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Introduction 

Decisions about the visual world often require observers 

to integrate information from multiple sources. An ideal 

observer will give each source a weight that is 

proportional to its reliability. Thus, where all sources are 

equally trustworthy, the best policy is simply to average 

the available features or decision information. For 

example, a decision about which fruit to buy at the 

supermarket might involve averaging the estimated size 

and colour of the produce, or a wager about which 

football team will win might be made after averaging the 

speed and skill of all the players on a team [1].   

   

Previous studies have investigated how humans average 

perceptual information by presenting participants with 

array composed of multiple visual elements and asking 

them to report the mean size, colour or shape of the items 

displayed [2-6]. Interestingly, recent reports suggest that 

human averaging judgments do not resemble those of an 

ideal observer [7-10]. Rather, when averaging, humans 

tend to downweight or discount visual features that are 

unusual or outlying with respect to the distribution of 

occurring over recent trials (“robust averaging”). 

Haberman and Whitney first showed that observers 

discount emotional deviants when averaging the 

expression in human faces [7]. Subsequently, de 

Gardelle, Summerfield and colleagues provided 

evidence that observers discount outlying colour or 

shape values during averaging of features in a multi-

element array [8, 9]. Control analyses ruled out the 

possibility that the observed effect was an artefact of 
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Abstract 

An ideal observer will give equivalent weight to sources of information that are equally reliable. However, when averaging 
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which corrupts decisions during integration. In other words, robust decision strategies increase the brain’s resilience to noise 

arising in neural computations during decision-making. 
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Author Summary 

Humans often make decisions by averaging information 

from multiple sources. When all the sources are equally 

reliable, they should all have equivalent impact (or weight) 

on the decisions of an “ideal” observer, i.e. one with perfect 

memory. However, recent experiments have suggested that 

humans give unequal weight to sources that are deviant or 

unusual, a phenomenon called “robust averaging”.  Here, we 

use computer simulations to try to understand why humans 

do this.  Our simulations show that under the assumption that 

information processing is limited by a source of internal 

uncertainty that we call “late” noise, robust averaging 

actually leads to improved performance.  Using behavioural 

testing, we replicate the finding of robust averaging in a 

cohort of healthy humans, and show that those participants 

that engage in robust averaging perform better on the task.  

This study thus provides new information about the 

limitations on human decision-making.
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hardwired nonlinearities in feature space. Together, 

these studies suggest that humans are “robust averagers”, 

overweighting inliers relative to outliers rather than 

giving equal weight to all elements (although see  [11] 

for a failure to replicate this finding using a 2-alternative 

forced choice averaging task). 

 

According to a widely-accepted framework with its roots 

in Bayesian decision theory [1, 12], robust averaging is 

suboptimal. Intuitively, robust averaging discards 

information about the stimulus array, and should thus 

reduce performance relative to a policy that integrates 

the stimulus feature values evenly. Why, then, do 

humans give more weight to inliers than outliers during 

integration of decision information?  Here, we tackled 

this question using psychophysical testing of human 

observers and computational simulation. We asked 

participants to average the orientation (tilt) in a circular 

array of gratings, relative to a central reference grating 

that either (i) remained the same or (ii) varied in a trial-

wise fashion over a block of trials. This latter 

manipulation allowed us to test whether robust averaging 

is still observed even when the distribution of sensory 

information is uniform around the circle and varies 

randomly from trial. Using this approach, we show that 

human robust averaging can be conceived of as a policy 

that rapidly allocates limited resources (gain; see 

equation 2 below) to items that are closest to the category 

boundary (or indifference point). Although this policy is 

suboptimal in the absence of noise, it has a surprising 

protective effect on decisions that are corrupted by “late” 

noise arising during or beyond information integration.  

Our manuscript is organised as follows. We begin by 

describing the behaviour of a cohort of human observers 

performing the orientation averaging task. Next, we 

describe a simple psychophysical model in which feature 

values (tilt, relative to a reference value) are transformed 

nonlinearly before being averaged to form a decision 

variable. This variable is corrupted with “late” (post-

averaging) noise and then used to determine model 

choices.  This model accounts better for human 

behaviour (including observed robust averaging) than a 

rival account, based on an ideal observer, that replaces 

the initial nonlinear step with a purely linear 

multiplicative transformation. Next, we use simulations 

to explore the properties of this model. We show that as 

we increase late noise, a model that engages in robust 

averaging comes to outperform the linear model, i.e. 

achieves higher simulated choice accuracy. Finally, we 

return to the human data, and show that for both model 

and humans, the use of a robust averaging strategy is a 

positive predictor of decision accuracy, in particular 

under high estimated late noise. 

 

Results 

Human participants (N = 24) took part in two 

psychophysical testing sessions separated by 

approximately one week. On each of 2048 trials, they 

viewed an array of 8 high-contrast gratings presented in 

a ring around a single central (reference) grating (Fig. 1).  

The grating orientations were drawn from a single 

Gaussian distribution with mean   {-20, -10, 10, 

20} and standard deviation   {8, 16} relative to the 

reference. Their task was to report whether the average 

orientation in the array was clockwise (CW) or 

counterclockwise (CCW) of the central grating. The 

reference grating was drawn uniformly and randomly 

from around the circle, and varied on either a trial-by-

trial (variable reference) or block-by-block (fixed 

reference) fashion. Fixed and variable reference 

conditions occurred in different sessions whose order 

was counterbalanced over participants.  Fully 

informative feedback was administered on every trial. 

 

 

 

Human behaviour 

Mean accuracy and standard errors of mean (S.E.M.) for 

the human participants (lines) are shown in Fig. 2. 

Participants responded more slowly when the orientation 

mean approached the reference (main effect of ||: F1,20 

= 47.14 p < 0.0001) and when the orientation variance 

increased (main effect of : F1,20 = 6.84, p = 0.017). They 

also made more errors for lower values of || (F1,20 = 

Fig. 1. Schematic demonstration of the stimulus array 

The task was to report whether the average orientation of the outer 

ring of gratings fell clockwise or counterclockwise of the 
orientation of the central (reference) grating.   
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397.1, p < 0.0001) and higher values of  (F1,20  = 116.1, 

p < 0.0001). Directly comparing the low || low  

condition (‘low-low’) to the high || high  condition 

(‘high-high’), participants made more errors and are 

slower under high-high condition (accuracy: F1,20  = 

48.53, p < 0.001; RT: F1,20  = 20.67, p < 0.001) even 

though the|| to  ratio is identical in these two 

conditions. This result replicates previous findings [8]. 

 

As expected, participants were overall faster (F1,20 = 64.4, 

p < 0.0001) and more accurate (F1,20 = 89.95, p < 0.0001) 

in the fixed reference than variable reference condition. 

An interaction between mean and session was observed 

for both RT (F1,20  = 9.63, p < 0.001) and accuracy (F1,20  

= 5.83, p = 0.025) indicated that the cost incurred by 

lower values of  was greater under the fixed than 

variable reference condition. No interactions between 

session and feature variance were observed. There was a 

significant interaction for both accuracy (F1,20 = 4.18, p = 

0.41) and RT (F1,20 = 8.06, p = 0.01) with sessions for the 

low-low and the high-high condition, showing that the 

relative performance cost for the high-high condition 

was lower under the variable reference condition. These 

findings indicate that our manipulation of fixed vs. 

variable reference successfully influenced human 

categorisation performance, and that  and  have 

comparable impact on accuracy and RT to that described 

in previous studies [8, 9]. The same results were obtained 

when this analysis was carried out on d’ rather than % 

correct values (see Fig. S1, and Table S1). 

Next, to probe for robust averaging, we measured the 

influence that each feature carried on the decision, as a 

function of its angle relative to the reference (see 

methods). Fig. 3A shows the average regression 

coefficient (weight) associated with each of 8 bins of the 

feature values (i.e. orientations relative to reference) for 

the session with fixed reference (red line) and the session 

with variable reference (green line). The shaded area 

shows the standard error of the mean across observers. 

We first compared the coefficients with a factorial 

ANOVA, crossing the factors of session (fixed vs. 

variable reference) and bin.  Consistent with the 

accuracy data above, this yielded a main effect of session 

(F1,20 = 59.54, p < 0.001). However, there was also a 

main effect of bin (F2.02,40.37= 6.23, p = 0.004) with no 

interaction between these factors (p = 0.31). Next, for 

each session, we directly compared the weights 

associated with (i) the four inlying bins (bin 3, 4, 5, 6] 

and (ii) the four outlying bins (bin 1, 2, 7, 8].  In both 

sessions, participants gave more weight to those samples 

falling in inlying than outlying bins (fixed reference: t20 Fig. 2. Model and human data. 

Mean accuracy and the standard error of mean of human (grey 

lines) and model (green dots) for high and low variance conditions, 

with low mean (i.e. orientation close to the reference; light grey 

lines) and high mean (dark grey lines).   Panel A shows 

performance in the fixed reference session, and the panel B shows 

the variable reference condition.  

 

Fig. 3. Parameter estimates of orientation of each grating 

relative to the reference. 

The y-axis shows parameter estimates for a probit regression in 

which the angles of orientation of each grating (relative to the 

reference) were used to predict choice.  Angles were tallied into 8 

bins, from most negative to most positive relative to the reference, 

so that each parameter estimate shows the relative weight given to 

a particular portion of feature space. The x-axis shows the bin 

center of each bin. The inverted-U shape of the curve is a signature 

of robust averaging. Shaded areas are the standard error of mean. 

(A) Weighting functions estimated using human choices (B) 

Weighting functions for recreated model choices using the best 

fitting parameters from the power model using the best fitting 

parameters from human data. (C) Weighting functions for 

simulated model choice under a case in which angles are linearly 

mapped onto 𝐷𝑉. 

 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 28, 2017. ; https://doi.org/10.1101/147744doi: bioRxiv preprint 

https://doi.org/10.1101/147744
http://creativecommons.org/licenses/by-nd/4.0/


4 
 
= 7.8, p < 0.0001; variable reference: t20 = 6.3, p < 

0.0001).  In other words, under both fixed and variable 

reference, participants displayed a pattern of behaviour 

consistent with a “robust averaging” policy for 

orientation. 

 

Model fitting 

We fit our data with a simple psychophysical model 

(power model; see methods). Each array element i was 

characterised by a feature value 𝑋𝑖 that was proportional 

to its orientation, recoded to be relative to the reference 

(in radians, i.e. in the range -0.79rad to 0.79rad 

corresponding to -45 to +45. The model computes a 

decision value (𝐷𝑉) by transforming 𝑋 with a nonlinear 

function parameterised by an exponent 𝑘, and summing 

the resulting values: 

𝐷𝑉 = ∑ 𝑠𝑖𝑔𝑛(𝑋𝑖)

8

𝑖=1

⋅ |𝑋𝑖|𝑘 

The functions mapping 𝑋 onto 𝐷𝑉 under different levels 

of 𝑘 (red to blue lines respectively) are shown in Fig. 4A. 

For the special case 𝑘 = 1, the transfer function is linear, 

and DV is equivalent to the simple sum of 𝑋𝑖; this is the 

rule used by the experimenter to determine feedback.  

Next, we calculated choice probabilities by passing the 

𝐷𝑉  through a sigmoidal choice function with the 

inverse-slope (s; see methods).  Varying the inverse 

slope of the choice function is approximately equivalent 

to assuming that decision values are corrupted with 

varying levels of zero-mean Gaussian noise at a post-

averaging stage (e.g. “late” noise), with high values of 𝑠 

(shallower slope) implying more late noise and thus 

lower sensitivity. This model allowed us to obtain best-

fitting values of 𝑘  and 𝑠  for each participant in both 

fixed and variable reference conditions, using maximum 

likelihood estimation. Values of 𝑘  and 𝑠  for each 

participant are plotted in Fig. 4B.   

 

We observed that values for the inverse-slope of the 

choice function 𝑠 were steeper in the fixed than variable 

reference condition (t20 = 4.27, p < 0.001), consistent 

with lower performance in the variable reference 

condition. This is likely to reflect the additional 

processing cost for recoding raw orientations relative to 

the reference when the latter changed from trial to trial. 

Values of 𝑘 did not differ between the fixed and variable 

reference conditions (p = 0.93), but for both conditions, 

best-fitting values of 𝑘 were lower than 1 (fixed: t20 = 

9.41, p < 0.0001; variable: t20 = 3.15, p = 0.005). This is 

consistent with a compression of those array elements 

that were outlying relative to the reference, i.e. a robust 

averaging policy. To confirm that the model was 

showing robust averaging, we then created model 

choices under the best-fitting parameterisation, by 

randomly simulating binary choices from the estimates 

of choice probability using the best-fitting model. Using 

this approach, we were able to recreate the pattern of 

accuracy (Fig. 2, dots) and weighting profile (Fig. 3B) 

displayed by human participants. In other words, the 

model displayed comparable costs to humans in each 

condition, and exhibited the same tendency to engage in 

robust averaging.   

 

In the model, robust averaging occurs because of the 

nonlinear form of the function that maps 𝑋, the feature 

values, onto 𝐷𝑉, the decision values, which is steeper in 

the centre (near 0) and shallower at the edges (far from 

0). As a control, we tested the weighting profile observed 

when 𝑋 is linearly mapped onto 𝐷𝑉. This confirmed that 

a linear transformation of feature values did not give rise 

to robust averaging (fig. 3C). Parameter recovery 

simulation (see methods) confirmed that 𝑘  and 𝑠 were 

fully identifiable for the power model (shown by Fig. S2 

that actual parameters and recovered parameters fall 

close to the identity line). 
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As thus described, our model assumes no noise in the 

encoding of each individual grating.  This assumption 

follows from the fact that in the experiment, each 

individual array element (grating) was presented with 

full contrast and thus the orientation should have been 

relatively easy to perceive.  For example, using a similar 

stimulus array, one report finds estimates of equivalent 

encoding noise in the range of 2-6 when contrast values 

exceed about 0.3 [13]. Moreover, although we 

additionally randomised the latency with which arrays 

were presented at 4 levels (250, 500, 750 or 1000 ms). 

Long presentation latencies led to longer RT on correct 

choices (F2.47,56.73 = 8.65, p < 0.001), but this factor had 

no influence on accuracy (p = 0.42; fig. S3).  

Nevertheless, to test this explicitly, we fit a variant of the 

model in which feature values 𝑋𝑖  were corrupted by 

“early” noise alone – a source of variance that arises 

before any nonlinearity and averaging, that corrupts each 

tilt independently relative to the reference (see methods). 

This model failed to capture the robust averaging effect 

because the introduction of early noise with power 

transformation would lead to more stochastic choice 

pattern. The same feature value that are corrupted by 

random early noise would drive sometimes the decision 

to one choice and sometimes to the other choice. We 

formally compared this “Early noise only” model to our 

“Late noise only” model, i.e. to that with 𝑘  and 𝑠 

described above, finding that it fits the conditionwise 

accuracy worse in both the fixed reference session (t20 = 

8.06, p < 0.0001) and the variable reference session (t20 

= 7.97, p < 0.0001; Fig. S4C). 

 

Our model describes the computations that underlie 

human choices in a simplified fashion, using power-law 

transducers. However, these functions are intended to 

describe the output of computations that occur at 

individual neurons. To demonstrate how transfer 

functions of this form might arise, we additionally 

simulated decisions with a population coding model, in 

which features are processed by a bank of simulated 

neurons with tuning functions of variable amplitude (see 

methods). By assuming the height of tuning functions for 

neurons coding inliers or outliers can vary, we showed 

in fig. S5 that we can recreate the family of transfer 

functions shown in fig. 4A. Given that we could recreate 

the power-law transducer functions using this model, it 

is unsurprising that the population coding model was 

also able to recreate the pattern of accuracy (fig. S6) and 

the weighting profile (fig. S7) displayed by human 

participants. However, we chose to model our data with 

the simpler, psychophysical variant of the model, 

because it does not require additional assumptions that 

are not germane to our main points (e.g. the range of 

tuning widths for the neuronal population).  

 

Understanding drivers of model performance 

Next, turning to our main point, we used simulation to 

understand how model performance varied under 

different levels of late noise and degree of robust 

averaging by exploring different values of 𝑠  and 𝑘 . 

Model performance (simulated decision accuracy) for 

the power model under different values of 𝑘  and 𝑠  is 

shown in Fig. 5A (left panel). As expected, performance 

worsens with increasing late noise (bluish lines). 

However, performance also depends on 𝑘 . When late 

noise 𝑠 is higher, the model performs better with lower 

values of 𝑘  (i.e. those that yield robust averaging).  

Notably, performance is best with values of 𝑘 that are 

lower than 1, i.e, under a policy that distorts feature 

information rather than encoding the feature values 

linearly. 

One trivial reason why model performance might grow 

as 𝑘  is reduced relates to the scaling of the decision 

values 𝐷𝑉  that are produced when 𝑋𝑖  is transformed. 

After passage through the sigmoidal choice function, 

larger values of 𝐷𝑉 will yield choice probabilities that 

are closer to 0 or 1 and thus increase model performance. 

To adjust for this, we first calculated the scaling of the 

decision values that resulted from each transfer function 

parameterised by a different value of 𝑘, as follows: 

 

𝑔 =
2

1 + 𝑘
 

This gain normalisation term is proportional to the 

integral of the absolute value of the curves in Fig. 4A. 

This normalisation thus adjusts for the expected gain (i.e. 

proportional increase or decrease in 𝐷𝑉) that would be 

incurred by the nonlinear transducer (in the theoretical 

case in which there is a flat distribution of features).  The 

normalization thus allowed us to compare nonlinear and 

linear models with equivalent gain. Fig. S8 shows the 

resulting value of 𝑔 for each corresponding 𝑘. We then 

compared the performance of the model under each 

transfer function with an equivalent linear model, in 
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which decision values were computed under 𝑘 = 1 (no 

compression) but rescaled by 𝑔. This is equivalent to 

assuming that decisions are limited by a fixed resource 

(or gain), for example an upper limit on the aggregate 

firing rates produced by a population of neurons.  

Creating this family of yoked linear and nonlinear 

models allowed us to directly assess the costs and 

benefits to performance of different values of 𝑘 in a way 

that controlled for the level of gain. This can be seen in 

Fig. 5B, where we plotted the difference in accuracy 

between the linear model and a power model that is 

matched for gain.  The red areas in lower left show that 

when late noise is higher, performance benefits when the 

model engages more strongly in robust averaging (k < 1). 

In other words, a policy of allocating gain to inliers 

rather than outliers protects decisions against late noise.   

 

 

At first glance, this effect might seem counterintuitive. 

Why should allocating gain preferentially to one portion 

of feature space prior to averaging benefit performance, 

if overall gain is equated?  One way of thinking about the 

difference between a power model (with parameter 𝑘) 

and a linear model with equivalent gain 𝑔 is that whereas 

linear model allocates gain evenly across feature space 

(i.e. equivalently to inliers and outliers), the power 

model with k < 1 focusses gain on those items that are 

closest to the category boundary, where the transfer 

function is steepest.  Because the overall distribution of 

features across the experiment is Gaussian with a mode 

close to the boundary, this means that the power model 

allocates gain more efficiently, i.e. towards those 

features that are most likely to occur. We have 

previously described such “adaptive gain” phenomena in 

other settings [14, 15]. 

 

To verify this contention, we repeated our simulation 

with a new simulated set of input values X that were 

drawn from a uniform random distribution with respect 

to the reference, rather than using the Gaussian 

distributions of tilt values that were viewed by human 

observers. This simulation revealed no performance 

advantage for robust averaging.  Rather, under uniformly 

distributed features the best policy was to avoid the 

nonlinear step and simply average the feature values, as 

predicted by the ideal observer framework. This is 

shown in Fig. 6, where best performance under the 

lowest late noise case occurs when feature values are 

equally integrated. Under high late noise, values of 𝑘 <1 

lead to relatively better performance than when all 

features are equally integrated. However, there is no 

performance gain for robust averaging compared to the 

equivalent gain linear model, meaning that unlike in fig. 

5, the performance gain shown in fig. 6 is purely due to 

a larger scaling of input to output values under 𝑘 < 1. 

This is in fact confirmed by a separate sequential number 

integration experiment with a different class of stimulus 

- symbolic numbers. The study showed that that the 

optimal 𝑘 values under high late noise is greater than 1 

since the stimulus were drawn from a uniform 

distribution [16]. 

 

 

Fig. 5. Model accuracy.  

(A) Simulated model accuracy for the power model under different 

values of exponent 𝑘 (bottom x-axis, corresponding 𝑔 is plotted 

on the top x-axis) and late noise (𝑠; in a range of 0.05 to 5) in 

coloured lines with reddish (bluish) lines show simulations with 

lowest (highest) late noise. The black line is the accuracy of the 

model when items were allocated with equivalent gain and equally 

integrated (𝑘  = 1) (B) After simulating model accuracy of the 

equivalent gain linear model, performance difference between the 

power model and the linear model is shown in the coloured 

surface. Positive values (yellow-red) show parameters where the 

nonlinear model performance is higher than equivalent linear 

variants, and negative values (cyan-blue) show the converse. Best 

fitting 𝑘 and 𝑠 for each subject of the fixed (dark grey dots) and 

variable reference session (light grey dots) were displayed to show 

the performance gain relative to using linear weighting scheme. 

 

Fig. 6. Model accuracy under uniform distributions.   

Panels A and B are equivalent to panel A and B for Fig 5.  

However, here the simulations are performed by drawing feature 

values from uniform random distributions, rather than those used 

in the human experiment. 
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Linking decision policy to performance 

These explorations allow us to make a new and 

counterintuitive prediction for the human data. If late 

noise is high, then rather than hurting decision 

performance, robust averaging should help.  We tested 

this contention using an analysis approach based on 

multiple regression.  For each participant, we split trials 

into two groups (even and odd). We first obtained the 

best-fitting k and s parameters for each participant using 

even trials. Then, using multiple regression, we 

estimated multiplicative coefficients that best describe 

the relationship between the best-fitting parameters for 

each subject and performance on (left out) odd trials, 

separately for the fixed and variable reference sessions: 

 

Where cor is a vector of mean accuracies (one accuracy 

for each subject per session), and 𝑘 and 𝑠 are vectors of 

corresponding best-fitting parameters.  In the variable 

reference condition, both  𝑘  and 𝑠  were significant 

negative predictors of performance (𝑘: 𝛽1 = -0.14, t17 = -

2.51, p = 0.022, 95% CI [-0.032 -0.26]; 𝑠: 𝛽2 = -0.041, 

t17 = -7.15, p < 0.001, 95% CI [-0.03 -0.052]).  In other 

words, in the variable reference condition, where late 

noise is intrinsically higher, low values of 𝑘  led to 

enhanced performance across the human cohort.  In the 

fixed reference session, neither 𝑘 nor 𝑠 was significant 

predictors of performance (p = 0.56 and p = 0.16 

respectively), but their interaction was significant (𝛽3 = 

-0.13, t17 = -2.88, p = 0.01, 95% CI [-0.04 -0.21]). In 

other words, in the fixed reference condition, predicted 

performance was higher under lower 𝑘  only for those 

participants with higher estimated late noise 𝑠 . These 

findings confirm that in our experiment, robust 

averaging conferred a benefit on performance under high 

late noise. 

 

 

 

Discussion 

Human observers have previously been shown to be 

“robust averagers” of low-level visual features such as 

shape and colour [8, 9], and even of high-dimensional 

stimuli such as faces [7].  Here, we add to these earlier 

findings, describing robust averaging of the tilt of a 

circular array of gratings. However, the focus of the 

current experiment was to use computational simulations 

to understand why humans engage in robust averaging.  

We describe a simple psychophysical model in which 

features values are transformed nonlinearly prior to 

averaging.  This model assumes the decisions are limited 

by a fixed resource, and that gain is allocated 

differentially across feature space, giving priority to 

inliers – those features that fall close to the category 

boundary. Through simulations, we find that in our 

experiment, this relative discounting of outliers gives a 

boost to performance when decisions are additionally 

corrupted by “late” noise, i.e. noise arising during, or 

beyond, the integration of information. 

 

Previously, robust averaging has been considered a 

suboptimal policy that incurs an unnecessary loss by 

discarding relevant decision information [17]. The 

current work offers a new perspective, suggesting that 

robust averaging is a form of bounded rationality.  If we 

consider an observer whose neural computations are not 

corrupted by late noise, it is true that robust averaging 

incurs a cost relative to perfect averaging. However, here 

we consider decisions as being constrained not just by 

sources of noise that are external to the observer, or that 

arise during sensory transduction, but also capacity 

limits in human information processing. Processing 

capacity allows a multiplicative gain to be applied to 

feature values, with higher gain ensuring that feature 

values are converted to cumulative decision values that 

fall further from the category boundary (here, the 

reference orientation). When decision values are further 

from the category boundary, they are more resilient to 

“late” noise, which might otherwise drive them to the 

incorrect side of the category boundary, thereby forcing 

an error. However, when gain is limited, it must be 

allocated judiciously.  Our simulations show that 

allocating gain to stimuli that are most likely to occur 

confers a benefit on performance, and suggest that 

humans may adopt a robust averaging policy in order to 

maximise their accuracy on the task. 

 

One longstanding hypothesis states that neural systems 

will maximise the efficiency of information encoding by 

allocating the highest resources (e.g. neurons) to those 

features that are most likely to occur [18].  For example, 

enhanced human sensitivity to cardinal angles of 

orientation (those close to 0 and 90) may reflect the 

𝑐𝑜𝑟 = 𝛽0 + 𝛽1𝑘 +  𝛽2𝑠 + 𝛽3𝑠 ∗ 𝑘 
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prevalence of contours with this angle in natural scenes 

[19].  Indeed, neural systems learning via unsupervised 

methods will naturally learn to represent features in 

proportion to the frequency with which they occur. Here, 

we make a related argument for neural gain control. The 

efficiency of gain control allocation depends on the 

distribution of features that occurs in the local 

environment.  Allocating gain to features that are rare or 

unexpected, even when they are more diagnostic of the 

category, is inefficient, as resources are “wasted” in 

feature values that are highly unlikely to occur; whereas 

allocating gain to those features that occur most 

frequently will confer the greatest benefit. This benefit, 

however, is only observable when decisions are 

corrupted by “late” noise, i.e. that arising beyond 

information averaging. This finding has important 

implications for our understanding of what may be the 

“optimal” policy for performing a categorisation task. 

The ideal observer framework allows us to write down a 

decision policy that will maximise accuracy for an 

observer that is limited not by capacity but by noise 

arising in the external environment.  Here, we show an 

example where the policy that is optimal for an unbiased, 

noiseless observer is not the one that maximises accuracy 

for healthy humans. 

 

The current study adds to an emerging body of work that 

the human brain may have evolved perceptual 

processing steps that squash, compress or discretise 

feature information in order to make decisions robust to 

noise [15].  In another recent line of work, participants 

were asked to compare the average height of two 

simultaneously-occurring streams of bars [20] or 

average value of two streams of numbers [21].  Human 

choices were best described by a model which discarded 

information about the locally weaker item, but this 

“selective integration” policy paradoxically increased 

simulated performance under higher late noise.  As 

described here, participants seemed to adjust their 

decision policy to account for their own internal late 

noise: participants with higher estimated late noise were 

more likely to engage in robust averaging.  Like selective 

integration, thus, robust averaging is a decision policy 

that discards decision information but paradoxically 

confers a benefit on choice. 

 

Additionally, the design of our study allows us to draw 

conclusions about the timescale over which gain 

allocation occurs. In previous work, robust averaging 

was found to vary with the overall distribution of 

features present in a block of trials. For example, when 

averaging Gaussian-distributed features in a red-to-

purple colour space, purple features were relatively 

downweighted, but when averaging in a red-to-blue 

colour space, purple features were relatively upweighted 

[8]. In other words, the allocation of gain to features 

depended on the overall distribution of features in the 

block of trials, with the most frequently-occurring (i.e. 

expected) items enjoying preferential processing. Here, 

we saw no difference in robust averaging between a 

fixed reference condition (in which the Gaussian 

distribution of orientations remained stable over a 

prolonged block of trials) and a variable reference 

condition (in which the Gaussian distribution of 

orientations changed from trials to trial, and was uniform 

over the entire session). In other words, any adaptive 

gain control was set by the reference, and thus occurred 

very rapidly, i.e. within the timescale of a single trial. 

Evidence for remarkably rapid adaptive gain control has 

been described before.  Indeed, short-lag repetition 

priming may be considered a form of gain control [22], 

in which the prime dictates which features should be 

processed preferentially [10].  During sequential 

averaging, the behavioural weight and neural gain 

applied to a feature depend on its distance from the 

cumulative average information viewed thus far, as if 

features pass through an adaptive filter with nonlinear 

form [14]. These observations are consistent with the 

theoretical framework that we propose here. 

 

Finally, we discuss some limitations of our approach. 

Firstly, our model uses a simple power function to 

describe the nonlinear transformation of inputs prior to 

averaging.  We chose this function for mathematical 

convenience – it provides a simple means of 

parameterizing the mapping function feature to decision 

information in a way that privileges inliers (k < 1) or 

outliers (k > 1). However, other forms of nonlinear 

transformation that are not tested here may also account 

for the data. Secondly, our best-fitting model assumes 

zero sensory encoding noise (or ‘early’ noise). Adding 

early noise to the model did not change qualitatively the 

benefit of robust averaging under higher late noise, 

unless it becomes performance-limiting in itself. 
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However, in other settings, early noise will be an 

important limiting factor on performance. Although we 

found that our “late noise only” model fit better than an 

“early noise only” model, we do not wish to claim that 

there is no early noise in our task. Since the current 

experiment was not designed to estimate the level of 

early noise, it may be of interest to directly manipulate 

both early and late noise in future experiments. 

 

Methods 

Ethics statement 

The study was approved by the Medical Science 

Interdivisional Research Ethics Committee (MS IDREC) 

of the Central University Research Ethics Committee 

from the University of Oxford. Participants provided 

written consent before the experiment in accordance 

with local ethical guidelines. 

 

Participants 

24 healthy human observers (9 males, 15 females; age 

23.44.7) participated in two testing sessions that 

occurred one week apart. The order of testing sessions 

was counterbalanced across participants. The task was 

performed whilst seated comfortably in front of a 

computer monitor in a darkened room.  Participants 

received £25 in compensation.   

 

Task and procedure 

All stimuli were created using the Raphaël JavaScript 

library and presented with the web browser – Chrome 

Version 49.0.2623.87 on desktop PC computers.  The 

monitor screen refresh rate was 60Hz. Each session 

consisted of 8 blocks of 128 trials each. On each trial, 

following a fixation cross of 1000ms duration, 

participants viewed an array of 8 square-wave gratings 

with random phase (2.33 cycles/degree, 0.33 RMS 

contrast, 1.72 degrees visual angle per grating) arranged 

in a ring 7.82 degrees from the center of the screen (Fig. 

1).  The array was presented for a fixed duration against 

a grey background in each block (250ms, 500ms, 750ms 

or 1000ms; this manipulation had little impact on 

accuracy, and we collapsed across it for all analyses).  A 

single Gabor patch was presented in the centre of the ring 

contiguous with the array elements (3.49 cycles/degree, 

0.33 RMS contrast, 1.15 degrees visual angle). 

Participants were asked to judge as rapidly and 

accurately as possible whether the mean orientation of 

the array of 8 peripheral gratings fell clockwise (CW) or 

counterclockwise (CCW) of the orientation of the central 

grating.  Feedback was provided immediately following 

each response: the fixation cross turned green on correct 

trials for 500ms, and red on incorrect trials for 2500ms. 

Participants received instructions and completed a 

training block of 32 trials prior to commencing each 

session. During the training block, the central grating 

patch and the array of grating patches remained on the 

screen for 1 minute or until participants made a response.  

 

Design 

Orientations were sampled from Gaussian distributions 

with means of R+ where 𝑅  is the reference grating 

orientation, and variances of 2 on each trial.  We crossed 

 and  as orthogonal factors in the design, drawing the 

orientation mean (in degrees) from   {-20ᵒ,-

10ᵒ,10ᵒ,20ᵒ} and orientation standard deviation   

{8,16}. Levels of  and  are counterbalanced and the 

order of presentation is randomised across trials in every 

block. To ensure that the sampled orientations matched 

the expected distribution with the given  and , 

resampling of orientation values occurred until the mean 

and standard deviation of orientation values fell within 

1ᵒ tolerance of the desired  and . We refer to each of 

the 8 gratings in the array as a “sample” of feature values. 

Reference orientations were drawn randomly and 

uniformly from around the circle. There was a total of 8 

blocks per session, leading to a total of 1024 trials per 

session. In the fixed-reference session, the reference 

orientation remained fixed over each block of 128 trials. 

In the variable-reference session, the reference 

orientation changed from trial to trial. Our experiment 

thus had a 2 (fixed vs. variable reference) x 2 ( = 10,  

= 20) x 2 ( = 8,  = 16) factorial design.  

 

Analysis 

3 subjects were excluded from all analyses due to 

lowerthan60%accuracy performance in either of the 

reference condition. Data were analysed using ANOVAs 

and regressions at the between-subjects (group) level. A 

threshold of p < 0.05 was imposed for all analyses, and 

we used a Greenhouse-Geisser correction for sphericity 

where appropriate, so that some degrees of freedom (d.f.) 

are no longer integers. We first compared accuracy and 

reaction times for different levels of  and  in each 

session. Next, we used probit regression to estimate the 
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weight with which each sample influenced choices, as a 

function of its position relative to the reference angle in 

both fixed and variable reference session. For all 

analyses, we excluded 13% of trials (‘wraparound’ trials) 

that contained one or more orientations that were 

>0.79rad or < 0.79rad (equivalent to >45 or <-45) relative 

to the reference, thereby ensuring that we were working 

within a space in which feature values 𝑋  were 

approximately linearly related to angle of orientation.  A 

further 0.2% of trials on which no response was 

registered were also excluded. 

 

For each sample 𝑖  on trial 𝑡 , we assumed that 

orientations in the sensory space were being recoded as 

orientations relative to reference in the decision space, 

and thus refer to the feature values 𝑋 as the orientation 

relative to the reference. After excluding ‘wraparound’ 

orientations, all orientations fell within the range of -

0.79rad to 0.79rad (equivalent to ±45ᵒ). To compute 

weighting functions, we created for each participant a 

predictor matrix by tallying values of 𝑋 within each of 8 

equally spaced bins (in feature space) with centres 

between -0.75rad and 0.75rad on a trial-by-trial basis. 

Values from each bin were entered competitive 

regressors to regressed against participants’ choices 

using probit regression. Fig. 3 is showing the beta 

weights associated with each bin modulated by the sum 

of feature values (𝑋) within that bin. 

 

 

Modelling 

Power model. Each element 𝑖  was characterised by a 

feature value 𝑋𝑖 in radians (in the range -0.79rad to 0.79rad) 

that was proportional to its orientation relative to the 

reference. Our model assumes that the decision value 

(𝐷𝑉) that determined choice on each trial was computed 

by transforming orientations relative to reference using a 

power-law transducer parameterised by an exponent 𝑘.  

 

𝐷𝑉 = ∑ 𝑠𝑖𝑔𝑛(𝑋𝑖)

8

𝑖=1

⋅ |𝑋𝑖|𝑘 

(1) 

The functions that map feature value 𝑋  onto decision 

values 𝐷𝑉 for low and high values of 𝑘. For the special 

case 𝑘 = 1, the DV is equivalent to the simple sum of Xi; 

this is the rule used by the experimenter to determine 

feedback.  Next, we calculated choice probabilities by 

passing the 𝐷𝑉 through a sigmoidal choice function (see 

choice probability function and equation 5) with the 

inverse slope 𝑠 . Higher values of s imply shallower 

slopes and thus greater “late” noise. The sign of sum of 

𝑋𝑖 always reflect the sign of the mean of the distribution 

in which 𝑋𝑖 was being drawn from, which we used for 

providing feedback.  

 

 

Equivalent gain factor. Different levels of the exponent 

𝑘 vary the convexity or the concavity of the functions 

shown in Fig. 4a.  By considering the integral of the 

absolute of these functions, it is easy to see that 𝑘 in turn 

varies the overall scaling of any hypothetically occurring 

feature values onto 𝐷𝑉. When 𝑘 < 1, average (absolute) 

values of 𝐷𝑉 are inflated, and thus pushed away from the 

category boundary, increasing simulated performance. 

We wished to ensure that model comparisons cannot be 

trivially explained by this unequal scaling of feature 

values to decision variable under different levels of 𝑘.  

To correct for this, we thus computed the equivalent gain 

factor (𝑔) that quantifies the average increase in absolute 

𝐷𝑉 under different levels of 𝑘:  

  

 

𝑔 =
2

1 + 𝑘
 

(2) 

The quantity 𝑔  is equal to 
∑ 𝐹𝑘

∑ 𝐹
 where F is a hypothetical 

space of features (here, positive only for convenience) 

that could occur in the experiment. Multiplying 

equivalent linear models by  𝑔  thus corrects for the 

inflation that would occur under differing values of 𝑘.  

We implemented this correction when comparing 

equivalent linear and nonlinear models with parameter 𝑘, 

either by multiplying the input features of the linear 

model by 𝑔, or equivalently, by dividing the output of 

the nonlinear model by 𝑔. Importantly, this correction 

was applied over the features that could occur, not the 
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features that did occur under our mixture of Gaussian-

distributed categories. It is for this reason that the 

nonlinear model leads to improved predicted 

performance in the experiment we conducted, but not in 

a simulated experiment in which features were uniformly 

drawn from across feature space (Fig. 6). 

 

Equivalent gain linear model. For each nonlinear 

model variant 𝑘 in the power model, we 

compute 𝐷𝑉 using a linear model with equivalent gain 

factor, i.e. a model with the following form: 

𝐷𝑉𝑙𝑖𝑛𝑒𝑎𝑟  = ∑ 𝑋𝑖

8

𝑖=1

⋅ 𝑔 

(3) 

Where DVlinear  refers to the cumulative decision value 

of all feature value Xi after applied with equivalent gain 

– 𝑔. This ensures that each nonlinear power model is 

compared to a linear model with an equivalent total 

input-to-output scaling of decision values.  Using this 

approach, we could thus compare the benefits of 

allocating gain preferentially to inliers (k < 1) or 

outliers (k > 1) to allocating gain evenly across feature 

space (𝑘 = 1), under the assumption that neural 

resources were limited to a fixed value defined by g, for 

example the total number of spikes across population of 

neurons sensitive to orientations. The model 

comparison of power model against the equivalent gain 

model is mathematically identical to comparing model 

performance for 𝑘 < 1 or 𝑘 > 1 against 𝑘 = 1 of a power 

model which is normalised by 𝑔 in this form: 

𝐷𝑉𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =
𝐷𝑉

𝑔
 

 (4) 

Where 𝐷𝑉𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 refers to the decision variable with 

constant gain across different levels of 𝑘. Under a 𝑘 < 1 

case, inlying items will be allocated with more 

resources at the expense of depriving resources from 

outlying items, while under a 𝑘 > 1 case, outlying items 

will be allocated with more resources at the expense of 

inlying items. Any difference in simulated model 

performance of nonlinear transformation of feature 

values across different values of 𝑘 are not due to 

differential resources in a linear model. 

 

Choice probability function.  A choice function with a 

noise-term 𝑠 was used to transform 𝐷𝑉 of each model 

into choice probabilities. These choice probabilities are 

then used for maximum likelihood estimation. We used 

a choice function of the following form: 

 

𝐶𝑃 =  
1

1 + 𝑒
−𝐷𝑉

𝑠

 

(5) 

We ensured via visual inspection that the resulting fits 

were convex over this search space. We then used 

parametric tests to assess whether the resulting best-

fitting parameters differed positively (indicating 

upweighting of outliers) or negatively (indicating 

downweighting of outliers) from 1. For each 

participant, we searched exhaustively over values of k 

(in the range 0.02 to 2) and s (in the range 0.05 to 10) 

that minimised the negative log likelihood of the model. 

 

Early noise only model. To test our assumption that 

early sensory noise (noise arise prior to averaging) alone 

cannot explain subjects’ choice behaviour, we created a 

model where each feature value 𝑋𝑖 was corrupted by 𝜀𝑖, 

a sample of noise drawn independently from a Gaussian 

distribution zero mean and standard deviation 𝜉 : 

𝑥𝑖 = 𝑋𝑖 + 𝜀𝑖 

(6) 

After transforming 𝑥 with exponent 𝑘 using  equation 1, 

we converted the summed of 𝑥  values into a choice 

probability of 0 or 1 depending of its sign (i.e. via a step 

function) on a trial-by-trial basis.  We fit this model to 

psychometric functions, by computing the conditional 

probability of a clockwise response 𝑝(𝐶𝑊)  given the 

presence of a feature 𝑋𝑖  (sorted in to 9 equally spaced 

bins between -0.75rad to 0.75rad). We did this separately 

for the fixed reference session and variable reference 

session in humans. Using a grid search method, we 

identified best-fitting for 𝜉  among 20 linearly spaced 

values from 0 to 3 for each subject and reference 

condition (fixed, variable) by minimising the MSE 

between the predicted and observed psychometric 

functions. Fig. S4A shows both human psychometric 

functions and those predicted by this early noise only 

model, as well as late noise only model described above, 
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which is parameterised by 𝑘  and 𝑠  (and thus has an 

equivalent number of free parameters). 

Having identified the best-fitting parameters, we used 

these to predict accuracy for each level of mean and 

variance, and the weighting function in the fixed and 

variable reference conditions. The weighting function 

obtained from best fitting parameterisation of the model 

is shown on Fig. S4B and model fits of accuracies can 

be seen in Fig. S4C. The early noise only model failed 

to predict the presence of robust averaging and 

incorrectly predicted that accuracy would not vary as a 

function of the variance in the stimulus array, and was 

thus unable to account for human data.  

 

Population coding power model. As with the power 

model, we assume that feature values were recoded 

from presented orientations relative to the reference 

into a linear space spanning between –3 and 3 (e.g. 

radians) where 0 is the value of the reference. We 

assumed a population of 600 neurons (Μ = 600) whose 

tuning curves are linearly spaced across the feature 

space. The tuning curve for any neuron, 𝑗, is defined as 

a Gaussian probability density function centred at the 

neuron’s preferred feature value, 𝑓𝑗, and with a tuning 

width fixed across the population, 𝜀, specified by an 

additional free parameter. The amplitude of each 

neuron’s tuning curve (i.e. its maximum firing rate) was 

controlled by a gain factor which is a function of the 

neuron’s preferred feature value, 𝑓𝑗, and the power law: 

𝐺𝑗 = |𝑓𝑗|𝑘−1 

(7) 

Where 𝐺𝑗represents the gain, 𝐺, applied to neuron, 𝑗, 

whose preferred feature value is 𝑓𝑗, and a free 

parameter, 𝑘, controls the gain applied across the 

feature space in the neural population. The firing 

rate , 𝑅𝑗𝑖, for each neuron 𝑗 given a particular stimulus, 

𝑋𝑖, is computed as: 

𝑅𝑗𝑖 = 𝑁(𝑋𝑖 , 𝑓𝑗, 𝜀) ∙ 𝐺𝑗 ⋅
𝜌

Μ
 

(8) 

Where 𝑁(𝑋𝑖, 𝑓𝑗, 𝜀) correspond to the probability density 

of a Gaussian with mean, 𝑓𝑗, and variance, 𝜀, evaluated 

at point, 𝑋𝑖. To adjust for the scaling of output values, 

the product of the Gaussian density function and gain 

function is additionally scaled by 
𝜌

Μ
 , which is the ratio 

of range of the linear space in radians (𝜌) to the number 

of neurons (M). This ensures that  the output of the 

population activity 𝑅 will remained invariant to these 

factors of no interest in our model. Lastly, the model's 

estimate of a stimulus, 𝑋𝑖, is a computed from the 

population of neurons as follows:  

Θ𝑖 =  ∑ 𝑅𝑗𝑖

600

𝑗=1

⋅ 𝑓𝑗 

(9) 

Where 𝑅 is the population activity vector for 𝑋𝑖. Firing 

rate (𝑅𝑗𝑖) of each neuron 𝑗 is weighted by the 

corresponding neuron’s preferred feature value ( 𝑓𝑗) 

before summation to get the model estimate for 

stimulus (Θ𝑖). This is then used for computing the 

cumulative decision values (summation of model 

estimated angles) on a trial by trial basis for computing 

choice probability using equation 5 and negative log-

likelihood for model fitting. 

 

Parameter recovery. To test the ability of the fitting 

procedure to accurately identify the parameters of the 

best-fitting power model. We sampled 20 equally-

spaced values of 𝑘 (in the range of 0.02 to 2) and 𝑠 (in 

the range of 0.05 to 10). For each 𝑘 and 𝑠 combination, 

we transformed a set of orientations presented to 

subjects in the experiment using the given k and 

computed the choice probability of the 𝐷𝑉 with the 

given 𝑠. Then we compared the trial-to-trial estimated 

choice probability against a random probability drawn 

from a uniform distribution with a range of 0 to 1 to 

generate model choices. We then used these artificial 

choices to recover best-fitting values of k and s via 

maximum likelihood estimation.  

 

Model performance simulation. We simulated model 

performance (decision accuracy) under different 𝑘 in a 

range of 0.02 to 2 and 𝑠 in a range of 0.05 to 5 for the 

power model. For each combination of 𝑘 and 𝑠, trial-to-

trial estimate of 𝐷𝑉 was computed and transformed into 

choice probability using equation 5. Model choices 

were created by comparing the choice probability 

against a probability drawn randomly from a uniform 

distribution. Model accuracy was computed as the 
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proportion of model choices that were the same as the 

pre-defined correct choice, which is simply determined 

by the sign of the sum of 𝑋. 
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Fig. S4. Model comparison of Early noise only model and Late 

noise only model 

(A) Model psychometric functions (dotted line for “EN only” model 

and thin solid line for “LN only” model) were plotted against 

humans (darker coloured dots). Both models successfully capture 

human psychometric functions of the fixed reference and the 

variable reference sessions (red vs. green). (B) Recreation of the 

weighting function under simulated choices from the best fitting 

parameterisation of the early noise model. This model failed to 

replicate human robust averaging as shown in Fig. 3A. (C) 

Condition-wise mean accuracy and standard error of mean of the 

“EN only” model (pinkish dots) and the “LN only” model (bluish 

dots) superimposed on human accuracies (grey lines). Left panel 

shows the performance in the fixed reference session, and the right 
panel shows that of the variable reference condition.  

 

Fig. S1. d’ analysis  

d’ for each level of |μ| (mean) and σ (variance) conditions were 

computed separately for fixed reference (Left panel) and variable 

reference session (Right panel). The grey lines correspond to 

human’s average d’ for low mean (light grey) and high mean 

conditions (dark grey). The green dots correspond to the model fits 

for each condition (low mean in light green dots and high mean in 

dark green dots).  

 

Fig. S2. Parameter recovery 
Recovered parameters (y-axis) plotted against the actual parameters 

(x-axis) for 𝑘  (left panel) and 𝑠  (right panel). Black line is the 

identity line. 

 

S1 table. ANOVA results on the d’ analysis. 

Fig. S3. Performance under different presentation duration 

conditions 

Mean and standard error of mean for || on accuracy (left panel) and 

reaction times (right panel) under different presentation durations (x-

axis) in fixed (dark grey line) and variable reference session (light 

grey line). 
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Fig. S5. Feature values and decision values generated by a 

population coding power model 

Transfer functions that showed feature values were being 

transformed into decision values in nonlinear ways under 

different values of 𝑘 (coloured lines, in a range of 0.02 to 2), 

similar to transfer functions shown in fig. 4A, which were 

generated by a simple power model. Tuning width of neurons (𝜀) 

was assumed to be 0.5 in this illustration. 

 

Fig. S6. Simulated accuracy under best-fitting parameterisation 

of population coding 

Similar figure shown in fig. 2, this figure is showing the mean (and 

standard error of mean) accuracy of human (grey lines). Green dots 

represent the simulated mean accuracy (and standard error of mean) 

using best-fitting parameters yield from humans with the population 

coding power model. 

 

Fig. S7. Recreation of parameter estimates using the population 

coding model 

This figure is the same as fig. 3B, but instead of using the simple 

power model, model choices were simulated using the population 

coding power model under best-fitting parameterisation of 3 

parameters (𝜀, 𝑘, 𝑠). 

Fig. S8. exponent 𝒌 and gain (𝒈) 

Lower values 𝑘  (darker dots) have higher multiplicative gain, 

therefore the corresponding 𝑔 is higher for low value of 𝑘 
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