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Abstract

The three-dimensional conformation of genomes is an essential com-
ponent of their biological activity. The advent of the Hi-C technology
enabled an unprecedented progress in our understanding of genome struc-
tures. However, Hi-C is subject to systematic biases that can compromise
downstream analyses. Several strategies have been proposed to remove
those biases, but the issue of abnormal karyotypes received little atten-
tion. Many experiments are performed in cancer cell lines, which typi-
cally harbor large-scale copy number variations that create visible defects
on the raw Hi-C maps. The consequences of these widespread artifacts
on the normalized maps are mostly unexplored. We observed that cur-
rent normalization methods are not robust to the presence of large-scale
copy number variations, potentially obscuring biological differences and
enhancing batch effects. To address this issue, we developed an alter-
native approach designed to take into account chromosomal abnormal-
ities. The method, called OneD, increases reproducibility among repli-
cates of Hi-C samples with abnormal karyotype, outperforming previous
methods significantly. On normal karyotypes, OneD fared equally well as
state-of-the-art methods, making it a safe choice for Hi-C normalization.
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OneD is fast and scales well in terms of computing resources for resolu-
tions up to 1 kbp. OneD is implemented as an R package available at
http://www.github.com/qenvio/dryhic.

1 Introduction

One of the crown achievements of modern biology was to realize that genomes
have an underlying three-dimensional structure contributing to their activity
(Rowley and Corces, 2016; Dekker and Mirny, 2016; Pezic et al., 2017). In mam-
mals, this organization plays a key role in guiding enhancer-promoter contacts
(De Laat and Duboule, 2013), in V(D)J recombination (Choi and Feeney, 2014)
and in X chromosome inactivation (Galupa and Heard, 2015). A significant
breakthrough towards this insight was the development of the high throughput
chromosomal conformation capture technology (Hi-C), assaying chromosomal
contacts at a genome-wide scale (Lieberman-Aiden et al., 2009). Nowadays,
exploring the spatial organization of chromatin has become a priority in many
fields and Hi-C has become part of the standard molecular biology toolbox
(Dekker et al., 2013).

Contrary to the precursor technologies 3C, 4C and 5C (Dekker et al., 2002;
Simonis et al., 2006; Dostie et al., 2006; de Wit and de Laat, 2012), Hi-C interro-
gates all possible pairwise interactions between restriction fragments. However,
this does not guarantee that the method has no bias. On the contrary, local
genome features such as the G+C content, the availability of restriction enzyme
sites and the mappability of the sequencing reads have been shown to impact
the results (Yaffe and Tanay, 2011), in addition to general experimental biases
such as batch effects. It is thus important to normalize Hi-C data in order to
remove biases and artifacts, so that they are not confused with biological signal.

Several methods have been proposed to remove biases in Hi-C experiments
(Schmitt et al., 2016). The first strategy is to model biases explicitly from
a defined set of local genomic features, such as the G+C content. This ap-
proach is used in the method of Yaffe and Tanay (2011) and in Hicnorm by Hu
et al. (2012). The second strategy is to implicitly correct unknown biases by
enforcing some regularity condition on the data. This approach is used in the
Iterative Correction and Eigenvector decomposition method (ICE ) of Imakaev
et al. (2012), whereby the total amount of contacts of every bin is imposed to be
the same. ICE is currently the most popular method, due in part to its speed.

Neither of these strategies were designed for cell types with karyotypic aber-
rations, most common in cancer. Yet, Hi-C is very sensitive to aneuploidy,
copy number variations and translocations. Actually, these aberrations have so
much influence on the outcome that they can be used as signatureto re-assemble
the target genome (Korbel and Lee, 2013). An additional complication is that
karyotypic aberrations are not experimental biases, so it is unclear whether they
should be corrected at all or be considered part of the biological signal.

So far, the only attempt to address the issue was the chromosome-adjusted
Iterative Correction Bias method (caICB) of Wu and Michor (2016). However,
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caICB applies a uniform chromosome-wide copy number correction, effectively
excluding the numerous cases of partial aneuploidy and regional copy number
variations.

Here we propose OneD, a method to correct local chromosomal abnormalities
in Hi-C experiments. OneD explicitly models the contribution of known biases
via a generalized additive model. The normalized data is more reproducible
between replicates and across different protocols. Importantly, OneD is also
efficient when cells have a normal karyotype, where it performs as well as the
best normalization methods. Finally, the implementation is as fast as ICE and
it scales up to 1 kbp resolution with reasonable computing resources.

2 Methods

2.1 Model

The most common representation of Hi-C data is a contact matrix, obtained by
slicing the genome in n consecutive bins of fixed size (the resolution) and com-
puting the number of contacts between each pair of bins. The values are stored
in the cells of the contact matrix (xij), quantifying the interaction between the
two loci at positions i and j.

Our approach is to model the tally of contacts for each bin, thus reducing
the matrix to a one dimension score (hence the name OneD). We assume that
the total number of contacts per bin (ti) can be approximated by a negative
binomial distribution. This choice is sensible because the amount of contacts
is a discrete variable and because the negative binomial distribution allows for
overdispersion. We further assume that the explicit sources of bias have inde-
pendent contributions to the mean of the distribution for a given bin (λi).

Given that this relationship might not be linear (see for instance Figure 1A),
we allowed a smooth representation using thin plate penalized regression splines
(Wood, 2003) in a generalized additive model (Wood, 2011). The model can be
parametrized as

ti =
n
∑

j

xij ∼ NB(λi, θ)

log(λi) ∝
∑

k

fk(zk)

where xij is the raw number of contacts between bins i and j, and zk is the
additive bias of genomic feature k. The smooth functions {fk(·)} are estimated
jointly with the negative binomial dispersion parameter θ using the mgcv package
(Wood, 2011) of the R software (R Core Team, 2017).

Once the parameters of the model are determined, the estimated means {λi}
are rescaled to obtain a correction vector {λ′

i} that can be used to compute the
corrected counts (x̂ij).
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λ′

i =
λi

∑n

j λj/n

x̂ij =
xij

√

λ′

iλ
′

j

(1)

In line with previous methods (Yaffe and Tanay, 2011; Hu et al., 2012),
the default features used to fit the model are the local G+C content, the read
mappability and the content and number of restriction sites. The model and
the implementation can be modifed or extended with any user-provided genomic
features.

2.2 Copy number correction

Briefly, a hidden Markov model with emissions distributed as a Student’s t
variable is fitted on the corrected total amount of contacts per bin (λ′

i). The
model consists of 7 states that correspond to 1, 2, 3, 4, 5, 6 and 8 copies of
the target, for a total of 3 emission parameters (a single scaling parameter, a
single standard deviation and a single degree of freedom for all the states) and
21 transition parameters.

The model is fitted with the Baum-Welch algorithm (Baum and Petrie, 1966)
until convergence, following a previously described implementation (Filion et al.,
2010). The Viterbi path is then computed and corresponds to the inferred copy
number of each bin (ci).

A correction equal to the square root of the copy number is then applied to
the whole matrix. More specifically, each cell is updated to

x̂∗

ij =
x̂ij√
cicj

. (2)

2.3 Data sources

To test the correction of biases, we gathered a set of published (Le Dily et al.,
2014; ENCODE Project Consortium, 2012; Rao et al., 2014; Stadhouders et al.,
2017; Lin et al., 2012; Dixon et al., 2012) and unpublished Hi-C data of different
cell types and organisms (Table 2.3).

We used several experiments comprising T47D breast cancer cell lines (7
samples), K562 leukemia cell lines (4 samples), both with aberrant karyotypes;
and mouse primary B cells (6 samples ) and ES cells (7 samples), both with
normal diploid karyotypes. The experiments were carried out in different lab-
oratories, following either the original Hi-C protocol (Lieberman-Aiden et al.,
2009) or the newer in situ version (Rao et al., 2014), and using different re-
striction enzymes (DpnII, HindIII, MboI and NcoI). We also used array-based
copy-number segmentation of the two cell lines obtained from the COSMIC
database (Forbes et al., 2010).
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Sample ID Cell type Application RE Sequencing core Set(s) Source
dc3a1e069 51720e9cf T47D in situ Hi-C DpnII CRG T47D, K562 NA
b1913e6c1 51720e9cf T47D in situ Hi-C DpnII CRG T47D NA
dc3a1e069 ec92aa0bb T47D in situ Hi-C DpnII CRG T47D, K562 NA

HindIII T0 T47D dilution Hi-C HindIII CRG T47D SRR1054341
NcoI T0 T47D dilution Hi-C NcoI CRG T47D SRR1054343

ENCLB758KFU T47D dilution Hi-C HindIII UMass T47D ENCLB758KFU
ENCLB183QHG T47D dilution Hi-C HindIII UMass T47D ENCLB183QHG

HIC069 K562 in situ Hi-C MboI Baylor T47D, K562 SRR1658693
HIC070 K562 in situ Hi-C MboI Baylor T47D, K562 SRR1658694
HIC071 K562 in situ Hi-C MboI Baylor K562 SRR1658695,SRR1658696
HIC074 K562 in situ Hi-C MboI Baylor K562 SRR1658701,SRR1658702

b7fa2d8db bfac48760 B cell in situ Hi-C DpnII CRG mm10 GSE96611
fc3e8b36a 7bf1bf374 ES cell in situ Hi-C DpnII CRG mm10 GSE96611
b7fa2d8db 7284b867a B cell in situ Hi-C DpnII CRG mm10 GSE96611
fc3e8b36a 38bfd1b33 ES cell in situ Hi-C DpnII CRG mm10 GSE96611
b7fa2d8db 58e812fc2 B cell in situ Hi-C DpnII CRG mm10 GSE96611
fc3e8b36a c990a254e ES cell in situ Hi-C DpnII CRG mm10 GSE96611
b7fa2d8db 73f11d923 B cell in situ Hi-C DpnII CRG mm10 GSE96611
fc3e8b36a 4bf044f18 ES cell in situ Hi-C DpnII CRG mm10 GSE96611

GSM987817 B cell dilution Hi-C HindIII UCSD mm10 SRR543428-SRR543431
GSM987818 B cell dilution Hi-C HindIII UCSD mm10 SRR543432-SRR543442
GSM862720 ES cell dilution Hi-C HindIII LICR mm10 SRR443883-SRR443885
GSM862721 ES cell dilution Hi-C HindIII LICR mm10 SRR400251-SRR400256
GSM862722 ES cell dilution Hi-C NcoI LICR mm10 SRR443886-SRR443888

Table 1: Hi-C data sets used in this study. Sample ID: Unique sample identifier in the respective projects. Cell type: source of
the biological sample. Application: Hi-C protocol. RE: Restriction enzyme used for the digestion. Sequencing core: Laboratory
performing the experiment (CRG: Centre for Genomic Regulation; UMass: University of Massachusetts; Baylor: Baylor College
of Medicine; UCSD: University of California San Diego; LICR: Ludwig Institue for Cancer Research). Set(s): Sets in which
the sample was included (see text for detail). Source: SRA, GEO or ENCODE raw data identifier.
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All data were processed through a pipeline based on TADbit (Serra et al.,
2016). Briefly, after controlling the quality of FASTQ files, paired-end reads
were mapped to the corresponding reference genome (hg38 and mm10) taking
into account the restriction enzyme site. Non-informative contacts were removed
applying the following TADbit filters: self-circle, dangling-ends, error,
extra-dangling-ends, duplicated and random-breaks. For more details, see
the methods section of Stadhouders et al. (2017). In addition, the pipeline is
available from the supplementary material published by Quilez et al. (2017).

We developed the routines contained in the dryhic R package to efficiently
create sparse representations of contact matrices and further apply vanilla, ICE
and oneD corrections. HiTC (Servant et al., 2012) and HiCapp (Wu and Mi-
chor, 2016) were used to carry out the LGF and caICB corrections respectively.
All the results are based on a resolution of 100 kbp, but we found no major
differences at different resolutions (not shown).

2.4 Comparison of Hi-C matrices

There is no universally accepted standard to compare Hi-C matrices. The sim-
plest metric is the Spearman correlation applied to intra-chromosomal contacts
up to a given distance (5 Mb in what follows). The second option is to measure
the similarity of observed over expected contacts via the Pearson correlation up
to a given distance range. Compared to the first, this metric gives more weight
to changes occurring away from the diagonal. The third option is to compute
a correlation per distance stratum and then obtain a stratum-adjusted correla-
tion coefficient (SCC) as defined by Yang et al. (2017). Finally, the last option,
proposed by Yan et al. (2017) is to measure the Pearson correlation between
the last eigenvectors of the Laplacian of the Hi-C matrix. This approach bor-
rows the concepts of spectral clustering (Von Luxburg, 2007) and amounts to
comparing high level features of the matrix.

We defined three data sets to measure experimental reproducibility after
normalization: The first contained the samples from T47D plus two samples
from K562, the second contained the samples from K562 plus two samples from
T47D, the third contained all the mouse samples (see Table 2.3 for details).
Given a set of experiments and a metric, we first computed all pairwise combi-
nations between experiments and then classified the comparisons according to
the characteristics of each pair (cell type, protocol, batch and treatment).

To measure the gain or loss of similarity upon normalization, we compared
raw matrices to obtain a baseline. The differences with this baseline were es-
timated using a linear mixed model fitted with the lmer function of the lme4

R package (Bates et al., 2015), where the fixed effect was the normalization
method and the random effect was the chromosome. Receiver operating char-
acteristic (ROC) curves were computed using the ROCR package (Sing et al.,
2005).
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Figure 1: Total amount of contacts per bin. A. Non linear relationship between
the number of restriction sites and the total number of contacts per bin in
T47D. B. Total number of contacts per bin on chromosome 17 of T47D. The
brown line represents the raw signal, the blue line represents the signal after
bias correction, the black line represents the signal after bias and copy number
(CN) correction. The long arm of chromosome 17 (the region corresponding to
20-80 Mbp) is present in four copies, explaining that the signal is about twice
higher than for the short arm.

3 Results

3.1 Experimental bias correction

The principle of OneD is to explicitly model Hi-C biases on a single variable:
the total amount of contacts for each bin of the matrix (see 2.1 for detail).
The reason for this choice is that the total amount of contacts is approximately
proportional to the local copy number. For instance, a duplicated region in a
diploid genome will show on average a 50% increase in the number of contacts.
Discontinuities of the amount of contacts thus correspond to changes of the copy
number.

Experimental biases affect the total amount of contacts in a continuous but
not necessarily linear way. Figure 1A shows the relationship between the amount
of contacts and the number of restriction enzyme sites in T47D, a breast cancer
cell line with an aberrant karyotype. Four clouds are visible. Each corresponds
to sequences present in one to four copies. In all of them, the relationship flattens
as the number of restriction sites increases. To capture this relationship, OneD
fits a non-linear model between the total amount of contacts and the known
sources of bias (by default the G+C content, the number of restriction sites and
the mappability of the reads).

The experimental biases are estimated genome-wide and each cell of the
matrix is then corrected using equation (1). Note that the corrected amount of
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Figure 2: Pearson correlation between the total number of contacts per bin and
an independent estimation of the copy number (COSMIC). Left panel T47D
breast cancer cell line, right panel K562 leukemia cell line.

contacts is still proportional to the copy number. Figure 1B shows the corrected
number of contacts along chromosome 17 of T47D. OneD greatly reduces the
wiggling of the total amount of contacts (blue line).

In what follows, we benchmarkedOneD, against vanilla, ICE (Imakaev et al.,
2012), caICB (Wu and Michor, 2016) and the Local Genomic Features method
(LGF, Hu et al., 2012; Servant et al., 2012). The first three methods correct
biases implicitly, whereas the fourth method does it explicitly.

Given that our model is based on total number of contacts, we reasoned that
a preliminary test would be to check if the corrected number of contacts per
bin reflects the copy number (as measured by an independent technique such as
array-based copy-number segmentation). We tested the validity of this approach
against the Catalogue Of Somatic Mutations In Cancer (COSMIC, Forbes et al.,
2010). Figure 2 shows the Pearson correlation between the corrected number of
contacts and the copy number estimation for T47D and K562 (a leukemia cell
line with an aberrant karyotype). Similar results were obtained using Spearman
correlation (Supplementary Figure 1). All the methods except OneD decreased
the agreement between the signal and the copy number because they partially
corrected the discrepancy. In contrast, OneD enhanced the conformity of the
signal with the copy number. Not correcting for variable copy number at that
stage may seem counter-intuitive, but the tests below will show this leads to
better performance.
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3.2 Aberrant karyotypes

We first benchmarked the performance of our approach on biological samples
with an aberrant karyotype. A good normalization method should increase
the similarity between biological replicates by reducing irrelevant experimental
variance, such as batch effects, laboratory of origin and protocol variations.
Similarly, a good normalization should decrease the similarity between different
samples to enhance the biological differences.

We assembled two Hi-C data sets obtained from T47D and K562 cells. In
each set we spiked two samples from the other cell line (Table 2.3) to introduce
biological variability. We compared matrices before and after normalization
by different methods using the Pearson correlation of observed over expected
counts (see 2.4). This gave an indication of the impact of a given normalization
method. The results are summarized in Figure 3.

The caICB and ICE methods increased the similarity between the different
cell lines (Figures 3A and 3B and Supplementary Figures 2 and 3). This is
an undesirable effect, as it obscures the biological variability. Likewise, these
methods decreased the similarity between samples that received the same treat-
ment (Figure 3A), suggesting that the normalization process is detrimental to
the biological signal in these two cases. The method vanilla followed the same
trend but to a lesser extent, consistent with the fact that it consists of a single
ICE iteration. OneD was the only method to increase the similarity between
experiments carried out on the same material but with a different protocol (Fig-
ure 3A).

An important application of normalization methods in experimental setups
is to identify outliers. We thus investigated the capacity of the different methods
to help identify the samples from the other cell type spiked in the data set. We
interpreted the pairwise comparison scores as classifier scores and summarized
the results with a ROC curve (Figures 3C and D). All the methods, including
the absence of normalization, succeeded in identifying the T47D outliers among
the K562 samples, but recognizing the K562 outliers among the T47D samples
proved more challenging. OneD increased the discrimination power compared
to the raw matrices, but all the other methods decreased it. Actually, they
performed little better than random on this task. Using the other metrics
described in 2.4 yielded similar results (Supplementary Figures 5, 6 and 7).
Note that Spearman correlation of contacts presented the worst performance
for all scenarios, and it thus seems to be a poor choice for a metric to compare
Hi-C matrices.

Taken together, these results show that correcting experimental biases with
OneD enhances the biological variation and reduces the noise on samples with
an aberrant karyotype.

3.3 Normal karyotypes

Does the performance of OneD on aberrant karyotypes come at the cost of
decreased performance on normal karyotypes? To address this question, we

9

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 9, 2017. ; https://doi.org/10.1101/148254doi: bioRxiv preprint 

https://doi.org/10.1101/148254
http://creativecommons.org/licenses/by-nc/4.0/


same treat same batch

other cell other protocol

−0.10−0.05 0.00 0.05 −0.10−0.05 0.00 0.05

vanilla
ICE

caICB
LGF

OneD

vanilla
ICE

caICB
LGF

OneD

Average correlation difference vs RAW

T47D: Pearson O / EA

same batch

other cell other batch

−0.12−0.08−0.040.000.04

−0.12−0.08−0.040.000.04

vanilla
ICE

caICB
LGF

OneD

vanilla
ICE

caICB
LGF

OneD

Average correlation difference vs RAW

K562: Pearson O / EB

0.64 raw 0.48 vanilla

0.48 ICE 0.52 caICB

0.48 LGF 0.73 OneD

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

T47D: Pearson O / EC

1.00 raw 1.00 vanilla

0.99 ICE 0.98 caICB

1.00 LGF 1.00 OneD

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

K562: Pearson O / ED

Figure 3: Results of the comparison between samples with aberrant karyotypes.
A and B. Average changes compared to the raw data on the T47D and K562 sets.
The bars represent 95% confidence intervals centered on the mean difference of
the correlation score between a given correction method and the raw data. C
and D. ROC curves on the T47D and K562 sets. The areas under the curve are
indicated in the bottom right corner. The color code is the same as panels A
and B. The brown lines correspond to raw matrices. All results in this figure
are based on Pearson correlations between the observed over expected counts.
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assembled another data set comprised of mouse B cells and embryonic stem
(ES) cells, both with a normal karyotype. The cell types were pooled in almost
equal proportions (see Table 2.3) and the same tests as above were performed.

In these conditions, the experimental protocol had a strong effect on the
impact of the different normalization methods (Figure 4A). For instance, caICB
and ICE increased the similarity when the protocols were different, but de-
creased it when the protocols were the same. The effect was stronger when
comparing identical cell types, but the same trend appeared when comparing
different cell types, indicating that these methods may enhance or reduce biolog-
ical variation, depending on the context. Once more, vanilla followed the same
trend as ICE but to a lesser extent. The LGF method increased the similarity
when comparing the same cells with different experimental protocols, and had
little to no effect in the other cases. This indicates that LGF is a safe choice in
this case.

OneD decreased the similarity between different cell types when using the
same protocol and increased it between identical cell types when using different
protocols. In the other two cases, it had little effect. In summary, OneD never
enhanced the experimental noise and even reduced it in one more case than
LGF.

When interpreting the similarity scores as classification scores, we observed
that all the methods could identify approximately 50% of the biological pairs,
after which their performance diverged (Figure 4B). OneD achieved the highest
area under the curve on this problem, but with a small margin over the other
methods except vanilla. Using other metrics to compare matrices gave simi-
lar results: OneD was always among the top scoring methods (Supplementary
Figures 7 and 8). In these conditions, Spearman correlation of contacts again
appeared as the worst comparison metric because it showed a lower performance
for all the normalization methods.

Taken together, these results indicate that OneD performs as well as the
best normalization methods, even with normal karyotypes.

3.4 Copy number correction

Removing the explicit experimental biases enhances the importance of the copy
number in the signal (Figure 2). The copy number is not an experimental
bias, but it may be considered an additional source of bias to be removed. For
this reason, OneD also allows the user to correct the copy number and output
an euploid-equivalent matrix. To do so, OneD segments the linear signal of the
total amount of contacts into piecewise homogeneous regions. This is carried out
by a hidden Markov model whereby the averages of the states are constrained
to be an integer number, up to a scaling factor (see 2.2). This allows the model
to detect regions with a number of copies equal to 1, 2, 3 etc. With the inferred
number of copies at hand, OneD then normalizes each cell of the matrix with
equation (2).

Different normalization methods can either enhance or diminish the signal
in regions with higher copy number (Figure 5). In this example, ICE over-
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Figure 4: Results of the comparison between samples with normal karyotypes.
A. Average changes compared to the raw data on the mouse data set. B. ROC
curves on the mouse data set. The legend is as in Figure 3.

compensated the original bias at the center of the picture and faded the signal
almost entirely. Concomitantly, the signal at the bottom left of the matrix was
enhanced and showed a structure that was not visible in the raw data. On the
contrary, LGF strengthened the central region and the diagonal. OneD reduced
the level of the central portion by a factor 2 approximately, but did not other-
wise distort the main features of the region. This example shows that the copy
number does not have a simple and predictable effect on the final matrix. Not
taking it into account may open the door to some normalization artifacts.

Figure 5B shows the total sum of contacts after correction for the copy num-
ber with OneD. The region around 72.5-75.0 Mbp showed an elevated amount
of contacts in the raw data. After copy number correction, the signal is brought
to the same level as the flanking regions. The result provided by OneD is not
necessarily the right one (see Discussion), but at least it does not correct copy
number variations as a side effect of some other criteria.

In summary, OneD can be used to obtain an euploid-equivalent normalized
matrix in cases where the effect of the copy number must be removed from the
signal.

3.5 Speed

Finally, we compared the computational speed of the different normalization
methods. vanilla and ICE have broad acceptance for their conceptual simplicity,
ease of use and speed (Imakaev et al., 2012). This is even more significant as
current explicit methods (Servant et al., 2012) are much slower in comparison.

Unlike the other methods, OneD corrects a single variable instead of the
whole matrix, and thus estimates the model parameters much faster than pre-
vious explicit methods. We measured the running time of the different tools
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Figure 5: Copy number correction A. Detail of a Hi-C matrix normalized with
different methods. The central portion has an increased copy number, which
affects normalization. ICE fades it away, LGF enhances it and OneD reduces
the signal by about half. B. Profile of the total amount of contacts after copy
numer correction. The plot shows the same region as panel A. The brown line
represents the raw signal, the blue line represents the signal after bias correction,
the black line represents the signal after bias and copy number (CN) correction.

on a 3.3 GHz machine with 62 GB RAM, always using the default parameters.
Figure 6A shows the running times of the different methods on the samples
described in Table 2.3 at 100 kbp resolution. The fastest method was vanilla
and the slowest is LGF, with an over 100-fold span between the two.

OneD was the second fastest method and it always ran in less than 1 min
in the conditions of the benchmark. Throughout this benchmark, the memory
footprint ofOneD was less than 300 MB. Interestingly, the running time ofOneD
was much more homogeneous than that of the other methods. The reason is
that the size of the regression problem to be solved by the mgcv package is
always the same at fixed resolution.

We also performed a benchmark on a smaller data set at increasing resolution
(Figure 6B). On this benchmark, ICE ran slightly faster than OneD, and the
the rank of the methods remained the same at all resolutions. Taken together,
these results show that OneD is competitive in terms of computational speed
compared to existing methods.

4 Discussion and Conclusions

Here we introduced OneD, a fast computational method to normalize Hi-C ma-
trices. OneD was developed ground up to address the need to normalize data
from biological samples with aberrant karyotypes, but it applies seamlessly to
the case of normal karyotypes. We showed that OneD performs significantly
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Figure 6: Computing time of the bias correction methods. A. Total time for the
entire genome at 100 kbp resolution. Each dot corresponds to one sample. The
only method faster than ours under performs in all sample comparisons. B. Time
to correct a reduced genome (chr19-22) of one sample at different resolutions.
Note the logarithmic scale on the y-axis on both panels.

better than other methods when the cells present karyotypic aberrations (Fig-
ure 3), and that it performs equally well as the best methods on euploid genomes
(Figure 4). We also showed that OneD is approximately as fast as ICE, which
makes it competitive from the point of view of computational speed.

The originality of OneD lies in that it projects all the biases onto a single
variable: the total amount of contacts per bin. This allows greater running
speed, while preserving a good performance on samples with karyotypic aber-
rations. One of the reasons why OneD is able to better highlight the biolog-
ical distinctions between samples is that it only corrects the copy number if
specifically requested by the user. The impact of copy number variations on
normalization is rather opaque, especially if they are treated as implicit biases
(Figure 5). Treating them as explicit biases with optional removal seems to be
an overall safer strategy.

This raises the question whether variations of the copy number constitute
a biological signal or an artifact. If the biological sample contains karytoypic
aberrations, then its genome is grossly different from the reference genome,
which makes signal correction very challenging. The proper approach would be
to use the actual genome of the biological sample as a reference to construct the
contact map. However, this strategy is presently unfeasible because assembling
mammalian genomes is still a hard problem.

Depending on the intention of the user, the effect of the copy number should
either be kept or removed. This is why OneD does not perform the correction by
default, but allows the user to obtain a euploid-equivalent Hi-C map computed
from a hidden Markov model. The resulting matrices have a near constant
amount of contacts per bin, but the artifacts caused by the mismatch between
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the genome of the sample and the reference genome are still present (for instance,
the artifacts caused by large scale inversions are not changed in any way).

Overall, OneD constitutes a novel computational approach to normalize Hi-
C matrices. If the karyotype of the sample is aberrant, it enhances the biological
variation. If not, it performs at least equally well as other methods in terms of
quality and of computational speed.
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Figure S1: Spearman correlation between total number of contacts per bin and independent copy
number estimation (COSMIC) for each of the methods compared. Left panel T47D breast cancer
cell line, right panel K562 leukemia cell line. The new proposal (in blue) outperforms the rest of
alternatives.
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Figure S2: Boxplots representing the results of the pair-wise comparisons of the samples included
in the T47D set. X axis: different correction methods. Y axis: correlation. Each panel groups
paris of samples with the correspondind characteristics (in terms of cell type, protocol, batch
and treatment). A. Pearson correlation between observed over expected counts. B. Spearman
correlation between observed counts. C. Stratum-adjusted correlation coefficient (SCC) between
observed counts. D. Reproducibility score of observed counts.
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Figure S3: Boxplots representing the results of the pair-wise comparisons of the samples included
in the K562 set. X axis: different correction methods. Y axis: correlation. Each panel groups
paris of samples with the correspondind characteristics (in terms of cell type, protocol, batch
and treatment). A. Pearson correlation between observed over expected counts. B. Spearman
correlation between observed counts. C. Stratum-adjusted correlation coefficient (SCC) between
observed counts. D. Reproducibility score of observed counts.
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Figure S4: Results of the comparison between samples with aberrant karyotype. A and B. Average
changes compared to raw on the T47D and K562 sets. The bars represent 95% confidence intervals
centered on the mean difference of the correlation score between a given correction method and
the raw data. The brown dashed line indicates the value of the average score on raw matrices
(set to 0). C and D. ROC curves on the T47D and K562 sets. The areas under the curve are
indicated in the bottom right corner. The color code is the same as panels A and B. The brown
lines correspond to raw matrices. All results in this figure are based on Spearman correlations
between the observed counts.
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Figure S5: Results of the comparison between samples with aberrant karyotype. A and B. Average
changes compared to raw on the T47D and K562 sets. The bars represent 95% confidence intervals
centered on the mean difference of the correlation score between a given correction method and the
raw data. The brown dashed line indicates the value of the average score on raw matrices (set to
0). C and D. ROC curves on the T47D and K562 sets. The areas under the curve are indicated in
the bottom right corner. The color code is the same as panels A and B. The brown lines correspond
to raw matrices. All results in this figure are based on stratum-adjusted correlations between the
observed counts.
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Figure S6: Results of the comparison between samples with aberrant karyotype. A and B. Average
changes compared to raw on the T47D and K562 sets. The bars represent 95% confidence intervals
centered on the mean difference of the correlation score between a given correction method and
the raw data. The brown dashed line indicates the value of the average score on raw matrices
(set to 0). C and D. ROC curves on the T47D and K562 sets. The areas under the curve are
indicated in the bottom right corner. The color code is the same as panels A and B. The brown
lines correspond to raw matrices. All results in this figure are based on the reproducibiliry score
between the observed counts.
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Figure S7: Boxplots representing the results of the pair-wise comparisons of the samples included
in the mm10 set. X axis: different correction methods. Y axis: correlation. Each panel groups
paris of samples with the correspondind characteristics (in terms of cell type, protocol, batch
and treatment). A. Pearson correlation between observed over expected counts. B. Spearman
correlation between observed counts. C. Stratum-adjusted correlation coefficient (SCC) between
observed counts. D. Reproducibility score of observed counts.
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Figure S8: Results of the comparison between samples with normal karyotype. A., C. and E.
Average changes compared to raw. The bars represent 95% confidence intervals centered on the
mean difference of the correlation score between a given correction method and the raw data. The
brown dashed line indicates the value of the average score on raw matrices (set to 0). B., D. and
F. ROC curves. The areas under the curve are indicated in the bottom right corner. The color
code is the same as panels A, C. B. The brown lines correspond to raw matrices. Results in panels
A. and B. on Spearman correlations between the observed counts. Results in panels C. and D. on
Stratum-adjusted correlation coefficient (SCC) between observed counts. Results in panels E. and
F. on reproducibility score of observed counts.
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