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Abstract	
Phytoplankton	functional	types	are	groupings	of	many	species	into	a	smaller	number	of	
types	according	to	their	ecological	or	biogeochemical	role.	Models	describe	phytoplankton	
functional	types	by	a	set	of	traits	that	determine	their	growth	rates	or	fitness.	Traits	for	
functional	types	are	often	determined	from	observations	on	a	small	number	of	species	
under	laboratory	conditions.	Functional	types	can	be	composed	of	a	large	number	of	
species	with	very	different	trait	values,	so	the	representation	of	a	type	by	an	average	trait	
value	may	not	be	appropriate.	A	potential	solution	is	to	estimate	trait	values	from	
observations	of	the	aggregate	biomass	of	phytoplankton	functional	types	in	natural	
populations.	We	report	on	some	recent	efforts	to	extract	trait	values	from	time-series	data	
using	Bayesian	statistical	models	and	discuss	some	challenges	of	this	approach.		
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What	are	functional	types?	
Marine	phytoplankton	communities	fuel	the	marine	food	web,	producing	44-67	Gt	

of	fixed	carbon	per	year,	which	is	approximately	half	of	the	total	global	net	primary	
production	(Field	et	al.	1998;	Westberry	et	al.	2008).	These	communities	contain	many	
species	each	and	in	total	there	are	tens	of	thousands	of	species	of	phytoplankton	that	
inhabit	the	surface	ocean	(De	Vargas	et	al.	2015;	Guiry	and	Guiry	2015;	Sournia	et	al.	1991).		
All	phytoplankton	species	use	chlorophyll	or	bacteriochlorophyll	to	harvest	light	as	the	
energy	source	to	fix	organic	carbon,	but	there	is	wide	variation	in	virtually	all	their	other	
traits.	Phytoplankton	species	are	found	in	eleven	different	phyla	of	the	tree	of	life,	including	
both	prokaryotic	and	eukaryotic	lineages.	Several	different	endosymbiotic	events	gave	rise	
to	the	major	phytoplankton	lineages	within	the	eukaryotes	(Falkowski	et	al.	2004;	Katz	et	
al.	2004).			

Plant	and	phytoplankton	functional	types	(or	functional	groups)	are	groupings	of	
many	species	into	a	much	smaller	number	of	categories	by	function.		While	every	species	
has	its	own	set	of	unique	traits,	the	functional	type	approach	recognizes	that	we	cannot	
analyze	every	species	in	the	ocean	and	that	some	dimensions	of	variation	will	not	matter	
for	some	research	questions.	Since	species-level	variation	is	often	challenging	to	interpret,	
aggregation	provided	by	functional	types	often	facilitates	identification	of	patterns	at	the	
level	of	communities	and	ecosystems.		Phytoplankton	communities	are	simplified	into	
functional	types	for	the	design	and	interpretation	of	models	that	make	predictions	of	
phytoplankton	biogeographic	distribution,	productivity,	biogeochemical	cycling	and	
ecosystem	function	for	the	past,	present	and	future	(Anderson	2005;	Gregg	et	al.	2003;	
Iglesias-Rodriguez	et	al.	2002;	Le	Quéré	et	al.	2005;	Litchman	et	al.	2006).		The	
simplification	of	phytoplankton	communities	from	thousands	of	species	to	a	handful	of	
functional	types	greatly	reduces	both	the	computational	effort	required	for	modeling	and	
the	amount	of	data	needed	to	constrain	the	parameters	defining	these	models.	
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Phytoplankton	functional	types	are	often	used	to	address	questions	about	ocean	
biogeochemistry,	for	example,	about	the	ability	of	the	ocean	to	act	as	a	carbon	sink,	the	role	
of	phytoplankton	in	ocean	nitrogen	fluxes,	or	CaCO3	and	Si	export	(Jin	et	al.	2006;	Le	Quéré	
et	al.	2005).	This	focus	has	led	to	the	development	of	biogeochemically-defined	
phytoplankton	functional	types	(Table	1).	Some	biogeochemical	functions	are	
phylogenetically	conserved	so	that	higher	taxonomic	classification	can	often	be	used	as	
shorthand	to	define	functional	types	for	the	phytoplankton.		The	ecologically	dominant	
phytoplankton	types	are	the	silicifiers	(diatoms),	calcifiers	(coccolithophores),	N2-fixing	
and	non-N2-fixing	cyanobacteria.		By	definition	all	functional	type	groupings	are	
simplifications;	for	example	silicoflagellates,	like	diatoms,	create	silicified	skeletons	but	are	
often	omitted	from	the	silicifier	grouping	because	these	taxa	rarely	dominate	the	biomass	
of	modern	phytoplankton	communities.	These	functional	type	classifications	arise	from	
their	biogeochemical	roles,	but	also	from	contrasting	biogeographies	in	the	taxa	and	even	
analytical	considerations	such	as	the	instrumentation	needed	to	identify	the	species	within	
these	groups.	Numerous	other	functional	types	are	used	less	often,	but	with	enough	
regularity	that	they	are	identified	as	phytoplankton	functional	types.	These	include	the	
dinoflagellates	(sometimes	broken	into	sub-categories	of	mixotrophic	or	toxin-producing	
types),	phytoflagellates	(small-to-medium	sized	flagellated	cells	from	several	phyla	which	
can	be	difficult	to	distinguish	to	the	species	level	with	a	light	microscope),	picoeukaryotes	
(multi-phyletic	photosynthetic	eukaryotes	less	than	3	µm	in	diameter)	and	green	
(Chlorophyta)	phytoplankton.	There	is	some	overlap	among	these	groups;	for	example	
species	from	the	Chlorophyta	can	be	included	in	the	picoeukaryotes	(e.g.,	Ostreococcus	sp.)	
and	the	phytoflagellates	(e.g.,	Halosphaera).	Although	biogeochemically	and	taxonomically	
defined	functional	types	dominate	the	literature,	alternate	definitions	of	phytoplankton	
functional	types	continue	to	be	discussed	(Flynn	et	al.	2015).	

It	is	common	to	use	one	or	two	species	as	exemplars	for	each	group,	and	these	
species	tend	to	become	functional	synonyms	for	the	groups	(Table	1).	For	example,	
cyanobacteria	are	the	most	important	contributors	to	nitrogen	fixation	in	the	ocean,	and	
Trichodesmium	is	a	common	example	(Hood	et	al.	2004;	Lenes	et	al.	2001).	Among	the	non-
nitrogen-fixing	species,	the	genera	Prochlorococcus	and	Synechococcus	dominate	many	
oligotrophic	regions	(Chisholm	1992).	The	coccolithophore	Emiliania	huxleyi	plays	a	large	
role	in	DMSP	(dimethylsulfoniopropionate)	and	CaCO3	production.		Several	species	of	the	
Haptophyte	Phaeocystis	produce	large	gelatinous	blooms	that	can	impact	food	webs	and	
can	also	be	important	producers	of	DMSP	(Schoemann	et	al.	2005).		DMSP	is	enzymatically	
converted	to	dimethylsufide	(DMS),	which	has	been	proposed	to	alter	cloud	albedo	and	
regulate	climate	(Charlson	et	al.	1987).		Because	diatoms	are	key	contributors	to	carbon	
export	and	the	dominant	planktonic	silicifiers,	and	many	genera	and	species	have	been	
studied	(some	common	genera	include	Chaetoceros,	Coscinodiscus,	Pseudo-nitzschia,	
Rhizosolenia,	Thalassiosira,	Skeletonema),	this	group	is	not	commonly	represented	by	a	
single	species.		
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The	major	functional	traits	

What	is	a	trait?		
A	phytoplankton	functional	trait	is	a	fixed	characteristic	of	a	functional	group	that	

can	be	used	to	describe	its	growth	rate	or	fitness.	There	is	not	yet	a	clear	consensus	on	
which	traits	are	fundamental	to	understanding	phytoplankton	community	dynamics	or	
responses	to	environmental	and	climatic	change	and	additional	research	will	undoubtedly	
uncover	new	and	more	useful	traits.	We	are	just	beginning	to	understand	the	variation	and	
trade-offs	in	traits	within	and	across	functional	types,	the	plasticity	of	traits	in	response	to	
environmental	conditions,	and	how	traits	can	change	in	response	to	selection	pressure.	
	

Types	of	traits	
We	find	it	useful	to	organize	functional	traits	into	conceptually	similar	groups:	traits	

influencing	overall	metabolic	rates,	resource	acquisition	and	requirements,	and	traits	
influencing	loss	rates	such	as	sinking	and	susceptibility	to	grazing	or	attack	by	viruses	and	
parasitoids.	Some	traits	will	influence	or	be	correlated	with	other	traits.	Cell	size	acts	as	a	
master	trait	influencing	metabolic	rate,	resource	acquisition,	sinking	and	susceptibility	to	
grazing	(Finkel	et	al.	2010a).		

Maximum	growth	rate	under	resource-replete	conditions	is	probably	the	most	
commonly	used	trait	in	modeling.	Growth	models	are	typically	structured	in	terms	of	this	
trait	and	a	wide	range	of	factors	that	can	reduce	growth	below	this	maximum.	Generally	the	
most	limiting	factor	is	of	paramount	importance	for	describing	reductions	in	growth	rate	
relative	to	the	maximum.	Various	formulations	of	limitation	are	possible	including	a	Liebig-
style	minimum	relationship	or	co-limitation	by	two	or	more	factors.	Growth	rate	is	easily	
measured	for	culturable	organisms	but	is	rarely	measured	under	the	full	range	of	
environmental	conditions	that	can	influence	the	maximum	growth	rate	such	as	quality	and	
quantity	of	irradiance,	light-dark	cycle,	temperature,	CO2	concentrations,	salinity	or	
different	macro-	and	micronutrient	concentrations	and	ratios	in	the	growth	media.	It	is	
generally	assumed	that	acclimated	exponential	growth	rates	obtained	for	species	grown	in	
media	with	nutrients	well	in	excess	for	growth	under	saturating	but	not	super-saturating	
irradiances	and	under	a	light-dark	cycle,	and	salinity	and	temperature	typically	
experienced	by	the	organism,	will	provide	a	good	estimate	of	maximum	growth	rate.		Other	
metabolic	rates	such	as	maximum	photosynthetic	rate,	dark	respiration	and	respiration	as	
a	function	of	growth	rate	(e.g.,	mol	O2	per	mol	C)	are	often	measured	and	can	be	used	as	
traits	(Geider	1992).	

Several	traits	associated	with	nutrient	acquisition	have	been	identified.	Nutrient	
acquisition	traits	are	usually	derived	from	a	Michaelis-Menten	or	Monod	parameterization	
of	nutrient	uptake	as	a	function	of	nutrient	concentration	in	the	media	(Fig.	1A,	See	Table	2	
for	a	description	of	equations	and	symbols).		The	primary	parameters	are	maximum	uptake	
rate	(Vmax)	and	the	nutrient	concentration	where	½	Vmax	is	achieved,	termed	the	half-
saturation	constant	(Km).		These	traits	can	be	used	to	define	derived	traits	such	as	nutrient	
affinity	(Vmax/Km)	and	competitive	ability,	R*,	which	is	the	lowest	concentration	at	which	a	
species	has	positive	growth	(R*	=	Km	d	/	(Vmax	-	d),	where	d	is	the	loss	rate	through	dilution	
or	mortality).	The	Droop	formulation	(Fig.	1B)	describes	growth	rate	in	terms	of	internal	
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nutrient	stores	or	cell	quota	(Q),	a	minimum	cell	quota	(Qmin)	which	is	the	smallest	quota	
for	positive	growth,	and	a	hypothetical	maximum	growth	rate	at	infinite	cell	quota	(µ’max).	
Maximum	growth	rate	is	some	fraction	of	this	hypothetical	maximum	growth	rate.	More	
elaborate	formulations	incorporate	a	maximum	cellular	quota	(Qmax)	and	allow	uptake	
rates	to	vary	with	changes	in	nutrient	quota	or	carbon	to	nitrogen	ratios	and	storage	
(Aksnes	and	Cao	2011;	Droop	1983;	Flynn	2008;	Grover	1991).	Competitive	ability,	R*,	can	
be	reformulated	to	include	cell	quota.		Phytoplankton	species	require	and	acquire	many	
nutrients	and	it	is	often	useful	to	divide	nutrients	into	different	classes:	macronutrients	
(various	forms	of	fixed	N	and	phosphate),	silicic	acid	(mostly	for	diatoms),	trace	nutrients	
(Fe	and	many	others),	and	organic	nutrients	(used	by	mixotrophs	and	heterotrophs).	
Monod	and	Droop	models	may	not	always	be	appropriate	as	there	is	evidence	of	linear	or	
biphasic	uptake	kinetics	for	nitrate	and	some	other	nutrients	for	some	phytoplankton	
species	(Collos	et	al.	1992;	Finkel	et	al.	2010b).	Finally,	carbon	acquisition	has	its	own	
complex	set	of	traits	because	of	the	complexity	of	carbonate	chemistry	and	carbon	
concentrating	mechanisms	(Raven	et	al.	2008;	Reinfelder	2011).		

Light	harvesting	by	photosynthesis	can	be	described	by	two	traits	analogous	to	the	
maximum	uptake	and	half-saturation	rate:	the	maximum	photosynthetic	rate	often	termed	
the	photosynthetic	capacity	(Pmax)	and	saturation	irradiance	(Ek),	both	derived	from	curves	
of	photosynthetic	rate	as	a	function	of	irradiance	(Geider	and	Osbourne	1992;	Jassby	and	
Platt	1976).	Photosynthetic	efficiency,	α =	Pmax	/	Ek,	estimated	from	the	curve	when	
irradiance	approaches	zero,	is	commonly	used	as	a	trait	(Fig.	1C).	Fundamentally	
photosynthetic	efficiency	is	the	product	of	the	maximum	quantum	yield	of	photosynthesis	
(moles	carbon	or	oxygen	produced	per	mole	photons	absorbed)	and	the	light	absorption	
coefficient,	the	amount	of	light	absorbed	by	the	cell	often	normalized	per	unit	of	
chlorophyll-a.		Theoretically	under	low	light	the	maximum	quantum	yield	is	a	constant	(φ),	
but	the	light	absorption	coefficient	(a)	varies	across	species	and	environmental	conditions	
due	to	differences	in	pigment	composition,	concentration,	and	cell	size	(Finkel	et	al.	2004a;	
Finkel	2001;	Kirk	1994).	High	or	super-saturating	irradiances	above	Ek	reduce	net	
photosynthesis	and	are	commonly	parameterized	by	a	single	value,	β	or	Eβ,	representing	
the	irradiance	level	at	which	light	inhibition	becomes	significant	(Platt	et	al.	1980).	Many	
other	traits,	including	the	capacity	for	non-photochemical	quenching,	the	effective	cross-
section	of	photosystem	II,	and	the	cross-section	of	photoinactivation	of	photosystem	II	can	
be	measured	and	have	been	shown	in	individual	studies	to	influence	the	susceptibility	of	
different	species	and	species	of	different	size	(Key	et	al.	2010;	Lavaud	et	al.	2007;	Six	et	al.	
2007)	to	high	light	stress,	but	these	and	other	traits	related	to	strategies	to	deal	with	high	
light	stress	are	rarely	used	in	ecological	or	biogeochemical	models	(Raven	2011).		

The	rate	of	a	chemical	reaction	is	affected	by	temperature	according	to	the	
Arrhenius	law,	which	describes	the	temperature	dependence	of	a	chemical	reaction	as	
proportional	to	exp(-Ea/kT),	where	Ea	is	the	activation	energy	of	the	reaction,	k	is	
Boltzmann’s	constant,	and	T	is	the	absolute	temperature	in	Kelvin.	Despite	the	tremendous	
complexity	of	a	living	organism,	the	Arrhenius	law	can	predict	metabolic	rate	changes	over	
broad	ranges	of	temperatures.	There	is	evidence	that	Ea	varies	across	broad	taxonomic	
groupings	(Gillooly	et	al.	2001).	The	Arrhenius	law	is	sometimes	approximated	as	an	
exponential	function	of	temperature	using	the	trait	Q10,	which	describes	the	multiplicative	
change	in	metabolic	rate	with	a	10°C	change	in	temperature,	or	even	as	a	linear	response	
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over	a	narrow	temperature	range	(Montagnes	et	al.	2003).	For	phytoplankton,	the	
maximum	growth	rate	across	species	is	often	described	as	increasing	exponentially	with	
temperature,	µmax	=	0.85	exp(0.0633	T)	(Eppley	1972).	Single	species	exhibit	a	gradual	
increase	in	growth	rate	with	temperature	followed	by	a	rapid	decline	above	a	maximum	
temperature	and	each	species	is	adapted	to	a	specific	temperature	range	which	is	narrower	
than	the	range	described	by	Eppley’s	curve	(Fig.	1D)	(Follows	et	al.	2007).	High	
temperatures	dramatically	reduce	rates	and	inactivate	enzymes,	so	a	maximum	
temperature,	Tmax,	can	also	be	a	useful	trait	to	describe	phytoplankton	physiology.	Other	
useful	temperature-related	traits,	such	as	the	minimum	temperature	for	positive	growth	
rate	(Tmin),	can	be	derived	from	observations	of	metabolic	rate	as	a	function	of	temperature	
(Boyd	et	al.	2013).	

Traits	affecting	loss	rates	are	more	difficult	to	identify,	but	the	usual	collection	
includes	the	sinking	rate,	susceptibility	to	grazing	and	susceptibility	to	viral	and	parasitoid	
attack.	Sinking	rate,	V,	is	predicted	by	Stokes’	law	as	the	terminal	velocity	of	a	spherical	
particle	with	a	very	small	Reynolds	number	and	is	often	applicable	to	phytoplankton,	
where		

	 𝑉 = !!!!!!

!"
	

and	g	is	acceleration	due	to	gravity,	Δρ	is	the	density	difference	between	the	cell	and	
surrounding	medium,	µ	is	the	viscosity	of	the	medium,	and	R	is	cell	radius.	Corrections	for	
shape	may	be	needed	for	cells	that	are	not	approximately	spherical.	A	cell’s	ability	to	
regulate	its	density	and	thus	buoyancy	may	be	an	important	trait	that	strongly	influences	
its	sinking	rate	in	practice	(Bienfang	et	al.	1982;	Miklasz	and	Denny	2010).	Silica	or	calcium	
carbonate	will	affect	the	density	of	a	cell	and	serves	as	ballast,	increasing	the	sinking	and	
export	rates	of	cells	relative	to	unballasted	cells	(Armstrong	et	al.	2002).		A	related	but	less	
well-studied	trait	that	affects	export	efficiency	is	the	tendency	to	form	aggregates,	which	
can	be	facilitated	by	exudation	of	DOC,	the	stickiness	of	cells,	and	interaction	with	grazers	
(Alldredge	and	Silver	1988).	

Many	traits	influence	grazing	susceptibility	including	the	presence	of	mineralized	
cell	walls,	quality	as	food,	the	size	and	shape	of	the	cell,	colonial	growth	forms,	spines,	and	
motility.	With	the	exception	of	cell	size,	these	traits	are	not	usually	incorporated	into	a	
mathematical	model	of	grazing,	but	at	most	are	aggregated	into	an	edibility	factor	to	
moderate	grazing	rates	or	trophic	transfer	efficiency.	Grazers	usually	prefer	to	consume	
prey	cells	that	are	about	an	order	of	magnitude	smaller,	although	this	ratio	varies	for	
different	predators	(Hansen	et	al.	1994),	and	this	rule	can	be	used	to	develop	size-
structured	grazing	models	and	help	develop	theory	about	the	size	structure	of	food	webs	
(Loeuille	and	Loreau	2005).	At	this	stage	very	little	is	known	about	the	traits	that	are	useful	
for	modeling	attack	by	viruses	and	parasitoids,	and	these	factors	are	rarely	included	in	
models.	Traits	that	govern	loss	rates	for	phytoplankton	are	usually	parameterized	very	
simply	as	a	constant	fraction	of	prey	density,	a	density-dependent	rate,	or	with	two	size-
classes	of	grazers	(Le	Quéré	et	al.	2005;	Moore	et	al.	2002)	but	there	are	notable	exceptions	
to	these	very	simple	approaches	(Armstrong	2003;	Vallina	et	al.	2014).	Two	very	common	
approaches	for	modeling	grazing	rate,	or	ingestion	rate	(I)	of	prey	(P)	by	predators,	are	the	
Holling	type	II	and	type	III	functional	responses	which	have	attack	rate	(a)	and	prey	
handling	time	(h)	as	traits	and	the	shape	parameter	k	distinguishes	the	two	responses	
(type	II,	k=1;	type	PII,	k=2,	Fig.	1E).	
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Size	as	a	master	trait	
Cell	size	is	often	referred	to	as	a	master	trait	because	body	size	influences	the	

physiology,	ecology,	and	evolution	of	species	(Finkel	2007).	For	a	recent	review	of	some	of	
the	recent	literature	see	Sommer	et	al.	(2016).	Phytoplankton	cell	size	(radius)	varies	over	
three	orders	of	magnitude	(Finkel	et	al	2010a).	Phytoplankton	cell	size	is	mechanistically	
linked	to	all	the	physiological	and	ecological	traits	discussed	above:	maximum	growth	rate,	
nutrient	acquisition	and	minimum	and	maximum	cell	quota,	light	absorption	and	
susceptibility	to	high	light	stress,	sinking	rate	and	susceptibility	to	grazing	and	viral	attack	
(Finkel	et	al.	2010a).	The	size-dependence	of	traits	leads	to	clear	biogeographic	patterns	in	
phytoplankton	community	size	structure:	small,	predominantly	picoplankton	
cyanobacteria,	such	as	Synechococcus	and	Prochlorococcus	spp.,	dominate	the	
phytoplankton	community	biomass	in	oligotrophic	gyres	while	diatoms	often	dominate	in	
upwelling	zones	(Barton	et	al.	2013).	Small	phytoplankton	tend	to	dominate	under	
oligotrophic	conditions	due	to	a	combination	of	their	low	nutrient	requirements	(small	
minimum	and	maximum	nutrient	quotas),	low	half	saturation	constants	for	nutrient	(Km),	
and	high	maximum	nutrient	uptake	and	growth	rates.	High	export	rates	of	carbon	to	the	
deep	sea	and	more	efficient	trophic	transfer	of	carbon	to	higher	trophic	levels	in	the	food	
web	are	more	likely	when	standing	stock	biomass	is	high	and	large	phytoplankton	cells	
dominate	(Finkel	et	al.	2010a;	Laws	et	al.	2000).		In	the	near	future,	communities	may	shift	
to	smaller-sized	phytoplankton	due	to	changes	in	environmental	conditions	linked	to	
climate	change	(Li	2002;	Li	et	al.	2009;	Morán	et	al	2010).	Climate	change	has	been	
associated	with	macroevolutionary	shifts	in	the	size	of	several	plankton	groups	over	the	
last	65	million	years	of	Earth’s	history:	including	the	diatoms	(Finkel	et	al.	2005),	
coccolithophores	(Henderiks	and	Pagani	2008),	dinoflagellates	(Finkel	et	al.	2007),	
silicoflagellates	(Van	Tol	et	al.	2012)	and	foraminifera	(Schmidt	et	al.	2004).			

Most	physiological	rates,	including	maximum	growth	rate	and	maximum	
photosynthetic	and	uptake	rates,	and	cellular	components,	including	minimum	and	
maximum	quota,	are	power-law	functions	of	cell	size.	For	eukaryotic	phytoplankton,	
maximum	metabolic	rates	generally	follow	a	¾	size-scaling	rule.	When	metabolic	rates	are	
normalized	by	cell	volume,	this	exponent	is	generally	–¼,	meaning	for	example	that	growth	
rate	(µ)	is	proportional	to	cell	volume	(V)	to	the	–¼	power	(Fig.	1F).		This	size	allometry	for	
metabolic	rates	was	first	documented	for	animals	(Kleiber	1947)	and	is	one	of	the	most	
general	laws	in	biology.	There	are	numerous	exceptions	to	the	general	size-scaling	trend	in	
phytoplankton,	particularly	when	resources	are	limiting	(Finkel	et	al.	2004b;	Irwin	et	al.	
2006;	Mei	et	al.	2009;	Mei	et	al.	2011).		There	is	some	evidence	that	the	size	scaling	of	
metabolic	rates	as	a	function	of	organism	mass	(e.g.,	cell	carbon	content)	is	closer	to	1	for	
single-celled	organisms,	such	as	the	phytoplankton,	and	¾	for	metazoans	(Delong	et	al.	
2010).		Current	research	is	taking	a	closer	look	at	the	mechanistic	basis	for	size	scaling	of	
physiological	processes	in	phytoplankton	and	other	organisms	to	better	understand	the	
reasons	for	the	scaling	laws	and	the	anomalies	(Kempes	et	al.	2012;	Sharpe	et	al.	2012).	

Nutrient	acquisition	is	perhaps	the	easiest	process	to	analyze	in	terms	of	its	size-
dependence.		Acquisition	of	resources,	whether	by	active	or	passive	uptake	is	across	the	
cell	wall,	and	the	surface	area	of	the	cell	is	proportional	to	the	square	of	the	radius	of	the	
cell,	while	the	volume	is	proportional	to	the	cube	of	the	radius.	Nutrient	porters	are	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/148312doi: bioRxiv preprint 

https://doi.org/10.1101/148312
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 8	

arrayed	across	the	cell	surface	and	so	under	limiting	conditions,	the	amount	of	surface	area	
dedicated	to	nutrient	acquisition	can	become	limiting,	leading	to	insufficient	capacity	for	
nutrient	uptake.	Competition	within	the	cell	for	surface	area	can	lead	to	trade-offs	for	the	
acquisition	of	one	nutrient	compared	to	another,	depending	on	the	relative	degree	of	
limitation	(Edwards	et	al.	2011).	The	half-saturation	constant	for	nutrient	uptake	(Km)	is	
also	size-dependent,	scaling	proportionally	with	the	radius	of	the	cell,	so	that	larger	cells	
have	larger	half-saturation	constants	and	thus	are	poorer	competitors,	in	general,	for	
dissolved	resources	when	concentrations	are	low.		This	is	partly	a	result	of	the	rate	of	
diffusive	flux	of	resources	across	the	boundary	layer	outside	a	cell,	the	size	of	which	is	
proportional	to	cell	radius.	The	quotient	of	these	two	quantities,	nutrient	affinity	(Vmax/Km),	
is	thus	proportional	to	the	cell	radius	as	well,	so	that	nutrient	affinity	increases	with	cell	
size.	This	size	dependence	also	affects	the	acquisition	of	dissolved	inorganic	carbon.	
Although	the	active	uptake	of	bicarbonate	is	not	generally	limiting	in	seawater,	the	rate	of	
CO2	diffusion	in	and	out	of	the	cell	is	affected	by	cell	size	according	to	Fick’s	first	law:	
diffusive	flux	F	=	4π	R	D	ΔC,	where	R	is	radius,	D	is	the	corresponding	diffusion	constant,	
and	ΔC	is	the	concentration	gradient	between	the	bulk	media	and	the	surface	of	the	cell	
(Reinfelder	2011).			

Light	acquisition,	and	thus	photosynthetic	rate	when	light	is	limiting,	is	affected	by	
cell	size,	but	the	explanation	is	more	complex	than	for	nutrient	acquisition	because	of	
photoacclimation	mechanisms	within	the	cell.	Larger	cells	have,	in	general,	lower	
intracellular	concentrations	of	pigments	compared	to	smaller	cells	because	the	path-length	
of	light	is	longer	across	a	larger	cell	(Finkel	2001).	This	means	that	the	energy	absorbed	
per	pigment,	when	all	other	factors	are	equal,	will	be	lower	in	a	larger	cell.	This	effect	is	
referred	to	as	the	package	effect,	and	it	is	the	reason	why	intracellular	pigment	
concentrations	are	generally	inversely	proportional	to	cell	radius	for	light-limited	cells	
(Finkel	et	al.	2004a).		This	size-dependence	of	light	acquisition	contributes	to	slower	
growth	rates	for	larger,	light-limited	cells,	compared	to	smaller	cells.	By	contrast,	pigment	
packaging	confers	an	advantage	to	larger	cells	under	high	light	because	the	same	effect	
reduces	the	rate	of	photoinactivation	of	photosystem	II	(Key	et	al.	2010).	

In	addition	to	sinking,	grazing	rates	and	trophic	transfer	efficiency	can	be	predicted	
approximately	from	cell	size.	Since	size	is	a	major	factor	influencing	all	these	
characteristics	of	phytoplankton,	it	can	often	be	used	as	a	proxy	for	a	wide	suite	of	traits	
(Irwin	et	al.	2006;	Wirtz	2013).	The	ability	to	simplify	model	parameterizations	is	
tremendously	useful,	but	more	work	should	be	done	to	identify	the	most	important	failures	
of	this	approach	to	improve	modeling	efforts.	Cell	shape	and	chain	and	colony	formation	
can	be	important	traits	affecting	phytoplankton	growth	and	loss	rates,	but	are	not	
commonly	incorporated	into	models.	
	

Trait	trade-offs	
The	presence	of	a	vast	diversity	of	phytoplankton	species	demonstrates	that	there	is	

no	one	species	that	is	a	super	competitor,	dominating	all	others.	This	observation	implies	
there	is	structure	in	the	traits	of	species	and	has	spurred	a	search	for	trade-offs	among	trait	
values	and	mechanistic	explanations	for	these	trade-offs.	A	well-developed	understanding	
of	the	interrelationship	of	various	trait	values	will	help	modelers	constrain	parameter	
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values	and	produce	better	models.		Many,	but	not	all,	of	the	identified	trait	trade-offs	are	
related	to	cell	size.	

Large	cells,	particularly	diatoms,	appear	to	be	especially	adept	at	escaping	grazing	
pressure	and	forming	large	blooms.	It	is	hypothesized	this	is	a	consequence	of	size-specific	
grazing	rates.	Larger	phytoplankton	species	are	grazed	by	larger	zooplankton	species	that	
have	longer	generation	times	compared	to	smaller	predators.	Thus	large	phytoplankton	
species	have	a	growth	advantage	in	certain	habitats	relative	to	smaller	cells	whose	
abundance	is	more	tightly	regulated	by	faster-growing	grazers.		A	compilation	of	growth	
rate	and	nutrient	acquisition	traits	from	laboratory	cultures	showed	species	with	higher	
maximum	growth	rates	and	maximum	uptake	rates	have	higher	(worse)	half-saturation	
constants	and	are	poor	competitors	for	that	nutrient	under	low	nutrient	concentrations	
(have	high	R*	values).		The	correlation	between	high	growth	rate,	high	maximum	nutrient	
concentration,	poor	half-saturation	constants,	and	R*	is	primarily	due	to	the	biophysical	
constraints	associated	with	cell	size	(Fiksen	et	al.	2013;	Litchman	et	al.	2007).	

	Some	trade-offs	are	not	primarily	linked	to	cell	size.		In	low	nutrient	environments,	
there	is	some	evidence	that	the	cell	surface	may	limit	the	number	of	transporters,	leading	
to	a	trade-off	between	the	ability	to	acquire	one	nutrient	compared	to	another	(Edwards	et	
al.	2011).		Species	that	invest	in	mechanical	protection	against	grazing	by	building	armored	
cell	walls	(diatoms,	coccolithophorids,	dinoflagellates)	often	pay	a	metabolic	cost	for	this	
armoring.	The	metabolic	costs	associated	with	producing	armored	covering	are	not	well	
worked	out.	The	increase	in	cell	density	due	to	calcification	or	silicification	will	mean	that	
the	rest	of	the	cell	must	be	less	dense	(or	have	other	strategies)	to	maintain	neutral	
buoyancy	or	their	mean	residence	time	in	the	upper	mixed	layer	will	be	reduced	and	they	
will	have	increased	rates	of	export	out	of	surface	waters.		
	

Trait	differences	across	phytoplankton	functional	types			
There	are	known	and	hypothesized	differences	in	several	traits	across	the	major	

phytoplankton	functional	types.	The	binary	traits	(e.g.,	presence	or	absence	of	N2-fixation,	
silicification,	calcification)	define	strong	differences	between	functional	types.	The	
quantitative	traits	(e.g.,	maximum	growth	rate,	nutrient	affinity,	average	size)	are	thought	
to	vary	across	functional	types,	but	the	amount	of	within-type	variation	in	these	trait	values	
makes	the	differences	much	less	certain.	Although	there	may	be	meaningful	differences	in	
the	quantitative	traits	across	functional	types,	the	available	laboratory	and	field	data	
indicate	many	of	the	quantitative	traits	overlap	substantially	across	species	from	the	
different	functional	types.			

Covariation	among	traits	dominates	the	way	functional	types	are	commonly	
conceived.	For	example,	many	nitrogen-fixing	cyanobacteria	are	relatively	slow	growing	for	
their	size	and	have	high	iron	requirements	due	to	the	energy	and	iron	requirements	
associated	with	nitrogen	fixation.	The	common	non-nitrogen	fixing	Synechococcus	and	
Prochlorococcus	have	slow	growth	rates	for	their	size	(Raven	et	al.	2006),	especially	
Prochlorococcus,	and	many	Prochlorococcus	strains	are	adapted	to	low	irradiance	and	have	
lost	the	ability	to	use	nitrate	(Moore	2002;	Zinser	et	al.	2007).	Many	diatom	species	under	
nutrient-sufficient	conditions	and	adequate	irradiance	have	fast	maximum	growth	rates,	
high	maximum	nitrate	uptake	rates	and	lower	half-saturation	constants	for	nitrate	than	
species	of	similar	and	even	smaller	size	from	other	functional	types	(Litchman	et	al.	2007).		
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Coccolithophores,	often	defined	by	the	common	species	Emiliania	huxleyi,	can	produce	high	
levels	of	DMSP,	have	intermediate	maximum	growth	rates,	which	are	generally	slower	than	
diatoms,	and	a	relatively	low	half-saturation	constant	for	nitrate	(Litchman	et	al.	2007).	
Differences	in	photosynthetic	efficiency,	maximum	photosynthetic	capacity,	and	ability	to	
tolerate	high	irradiance	are	not	well	established	across	taxonomic	groups.		It	has	been	
hypothesized	that	the	ability	to	tolerate	high	irradiance	may	shape	the	size	structure	of	
phytoplankton	communities	and	that	the	high	light	tolerance	of	Emiliania	huxleyi	and	
Phaeocystis	sp.	(Loebl	et	al.	2010;	Merico	et	al.	2004;	Schoemann	et	al.	2005)	and	inability	
to	tolerate	high	light	by	certain	Prochlorococcus	and	Synechococcus	stains	may	be	key	traits	
determining	their	temporal	and	spatial	biogeographies	(Six	et	al.	2007).		There	is	also	
increasing	evidence	of	functional	type	(especially	size)	differences	in	physiological	
response	to	different	concentrations	of	dissolved	inorganic	carbon	and	pH	but	these	traits	
are	rarely	explicitly	considered	in	biogeochemical	models	(Wirtz	2011;	Wu	et	al.	2014).		
Diatoms	and	coccolithophorids	have	higher	sinking	rates	for	their	size	relative	to	the	other	
species	due	to	their	inorganic	cell	coverings.	Many	dinoflagellate	species	exhibit	slow	
autotrophic	growth	rates	and	have	high	half-saturation	constants	for	nitrate	but	are	
mixotrophic.		There	is	relatively	less	work	characterizing	the	traits	of	the	Chlorophyta	(or	
green	algae)	but	there	is	some	evidence	they	have	better	(smaller)	half-saturation	
constants	for	ammonium	than	for	nitrate	(Litchman	et	al.	2007).		
	

Challenges	using	traits	to	represent	functional	types	

Challenges	estimating	average	trait	values	for	phytoplankton	functional	types	
We	know	very	little	about	the	best	ways	to	summarize	a	diverse	group	of	species	by	

a	set	of	traits	for	a	functional	type.	At	present,	modelers	use	a	variety	of	approaches	to	scale	
up	from	traits	of	species	to	traits	of	functional	types.	Typically	an	average	trait	value	is	
gathered	from	laboratory	studies	on	a	few	key	species	from	a	functional	type.		A	basic	
challenge	in	assigning	trait	values	for	phytoplankton	functional	types	is	that	most	
phytoplankton	species	have	not	been	studied	in	the	laboratory	and	those	species	that	have	
been	studied	document	a	great	deal	of	variability	in	trait	values	within	functional	types.		

There	is	extensive,	order	of	magnitude	variability	in	trait	values	across	species	
within	functional	types	under	controlled	laboratory	conditions	(Litchman	et	al.	2007).	This	
variation	is	reflected	in	a	large	range	of	trait	values	used	for	individual	phytoplankton	
functional	types	across	different	models	(Table	3).	For	example,	maximum	growth	rate	
values	reported	for	nitrogen-fixing	cyanobacteria	range	from	0.04	to	0.4	d-1,	the	half-
saturation	constant	for	phosphate	for	diatoms	ranges	from	0.00125	to	0.65	µmol	L-1,	and	
the	half-saturation	constant	for	iron	for	coccolithophores	ranges	from	0.02	to	2	nmol	L-1.	
Differences	in	trait	values	across	models	arise	because	there	is	not	enough	laboratory	data	
to	confidently	estimate	trait	values	and	because	there	is	significant	phenotypic	plasticity	
and	genetic	variability	in	the	trait	values	of	interest	across	relevant	species	within	a	
functional	type.	Variability	in	trait	values	among	species	and	studies	within	the	same	
functional	type	raises	challenging	questions	about	the	appropriate	trait	values	to	use	to	
represent	functional	types	in	models	and	how	model	traits	should	be	defined	and	
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interpreted.	The	importance	of	variability	in	trait	values	within	a	functional	type	in	
biogeochemical	models	has	not	been	sufficiently	explored.	

One	solution	to	the	problem	of	variability	is	simply	to	define	trait	values	for	a	
functional	type	by	averaging	trait	values	over	all	species	with	data	within	each	type.	This	
approach	would	work	well	for	a	functional	type	consisting	of	a	few	species	all	with	similar	
trait	values	or	if	the	species	examined	are	similarly	ecologically	dominant.	For	diverse	
groups,	such	as	the	diatoms,	or	many	groups	with	wide	ranges	of	trait	values,	this	approach	
is	likely	to	lead	to	unrealistic	trait	values	which	do	not	represent	the	functional	type	well.	
Non-linear	relationships	among	different	traits	can	lead	to	an	average	for	a	suite	of	traits	
that	is	not	representative	of	any	species	and	is	not	characteristic	of	the	functional	type.	
Another	challenge	is	that	seasonal	succession	in	a	community	may	result	in	changes	in	
functional	traits	for	communities	and	perhaps	for	functional	types	(Weithoff	and	Gaedke	
2016).	A	hierarchical	Bayesian	approach	that	quantified	trait	averages	at	species	and	
higher	taxonomic	levels	may	provide	better	estimates	of	trait	values	from	trait	databases	
and	enable	a	clear	quantification	of	the	uncertainty	in	our	knowledge	of	trait	values	at	
various	taxonomic	levels	(for	an	example	see	Finkel	et	al.	2016)	and	spatial	and	temporal	
scales.	Another	approach	to	finding	trait	values	for	functional	types	is	to	choose	an	
exemplar	species,	which	is	either	well	studied	or	ecologically	dominant,	and	simply	use	its	
trait	values	to	represent	the	entire	functional	type	(Table	3).	Emiliania	huxylei,	for	example,	
may	be	a	stand-in	for	coccolithophores	in	general.	Even	this	solution	is	only	partial,	
because	many	ecotypes	can	be	ecologically	quite	distinct	within	a	species;	for	example,	we	
know	there	are	many	different	ecotypes	of	E.	huxleyi	(Iglesias-Rodriguez	et	al.	2006),	
Prochlorococcus	and	Ostreococcus	(Kashtan	et	al.	2014;	Rocap	et	al.	2003;	Rodriguez	et	al.	
2005).			
	

Challenges	posed	by	acclimation	and	adaptation		
Almost	all	biogeochemical	models	with	phytoplankton	functional	types	assume	that	

traits	are	absolutely	fixed.	There	are	two	problems	with	this	assumption:	phytoplankton	
can	physiologically	acclimate,	within	limits,	to	different	environmental	conditions,	and	
phytoplankton	can	evolutionarily	adapt	to	new	conditions.		

Many	phytoplankton	species	have	the	capacity	to	alter	their	cellular	physiology	on	
time	scales	of	seconds	to	days	to	improve	their	fitness	under	a	range	of	environmental	
conditions.		This	means	that	traits,	such	as	those	characterizing	nutrient	acquisition,	light	
absorption	and	photosynthesis,	for	individual	species	and	functional	types,	may	vary	
significantly	under	different	environmental	conditions.		For	example,	there	is	evidence	that	
nitrate	uptake	rates	and	photosynthetic	parameters	such	as	the	chlorophyll-a	specific	light	
absorption	coefficient,	quantum	yield	of	photosynthesis,	maximum	photosynthetic	
capacity,	and	Ek	vary	with	irradiance	(Anning	et	al.	2000;	Dugdale	and	Macisaac	1972;	
Falkowski	and	Laroche	1991;	Lomas	and	Gilbert	1999).	There	may	also	be	important	
differences	across	species	and	functional	types	in	how	fast	traits	track	changes	in	
environmental	regimes.	Traits	are	usually	determined	in	the	lab	under	equilibrium	
conditions,	but	natural	communities	are	rarely	at	equilibrium,	and	environmental	
variability	plays	a	crucial	role	in	population	dynamics.	We	may	need	to	determine	how	
nutrient	and	light	acquisition	and	maximum	growth	rate	change	when	cells	are	moved	
from	replete	to	limiting	conditions	or	vice	versa	(Grover	1991).		One	approach	is	to	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2017. ; https://doi.org/10.1101/148312doi: bioRxiv preprint 

https://doi.org/10.1101/148312
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 12	

explicitly	determine	and	add	traits	for	acclimation.		For	example,	Gregg	et	al.	(2003)	in	a	
three-dimensional	biogeochemical	model	allow	the	saturation	irradiance,	Ek,	to	vary	with	
irradiance.		An	alternate	modeling	approach,	developed	in	the	past	decade,	includes	many	
species	with	similar	but	varied	sets	of	trait	values	in	each	functional	type	and	allows	the	
environmental	and	biological	conditions	to	empirically	select	which	species,	as	defined	by	
their	trait	values,	are	ecologically	important	(Follows	et	al.	2007).	This	permits	different	
ecotypes	to	succeed	in	different	parts	of	the	ocean,	even	if	locally	much	of	the	potential	
diversity	is	absent	due	to	competitive	exclusion.	While	it	is	possible	to	generate	large	
numbers	of	species	with	trait	values	selected	uniformly	over	some	range,	it	would	be	
helpful	to	have	more	knowledge	about	the	kinetics	and	flexibility	in	key	traits	from	lab	
studies	and	the	true	distribution	of	trait	values	in	nature.	

In	addition	to	physiological	acclimation	to	changes	in	the	environment,	
phytoplankton	may	be	able	to	adapt	to	changes	in	conditions	on	timescales	of	less	than	a	
decade.		Short	generation	times	and	large	population	sizes	mean	that	the	evolutionary	
potential	for	phytoplankton	is	huge,	and	we	have	a	poor	understanding	of	the	constraints	
on	phytoplankton	evolution.	Experimental	evolution	in	the	lab	has	demonstrated	that	
phytoplankton	have	the	capacity	to	evolve	when	exposed	to	changes	in	CO2	concentration	
(Collins	and	Bell	2004;	Lohbeck	et	al.	2012).	The	consequence	of	assuming	traits	are	fixed	
when	they	can	change	through	evolution	is	that	predictions	will	likely	over-estimate	
community	change	in	response	to	changing	climatic	and	environmental	conditions	(Irwin	
et	al.	2015).		Considerable	effort	will	be	required	to	identify	and	parameterize	traits	
describing	acclimation	and	adaptation	that	are	most	important	to	incorporate	into	models.	
Trait	evolution	is	just	beginning	to	be	incorporated	into	large-scale	biogeochemical	
functional	type	models	using	adaptive	dynamic	methods	(Sauterey	et	al.	2014).	There	is	
hope	that	evolutionary	experiments	and	an	understanding	of	mechanistic	reasons	for	trait	
value	trade-offs	will	guide	our	forecasts	of	phytoplankton	evolutionary	potential	and	can	
eventually	be	incorporated	into	models,	but	there	is	much	work	to	be	done.		

Several	other	open	questions	about	trait	modeling	still	need	to	be	addressed.	Traits	
may	have	very	different	meanings	in	two	different	models	because	of	structural	differences	
in	the	way	the	models	are	formulated.	Models	vary	in	their	description	of	physiological	
responses	to	environmental	conditions	and	interactions	among	factors,	for	example	the	
way	nutrient	limitation	affects	growth.	Some	models	use	Liebig’s	law	of	the	minimum,	
others	represent	more	complex	co-limitation	mechanisms,	and	some	may	have	interactions	
between	irradiance	level	and	nutrient	availability.	This	is	a	critical	challenge	for	trait	
models	and	means	that	the	idealized	trait	being	a	fundamental,	fixed	character	of	a	species	
is	not	faithfully	represented	across	models.	New	approaches	such	as	Bayesian	model	
selection	may	allow	the	community	to	resolve	questions	about	the	best	way	to	model	key	
processes	(Anderson	2005).	We	have	increasing	evidence	that	species	interactions,	
including	mutualistic	and	allelopathic	interactions,	may	be	very	important	in	structuring	
phytoplankton	communities	(Sher	et	al.	2011).		Since	our	knowledge	of	interactions	among	
traits	is	very	incomplete,	we	are	struggling	to	realize	the	full	potential	of	phytoplankton	
trait	models.			

The	promise	of	phytoplankton	trait	modeling	is	that	knowledge	of	traits	will	allow	
us	to	project	the	biogeography	of	functional	types	and	the	consequences	for	
biogeochemical	cycles	and	ecosystem	function.	We	have	insufficient	data	on	which	traits	
are	most	important	to	project	changes	in	phytoplankton	functional	type	biomass,	the	
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appropriate	values	to	use	for	these	traits,	and	how	trait	values	change	with	physiological	
acclimation	and	evolutionary	adaptation.	New	analyses	of	field	data	that	include	species	
and	environmental	data	may	provide	the	guidance	needed	to	identify	key	traits	and	species	
or	communities	that	require	additional	study	in	the	field	and	lab.	
	

Using	field	data	to	identify	relevant	traits	and	estimate	trait	values	

Why	use	field	data?			
There	are	vastly	more	species	in	natural	communities	than	can	be	practically	

studied	in	the	lab.		Although	we	have	a	good	idea	of	some	of	the	important	traits	shaping	
community	structure,	we	are	not	certain	we	have	identified	all	the	important	core	traits	
required	to	model	a	natural	community.	Natural	communities	present	a	much	richer	array	
of	conditions	than	can	be	replicated	in	the	lab.	Analyses	of	field	data	could	identify	the	
species,	traits,	and	environmental	and	biotic	conditions	that	require	more	extensive	
evaluation	in	the	lab.	Methods	are	being	developed	so	that	traits	can	be	determined	from	
observations	of	natural	communities,	which	may	enable	us	to	identify	the	most	relevant	
traits	and	trait	values.	Further	research	is	required	to	determine	if	traits	derived	from	field	
data	are	as	robust	as	the	lab-derived	traits	and	which	are	most	useful	for	modeling.	Instead	
of	identifying	individual	species	traits	and	developing	trait	models	to	ultimately	obtain	
realized	niches	for	species	or	functional	types,	it	is	possible	to	determine	the	realized	niche	
of	species	and	functional	types	directly	from	observations	of	natural	populations	(Box	1).	
Whether	we	estimate	traits	or	niches,	the	dominant	species	and	ecotypes	that	make	up	the	
natural	communities	are	studied	as	opposed	to	model	species	easily	cultured	in	the	lab.	
Natural	variability	and	biotic	interactions	are	directly	incorporated	into	the	data	analyzed.			
	

How	can	we	identify	traits	and	niches	of	phytoplankton	functional	types	from	field	
data?	

Many	methods	are	available	to	characterize	the	traits	and	niches	of	species	and	
functional	types	in	natural	populations.	Two	broad	categories	are	parameter	estimation	
from	mechanistic	models	and	species	distribution	models	(SDMs).	Time-series	data	with	
sufficient	temporal	resolution	can	be	used	in	combination	with	mechanistic	models	to	
estimate	traits	governing	growth	and	loss	terms,	but	these	data	are	rare.	Mechanistic	
models	are	usually	differential	equations	that	describe	the	rate	of	change	of	population	
abundance	or	biomass.		These	models	are	commonly	formulated	using	functions	for	
resource	acquisition,	growth,	and	loss	rates	(Fig.	1),	ranging	from	very	simple	
phenomenological	parameterizations	to	descriptions	of	intricate,	multi-step	mechanistic	
processes.	Key	parameters	in	these	models	are	the	phytoplankton	traits,	which	can	either	
be	estimated	one	at	a	time	from	controlled	lab	experiments	or	jointly	using	an	optimization	
approach.	Mechanistic	models	have	been	used	to	estimate	daily	growth	and	loss	rates	for	
Synechococcus	off	the	coast	of	New	Jersey	at	LEO-15	(Sosik	et	al.	2003)	and	for	three	groups	
of	picophytoplankton	in	the	central	equatorial	Pacific	(André	et	al.	1999).		The	frequency	of	
observation	will	determine	key	aspects	of	even	apparently	easily	interpreted	traits	such	as	
growth	rate.	Sosik	et	al.	(2003)	estimated	population	counts	and	sizes	several	times	a	day,	
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so	the	estimated	growth	rates	closely	approximate	the	true	growth	rate	of	Synechococcus	at	
this	site.	We	have	experimented	with	obtaining	trait	values	from	weekly	data	but	because	
of	the	greater	time	between	samples,	these	growth	rates	will	incorporate	many	loss	terms	
and	will	be	considerably	smaller	than	the	maximum	growth	rate	of	the	species	present	in	
the	community	(Mutshinda	et	al.	2016).	It	is	probably	impossible	to	obtain	meaningful	
growth	rates	from	monthly	time-series	data	since	phytoplankton	generation	times	are	
much	less	than	one	month.	

Species	distribution	models	(SDMs)	or	bio-climate	envelope	models	can	be	based	on	
statistical	tools	such	as	generalized	linear	models	(GLMs	(Guisan	et	al.	1999)),	non-
parametric	statistical	approaches	such	as	generalized	additive	models	(GAMs,	e.g.,	(Xiao	et	
al.	2016)),	or	more	complex	machine	learning	methods	such	as	random	forests	(Evans	et	al.	
2011)	or	maximum	entropy	methods	(Elith	et	al.	2011).	They	can	use	time-series	data	or	
any	coincident	species	and	environment	data.	The	BioMod	approach	combines	many	of	
these	types	of	methods	in	an	effort	to	test	for	robustness	of	the	SDMs	(Thuiller	et	al.	2013;	
Thuiller	et	al.	2009).	These	methods	are	generally	non-mechanistic,	although	the	predictor	
variables	incorporated	into	the	models	can	be	clearly	linked	to	mechanisms.	In	general,	
SDMs	are	designed	for	prediction	of	species	or	functional	type	presence	or	abundance	
rather	than	for	estimation	of	traits	but	the	prediction	can	be	used	to	generate	a	description	
of	the	niche	(see	Box	1).	In	this	way	SDMs	provide	the	end	product	of	what	trait-based	
models	are	designed	to	produce:	an	estimation	of	how	environmental	conditions	affect	
presence	and	abundance.	Below	we	provide	examples	of	how	phytoplankton	functional	
type	niches	can	be	derived	from	field	data	and	provide	new	insight	into	niche	
differentiation	across	functional	types	and	the	evolutionary	capacity	of	phytoplankton	
niches	to	adapt	to	climate	forcing	on	decadal	scales.	

We	have	used	a	maximum	entropy	approach	(MaxEnt)	to	develop	SDMs	and	extract	
multivariate	niches	for	119	species	of	phytoplankton	(diatoms	and	dinoflagellates)	from	60	
years	of	data	collected	by	the	North	Atlantic	Continuous	Plankton	Recorder	program	(CPR)	
conducted	by	the	Sir	Alister	Hardy	Foundation	for	Ocean	Sciences	(Irwin	et	al.	2012)	and	
67	species	from	Station	Cariaco	over	15	years	(Irwin	et	al.	2015).	MaxEnt	is	a	machine-
learning	statistical	method	that	can	be	used	to	estimate	the	probability	that	a	species	is	
present	under	a	given	set	of	environmental	conditions	(Elith	et	al.	2011;	Phillips	and	Dudík	
2008).	MaxEnt	is	notable	because	it	operates	on	species	occurrence	data,	not	abundance	or	
biomass	data,	and	it	is	designed	to	not	require	knowledge	of	conditions	under	which	the	
species	is	absent.	This	is	particularly	important	for	time-series	such	as	the	phytoplankton	
presence	and	absence	data	in	the	CPR	dataset	because	biomass	loading	on	the	sampling	silk	
of	the	CPR	sampler	is	variable	and	known	to	affect	detectability	of	some	species.	The	
probability	of	a	species	is	present	as	a	function	of	environmental	conditions	can	be	
condensed	into	summary	statistics	such	as	the	mean	of	the	niche	(Irwin	et	al.	2012,	Box	2).	
A	similar	analysis	has	been	done	on	the	MAREDAT	database	that	spans	more	taxonomic	
groups	and	a	larger	geographic	region	(Brun	et	al.	2015;	Buitenhuis	et	al.	2013).	We	found	
diatoms,	compared	to	dinoflagellates,	are	more	likely	to	be	found	in	colder,	more	nutrient	
rich	water	with	lower	light	levels	and	deeper	mixed	layers	both	in	the	North	Atlantic	and	at	
the	CARIACO	time	series	station	in	the	Caribbean	(Irwin	et	al.	2012;	Mutshinda	et	al.	2013,	
Fig.	2).	The	functional-type	level	differences	in	niche	appear	to	be	robust	across	regions	
and	investigators	(Brun	et	al.	2015;	Irwin	et	al.	2015;	Mutshinda	et	al.	2013).		These	
analyses	indicate	that	there	are	many	distinct	niches	for	phytoplankton,	but	that	species	
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belonging	to	the	same	phylum	or	functional	type	tend	to	have	more	similar	niches	than	
species	from	different	phyla	or	functional	types.	A	number	of	species	within	each	of	the	
functional	types	have	niches	more	similar	to	other	functional	types,	and	within	a	functional	
type	niches	of	individual	species	do	often	overlap,	but	there	are	many	species	with	narrow	
niches	quite	distinct	from	other	species.		Once	the	realized	or	fundamental	environmental	
niches	from	phytoplankton	species	have	been	identified	they	can	be	used	to	project	how	
species	and	functional	type	biogeography	may	change	with	climate	over	the	next	decades	
to	centuries.		Our	projections	indicate,	for	example,	that	climate	change	over	the	next	
century	will	stimulate	many	species	to	migrate	northeast	in	the	North	Atlantic	(Barton	et	al.	
2015).	
	

Are	phytoplankton	niches	stable	over	time?		
Statistical	analysis	of	natural	populations	yields	realized	niches	that	can	be	quite	

different	from	the	fundamental	niches	of	the	same	species	as	measured	in	the	lab,	one	
species	at	a	time.	These	differences	can	be	due	to	interactions	between	species,	the	absence	
of	part	of	the	fundamental	niche	from	the	habitat	studied,	or	even	dispersal	limitation.	Any	
of	these	factors	could	change	over	time	or	as	the	environment	changed,	so	it	is	reasonable	
to	ask	if	realized	niches	are	stable	as	the	environment	changes.	In	addition,	since	
phytoplankton	have	large	population	sizes,	standing-stock	diversity,	and	short	generation	
times,	they	have	a	large	evolutionary	potential,	and	changes	in	the	realized	niches	could	be	
due	to	evolution.	Station	Cariaco,	in	the	Caribbean	Sea	is	an	ideal	location	to	test	the	
temporal	stability	of	realized	niches	for	phytoplankton.	Unlike	the	North	Atlantic	CPR	for	
which	we	used	climatological	environmental	data,	the	Station	Cariaco	time-series	has	
simultaneous	monthly	observations	of	temperature,	salinity,	and	macronutrient	
concentrations.	These	data	document	an	increase	in	the	mean	upper	mixed	layer	
temperature	of	about	1°C,	a	small	increase	in	mean	irradiance	in	the	mixed	layer,	and	a	
pronounced	increase	in	the	number	of	months	with	very	low	nitrate	concentration	in	the	
sea	surface	over	the	past	15	years	(Taylor	et	al.	2012).		We	have	used	MaxEnt	and	
hierarchical	Bayesian	models	to	identify	the	niches	of	the	dominant	phytoplankton	species	
at	Station	Cariaco	(Irwin	et	al.	2015;	Mutshinda	et	al.	2013)	and	to	test	if	the	realized	niches	
of	phytoplankton	species	have	been	constant	or	if	they	have	changed	over	the	last	15	years.	
Over	a	decadal	scale,	temperature	and	irradiance	niches	tracked	changes	in	the	
environment,	but	for	most	species,	the	nitrate	niches	remained	fixed	despite	a	marked	
change	in	mean	nitrate	conditions	(Irwin	et	al.	2015).	Phytoplankton	realized	niches	should	
not	be	assumed	to	be	stable,	and	evolutionary	changes	in	phytoplankton	functional	traits	
should	be	considered	in	climate	and	biogeochemical	projections	that	extend	more	than	a	
decade	into	the	future.		
	

Should	we	model	functional	types	or	individual	species?		
Most	studies	incorporating	phytoplankton	functional	types	simply	assume	that	

species	can	be	naturally	grouped	into	functional	types.	Few	studies	have	explicitly	tested	
how	well	functional	types	represent	individual	species	within	the	functional	grouping.		
Neutral	theory	can	be	used	to	test	if	individual	species	dynamics	are	consistent	with	the	
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average	functional	type	dynamics.		In	recent	years	a	neutral	theory	of	biodiversity	and	
community	dynamics	has	been	explored	in	stark	contrast	to	niche	models	(Hubbell	2001).		
The	neutral	theory	hypothesizes	that	community	structure	is	determined	by	dispersal	and	
random	fluctuations	in	abundance	rather	than	a	filtering	of	species	by	environmental	
conditions.	If	the	biomass	dynamics	of	a	species	is	a	random	walk	within	the	functional	
type	this	indicates	the	species	behaves	like	the	average	of	the	functional	type	(See	Box	3).	If	
the	biomass	dynamics	of	a	species	is	not	a	random	walk,	we	conclude	that	the	species	does	
not	vary	neutrally	within	its	functional	type.	

We	used	seven	years	of	weekly	data	on	57	diatom	species	and	17	dinoflagellate	
species	with	coincident	environmental	data	from	the	L4	time	series	from	the	Western	
Channel	Observatory	(Plymouth,	UK)	to	evaluate	if	a	simple	trait	based	model	could	predict	
week-to	week	changes	in	the	aggregate	biomass	in	diatoms	and	dinoflagellates	and	if	the	
biomass	dynamics	of	individual	diatom	and	dinoflagellate	species	were	neutral,	i.e.,	random	
changes	within	their	functional	type.	We	found	a	simple	set	of	functional	traits	(maximum	
growth	rate	modified	by	irradiance,	temperature	and	a	density	dependent	loss	rate),	with	
distinct	values	for	the	diatoms	and	the	dinoflagellates,	describes	the	vast	majority	(96%)	of	
the	temporal	variation	in	biomass	for	those	two	functional	types	(Mutshinda	et	al.	2016).		
On	average	the	diatoms	had	higher	biomass	accumulation	under	lower	temperatures	and	
irradiances	than	the	dinoflagellates	at	the	L4	site.	

We	found	that	a	few	species	had	strongly	neutral	dynamics,	but	for	most	species,	
their	dynamics	were	neutral	within	their	functional	type	biomass	envelope	about	half	the	
time.	The	neutral	theory	has	also	been	tested	for	phytoplankton	along	the	Atlantic	
Meridional	Transect	(AMT).	Phytoplankton	communities	along	the	AMT	also	appear	to	be	
partially	determined	by	environmental	filtering	and	partially	by	neutral	dynamics	at	the	
functional	type	level	(Chust	et	al.	2013),	although	the	explanatory	power	of	both	
mechanisms	was	limited	in	this	case.	Taken	together	these	results	mean	that	while	there	
are	differences	in	traits	from	species	to	species	within	phytoplankton	functional	types,	
most	species	behave	neutrally	within	their	functional	type	most	of	the	time.		In	other	words	
the	majority	of	species	within	their	functional	types	are	well	represented	by	average	trait	
values	estimated	from	aggregate	biomass,	although	variability	at	the	species	level	means	
that	biomass	of	individual	species	may	be	difficult	to	predict.		

These	results	indicate	that	phytoplankton	species	naturally	cluster	into	
taxonomically	defined	phytoplankton	functional	types	due	to	a	similarity	in	traits	arising	
from	a	shared	phylogenetic	history.		It	is	easier	to	predict	changes	in	abundance	of	
phytoplankton	functional	types	than	the	biomass	of	individual	species	within	the	functional	
types.	These	results	suggest	that	for	broad-scale	ecological	questions	it	may	be	best	to	
model	phytoplankton	communities	at	the	functional-type	level	than	at	the	species	level	
because	the	extra	trait	values	required	to	develop	a	species	model	are	not	needed	to	obtain	
predictions	about	functional	types.	Furthermore	this	approach	presents	a	straightforward	
way	to	estimate	the	trait	values	of	a	functional	type	directly	from	community-level	data	in	
natural	populations	(Mutshinda	et	al.	2016),	rather	than	the	dubious	practices	of	selecting	
a	single	representative	species	or	averaging	traits	from	several	representative	species.	
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A	way	forward	
Functional	types	are	used	to	gather	many	phytoplankton	species	into	a	small	

number	of	categories	and	to	focus	attention	on	functional-type	level	differences	in	
physiology,	biogeography,	ecological	function,	and	biogeochemical	roles.	Analyses	and	
projections	using	phytoplankton	functional	types	are	generally	more	informative	and	more	
robust	than	approaches	that	use	species.	Functional	types	provide	the	joint	benefits	of	
better	predictions,	simpler	data	requirements,	and	reduced	complexity.	

The	reasons	for	the	relative	success	of	the	functional	type	approach	compared	to	
individual	species	models	for	predicting	biogeography,	productivity,	and	biogeochemical	
cycles	are	not	completely	clear.	Phytoplankton	communities	have	complex	dynamics,	and	
we	often	lack	information	about	the	physical	and	chemical	data	affecting	the	maximum	and	
realized	growth	rate	and	about	the	grazer	community	and	other	factors	determining	loss	
rates.	Averaging	over	species	in	a	functional	type	may	remove	the	need	for	some	of	the	
detailed	data	we	lack	and	may	be	sufficient	for	many	relevant	ecological	and	
biogeochemical	scale	questions.	The	dominant	species	within	a	functional	type	may	be	
similar	enough	to	each	other	that	it	is	not	necessary	to	resolve	the	species-level	differences	
for	some	questions.	

To	make	functional	type	modeling	possible,	researchers	attempt	to	determine	
appropriate	trait	values	for	a	whole	functional	type.	Traits	with	binary	or	categorical	values	
(e.g.,	presence	or	absence	of	silicification,	calcification,	N2-fixation)	may	be	the	most	suited	
to	defining	functional	types	as	they	are	more	highly	conserved	within	evolutionary	lineages	
than	many	of	the	quantitative	traits.		Average	trait	values	for	quantitative	traits	(e.g.,	
maximum	growth	rate,	half-saturation	constants)	are	different,	in	some	average	sense,	
across	some	functional	types,	but	the	values	of	many	traits	vary	by	more	than	10-fold	
across	species	within	a	functional	type.	Some	models	make	realistic	large-scale	predictions	
of	major	phytoplankton	functional	types,	but	the	vastness	of	the	ocean	means	that	they	are	
difficult	to	validate	with	sufficient	data.	Models	differ	in	the	functional	types,	the	traits,	and	
the	trait	values.	Trait	values	used	in	these	models	are	often	tuned	to	available	observations,	
which	may	account	for	similarities	in	predictions	despite	the	variation	in	trait	values	used	
across	models.	Structural	differences	exist	among	models,	which	further	complicates	
comparisons	of	models	and	trait	values	with	each	other	and	with	trait	values	derived	from	
lab	experiments.	Since	the	quantitative	trait	values	are	crucial	parameters	in	
phytoplankton	functional	type	models,	we	need	a	better	understanding	of	trait	variation	
and	co-variation	within	and	among	functional	types.	Much	more	work	could	be	done	to	
identify	the	fundamental	traits	most	suitable	for	specific	research	questions	and	to	explore	
the	consequences	of	different	model	formulations	and	the	sensitivity	of	results	to	model	
formulation	and	trait	values.	

We	have	identified	several	challenges	for	researchers	seeking	to	use	phytoplankton	
functional	types	and	functional	traits	in	models.	Differences	between	trait	values	in	the	lab	
compared	to	values	used	in	models	and	variation	in	values	used	in	models	suggests	that	we	
are	still	struggling	to	find	a	suitable	representation	of	traits	and	trait	values	for	functional	
types	in	models.	Modeling	efforts	have	concentrated	on	incorporating	trait	values	we	know	
the	most	about,	but	we	have	not	spent	enough	effort	determining	which	traits	are	crucial	
for	ecological	and	biogeochemical	modeling.	Sensitivity	analyses	systematically	and	
quantitatively	explore	the	consequences	of	varying	model	formulations	and	parameter	
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values	and	can	be	used	to	assess	the	consequences	for	predictions	of	our	uncertainty	for	
specific	trait	values.		

Each	research	question	has	its	own	requirements	for	spatial	and	temporal	scales	
and	these	influence	how	predictive	models	should	be	formulated	and	perhaps	which	traits	
will	be	most	relevant.	Depending	on	the	time-scale,	physiological	acclimation	or	
evolutionary	adaptation	may	be	very	important,	but	we	know	very	little	about	how	to	best	
incorporate	these	processes	into	models.		In	highly	variable	natural	environments,	
physiological	time-scales	of	acclimation	may	be	important	for	projecting	community	
dynamics	over	days	to	weeks,	but	little	work	has	been	done	to	connect	physiological	
acclimation	studied	in	the	lab	to	models	describing	natural	populations.	Lab	experiments	
can	demonstrate	the	capacity	for	phytoplankton	species	to	adapt	evolutionarily	to	changes	
in	their	environment	and	this	capacity	needs	to	be	connected	to	long-term	field	data	to	
determine	the	evolutionary	potential	of	natural	populations.	Each	of	these	challenges	is	an	
opportunity	for	new	insights	and	creative	collaborations.	

There	is	still	much	to	be	learned	about	the	niches	and	traits	of	phytoplankton	
species	and	functional	types	from	analyses	of	field	data.	New	analyses	of	field	data	may	be	
able	to	identify	the	key	minimum	set	of	traits	and	key	species	within	functional	types	that	
merit	further	intensive	laboratory,	mesocosm,	and	modeling	work.	Comparisons	of	trait	
values	from	time-series	studies	with	trait	values	determined	in	the	lab	on	species	isolated	
from	these	time	series	could	provide	valuable	insight	into	the	relationship	between	the	
fundamental	and	realized	niches	of	ecologically	dominant	phytoplankton	species	and	how	
to	most	appropriately	assign	trait	values	to	phytoplankton	functional	types.	Mesocosms	
incorporating	these	species	could	be	integrated	with	modeling	efforts	to	test	model	
formulations	and	assess	the	importance	of	individual	traits	and	trait	variation	to	the	
success	of	model	outputs.		A	tighter	integration	of	statistical	analyses	of	field	data,	models,	
and	lab	studies	will	certainly	improve	our	definition	of	phytoplankton	functional	types	and	
the	value	of	phytoplankton	functional	type	modeling.	
	

Summary	
	
1.	Phytoplankton	functional	types	are	aggregations	of	species	into	groups	that	perform	
broadly	similar	ecological	or	biogeochemical	functions.	
	
2.	Trait	values	for	individual	phytoplankton	species	measured	in	lab	may	not	be	generally	
representative	of	the	trait	values	for	the	corresponding	functional	type	in	field	conditions	
and	may	vary	over	time	and	region.	
	
3.	We	have	insufficient	data	to	reliably	quantify	trait	values	for	the	wide	diversity	of	
phytoplankton	species.		
	
4.	A	possible	solution	is	to	directly	estimate	trait	values	for	phytoplankton	functional	types	
from	field	data	using	statistical	modeling	tools.	
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5.	Evidence	suggests	that	ecological	modeling	of	phytoplankton	functional	types	may	be	
more	successful	than	efforts	to	model	individual	species.	Trait	modeling	of	functional	types	
rather	than	species	is	likely	to	be	the	best	way	forward.	
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Table	1	
Common	phytoplankton	functional	types	and	taxonomic	groupings.	
Functional	types	can	be	defined	on	the	basis	of	biogeochemical	or	ecological	function.	Both	
approaches	tend	to	identify	types	that	are	largely	described	by	taxonomic	groupings.	For	
some	types,	one	or	a	few	taxa	are	commonly	used	as	essentially	equivalent	to	the	entire	
type.	Not	all	groupings	are	always	used	and	a	taxonomic	group	can	fall	into	more	than	one	
biogeochemical	or	ecological	functional	type.	Picoeukaryotes	and	Phytoflagellates	are	
composed	of	multiple	taxonomic	groups.	
	
Biogeochemical	
function	

Ecological	
function	

Taxonomic	
groupings	

Exemplar	
species	

N2-fixers	 Source	of	new	
nitrogen	

Cyanobacteria	 Trichodesmium	

Silicifiers	 Bloom	formers,	
high	export	and	
trophic	transfer	
efficiency		

Diatoms	 Many	genera:	
Chaetoceros,	
Skeletonema,	
Thalassiosira	

Calcifiers	 Bloom	formers	 Coccolithophorids	 Emiliania	
huxleyi	

DMS(P)	
producers	

Climate	regulation	 Haptophytes	
	

E.	huxleyi,	
Phaeocystis	

Small	cells	 Nutrient	recycling;	
low	export	and	
trophic	transfer	
efficiency	

Cyanobacteria,	
Picoeukaryotes,	
Phytoflagellates	

Prochlorococcus,	
Synechococcus;	
Ostreococcus	

Large	cells	 High	export	and	
trophic	transfer	
efficiency	

Diatoms,	
Dinoflagellates	
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Table	2.	
Examples	of	common	parameters	and	equations	describing	growth	and	loss	
processes	in	phytoplankton.	(See	Fig.	1.)	
	
Equation	or	Symbol	 Description	 Fig.	1	

Panel	
V	=	Vmax	N	/	(Km	+	N)	 Michaelis-Menten	uptake	kinetics	 A	
V	 Uptake	rate	 A	
Vmax	 Maximum	uptake	rate	 A	
N	 Concentration	of	nutrient	in	growth	medium	 A	
Km	 Half-saturation	constant	for	nutrient	uptake		 A	
µ	=	µ’max	(Q–Qmin)/Q	 Droop	formulation	of	maximum	growth	rate	based	on	

internal	nutrient	quota	
B	

µ	 Growth	rate	 B	
µ’max	 Theoretical	maximum	growth	rate	at	infinite	quota	 B	
Q	 Cell	quota	for	resource	that	limits	growth	 B	
Qmin	 Minimum	cell	quota	for	positive	growth	rate	 B	
P	=	Pmax	tanh(aϕE/Pmax)	 Photosynthetic	rate	as	a	function	of	irradiance	 C	
P	 Photosynthetic	rate	 C	
Pmax	 Maximum	photosynthetic	rate	at	saturating	irradiance	 C	
a	 Absorption	coefficient	 C	
ϕ	 Quantum	yield	of	photosynthesis	 C	
E	 Growth	irradiance	 C	
µmax	=	0.85e0.0633T	 Eppley	curve	for	maximum	phytoplankton	growth	rate	

across	many	species	
D	

µmax	 Maximum	growth	rate	 D	
T	 Temperature	 D	
µ	=	aT	e–b(T–T0)c–	τ2)/	τ1		 Species-specific	curve	for	growth	rate	as	a	function	of	

temperature	
	

D	

τ1	=	0.33,	τ2	=	0.30,	
a=1.04,	b=1/1000,	c=4	

Shape	factors	and	constants	 D	

T0	 Reference	temperature	characterizing	species-specific	
optimum	temperature	for	growth		

D	

I	=	aPk	/	(1+	ahPk)	 Ingestion	rate	of	phytoplankton	(prey)	by	predators	as	
a	function	of	prey	density	(Holling	type	2,	3	functional	
response)	

E	

I	 Ingestion	rate	 E	
a	 Attack	rate	 E	
P	 Prey	number	density	 E	
k	 Shape	parameter	(Holling	type,	see	Fig.	1	caption)	 E	
h	 Time	for	prey	to	process	prey	(handling	time)		 E	
µ	=	aVb	 Allometric	equation	describing	size-scaling	of	 F	
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log	µ	=	log	a	+	b	log	V	 metabolic	rates	as	a	function	of	cell	volume	(two	
equivalent	formulations)	

a	 Scaling	factor	to	set	growth	rate	at	a	reference	size	
(V=1)	

F	

V	 Cell	volume	 F	
b	 Size-scaling	exponent	(slope	on	the	line	in	panel	E),	

commonly	–1/4	for	biomass-normalized	rates	and	¾	
for	unnormalized	rates.	See	Sommer	et	al.	(2016)	for	a	
recent	review	of	variability	in	b.	

F	
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Table	3.	
Summary	of	selected	trait	values	from	literature	surveys	and	biogeochemical	
functional	type	models.		
Trait	values	from	lab	studies	shown	in	bold	are	from	Litchman	et	al.	(2006).	Other	values	
(not	in	bold)	are	those	used	in	phytoplankton	functional	type	models	developed	by	
Dutkiewicz	et	al.	(2009);	Gregg	et	al.	(2003);	Le	Quéré	et	al.	(2005);	Merico	et	al.	(2004);	
Moore	et	al.	(2002);	Sarmiento	et	al.	(2010).	Maximum	growth	rates	are	reported	at	30°C	
by	Gregg	et	al.	(2003)	(the	highest	values,	except	for	diatoms)	and	at	0°C	by	Le	Quéré	et	al.	
(2005)	(the	lowest	values).	
	

Parameter	 Units	 Diatoms	 Cocco-
lithophores	

Chlorophytes	
(Greens)	 N2	fixers	

Cyano-
bacteria	

µmax	 d-1	 0.6,	1.2,	1.47,	
1.7,	2,	2.6,	3	

0.2,	1.11,	
1.15,	1.51	

1.45,	1.73	 0.04,	0.2,	
0.4	

0.6,	1.34	

Km	NO3	 µmol	L-1	 0.5,	1.0,	1.25,	
1.5	

0.2,	0.5,	1.5	 0.75,	3.41	 	 0.5	

Km	NH4	 µmol	L-1	 0.05,	0.1,	1.1	 0.05,	0.2	 0.08	 		 		

Km	PO4	 µmol	L-1	 0.00125,	0.03,	
0.075,	0.65	

0.004,	0.4	 0.71	 0.005,	
0.03,	
0.075	

0.019	

Km	SiO2	 µmol	L-1	 0.2,	1,	3.5,	4,	5	 		 		 		 		

Km	Fe	 nmol	L-1	 0.12,	0.3,	3.3	 0.02,	0.08,	
2	

0.10,	4	 0.08,	0.1,	
0.12	

0.10	

Km	light		
(=	Ek)	

mol	m-2	d-
1	

5	 7.78	 7.78	 		 		
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Figure	1.	
Common	parameterizations	of	processes	affecting	growth	and	loss	rates	used	to	
define	phytoplankton	functional	traits.	
(A)	Michaelis-Menten	uptake	kinetics	for	nutrients.	(B)	The	Droop	model	for	the	effect	of	
internal	nutrient	quota	on	growth	rate.	(C)	Photosynthetic	rate	as	a	function	of	irradiance.	
(D)	The	effect	of	temperature	on	growth	rate	illustrated	as	the	Eppley	curve	for	maximum	
growth	rate	across	phytoplankton	species	(bold	line)	and	three	species	temperature	
responses	for	species	with	different	temperature	optima	(thin	lines).	(E)	Holling-type	
grazing	rates	as	a	function	of	prey	density	(type	II,	k=1,	bold	line;	type	III,	k=2,	dotted	line).	
(F)	Allometric	scaling	of	biomass-normalized	growth	rate.		Many	other	formulations	of	
these	functions	have	been	used	in	the	literature	for	each	process.	See	Table	3	for	a	
description	of	equations	and	symbols.	
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Figure	2.		
Mean	niches	estimated	from	time-series	data.	
Mean	niches	derived	from	MaxEnt	species	distribution	models	for	69	diatom	species	and	
50	dinoflagellate	species	from	the	North	Atlantic	Continuous	Plankton	Recorder.	We	
summarize	the	niche	for	each	species	by	its	mean.	Left	panel:	the	reciprocal	of	mixed	layer	
depths	versus	temperature.	Right	panel:	nitrate	concentration	versus	mean	irradiance	in	
the	mixed	layer.	The	traits	separate	the	two	functional	types,	diatoms	(open	squares,	light	
color)	and	dinoflagellates	(filled	squares,	darker	color),	although	there	is	a	great	deal	of	
variation	within	the	functional	types.	Error	bars	are	95%	confidence	intervals	on	the	
means	estimated	by	bootstrap	resampling.	For	full	details	see	Irwin	et	al.	(2012).	
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Box	1	
What	is	a	niche?	How	are	niches	and	traits	connected?	

Current	definitions	of	a	species’	niche	describe	it	as	the	set	of	environmental	
conditions,	or	hypervolume,	where	the	mean	fitness	of	individuals	of	that	species	is	greater	
than	one.	That	is,	the	niche	is	the	set	of	environmental	conditions	where	the	species	can	
persist.	This	formulation	is	due	to	Hutchinson	(1957;	1978)	and	differs	considerably	from	
earlier	concepts	developed	by	Gause,	Elton,	and	Grinnell.	Before	Hutchinson,	the	niche	was	
not	a	purely	abstract	set	of	environmental	conditions,	but	was	tied	to	a	physical	location,	so	
that	two	coexisting	species	could	literally	occupy	the	same	niche.	Hutchinson	identified	the	
physical	space	occupied	by	a	species	as	its	biotope.	The	mapping	of	niches	onto	physical	
spaces	(the	biotope)	and	the	inverse	problem	of	identifying	niches	from	biotopes	is	the	
central	goal	of	species	distribution	modeling	(Colwell	and	Rangel	2009).	

Hutchinson	distinguished	the	fundamental	from	the	realized	niche.	The	fundamental	
niche	is	the	set	of	conditions	in	which	a	species	can	persist	without	considering	
interactions	with	other	species.	For	phytoplankton,	this	is	the	niche	commonly	measured	in	
the	lab	from	uni-algal	cultures.	The	realized	niche	incorporates	the	effects	of	interactions	
with	other	species.	For	example,	two	species	with	overlapping	fundamental	niches	may	
differ	in	their	competitive	ability	where	niches	overlap,	and	one	species	may	exclude	the	
other	from	some	of	its	niche,	or	the	two	species	may	coexist.	Facilitation	between	species	
may	even	expand	the	realized	niches	beyond	the	fundamental	niches	of	either	species	
(Bruno	et	al.	2003).	The	realized	niche	can	also	be	reduced	relative	to	the	fundamental	
niche	because	of	dispersal	limitation	or	the	absence	from	the	environment	of	some	part	of	
the	fundamental	niche.	This	last	reason	presents	a	particular	challenge	since	future	oceans	
are	likely	to	contain	combinations	of	environmental	conditions	present	nowhere	in	today’s	
ocean;	some	of	these	conditions	may	be	part	of	a	species’	fundamental	niche,	but	can’t	be	
part	of	any	realized	niche	measured	today.	

Mechanistic	models	based	on	traits	can	be	used	to	predict	the	niche	and	biotope	of	a	
species,	but	the	model	must	describe	the	fitness	of	individuals	and	how	they	interact	with	
their	environment	and	other	organisms	sharing	the	same	habitat	(Kearney	2006;	Kearney	
et	al.	2010).		As	we	explain	in	the	main	text,	this	plan	may	be	difficult	for	individual	species	
of	phytoplankton,	because	we	lack	considerable	information	both	about	species’	traits	and	
species	interactions.	While	the	trait-based	modeling	approach	is	very	attractive,	it	is	not	
clear	whether	fundamental	niches	and	traits	from	lab	studies	or	empirical	niches	from	
species	distribution	models	will	be	most	useful.	It	is	probably	best	to	see	them	as	
complementary.	When	more	phytoplankton	trait	values	are	known,	it	may	be	possible	to	
adapt	a	hybrid	“trait	niche”	approach	now	being	explored	for	plants	(Violle	and	Jiang	
2009).	
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Box	2.		
Cartoon	of	phytoplankton	niches	in	three	dimensions.		
The	niches	of	four	hypothetical	species	(ellipsoids)	for	two	different	functional	types	(dark	
and	light	shading)	are	shown	as	a	function	of	three	environmental	conditions	
(temperature,	irradiance,	and	nitrate	concentration;	arbitrary	scales	for	each).	Species	
frequently	exhibit	considerable	overlap	in	niche	space	and	a	key	element	of	the	functional	
type	approach	is	that	niches	of	species	from	the	same	functional	type	are	more	similar	to	
each	other,	on	average,	than	species	from	different	functional	types.	
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Box	3.	Random	walks	and	neutral	theory	
	

The	idea	of	a	random	walk	originated	from	observations	of	Brownian	motion:	
particles	moving	in	many	different	directions	as	a	result	of	a	vast	number	of	random	
collisions.	Mathematically	a	random	walk	along	one	dimension	is	a	sequence	of	random	
variables	representing	the	position	of	a	particle	that	moves	one	step	in	either	direction	at	
each	time	step.	The	random	variables	are	memoryless	(the	defining	characteristic	of	a	
Markov	process),	so	that	the	direction	of	movement	does	not	depend	on	the	past	history	of	
the	process.	Four	sample	random	walk	trajectories	starting	at	the	same	location	are	
illustrated.	

  
A	random	walk	can	be	used	as	a	model	of	species	population	dynamics	consistent	

with	the	neutral	theory	of	ecology.	Species	are	neutral	if	their	populations	fluctuate	without	
regard	to	their	trait	values	or	the	environmental	conditions,	and	this	leads	to	species	
abundance	following	a	random	walk.	For	phytoplankton,	we	know	that	certain	
environmental	conditions	favor	one	functional	type	over	another,	for	example,	diatoms	
over	dinoflagellates.	So	the	community	biomass	dynamics	of	functional	types	are	not	
neutral.	Individual	species	may	still	have	neutral	biomass	dynamics	within	its	functional	
type,	for	example	many	diatom	species	may	exhibit	random	walk	behavior	relative	to	the	
total	biomass	of	diatoms.	We	refer	to	this	restricted	example	of	neutrality	as	species	
neutrality	relative	to	the	biomass	envelope	of	its	functional	type.	
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