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ABSTRACT

The term brain activity refers to a wide range of mental faculties that can be assessed either on anatomical/functional
micro-, meso- and macro- spatiotemporal scales of observation, or on intertwined levels with mutual interactions. Here
we show, based on novel topological findings, how every brain activity encompassed in a given anatomical or functional
level necessarily displays a counterpart in others. Different brain activities are able to scatter, collide and combine,
merging, condensing and stitching together in a testable and quantifiable way. We point out how, despite their local
cortical functional differences, all the mental processes, from perception to emotions, from cognition to mind wandering,
may be reduced to a single, general brain activity that takes place in dimensions higher than the classical 3D plus time.
In physics, the term duality refers to the case where two seemingly different systems turn out to be equivalent. Our
framework permits a topological duality among different brain activities and neuro-techniques, because it holds for all
the types of spatio-temporal nervous functions, independent of their cortical location, inter- and intra-level relationships,
strength, magnitude and boundaries.

INTRODUCTION

The brain activity has been classically divided into different functions. Philosophers such as Locke and Kant viewed the
brain activity in terms of sensations, forms of reasoning and intelligence. Similarly in modern neuroscience, the rather
general term “brain activity” stands for a large repertoire of brain functions and mental faculties, such as attention and
perception, emotions and cognition, memory and learning, higher cognitive processes (decision making, goal-directed
choice, and so on) (Gazzaniga, 2009), mind wandering (Andrews-Hanna et al., 2014) and so on. Recent claims suggest
that every cortical neuron, or group of neurons, might encompass a different brain activity. In touch with these claims,
many neuro-techniques have been developed throughout the years, in order to assess brain activity at different levels of
spatio-temporal observation and to evaluate the mental correlates of various nervous activities (Abend, 2016). Every brain
activity and every experimental tool stands for an observational domain of the whole neuro-scientific discipline, each one
assessing a specific anatomical or functional scale. Some approaches assess brain activity at gross-grained levels of
observation, such as EEG and lesion studies (Buzsaki and Watson, 2012; Jensen et al., 2014).  Others take into account
a meso-level of observation, e.g., localized brain areas and sub-areas, such as diffuse tensor imaging, MEG analysis and
fMRI resting state functional connectivity. Other approaches allow the assessment of more coarse-grained levels, e.g.,
microcolumns (Opris and Casanova, 2014), or single-neuron function and structure. Further, more reductionist
approaches focus on the molecular levels of brain activity: see, for example, Jacobs et al. (2007), Stankiewicz et al.
(2013), Ekstrand et al. (2014), Garate et al. (2014). The last, but not the least, other techniques favor an approach that
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involves more than a single functional and anatomical level, tackling the issue of brain functions in terms of non-boundary
wall domains spanning over every observational dimension and scale (Friston, 2010; Sporns, 2013; Tozzi, 2015).
Consciousness, for example, does not seem to be confined to a single level (Koch et al., 2016). This means that far apart
levels must interact with each other too (Touboul, 2012).

Here we explore the possibility to assess brain activities, their dimensional scales and their multilevel assembly, in terms
of algebraic topology. With the help of topological tools, our aim is to evaluate whether brain activities can be reduced
to just a general one and whether the above-mentioned subdivision of mental faculties holds true. We show, based on
novel topological findings, how every brain activity encompassed in a given anatomical or functional level necessarily
displays a counterpart in other ones. This leads to a novel scenario, where different brain activities are able to scatter,
collide and combine, merging together in an assessable and testable way. This means that all the brain activities and
neuro-techniques are dual under topological transformation. The term dual refers to a situation where two seemingly
different physical systems turn out to be equivalent. If two phenomena are related by a duality, this means that one can
be transformed into the other, so that one phenomenon ends up looking just like the other one (Zwiebach and Barton,
2009). In sum, we demonstrate that, despite their local cortical functional differences, mental processes stand for just a
single, general brain activity. Our framework holds for all the types of approaches to the brain, independent of their
peculiar features, resolution, magnitude and boundaries.

We will proceed as follows: we will provide in the Material and Methods section the conceptual framework that makes it
possible to assess brain activities in terms of shapes that move in multidimensional abstract environments. We show how
a brain is a collection of tiny regions of space, that are vibrant “strings” in ambient space time. In effect, a brain is a
collection of brain activities in 3+1 space-time. Thanks to mathematics, brains can project their thoughts to higher-
dimensional functional spaces. In the next section (Results), we will provide the mathematical treatment that demonstrates
how brain activities might be (and need to be) reduced to just one. In the last section (Discussion) we will discuss the
crucial question: what for? What are the practical consequences of the duality among brain activities for the
neuroscientist?

MATERIALS AND METHODS

Brain activities as moving strings. Here we assess brain activities taking place in nervous physical spaces in terms of
geometric structures, i.e., regions, areas or shapes embedded on the surface of abstract geometric spaces. Every nervous
activity is modelled as a series of paths followed by particles traveling through brain micro-, meso- or macro- areas. Brain
activities taking place at lower-levels of observation (for example, the neuronal level) can be depicted as structures
equipped with n-dimensions. In turn, brain activities taking place at higher-levels of observation (for example, the EEG
tracing) can be depicted as n+1 -dimensional structures.

We term a single geometric structure given by a single brain activity “string” (denoted “str”) or “worldline” (Olive and
Landsberg, 1989). The string stands for a region on the surface of either the (non-abstract) cortical physical spaces, and
the abstract geometric spaces. Because a string is the path followed by a particle moving through a single brain area or
different areas, its shape might display zero or non-zero width, and either bounded or unbounded length.

In other words, a brain activity can be depicted as an n-dimensional normed linear space, while another as an n-
dimensional hypersphere (embedded in a higher-dimensional functional space). Various continuous mappings from
higher to lower dimensional structures lead to the Borsuk-Ulam theorem (BUT) (Borsuk 1933; Krantz, 2009; Tozzi and
Peters, 2016). BUT states that a single point on a circumference maps to two antipodal points on a sphere, both
characterized by the same description. Points on the sphere are antipodal, provided they are diametrically opposite
(Weisstein, 2016). If we simply evaluate nervous activities instead of points, BUT leads naturally to the possibility of a
region-based brain geometry. In the evaluations of brain activities (strings) confined to a single brain area, we are allowed
to take into account antipodal regions instead of antipodal points (Peters and Naimpally, 2012), because in a point-free
geometry regions replace points as the primitives (Di Concilio, 2013; Di Concilio and Gerla, 2006; Peters 2016). If we
assess a brain activity in terms of a spatial region on the surface of an n-sphere, or in an n-dimensional normed linear
space, the same activity can be defined as antipodal, provided the regions encompassing the strings associated with the
brain activity (i.e., strings defined by paths followed by cortical cells travelling through 3+1 spacetime) belong to disjoint
parallel hyperplanes. Put simply, disjoint cortical strings have no points in common. Indeed, antipodal regions could
stand not just for the description of simple topological points (Marsaglia, 1972), but also for signals detected by different
neuro-techniques, such as spatial or temporal patterns, vectors, particle trajectories, entropies, free-energies, perceived
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shape boundary intensities (Peters, 2016a; Peters, 2016c). Hence, BUT provides a way to evaluate changes of information
among different anatomical and functional brain levels in a topological space, which is distinguished from purely
functional or thermodynamical perspectives. Therefore, we can describe a wide range of brain features in terms of
antipodal geometric structures (strings) on n+1-dimensional structures. Brain signals of different scales and types (for
example, the different frequencies detected by EEG) can be compared, because the two antipodal points can be assessed
at higher-dimensional scales of observation (EEG macro-levels) which can be pulled back to single points at lower-
dimensional scales (histological micro-levels) (Tozzi and Peters, 2016). The two points (or regions, or activities) do not
need necessarily to be antipodal, in order to be described together (Peters, 2016a). Indeed, BUT can be generalized also
for the assessment of non-antipodal features, provided there are a pair of regions, either adjacent or far apart, with the
same feature vector (Peters and Tozzi, 2016a and 2016b). Even though BUT was originally described just for convex
spheres, it is also possible for us to look for antipodal points on structures equipped with other shapes (Mitroi-Symeonidis,
2015; Tozzi, 2016). This means that, whether a brain activity displays concave, convex or flat geometry, it does not
matter, because we may always find the points with matching description predicted by BUT. Furthermore, an n+1 —
dimensional structure might map straight to a corresponding lower-dimensional surface, instead of another n-dimensional
structure. This means that a brain area may map also just to itself (Weeks, 2002), so that the mapping of two antipodal
points to a single point in a dimension lower becomes a projection internal to the same structure. In other words, either
the Euclidean space and other manifolds could be omitted in a brain theory. We are no longer restricted to a S" manifold

curving into an n-dimensional Euclidean space [1 " (Weeks, 2002): in nervous system terms, we may think of a brain
activity not restricted to a local Euclidean manifold, but just exists in - and of - itself by an intrinsic point of view. The
mapping of two antipodal cortical regions to a single one in a dimension lower becomes a projection internal to the same

brain. That is, a cortical projection 7 (A, B) =E for AB,E {collection of cortical regions} is a mapping of

a pair of cortical regions A,B to a single cortical region E. For technical readers, see also Dodson and Parker (1997),
Matousek (2003), Crabb and Jaworowski (2013).

The whole brain can be termed a “worldsheet™, if every one of its subregions contains at least one string (a brain activity).
In topological terms, “worldsheet” designates a nonempty region of a space completely covered by strings, in which every
member is a string (Peters and Tozzi, 2016b). What we are calling a worldsheet is a special case of a world-volume traced
by brain activities (strings) in the cortical 3+1 space-time. A brain activity occurs on a curved Riemannian surface of
spatial dimension p in a cortical space-time of dimension p+1. The merging of different brain activities occurs as result
of the collision between single strings (Davis et al., 2008; Copeland and Kibble, 2010). See, for example, Figure 1,
representing brain activities’ collisions.

BraneCollisionProcess(0, 100sec)

L 1) (S S N § —J

1.A. 40 brain activities collisions over time 1.B. 3D View of Brain activity collisions

Figure 1. 1.A gives a 2D representation of 40 brain activity collisions over 100 time steps. 1.B gives a 3D view of a
brain activity collision process, in which a series of collisions results in brain activities merging (Copeland and Kibble,
2010). A worldsheet is represented by the 3D surface colliding with brain activities standing for the vertical walls of the
3D box.
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An increase in brain functional dimensions. The classical view of the 3D brain states that, all anatomical and functional
nervous constituents are bound to a worldsheet that can move within a 4-dimensional space (3+1 dimensional space-
time). That is, brain theories are generally formulated in 4 space-time dimensions, where each point is defined by 3 space
coordinates and a time component (Davis et al, 2008). A distinctive feature of brain activities (strings) are its world-

volume actions. For example, the complete action AM 2 of a brain activity is given by its kinetic action Akm, which
is represented by an integral (localized on a world-volume W3) of a 3-form gauge field A, i.e.,

A,,=A"d =3]—qu3A[3], g=+1

where q is the electric charge of the brain activity. The prototype of a brain activity is furnished by a 1-dimensional string
moving through a D-dimensional space-time, which sweeps out a 4D worldsheet (Fré, 2013).

This classical scheme has been recently “overthrown” by Peters et al. (2017a), who demonstrated that the total brain
functional activity lies in dimension higher than the usual 3D plus time space. Such an increase in brain dimensions gives
rise to interesting consequences. Although strings embedded in the same wordsheet (i.e., brain activities embedded in
the whole brain) are antipodal and descriptively near, e.g., they share matching description, there is however a difference
between the strings embedded in different brain areas. The higher the dimension of the wordsheet, the more the
information that is encompassed in strings on the same region, because the number of coordinates is higher. Strings
contain more information than their projections in lower dimensions. A string-based BUT and region-based BUT makes
it possible for us to evaluate systems features in higher-dimensions, leading to an increase in the amount of detectable
information. For example, when you watch at a 3D cat embedded in a 3D plus time environment, your brain perceives
a higher dimensional cat: the brain indeed perceives not just the image, but also its emotional content, its species, and so
on. On the other hand, dropping down a dimension means that each region in the lower-dimensional space is simpler.
Hence, BUT provides a way to evaluate changes of information among different brain activities in a topological fashion,
in addition to the standard mathematical tools (e.g., Maartens, 2010; Fré, 2013), energy (e.g., Odintsov, 1990), localized
magnetic field (e.g., Geng, Ho, 2011), thermodynamical (e.g., Marinec, 2001).

RESULTS

Sloshing the coffee. The Brouwer’s fixed point theorem (FPT), which states that every continuous function from a n-
sphere of every dimension to itself has at least one fixed point (Volovikov and Yu, 2008). FPT applies, for example, to
any disk-shaped area, where it guarantees the existence of a fixed point, which behaves like a sort of whirlpool attracting
moving particles. Su (1997) gives a coffee cup illustration of the FPT: no matter how you continuously slosh the coffee
around in a coffee cup, some point is always in the same position that it was before the sloshing began. And if you move
this point out of its original position, you will eventually move some other point in the sloshing coffee back into its

original position. The shape of brain activity, i.e., astring A (denoted StFA), s the silhouette — the wiring of string STA

Wired Friend Theorem (Peters and Tozzi, 2016a). Every occurrence of a wired friend of a string StrA with a particular

shape with k features on an n-dimensional brane hypersphere S" maps to a fixed description that belongs to a ball-shaped
k

neighborhood in R".

In BUT terms, this means that not only we can always find an n-sphere (a part of the whole brain) containing a cortical
string, but also that every string with a particular shape comes together with another one, termed a wired friend. These
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observations lead to the wired friend theorem: every occurrence of a wired friend string with a particular shape on the
structure S" maps to a fixed description, e.g. to another string that belongs to a manifold or Euclidean space with different
dimensions. Every wired friend is recognizable by its shape, because the shape of a string is the silhouette of a wired
friend string. This means that we can always find a cortical string embedded in a higher-dimensional brain structure
which is the description of another string in a lower dimensional brain structure, and vice versa. Not only we can always
find a brain region containing an activity, but also that every cortical region needs to be coupled with everyone needs to
come together with another one. The significance of this is that every brain activity (embedded in a higher-dimensional
brain macro-level) is the topological description of another brain activity (embedded in a lower dimensional brain micro-
level). And vice versa.

Merging brain activities. In the previous paragraph, we showed how different brain activities, depicted in guise of
geometrical shapes, necessarily have at least a feature in common. Here we illustrate how, in topological terms, nervous
activities/shapes are continually transforming into new homotopically equivalent nervous activities/shapes. They might
influence each other by scattering, colliding and combining, to create bounded regions in the brain. Hence, it is possible
for brain activities to stick together to become condensed, e.g., worldsheets, which are portrayed as a collection of
interacting elements of geometrical shapes. Eventually brain activity’s shapes will deform into another, as a result of the
collision of a pair of separate shapes. Let a brain activity be represented in Fig. 2.A. This brain activity evolves over
time as it twists and turns through the outer reaches of another brain activity. An inkling twisting brain activity appearing
in the neighborhood of the first one is illustrated in Fig. 2.B. The two activities begin interacting, so that the first now
has a region of space in common with the second (Fig. 2.C). In effect, as a result of the interaction, they are partially
stitched together. The partial absorption of one brain activity in another is shown in Fig. 2.D. Here, a very large region
of the total brain space occupied by the first activity is absorbed by the second. Therefore, we have the birth of a
condensed brain activity.

Recall that a brane is a chunk of matter in the cosmos. From this, a brain is also a brane. Let brA, brB denote branes.
The two branes brA, brB become at first connected via at least one open string (not shown) with ends on the branes in

Fig. 3.E., then a complete condensed brane is formed with concentric branes having a tooth shape in Fig. 3.F. When the
two branes are completely transformed into a new one, we have instance of their homotopy of equivalence, where the
second brane that has completely absorbed the first brane. When the two brain activities are completely transformed
into a new one, we have instance of their homotopy of equivalence, with the second that has completely absorbed the
first. To make an example, the idea of cat arises from the perception of many single cats of different size, color, and so
on. This is a further instance of the duality principle in brain theories. That is, one brain activity is the dual of another,
provided the first can be deformed into the second there is no longer any difference between the cat | see and the cat |
imagine.

From what we have observed about brain activities and their topological shapes, non-colliding brain activities have at
least a few features in common. Examples of common brain features are average gradient orientation of brane surface
hills (upward slopes) and valleys (downward slopes), persistence (brane lifespan), local brane surface shape (e.g., convex,
concave), brane shape as a result of deformaton from another shape (see, e.g., toothshape in Figure 2) and so on.
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Figure 2. Homotopically equivalent shapes, standing for brain activities. Eventually a brain activity will deform into
another, as a result of the collision of a pair of separate brain activities. A: a brain activity (e.g., emotions) at a given
spatiotemporal level. Such level could be differently coarse-grained, e.g., might stand for every micro-, meso- or macro-
level. B: two brain activities at two different levels. The second shape stands, e.g., for cognitive faculties C: interacting
brain activities. D: dual brain activities. E: concentric brain activities. F: condensed brain activity. See the text for
further details.

f,g0: X >Y

Mathematical treatment of merging of brain activities: homotopy equivalence. Let be a pair of

f(X X
continuous maps. For example, let ( )and g ( )be two brain activities with fixed endpoints (located in a given

H: X x[0,]>Y

brain area). A homotopy (Cohen, 1973) between f and g is a continuous map so that

H(x,2) =g(x) and H(x,0)=f (X). The interest here is in the possibility of deforming (transforming) one brain
activity with a particular shape into another with a different shape. This means that the birth of different brain activities,

that evolve out of the interaction of initially disjoint branes, is allowed. Let'dx X > X denote an identity map

defined by iy (x) = X Similarly, idy 1Y > Y is defined by id, (1) = Y The composition fo g(X)is defined by
Feg(X)=1 (g(X)) Similarly, ge f(X)is defined by ge f(X)=g(f(X)). The sets X and Y are
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homotopically equivalent, provided there are continuous maps so that gofO Idx (x) and fogl IdY () . The sets
X and Y are the same homotopy type, provided X and Y are homotopically equivalent (Peters and Inan, 2016). The
interest here is in evolving brain activities that have the same homotopy type. In effect, homotopically equivalent brain
activity shapes have the same homotopy type. This leads to a comparison of brain activities with seemingly varying
shapes and sizes that are homotopically equivalent.

Example. Homotopically Equivalent Shapes. A stitching action on a pair of equivalent brain activities is a homotopic
mapping that splices them together. Brain activities occuring in branes brA, brB are connected, provided there is at least
one open string O (denoted by strO) with one extremity of strO attached to brA and with the other extremity of strO
attached to brB. This is a further instance of the duality principle in physics. Open strings are strands ending on brain
areas (Davis et al., 2008).  Strings strO1, strO2 have nonempty intersection, provided both strings have extremites
attached to the same point on a brain area. That is, one brain activity is the dual of another one, provided the first can be

K
deformed into the second. Let K be a set of open strings and let 2" be the collection of all subsets in K. The brane in
K
Fig. 2.E is an example of a Edelsbrunner-Harer nerve (Peters and Inan, 2016), which is a collection 2" such that all

NrivK ={Ae2“: NA=T1.
nonempty subcollections of NrvK have a non-void common intersection, i.e., { }
sample nerve defined by the intersection of open strings strO1, strO2 is shown in Figure 3.

Figure 3. A set K of open strings strO1, strO2 have extremities on brain activities brA and br B. The extremities of
strO1,  strO2 meet in a common point on brain activity brB. Hence, nerve

NrvK = {strA e {strO1,strO2} : (strA= @}.

StrA, strB sew(strA,strB)

Brain activities are paths on donut-like structures. Strings are connected (denoted by
), provided STANSIB £ X j ¢ the pair of strings have points in common. The sew operation is defined by

sew(strA,strB) ={(x, y) estrAxstrB: X, y e strANstrB = &}.

In Figure 5, let
(strA,strB) € 2* x2* \ {endstrE, endstrE '} :
f(2") =1 sew(strA,strB) =cylK

for all adjacent circular strings strA, strB
and let
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(strA,strB) e 2" x 2™ \ {endstrE, endstrE '} :
g(2*)=1{U{Usew(strA,strB)U sew(endstrE, endstrE ')} { = torK.
for all adjacent (strA,strB) e 2" x 2*

endstrA

X Y
: N . . . . X . .
f.g:2 2 be continuous maps on collections of circular strings 2" onto collections of circular

Y
strings 2" Let f(X) be the whole 3D brain surface that is a cylinder K (denoted by cylK ) that consists of k circular
strings (single brain activities), each with a radius r. And let g(X) be a 3D brain surface that is a torus K’ (denoted by

Figure 5. Let

torK’ ) that consists of k circular strings, where perpendicular slice through a wall of g(X) is a circular string with radius
. 9X Y _

r.  In addition, let continuous map Hi2"x[01] = 2" o) e HEUAD =g(SUA) ¢ strAe 2 ;g

H (strA,0) = f (strA)

(%)

Lemma 1 is atorus.

(strA,strB) e 2" x2* \{endstrE,endstrE"} . o _
contains all circular strings in except the circular

The union Usew(strA,strB)

SeW(endStrE’ enasirE )operation can only occur, provided one end of cylinder
endstrE, endstrg"’

Proof: The set

cylK.

strings on the ends of the cylinder defines an open brain cylinder, i.e., a cylinder

without ending circular strings. The

cylK

is bend round so that the ends of the end strings have nonempty intersection. In that case the

union of the pair of unions is a torus torK™" with the same number of circular strings as cylK such that K = K.

brane cylK = brane torK.
go f(2°)=g(cylK)=torK.

Theorem 1.
Proof: From Lemma 1, And, by definition of map f, we have
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fog(2")= f(tork \{endstrE,endstrE }) = torK \ {endstrE, endstrE '} = cylK.

cylK, torK

Hence, the pair of brain activities have the same homotopy type. the result follows.

X
A condensed brain activity E (denoted by condX ) is a collection of brain activities 2" that have been sewn together,

i.e., they have nonempty intersection. Recall that an Edelsbrunner-Harer nerve NrvK on a nonempty set K is defined

by NrvK :{AezK :ﬂA¢@}.

Lemma 2. A condensed brain activity is an Edelsbrunner-Harer nerve.

Proof. Let A, B be brain activities in CONAX. By definition, PFANDIB # . since this holds for all brain activities

in condX, their nonempty intersection is an Edelsbrunner-Harer nerve.

Theorem 2. The intersection of homotopically equivalent brain cylinders and brain tori is a condense brain activity.
Proof: From Theorem 1, the pair of brain activities cylK, tork
cylK ntorK # & implies that sewing cylK, tork together forms a condensed brain activity. Since this holds for
all homotopically equivalent cylinders and tori, taken pairwise with the restriction that all pairs have nonempty
intersection, the intersection is a condensed brain activity.

have the same homotopy type. From Lemma 2,

Corollary 1. Intersecting brain cylinders form an Edelsbrunner-Harer nerve.
Proof. By definition, intersecting cylinders are a condensed brain activity (call it condK). From Lemma 2, condK is an
Edelsbrunner-Harer nerve.

Corollary 1. Intersecting brain tori form an Edelsbrunner-Harer nerve.
Proof. Symmetric with the proof of Corollary 1.

It is well-known that every brain activity is a virtual Vietoris-Rips complex, i.e., the ends of open strings on a brain
activity can be triangulated and the collection of filled triangles forms a Vietoris-Rips complex. For this reason, the

: : StrA : : Nrv {strA}
intersection of open strings in a region on a complex constitute a nerve complex

Nrv{strA} = {strA e R¥: NstrA = @}.

Theorem 3. The intersection of closed strings is a nerve complex.
(strA

triangle in a Vietoris-Rips complex. Let closed strings StrA be circular strings (coils) on the surface of colliding brain
Nrv {strA} NstrA

, defined by

Proof: By definition, the intersection of closed strings is on either a triangle vertex or on the interior of a filled

cylinder. From Corollary 1, ﬂStrAis an Edelsbrunner-Harer nerve Since is also collection of

Nrv {strA

points that are ends of open strings on a brain activity complex, } is a nerve complex.

DISCUSSION

The issue of the brain/mind relationships has been tackled by different point of views, from philosophy (Descartes, 1637;
9
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Avenarius, 1907; Dennett, 1991) to psychology (Ibéafiez et al., 2016) and neuroscience (Basar, 2010). The current
consensus states that the mind is correlated with the nervous function of the brain. Therefore, neuroscientists are used to
split the brain activity in different subsets of mental faculties, in order that far apart mental domains interact one each
other (Touboul, 2012; Gazzaniga, 2013). Indeed, neuroscientific experimental procedures generally aim to assess just
specific observational domains of the whole mental faculties, looking for the neural correlates of different brain activities
(Dricu and Friihholz, 2016; Abend, 2016). Experimental procedures in neuroscience rely on the standpoints that the
mind is a functional state of the brain and a clear subdivision among different mental faculties does exist in the cortex.
However, there is no universally agreed definition of what brain/mind’s distinguishing properties are. In cognitive
neuroscience, the term “mind” refers to a set of “cognitive” faculties (Bosse et al., 2008; Gazzaniga, 2009;
Vandekerckhove and Panksepp, 2011). In modern terms, “cognition” stands for the mental functions that give rise to
information processing, embracing consciousness, perception, attention, different types of memory, language, learning,
thinking, judgement, action, attitudes and interaction in the physical, material, social and cultural world (George, 2003;
Almadaetal., 2013). According to cognitive neuroscientists, the term “mind” encompasses just the “cognitive” faculties,
such as consciousness, perception, thinking, judgement, memory, leaving apart the “emotional” states. In this framework,
the emotions (such as joy, fear, love, hate and so on) (Damasio, 2003) are alleged to be primitive and subjective, and
therefore are not encompassed in the definition of the mind as such. Other scientists take into account a more general
definition of mind, including all mental faculties (Oron Semper et al., 2016). They argue that rational and emotional
states cannot be separated, because they are of the same nature and origin, and should therefore be considered all part of
it as mind. The assessment of different brain activities evaluates different types and forms of brain functions, displayed
at micro-, meso-, or macro-levels of observation.

Here, taking into account the powerful tools of algebraic topology, we evaluated whether: different mental faculties can
be reduced to a more general one, and whether the division of mental faculties (for example, the spit between cognition
and emotion) holds true. Topological concepts make it possible for us to achieve generalizations that allow the assessment
of every possible brain activity, independent on its scale, magnitude, specific features and local boundaries. Brain
activities, equipped either with antipodal or non-antipodal matching description and embedded in higher-dimensional
nervous structures, map to a single activity in lower-dimensional ones, and vice versa. In other words, there exists an
assessable and quantifiable correspondence between micro-, meso- and macro-levels of brain activities assessed through
a wide range of different neuro-techniques. We could conceive brain activities that are too far apart ever to communicate
with one another, so that functions bounded on distant brain regions would never have direct contact: for example, two
opposite activities such as emotions and abstraction have apparently very few in common. However, our topological
investigation reveals that this “split” scenario is unfeasible, because there must be at least one element in common also
among brain activities that are apparently very distant one each other. Far-flung cortical activities will always have some
element in common: they do not exist in isolation, rather they are part of a large interconnected whole, with which they
interact. Whether you experience pain or pleasure, or chomp on an apple, or compute a mathematical expression, or quote
a proverb, or remember your childhood, or read Wittgenstein’s Tractatus, it does not matter: the large repertoire of your
brain functions can be described in the same topological fashion.

Furthermore, the distinction among different coarse-grained levels of nervous activity does not count anymore, because
nervous function at small, medium and large scales of neural observation turn out to be topologically equivalent. Our
procedure achieves generalizations that allow the assessment of every possible mental faculty. In other words, there exists
an assessable and quantifiable correspondence between the single faculties of the mind. By a common-sense point of
view, we are used to conceive mind faculties as too far apart ever to communicate with one another, so that activities
bounded on distant brain regions would never have direct contact: for example, two apparently opposite brain activities
such as emotions and abstraction have apparently very few in common. A question arises: why, by the standpoint of our
natural common-sense experience, are we used to split brain activity in different mental faculties? The answer is
straightforward, if we take into account topological arguments. If we depict different mental faculties in guise of abstract
geometric shapes taking place in the phase space our physical brain, it is possible to demonstrate that they necessarily
have at least a feature in common. Brain signals from different mental faculties can be compared, because their two
shapes can be assessed at higher-dimensional scales of observation. In the brain, every sub-region encompasses at least
one mental faculty, which can be modeled as a shape. Hence, BUT provides a way to evaluate changes of information
among different anatomical and functional brain levels in a topological space. In BUT terms, this means that not only we
can always find a brain region containing an mental faculty, but also that every mental faculty comes together with
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another one. This means that we can always find a mental faculty, embedded in a cortical area, which is the topological
description of another activity, embedded in another area. Therefore, in topological terms, mental faculties/shapes are
continually transforming into new equivalent mental faculties/shapes.

In our brain scenario, particle movements are described as functions occurring on structures displaying different possible
geometric curvatures, either concave, convex or flat. Such generalization encompasses the brain models that claim for
different curvatures of the brain phase space (see, for example, Sengupta et al., 2016; Chamberlain et al., 2017). This
means that the most of the current brain general theories are DUAL: e.g., their topological description is the same, despite
the huge difference in the subtending hypothesized curvature. This allows a useful simplification in the assessment of
brain activity. Furthermore, the level of observation is not significant in the evaluation of brain activities, because such
levels are fully interchangeable. Because projections between dimensions describe neural phenomena spanning from the
smallest to the highest scales, the distinction among different coarse-grained scales does not count anymore, because
nervous activity is topologically the same, at small, medium and large scales of observation. This means, for example,
that that all the types of cognitive studies assess the same topological activity, regardless of their different protocols and
procedures.

Brain theories predict the existence of long-range connexions, e.g., paths equipped with two ends lying on physical
separated brain zones. An appropriate projection mapping shows that, if the two ends have matching features (e.g., the
intensity, or length, or pairwise entropy) (Kakiashvili et al., 2017), the two activities are the same. In sum, two activities
with matching description, embedded in two brain zones of different levels, display the same features. Activities with
matching ends (regions) in different cortical areas might also help to throw a bridge, for example, between sensation and
perception. In the same guise, the relationships between the spontaneous and the evoked activity of the brain (Tozzi et
al., 2016b) take now a new significance: they become just two sides of the same coin, made of topologically-bounded
dynamics. Also, our topological account provides the possibility to try a definition the elusive term “consciousness”:
consciousness could be the condensed brain activity that takes place in the highest-dimensional functional levels of the
brain. Intouch with Nicholas of Cusa’s (1440) and Giordano Bruno’s (1584) claims, a sort of “coincidentia oppositorum”
(our matching descriptions?) occurs among the brain activities endowed in our skull, giving rise to the consciousness.
Tozzi et al. (2017) showed how lower-dimensional features can be assessed in the generic terms of particle trajectories
traveling on higher-dimensional structures. This methodological advance could be useful in order to achieve a unvarying
operationalization of the countless theories describing brain function. In sum, the paths described by BUT and FPT
variants elucidate how the tight coupling among different neural activities gives rise to brains that are in charge of
receiving and interpreting signals from other cortical zones, in closely intertwined relationships at every spatio-temporal
level (Marijuan et al., 2013). Therefore, topology becomes one of the central information processing strategies of the
nervous system and allows us to achieve a general, testable, computational model of brain function that keeps into account
the functional subdivisions of the brain activity.
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