accurately	span	

entire	chromosomes,	is	promising.	The	approach	may	also	be	a	useful	tool	for	genotype	

error	checking	and	correction.	Based	on	evidence	from	our	benchmarking	we	conclude	that	

PULSAR	is	a	suitable	and	practical	phasing	approach	across	a	broad	range	of	pedigree	

structures	when	a	reasonable	proportion	of	the	pedigree	members	are	sequenced.	

	

Methods	

Pedigrees	used	for	simulation	studies	

We	chose	to	investigate	the	phasing	and	imputation	accuracy	of	PULSAR	via	

simulation	in	a	variety	of	pedigree	sizes	and	structures.	Nuclear	pedigree	structures	were	

composed	of	two	parents	and	a	range	of	1	to	7	children.	As	a	variance	reduction	technique	

in	our	simulations,	each	smaller	pedigree	was	generated	as	a	subset	of	the	larger	pedigrees.	
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In	other	words,	the	pedigree	with	1	child	is	a	subset	of	the	pedigree	with	2	children,	and	so	

on.	Seven	larger,	multigenerational	pedigree	structures	were	chosen	from	the	San	Antonio	

Mexican	American	Family	Studies(Mitchell	et	al.	1996;	Hunt	et	al.	2005)	(SAMAFS),	having	

11,14,20,28,55,78	and	94	individuals	comprising	3,4,4,4,6,6	and	5	generations,	respectively.	

In	these	pedigrees,	4,3,3,16,29,31,	and	61	individuals	are	sequenced,	respectively.	Diagrams	

of	these	pedigrees,	generated	using	Cranefoot(Makinen	et	al.	2005),	are	included	in	the	

supplementary	materials.	Altogether,	14	different	pedigree	structures	were	chosen	to	

represent	a	broad	range	of	sizes	and	structures	in	order	to	investigate	the	accuracy	and	

completeness	of	the	phasing	results.	Two	additional	pedigree	structures	were	simulated	for	

the	purpose	of	investigating	computational	scalability	of	the	software:	pedigrees	with	two	

parents	and	a	range	between	1	and	1000	children,	and	pedigrees	in	which	each	generation	

consisted	of	one	offspring	of	the	previous	generation	and	one	married-in	founder	for	2-50	

generations.		

	

Simulation	of	whole	genome	sequencing	data	

Whole	genome	sequencing	data	for	84	male	X	chromosomes	(excluding	the	

pseudoautosomal	regions)	from	British	(GBR)	and	Finish	(FIN)	populations	from	the	1000	

Genomes	Project(Genomes	Project	et	al.	2015)	were	used	as	the	set	of	potential	founder	

chromosomes	in	the	simulation	studies.	Utilizing	real	male	X	chromosomes	has	the	

advantage	that	chromosomal	haplotypes	are	known	while	also	maintaining	the	complexities	

of	real	whole	genome	sequencing	data,	such	as	the	minor	allele	frequency	distribution	of	

variants,	linkage	disequilibrium,	and	the	existence	of	small	IBD	segments	shared	between	

distantly	related	individuals(Browning	and	Browning	2007),	though	the	X	chromosome	

may	differ	slightly	in	these	characteristics	from	the	autosomes.	After	filtering	out	

pseudoautosomal	regions	and	loci	with	more	than	2	alleles,	there	were	a	total	of	318,912	
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polymorphic	variants	in	the	seed	dataset.	These	seed	chromosomes	were	shortened	in	

simulation	to	200,000	variants	in	order	to	accommodate	limitations	in	the	software	package	

AlphaPhase1.1(Hickey	et	al.	2011),	by	considering	a	smaller	section	of	the	chromosome.	

Alphaphase1.1	was	used	for	benchmarking	because	it	implements	the	“long	range	phasing”	

approach	in	pedigrees	(see	below),	although	it	was	not	designed	for	phasing	WGS	data.	

Within	each	pedigree,	founder	chromosomes	were	sampled	from	these	84	chromosomes	

randomly	without	replacement,	which	assumes	that	the	pedigree	founders	represent	a	

random	population	sample.	Inheritance	of	haplotypes	within	the	pedigrees	was	simulated	

by	“gene	dropping”,	utilizing	a	probability	of	recombination	between	variants	that	

corresponds	to	1	recombination	every	100	Mb,	a	rough	estimate	of	the	actual	

recombination	rate	in	humans.	Chromosomes	not	used	as	pedigree	founder	chromosomes	

were	used	as	a	reference	panel	from	which	to	calculate	minor	allele	frequency.	In	summary,	

for	individuals	in	these	pedigrees	we	simulated	genotypes	and	chromosomal	haplotypes	

with	many	of	the	characteristics	of	real	data.		

	

Whole	genome	sequencing	data	

	 Whole	genome	sequencing	has	been	generated	for	many	participants	in	the	

SAMAFS.	SNV and di-allelic INDELs with at least 5 observations of the minor allele were 

homogenized and merged from vendor provided (Complete Genomics, Illumina) sequencing 

genotype calls from 2330 directly sequenced genomes, resulting in 27,160,796 genetic variants. 

This	data	is	available	through	dbGaP	Study	Accession:	phs000462.v1.p1.	Chromosome 21 

(356,545 variants) was selected for analysis. Individuals and variants with genotyping rates below 

99% were excluded, resulting in 354,466 variants. We	chose	to	focus	on	the	same	7	pedigrees	

of	the	SAMAFS	for	both	real	and	simulated	datasets	in	order	to	maximize	the	comparability	

of	the	real-world	data	to	the	simulated	data.	The	7	pedigrees	are	comprised	of	three hundred 
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individuals, of which 147 are sequenced.	

	

Benchmarking	

We	set	out	to	benchmark	PULSAR	against	long	range	phasing	(LRP)(Kong	et	al.	

2008),	arguably	the	current	best	approach	for	phasing	genotypes	in	multigenerational	

pedigrees(Browning	and	Browning	2011).	AlphaPhase1.1(Hickey	et	al.	2011)	is	an	

implementation	of	the	LRP	algorithm	pioneered	by	Kong	et	al(Kong	et	al.	2008),	which	

phases	haplotypes	using	the	assumption	that	the	genotype	data	of	individuals	sharing	a	

haplotype	IBD	must	share	at	least	one	allele	identical-by-state	(IBS)	at	each	locus	in	the	

shared	region.	Functionally,	the	method	searches	for	opposing	homozygous	alleles,	which	

excludes	two	individuals	from	sharing	a	segment	IBD	at	that	genomic	location	(assuming	no	

mutation	or	genotyping	error).	LRP	is	highly	accurate	when	at	least	one	individual	sharing	

the	IBD	segment	is	homozygous	for	a	given	variant.		

We	utilized	three	metrics	for	the	performance	comparison	in	the	simulations:	

switch	error	rate(Lin	et	al.	2002)	(SER)	to	assess	phasing	accuracy,	the	proportion	of	

heterozygous	genotypes	that	are	phased,	and	the	‘time’	function	in	the	Linux	environment	

to	assess	the	run	time	of	the	software.	SER	measures	the	rate	in	which	adjacent	

heterozygous	genotypes	are	phased	incorrectly	with	respect	to	each	other.		

	

Data	Access	

PULSAR	is	available	at	https://github.com/AugustBlackburn/PULSAR_1.0.	
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