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Abstract 
 Prediction during language comprehension has increasingly been suggested to play a 
substantive role in efficient language processing. Emerging models have postulated that 
predictive mechanisms are enhanced when neural networks fire synchronously, but to date, this 
relationship has been investigated primarily through oscillatory activity in narrow frequency 
bands. A recently-developed measure proposed to reflect broadband neural activity – and thereby 
synchronous neuronal firing – is 1/f neural noise extracted from EEG spectral power. Previous 
research (Voytek et al., 2015) has indicated that this measure of 1/f neural noise changes across 
the lifespan, and these neural changes predict age-related behavioral impairments in visual 
working memory. Using a cross-sectional sample of young and older adults, we examined age-
related changes in 1/f neural noise and whether this measure would predict ERP correlates of 
successful lexical prediction during discourse comprehension. 1/f neural noise across two 
different language tasks revealed high within-subject correlations, indicating that this measure 
can provide a reliable index of individualized patterns of neural activation. In addition to age, 1/f 
noise was a significant predictor of N400 effects of successful lexical prediction, but noise did 
not mediate age-related declines in other ERP effects. We discuss broader implications of these 
findings for theories of predictive processing, as well as potential applications of 1/f noise across 
research populations.  
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Introduction 
 Studies of the effects of predictability during language comprehension in aging 
populations have traditionally examined cross-sectional differences that emerge when comparing 
groups of young versus older adult cohorts. Recent literature has sought to bolster this classic 
approach by considering the role of within-group variability. Across these studies, researchers 
have shown that neural indices of predictive processing vary as a function of age and 
maintenance of cognitive capacity (e.g., Dave, Brothers, Long, & Swaab, submitted; Delong, 
Groppe, Urbach, & Kutas, 2012; Federmeier, Kutas & Schul, 2010; Federmeier, McLennan, 
Ochoa, & Kutas, 2002; Huettig & Janse, 2016). Considerably less research has examined how 
maintenance of neural function impacts prediction across the lifespan, though a number of 
researchers have proposed that strong, coherent neuronal networks likely underlie preservation of 
predictive processing in older adults (Federmeier et al., 2010; Peelle, Troiani, Wingfield, & 
Grossman, 2010; Wlotko, Federmeier, & Kutas, 2012). Testing this hypothesis directly requires 
finding a reliable measure of neuronal network dynamics that can be correlated with both age 
and predictive processing during language comprehension. One potential measure has recently 
been proposed by Voytek and colleagues (2015): 1/f neural noise extracted from spectral power 
in the EEG signal. Voytek et al. found that 1/f neural noise positively correlated with age, and 
these neural changes explained age-related decline in visual working memory performance. Here 
we investigate whether there are similar age-related differences in 1/f neural noise during 
language comprehension, and if this measure is reliable on the individual level when collected 
during different tasks. Then we examine whether 1/f noise mediates the effect of age on neural 
indices of accurate prediction of words during discourse comprehension, i.e., lexical prediction. 
 
The Neural Noise Hypothesis of Aging 
 Neural noise has been defined as random, background electrical fluctuations within the 
central nervous system (Hong & Rebec, 2012; Li, Lindenberger, & Sikström, 2001; Serletis et 
al., 2011). Noise can be considered by comparison with the strength of the signal for relevant, or 
actively processed information; a nervous system is noisy if the ratio of signal strength to 
random background noise is low (signal detection theory in Nevin, 1969; reviewed in Swets, 
2014). Noisy systems may emerge when connections between neurons are weakened or diffuse 
as a function of reduced arborization, neuronal loss, or inconsistent inhibition (Cremer & Zeef, 
1987). The brains of older adults often show these types of losses and changes across neural 
connections (e.g., Cabeza, Nyberg, & Park, 2016; Fjell & Walhovd, 2010; Raz et al., 2005), 
underlying a long-held hypothesis (Crossman & Szafram, 1956) positing that the effective 
signal-to-noise ratio in neuronal networks decreases with age.  
 For decades, reaction times to degraded stimuli were the primary means by which 
researchers quantified neural noise (e.g., Creemer & Zeef, 1987; Salthouse & Lichty, 1985; 
Welford, 1981). However, behavioral measures may not accurately address connections in neural 
networks, and may only reflect age-related degradation in peripheral sensory systems (i.e, as 
opposed to cortical neural noise). An alternate method may be to measure neural noise directly 
and non-invasively using the electroencephalogram (EEG). Oscillatory neural activity recorded 
at the scalp is thought to arise from dynamic communication across ensembles of neurons, and a 
number of researchers have proposed that these oscillations measure synchrony in neuronal 
firing (e.g., Fries et al., 2007; Miller et al., 2014; Voytek & Knight, 2015). Recent studies have 
further indicated that population-level neuronal spiking correlates with oscillatory activity due to 
generalized broadband activation, as opposed to oscillations specific to any particular frequency 
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band (e.g., Kreiman et al., 2006; Manning, Jacobs, Fried, & Kahana, 2009; Miller et al., 2007). 
In other words, neural noise may be reflected in the distribution of neuronal activation (or the 
power spectral density, PSD) across the frequency spectrum.  
 In order to test this hypothesis, Voytek et al. (2015) used EEG to investigate PSD in 
young and older adults. If, as suggested by the neural noise hypothesis, older adults have less 
synchronized or less simultaneous neuronal spiking relative to younger adults, this should be 
observed in the distribution of spectral power across frequencies. The characteristic distribution 
of EEG data in the frequency domain is inversely proportional (He, 2004; Miller, 2010; Voytek 
et al., 2015), such that a linear relationship can be approximated by calculating the log of the 
PSD. Voytek and colleagues showed that the slope of this linear relationship can serve as a 
measure of 1/f neural noise1, with more power at low frequencies relative to higher frequencies. 
In this study, older adults showed a flatter, less negative 1/f slope than younger adults. As PSD 
slopes are predicted to flatten when spiking activity is decoupled from oscillatory 
synchronization (Freeman & Zhai, 2009), these differences in 1/f neural noise have been 
interpreted as reflecting age-related declines in population-level synchrony across neuronal 
networks (Hong & Rebec, 2012; Podvalny et al., 2015; Voytek & Knight, 2015).  
 Voytek and colleagues (2015) found 1/f neural noise was higher for older adults 
performing a visual working memory task. In the present study, we examined whether similar 
age differences in 1/f noise could be observed during two language comprehension tasks. In 
addition to examining the effect of age on 1/f noise, we compared 1/f noise levels between two 
language tasks within individuals. In the first task (Comprehension Paradigm), participants were 
instructed to read single sentences for comprehension, while in the second task (Prediction 
Paradigm), participants were asked to try to predict the last word of a two-sentence passage. If 
1/f noise represents a robust and reliable individual difference measure, we should observe strong 
correlations within subjects independent of differences in cognitive demands. 
 Finally, as Voytek et al. examined effects of 1/f neural noise on behavioral accuracy in 
their working memory task, this study tests if 1/f noise would similarly influence event-related 
neural responses during lexical processing. Specifically, we tested the hypothesis that age and 
neural network dynamics affect anticipatory processing. 
 
Neural Noise and Predictive Processing 
 Current approaches in cognitive neuroscience emphasize the role of active, top-down 
mechanisms in the processing of incoming sensory stimuli (e.g., Clark, 2013; Friston, 2005; 
Hinton, 2010). These models suggest that the brain proactively generates expectations for 
upcoming information, compares real-world input with these internally held expectations, and 
adjusts accordingly. Such generative models of anticipatory processing – or prediction – are 
thought to have vast explanatory power across cognitive domains, and therefore have become an 
increasingly popular assumption of computational networks modeling neural dynamics (e.g., 
Dayan, Hinton, Neal, & Zemel, 1995; Jaeger & Haas, 2004; Maloney & Mamassian, 2009). 
However, very little evidence exists to link prediction to specific neural activation patterns. 

                                                           
1 1/f noise, alternately known as flicker or pink nose, is defined as electrical activity associated 
with current flow in systems with few charge carriers, such as neurons (e.g., Hooge & Gaal, 
1971; Stevens, 1972). 1/f neural noise has been observed in mammalian neural circuits since 
Verveen and Derksen (1965). 
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 Emerging frameworks for anticipatory processing have described the brain as a Bayesian 
“prediction machine”, or a network that distills statistical regularities from environmental stimuli 
and uses these statistics to make predictions about future events (Bastos et al., 2012; Clark, 2013; 
Friston, 2010). The predictive brain probabilistically generates models for upcoming 
information, and is believed to pre-activate those models when information is highly expected 
(i.e., when the environment strongly supports presentation of a specific stimulus). In order for 
prediction to be both efficient and generalizable across sensory and cognitive domains (i.e., 
unifying; Friston, 2005), top-down processing must be a fundamental architectural feature of 
neural organization. One explanation for neural encoding of prediction suggests that anticipatory 
mechanisms are embedded in spatio-temporal relationships across neuronal populations (Engel, 
Fries, & Singer, 2001). This temporal binding model postulates that higher-order brain dynamics 
modulate synchronous timing of neural firing. In other words, top-down information (e.g., 
expectations, goals, and attention) influences the size, strength, and cohesive firing of neural 
assemblies activated for expected input. If so, synchronous firing should be enhanced during 
prediction. Recent evidence shows that synchronous oscillatory activity in the brain is associated 
with the presentation of predictable, as opposed to unpredictable, stimuli (reviewed in Engel, 
Fries, & Singer, 2001; Arnal, Wyart, & Giraud, 2011; Doelling, Arnal, Ghitza, & Poeppel, 2014; 
Samaha, Bauer, Cimaroli, & Postle, 2015). In order for networks to show neural synchrony, 
stable and coherent networks must be established in the brain (Fries, 2005), and so we propose a 
corollary: prediction is enhanced for individuals with more synchronous neuronal networks. 
 In the present study, we test this hypothesis by examining the effects of age and 1/f neural 
noise on ERP indices of predictive processing during language comprehension.  
 
Effects of Age and Noise on Prediction during Language Comprehension 
 ERP studies of lexical prediction typically examine effects of manipulating cloze 
probability, or the likelihood that a word will complete a given context2 (reviewed in Kutas & 
Federmeier, 2011). Effects of cloze probability have primarily been reported to modulate the 
amplitude of two ERP components: the N400 and, more recently, the post-N400 positivity 
(PNP). The N400 is a negative deflection that is maximal over posterior electrode sites between 
300 to 500ms after a word is presented. The amplitude of the N400 is reduced when 
comprehenders process high-cloze (highly predictable) relative to low-cloze (unpredictable) 
words in sentence or discourse contexts (reviewed in Swaab, Ledoux, Camblin, & Boudewyn, 
2012). The N400 effect is thought to index neural facilitation when words are highly expected or 
pre-activated. The PNP is maximal to low-cloze continuations over frontal electrode sites 
between 600-900ms (reviewed in Delong & Kutas, 2016; Van Petten & Luka, 2012). The PNP is 
thought to reflect costs of resolving an unexpected word with the prior discourse, or costs 
associated with updating the discourse representation with new information. Modulations of the 
N400 and PNP as a function of critical word predictability are found both as a function of if 
critical words were actually accurately predicted by the reader, or were plausible given the 
preceding context. An ERP paradigm developed by Brothers and colleagues (2015) allows us to 
observe separate N400 and PNP effects for prediction accuracy and contextual plausibility 
(independent of prediction accuracy, henceforth referred to as effects of context). 

                                                           
2 For example, for the sentence: You could tell he was angry from the tone of his…, the most 
predictable and therefore highest cloze completion is voice. An example of an unpredictable, low 
cloze competition is violin. 
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 In the Brothers et al. study, participants were asked to try to predict the last word of 
moderate cloze (40-60%) two-sentence passages and, at the end of each passage, to report 
whether the passage-final word matched the identity of the word they had predicted. The 
recorded EEG was sorted in different bins for accurately predicted and inaccurately guessed 
words. A subset of the passages presented in this study ended in low-cloze (0-7%) completions, 
and readers nearly always reported inaccurately guessing these unpredictable items. By 
comparing ERP in three conditions (accurately predicted moderate-cloze, inaccurately predicted 
moderate-cloze, and inaccurately predicted low-cloze items), Brothers et al. (2015; see also 
Brothers et al., 2017) found separable N400 and PNP effects of accurate prediction and 
contextual support (i.e., cloze probability independent of prediction accuracy). These 
components were larger in amplitude when the reader’s prediction was incorrect and when the 
critical word was incongruent given the preceding context. Using this paradigm, Dave et al. 
replicated this pattern in older adult readers (Dave et al., a/b, submitted). Dave et al. further 
showed older adults had reduced effects of prediction accuracy and contextual support on the 
N400, while PNP effects were not modulated as a function of age. In the current study, we 
correlated ERP data collected in Dave et al. (b) with EEG measures of 1/f neural noise for each 
participant. Specifically, we examined whether separate ERP measures of prediction accuracy 
and contextual support correlated with individual estimates of 1/f neural noise.  
 
Methods 
Participants 

Comprehension Paradigm. EEG data were collected from 24 young adults (19 females; 
mean age: 19.5; range: 18 to 28) and 24 older adults (14 females; mean age: 72.0 years; range 64 
to 79). All participants were native English speakers with normal or corrected-to-normal vision 
and no known history of psychiatric or neurological disorders, head trauma, or neuro-active 
prescription medication. All participants were right-handed, as assessed by self-report and the 
Edinburgh Handedness Inventory (Oldfield, 1971). Both groups provided written informed 
consent to a protocol approved by the Institutional Review Board at the University of California, 
Davis. Data from two additional participants in each age group were excluded from analyses due 
to excessive artefacts in EEG recordings.  

Prediction Paradigm. EEG data were collected from 36 new young adult participants (19 
females, mean age: 20.5; range: 18 to 33). The same 24 older adults were tested on the prediction 
paradigm, and 12 new older adult participants were also included (total group: 21 females; mean 
age: 70.8 years; range 64 to 79). All participants were consented to the same criteria described 
above. Data from two additional young adults and three additional older adults were excluded 
from the analyses as a result of excessive artefacts in EEG recordings.  
 
Stimuli and Procedure 

Comprehension Paradigm. Participants read 100 experimental sentences, presented via 
rapid serial visual presentation (RSVP) with a stimulus-onset asynchrony (SOA) of 600ms (as 
described in Dave et al., a, submitted). Participants were instructed to read for comprehension, 
which was tested by manual response to true/false statements following 25 percent of the trials. 

Prediction Paradigm. Participants read 180 two-sentence discourse passages (as 
described in Brothers et al., 2015). Sample stimuli for the Prediction Paradigm are presented in 
Table 1. 
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Prediction Task Paradigm 
Condition Sentence 1 Sentence 2 Expectation Final Word 

Moderate Cloze, 
Accurately 
Predicted 

We wanted a traditional 
pet in the apartment. 

That’s why we 
bought a… 

Dog Dog 

Moderate Cloze, 
Inaccurately 
Predicted 

We wanted a traditional 
pet in the apartment. 

That’s why we 
bought a… 

Cat Dog 

Low Cloze, 
Inaccurately 
Predicted 

Our family needed to 
protect our diamonds and 
jewelry. 

That’s why we 
bought a… Safe Dog 

 
Table 1. Sample experimental stimuli for the Prediction Paradigm. 

 
The first sentence of each passage was presented all at once, and the second sentence was 

presented via RSVP (SOA: 600ms). The materials consisted of 120 passages ending with a 
moderate cloze target word (40-60%, average: 50.7%), and 60 passages ending with a low cloze 
target word (0-7%, average: 0.9%). Participants were instructed to try to use the discourse 
context to predict the passage final word. Readers were informed that there were no “correct” 
predictions for any passage. After each passage, readers manually indicated whether the actually 
presented passage-final word matched their prediction. 
 
EEG Recording 

EEG data was recorded using SCAN (Compumedics Neuroscan), and processing and 
analysis was performed using Matlab (The MathWorks, Natick, MA), with the EEGLAB 
toolbox. EEG was recorded during both tasks with 29 tin electrodes mounted in an elastic cap 
(ElectroCap International). Additional electrodes were attached below and on the outer canthi of 
the eyes in order to capture blinks and other eye movements. Electrode impedances were kept 
below 5kΩ, and the EEG signal was amplified with a Synamps Model 8050 Amplifier (bandpass 
cutoffs: 0.05 - 100Hz). The signal was continuously digitized at a sampling rate of 250Hz. 
 
EEG Analysis for 1/f Neural Noise 

For data collected during both Comprehension and Prediction Paradigms, EEG was 
epoched to exclude all time during which participants were not on task (e.g., rest or breaks 
between sentences). We replicated the broadband power spectral density (PSD) analyses for 1/f 
neural noise originally performed by Voytek et al. (2015). Voytek and colleagues estimated 
slope from EEG in the 2-25Hz PSD range, excluding the alpha range (7-14Hz). High frequency 
activity (gamma band; 25-100Hz) was excluded from scalp recordings due to likely overlap with 
face and eye muscle activity (e.g., Voytek et al., 2010; Luck, 2005). Alpha activity was excluded 
from slope analyses because oscillations in this frequency band are inconsistent with broadband 
local-field potential patterns (i.e., alpha activity is representative of non-broadband activity; 
Manning et al., 2009; Miller, 2010; Miller et al., 2014). 
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As in Voytek et al. (2015), we extracted PSD at each electrode site for each participant. 
PSD is thought to be inversely proportional with frequency (Miller, 2010), and therefore PSD 
was log transformed. By using log10PSD, linear regressions generated between frequency and 
PSD yielded a representative slope (i.e., 1/f neural noise slope).  
 
ERP Analysis for the Prediction Paradigm 

ERP processing was performed using Matlab with the EEGLAB toolbox and ERPlab 
plugin (Luck, 2005). After EEG recording, independent components analysis (ICA) was used to 
decompose EEG responses into subcomponents with fixed scalp distributions and independent 
time courses. After ICA, eye blink components were removed, and single-trial waveforms were 
screened for amplifier blocking, muscle artifacts, and horizontal eye movements.  

ERP waveforms were first sorted into three conditions: (i) accurately predicted moderate 
cloze completions, (ii) inaccurately predicted moderate cloze completions, and (iii) inaccurately 
predicted low cloze completions. These waveforms are plotted in Figure 1A. Difference 
waveforms were plotted (Figure 1B) to display two effects: Prediction (unpredicted minus 
predicted moderate cloze targets) and Context (unpredicted low minus unpredicted moderate 
cloze targets). 

As seen in Brothers et al. (2015; 2017) and Dave et al. (a/b, submitted), young and older 
adults showed separate negative deflections between 300-500ms for effects of Prediction and 
Context. These effects were maximal at the typical centro-parietal sites (i.e., reviewed in Kutas 
& Federmeier, 2011; Swaab, Ledoux, Camblin, & Boudewyn, 2012). Both age groups also 
showed significant positive deflections between 600-900ms for both the effects of Prediction and 
Context. This post-N400 positivity (PNP) was maximal over frontal electrode sites (Brothers et 
al., 2015; 2017; Federmeier, Wlotko, Ochoa-Dewald & Kutas, 2007; Van Petten & Luka, 2012).  

Older adults typically show delayed ERP effects relative to younger readers (meta-
analysis in Kutas & Iragui, 1998), and in the present study we also observed delayed N400 and 
PNP effects in older relative to young adults in the Prediction Paradigm (Figure 1B). Therefore, 
as described in Dave et al. (a/b, submitted), ERP effects were measured over 100ms epochs on 
maximal peak amplitudes for each group. N400 effects were measured over a cluster of six 
centro-posterior electrode sites (CP1/2, P3/4, Cz, Pz), while PNP effects were calculated across a 
cluster of six frontal electrode sites (FP1/2, F3/4, AFz, Fz) 

 
Results 
1/f Neural Noise across Age in Comprehension and Prediction Paradigms 
 We generated linear regressions modeling the relationship between frequency and PSD 
(log10PSD), and analyzed the slopes (1/f neural noise) emerging from these analyses. Significant 
differences in 1/f neural noise were observed between older and young adults on both 
comprehension and prediction tasks (Figure 2A). In both tasks, younger adults had significantly 
steeper slopes than older adults (comprehension: r(47) = .613, p < .001; prediction: r(47) = .483, 
p < .001; replicating the result of similar analyses in Voytek et al., 2015). Regression analyses 
provided good fit of the data in both age groups and tasks (rs > .70), indicating linear modeling 
of the data is well-motivated. 
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Figure 1. ERP results. (A) Averaged event-related potentials for passage-final critical words are 
displayed for young (left) and older adult (right) readers in the Prediction Paradigm. (B) 
Difference waveforms were generated by subtracting between ERP conditions to display effects 
of Prediction and Context. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2017. ; https://doi.org/10.1101/147058doi: bioRxiv preprint 

https://doi.org/10.1101/147058


9 
 

 
 
Figure 2. 1/f neural noise results. (A) 1/f neural noise was estimated for both Comprehension and 
Prediction Paradigms from the slope (dotted lines) of the power spectrum across frequency (2-
25Hz, plotted above with 95% confidence intervals), excluding alpha frequency (7-14Hz, 
shaded). Correlations between Age and 1/f slopes are plotted topographically (B). Correlations 
were maximal over central electrode sites for both paradigms (addition signs). Age correlations 
with neural noise were not significantly different as a function of task, but topographic 
differences between tasks emerged over frontal electrode sites (dotted outline). (C) 1/f slopes 
were strongly correlated between tasks for older readers. 
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 In order to address whether 1/f neural noise slopes were similar between tasks, we first 
examined the frequencies for which age-related differences were significant. In the 
comprehension task, significant age differences emerged across the entire 2-25Hz scale, 
excluding a subset of the alpha range (7-12.3Hz, p range: .12 to .44). Power decreased with age 
at lower frequencies (2-7Hz, high delta and theta), but increased with age at higher frequencies 
(beta). In contrast, significant age differences only emerged in a higher, primarily beta frequency 
range in the prediction task (13.3-25Hz). As in the comprehension task, older adults had high 
power than younger adults at higher frequencies (ps > .01). 
  Next, we examined topographic correlations between age and 1/f noise, to observe where 
age-related differences in neural noise were most pronounced across the scalp (Figure 2B). In the 
comprehension task, age differences were maximal over much of the scalp, with the strongest 
age correlations emerging over central electrode sites. While correlations between age and 1/f 
noise were generally reduced for the prediction relative to the comprehension task, these 
differences were not significant (whole head: Z = 1.21, p = .23). As displayed in Figure 2B, task 
differences in noise-age correlations only emerged significantly over frontal electrode sites 
(comprehension task average: r = .598, prediction task average: r = .233, Z = 2.15, p = .03). 
 As 1/f slopes varied as a function of language task across both frequency and topography, 
we aimed to determine if participants showed intra-individual reliability in 1/f neural noise (i.e., 
if slope measured across the entire scalp correlated for both tasks). 24 older adults performed 
both comprehension and prediction tasks3, and served as our test population for evaluating 
whether 1/f neural noise was a reliable measure of individual difference. As displayed in Figure 
2C, slopes were significantly correlated (r = .819, p < .001) between tasks for older adults, 
suggesting that 1/f neural noise remains stable despite variable task demands. 
 
Mediation Analyses for Age, 1/f Neural Noise, and ERP Effects 

We next assessed whether ERP effect amplitudes (displayed in Figure 1B) were impacted 
by 1/f slopes, or Noise averaged across the scalp. In order to do so, we first correlated ERP effect 
amplitudes with continuous variables of Age and Noise, and then performed mediation analyses 
(Sobel, 1982) to examine whether Noise mediated Age effects on ERP amplitudes. N400 effects 
of both Prediction and Context were significantly reduced in older readers (ps < .001, Figure 
3A), while PNP effects were not impacted by Age (ps > .5). Likewise, flatter 1/f slopes 
correlated with smaller N400 effects of both Prediction (p < .001) and Context (p = .007, Figure 
3B), while no significant correlations were found for PNP effects. As both Age and Noise were 
predictive of N400 amplitudes, and Age correlated significantly with Noise (R2 = .240, F(1, 70) 
= 22.09, p < .001), independent models were constructed to examine whether Noise mediated 
effects of Age on N400 effects of Prediction or Context (Figure 3C).  

Age significantly predicted the N400 effect of Prediction (t(71) = 5.79, p < .001) in a 
model generated without Noise, R2 = .324, F(1, 70) = 33.56, p < .001. In a multiple regression 
analysis with both Age and Noise, the effect of Age on Prediction N400 remained significant 
(t(71) = 4.07, p < .001) but was partially mediated by Noise (Sobel test statistic: 2.08, p = .035). 
In the presence of Age, Noise still significantly predicted Prediction N400, t(71) = 2.32, p = .02.  
  

                                                           
3 Correlations between tasks were not calculated for young adults because two separate sets of 
young readers participated in the Comprehension and Prediction Paradigm tasks. 
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Figure 3. Age, 1/f noise, and ERP effects. N400 amplitudes for Prediction and Context were 
reduced in older readers (blue) relative to younger adults (red, A), but no significant effects of 
age were found for either of the PNP effects. (Error bars indicate standard errors (SEM).) 1/f 
neural noise was significantly correlated with amplitudes of both N400 effects (B), but not with 
the PNP effects. A mediation model generated for the Prediction N400 (C, left) shows that 1/f 
neural noise partially mediated age-related reductions in the Prediction N400. In contrast, a 
similar mediation analysis performed for the Context N400 (C, right) shows that 1/f neural noise 
is not predictive of Context N400 amplitudes after controlling for age, and does not mediate age-
related reduction of the Context N400 (dotted lines). 
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While Age alone explained 32% of the total variance in Prediction N400 amplitude, an 
additional 5% of the variance was explained by effects of Noise unrelated to Age, and this 
addition to model fit was significant.  

Similar analyses were performed for effects of Age and Noise on Context N400. Age 
significantly predicted the N400 effect of Prediction (t(71) = 5.30, p < .001) in a model generated 
without Noise, R2 = .287, F(1, 70) = 28.12, p < .001. With the addition of Noise to the model, the 
effect of Age on Prediction N400 remained significant (t(71) = 4.32, p < .001) and Noise was not 
found to mediate this relationship (Sobel test statistic: 0.58, p = .565). Noise was not predictive 
of Context N400 in the presence of Age, t(71) = 0.58, p = .56, and only 0.3% additional variance 
was explained by effects of Noise unrelated to Age in this model. 

In addition to mediation models, we conducted two additional sets of analyses. As 
observed above, age-related 1/f slope differences in the Prediction Paradigm were primarily 
driven by increased power in the beta range (14-25Hz) for older adults. We therefore examined 
whether age-related differences in beta activity correlated with N400 amplitudes, to assess if 1/f 
noise slope correlations with N400 amplitudes were driven by beta power. However, average 
power in the beta band was not significantly correlated with either prediction accuracy (r = .038, 
p = .10) or contextual support (r = .007, p = .47) effects on the N400. 

Secondly, we investigated if Age significantly moderated the effect of Noise on N400 
amplitudes, to test if different relationships between Noise and N400 effects emerged in each age 
group. However when entered alongside Age and Noise, the Noise by Age interaction was not 
significantly predictive of N400 effects of either Prediction (t(71) = -0.02, p = .99) or Context 
(t(71) = 0.84, p = .40).  

 
Discussion 
 Consistent with previous findings, the current study demonstrates that 1/f neural noise 
reliably changes as a function of normative aging. Across both studies, slopes of the 1/f function 
flattened with advanced age, showing that this marker can be observed in EEG recorded in tasks 
with different cognitive demands. Prior computational models (Freeman & Zhai, 2009; Manning 
et al., 2009; Miller et al., 2007) have suggested that this broadband measure of 1/f noise may 
reflect the degree to which neural networks are synchronized in their firing, proposing that 
observed 1/f noise differences may reflect neuronal desynchronization in aging (i.e., neural noise 
hypothesis, Crossman & Szafram, 1956).  
 While young adults typically had more negative noise slopes than older adults, slope 
ranges showed some overlap between groups. Therefore, while neural noise correlated with age, 
1/f slopes were not entirely explained by age group differences. We observed age effects on 
noise slopes in each task, and found two key results. First, age correlated most strongly with 1/f 
slopes in central regions of the scalp for both tasks (as in Onton, Delorme, & Makeig, 2005; 
Rajah & D’Esposito, 2005). Interestingly, the addition of the prediction task resulted in a shifted 
topography for age by slopes correlations, suggesting that age differences in neural activation 
patterns are modulated by additional task demands (as seen in Gazzaley et al., 2008; 
Klostermann et al., 2007). Second, we correlated noise slopes across language tasks in the 
population of older adults studied in the current experiment. Whole head 1/f slopes strongly 
correlated despite both different reading goals and different topographies between tasks, 
reflecting that noise is a consistent and characteristic measure of the individual. These results 
imply that 1/f noise may serve as a neural measure of individual differences in older cohorts. 
Between-task correlations in noise for young adults could not be calculated in the present study, 
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as two groups of young adults participated in the two experiments. It will be important for future 
studies to examine whether similar 1/f noise correlations emerge in both age groups.  
 Expanding on the findings of Voytek and colleagues (2015), our study aimed to 
investigate whether the steepness of the 1/f slopes was correlated with ERP measures related to 
language processing. Our results show that N400 effects were modulated by this EEG-derived 
measure of noise, but PNP effects were not correlated with noise. Therefore, the effects of neural 
noise may be specific to certain language comprehension processes. N400 modulations are 
associated with facilitation of lexical-semantic processing when a presented word is accurately 
predicted (Prediction N400), or matches the meaning of the previous context independent of 
prediction accuracy (Context N400). In contrast, PNP amplitudes have been associated with 
“work” necessary to revise discourse representations (Brothers et al., 2015; Van Petten & Luka, 
2012) following the presentation of unexpected words. Our findings suggest that these updating 
processes are less likely to be affected by neural synchrony.  

A key finding of the current study is that 1/f neural noise specifically influenced N400 
effects of accurate lexical prediction. This result is largely consistent with Engel et al.’s (2010) 
proposal that neural network dynamics – specifically, population spiking synchrony – underlie 
the strength of predictions generated during anticipatory processing. Several studies have found 
that oscillatory activity in narrowband frequency ranges change for predictable, as opposed to 
unpredictable, stimuli during language comprehension (Lewis & Bastiaansen, 2015; Rommers et 
al., 2016; Vignali et al., 2016). Critically, these studies have emphasized the "frequency [band] 
specificity" of these findings (Bastiaansen & Hagoort, 2016, p. 190). However, our results 
indicate that observed age-related differences in spectral power in specific frequency bands (i.e., 
beta) did not correlate with N400 effects of predictive accuracy, and therefore cannot explain 
how 1/f neural noise mediates age-related changes in this neural index of prediction. Therefore, 
our current study re-affirms Voytek et al. (2015)’s argument that researchers benefit from 
studying the power spectrum as a “unified statistical representation of the signal” (p. 13262). 
 To our knowledge, no prior studies have examined the role of broadband EEG activity in 
predictive processing. Furthermore, our study is the first to find individual differences in 
predictive processing as a function of neural noise and aging. This EEG-derived measure 
represents a readily available, non-invasive index of neural synchrony that can be observed at the 
single subject level to predict individual differences in behavioural and neural outcomes. There is 
broad potential for future studies in applying this technique in understanding individual 
differences in cognitive processes, both in typical populations and in individuals affected by 
neural disease (i.e., Alzheimer’s). However, it remains to be determined whether an accurate 
index of 1/f noise can be obtained over shorter time scales, or in resting state. Additional research 
will be necessary for determining the recording characteristics that will optimize 1/f neural noise 
measurement for laboratory and clinical investigation. 
 It is particularly important to note that in both Voytek et al. and the current study, 1/f 
slopes did not mediate all behavioral or neural measures showing age-related declines (e.g., no 
mediation was found for response times in Voytek et al., or N400 effects of Context in the 
current study). Instead, noise mediated specific age effects of (i) accurate behavioral responses 
and (ii) neural effects of prediction accuracy. Friston (2005)’s foundational model of predictive 
processing defines accuracy as a minimization of prediction error, yielding reductions in bottom-
up neural activity when a comprehender has pre-activated (predicted) a representation of the 
expected stimulus. This conceptualization suggests that neural noise slopes may specifically 
reflect the maintenance of top-down mechanisms that allow comprehenders to generate 
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expectations and/or pre-activate specific stimuli (as posited by Engel et al., 2010; Clark, 2013). It 
will be critical for future research to address how neural synchrony modulates top-down 
processing. Computational and theoretical models have suggested 1/f noise may dynamically 
influence effortful processing (Grigolini et al., 2009), representation formation (Gilden, 2001), 
and strategic shifting (reviewed in Wagenmakers, Farrell, & Ratcliff, 2004) – all of which have 
been suggested to underlie predictive processing across the lifespan (i.e., Clark, 2013; 
Federmeier, 2007; Kuperberg & Jaeger, 2016). 
 Because N400 effects of Context were not linked to 1/f neural noise after controlling for 
age, activation patterns required for effective contextual processing are very likely distinct from 
those underlying predictive mechanisms (as seen in oscillatory analyses performed by Rommers 
et al., 2016). Importantly, no evidence emerged to suggest differential involvement of 1/f noise in 
predictive processing in young and older adults. Instead, we posit that similar neural mechanisms 
for lexical prediction (Kuperberg & Jaeger, 2016) are recruited by both young and older adults, 
and that benefits of top-down information are guided by both neuronal spiking synchrony, as 
well as sources of variance that are related to age but may be independent of 1/f neural noise.  
 What these sources of variance may be is an open question, but neural noise as measured 
by EEG 1/f power alone may not fully describe how noise modulates neural network dynamics. 
Some researchers have posited that inter-trial variability may also capture age-related decline in 
signal fidelity, and have successfully linked aging to inconsistency in behavioral responses 
(Hong & Rebec, 2012; Hultsch & MacDonald, 2004; Lovden, Li, Shing, & Lindenberger, 2007), 
as well as fMRI (D’Esposito et al., 1999) and oscillatory phase coherence (Papenberg et al., 
2013). Further, recent evidence (Payne & Federmeier, 2017) has emerged to suggest that 
contextual processing may be dependent on intra-individual, trial-to-trial variability in ERP 
activity. Taken together with the results of the current study, Payne and Federmeier’s results 
indicate that effects of prediction accuracy and contextual support may both be modulated noise, 
but that these measures represent distinct subcomponents of neural noise. Future research would 
benefit from incorporating elements of both network-level spiking synchronization (i.e., 1/f 
neural noise) and trial-specific neural activity (i.e., inter-trial variability) in gauging the 
mechanisms underlying language processing in young and older adults.   
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