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Abstract: The Totally Asymmetric Exclusion Process (TASEP) is a classical stochastic model
for describing the transport of interacting particles, such as ribosomes moving along the mRNA
during translation. Although this model has been widely studied in the past, the extent of collision
between particles and the average distance between a particle to its nearest neighbor have not been
quantified explicitly. We provide here a theoretical analysis of such quantities via the distribution
of isolated particles. In the classical form of the model in which each particle occupies only a single
site, we obtain an exact analytic solution using the Matrix Ansatz. We then employ a refined
mean field approach to extend the analysis to a generalized TASEP with particles of an arbitrary
size. Our theoretical study has direct applications in mRNA translation and the interpretation of
experimental ribosome profiling data. In particular, our analysis of data from S. cerevisiae suggests
a potential bias against the detection of nearby ribosomes with gap distance less than ∼ 3 codons,
which leads to some ambiguity in estimating the initiation rate and protein production flux for a
substantial fraction of genes. Despite such ambiguity, however, we demonstrate theoretically that the
interference rate associated with collisions can be robustly estimated, and show that approximately
1% of the translating ribosomes get obstructed.

INTRODUCTION

The Totally Asymmetric Exclusion Process (TASEP)
is a classical stochastic model for transport phenomena
in a non-equilibrium particle system. Although it has
been widely studied by mathematicians and physicists,
the TASEP was first introduced in a biological context
by McDonald et al. [1] to model mRNA translation and
describe the dynamics of ribosomes moving along the
mRNA. Over the past fifteen years, the TASEP and its
extensions have been used for this purpose [2–11], and
TASEP-based models have been recently applied to in-
fer the translation rate from experimental measurements
[9], in particular ribosome profiling data [12–14]. Ribo-
some profiling (also known as Ribo-Seq) is an experi-
mental technique developed to examine position-specific
densities of ribosomes along each mRNA [15], and thus
captures the dynamics of mRNA translation to some ex-
tent. However, analytical tools for interpreting ribosome
profiling data are still much in need of development [16],
as relating the observed footprint density to the corre-
sponding protein production rate remains challenging for
several reasons [17]. One notable issue comes from the
experimental protocol used to generate the ribosome pro-
file. In general, long mRNA fragments that may account
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for stacked ribosomes are not sequenced. As a result,
the observed density may only include well-isolated ribo-
somes, thus leading to a bias that needs to be corrected
when evaluating the ribosome density [6, 14, 17–19]. Al-
though the TASEP has been broadly studied under dif-
ferent conditions and using various approaches [20, 21],
to our knowledge, the density of isolated particles has not
been studied previously.

These theoretical and technical issues motivate us to
study the extent of isolated particles in the TASEP, in
order to quantify the relation between the mRNA trans-
lation dynamics and the observed densities in ribosome
profiling data. To do so, we first employ the matrix for-
mulation of Derrida et al. [22] to derive exact formulas
for the density of isolated particles in the classical TASEP
model, in which each particle is pointlike and occupies a
single site. For the case when the number N of sites is
large, we obtain simple asymptotic formulas. We then
extend our study to the general case with particles of an
arbitrary size. Using a refined mean field approach intro-
duced by Lakatos and Chou [2], we derive new asymptotic
formulas that agree well with Monte Carlo simulations.

We obtain new results regarding the translation dy-
namics by applying our theory to ribosome profiling data.
In particular, our analysis of undetected ribosomes sug-
gests a potential bias against consecutive ribosomes less
than∼ 3 codons apart. Using a measurement of ribosome
density called “translation efficiency” (TE), we provide
estimates of the interference rate associated with traffic
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collision, and find that, for a significant fraction of genes,
there is some ambiguity in identifying the initiation rate
and the flux from TE. Although the TE has been widely
used as a proxy for protein production rate [23], these
results suggest that more refined methods and estimates
should be used to properly quantify gene expression at
the translation level.

THEORETICAL RESULTS

In this section, we briefly introduce the TASEP model,
and present our main theoretical results on the classical
and generalized versions of model. Appendices A and
B summarize some previously known results used in our
analysis.

A. The density of isolated particles in the classical
TASEP model

We first studied the density of isolated particles in the
context of the classical TASEP model with open bound-
aries [24]. Briefly, the dynamics of this stochastic process
can be described as follows (see Fig. 1a). On a one-
dimensional lattice of N sites, the classical TASEP de-
scribes the configuration of pointlike particles, described
by a vector τ = (τ1, . . . , τN ) such that τi = 0 if the
ith site is empty and τi = 1 if it is occupied. During
every infinitesimal time interval dt, each particle at site
i ∈ {1, . . . , N − 1} has probability dt of hopping to the
next site to its right, provided that the site is empty.
Additionally, a new particle enters site 1 with probabil-
ity αdt if τ1 = 0. If τN = 1, the particle at site N exits
the lattice with probability βdt. The parameters α and
β are respectively called the initiation and termination
rates. In the long time limit, the system reaches steady
state and the corresponding expected marginal density
of particles at position i on a lattice of size N , denoted
〈τi〉N , is defined as,

〈τi〉N =
∑

τ∈{0,1}

τP(τi = τ) = P(τi = 1). (1)

Averaging the process over the events that may occur be-
tween t and t+dt leads to a system of equations relating
one-point correlators to two-point correlators [25]. Simi-
larly, two-point correlators can be related to three-point
correlators (see Appendix A), and so on. To derive ana-
lytic expressions for the average densities, Derrida et al.
[22] showed that the steady state probability of a given
configuration can be derived using a matrix formulation
satisfying a set of algebraic rules (see Appendix B). Us-
ing these rules, they obtained an exact formula for 〈τi〉N ,
and showed that, in the large-N limit, the TASEP fol-
lows different dynamics according to a phase diagram in
(α, β)-space.

In our work, we employed the aforementioned matrix
formulation to derive analytic expressions for the average
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FIG. 1. Illustration of the TASEP with open bound-
aries. (a): A schematic representation of the TASEP model.
Particles are introduced at the start of the lattice with ex-
ponential rate α and move along with exponential rate 1,
provided that there is no particle occupying the next site.
At the end of the lattice, they exit with exponential rate β.
(b): Phase diagram of the average particle density along
the lattice. The profile of average density of particles along
the lattice can be classified according to a phase diagram in
(α, β)-space, separating different regions: the maximal cur-
rent regime (MC), the low density regime (LD), and the high
density regime (HD). The LD and HD regions can also be
decomposed into two separate ones: LD I/II, and HD I/II,
respectively.

density of isolated particles. Specifically, consider the
random variable τ ′i defined as

τ ′i =


τ1(1− τ2), for i = 1,

τi(1− τi−1)(1− τi+1), for 2 ≤ i ≤ N − 1,

τN (1− τN−1), for i = N.

(2)

Note that τ ′i = 1 if there is an isolated particle at position
i, and τ ′i = 0 otherwise. From (2), we see that the average
density 〈τ ′i〉N of isolated particles at an interior site i,
where 2 ≤ i ≤ N − 1, is given by

〈τ ′i〉N = 〈τi〉N − 〈τi−1τi〉N − 〈τiτi+1〉N + 〈τi−1τiτi+1〉N .
(3)

As detailed in Appendix C, by analyzing the terms on the
right hand side of (3), we obtained, for 2 ≤ i ≤ N − 1,

〈τ ′i〉N = D0(α, β,N)−D1(α, β,N)〈τi−1〉N−1, (4)

where

D0(α, β,N) = α [1− 〈τ2〉N + (1− 〈τ1〉N )(〈τ1〉N−1 − α)]
(5)

D1(α, β,N) = α(1− 〈τ1〉N ). (6)
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For the boundaries, we obtained

〈τ ′1〉N = α(1− 〈τ1〉N ), (7)

〈τ ′N 〉N = 〈τN 〉N (1 + β)− 〈τN−1〉N . (8)

As mentioned earlier, exact formulas for 〈τi〉N are known
[22] (see Appendix B), so plugging them into (4)–(8)
leads to exact results for the average densities of isolated
particles along the lattice.

B. Large-N asymptotics in three different phases

We next derived the large-N asymptotics of 〈τ ′i〉N from
those of 〈τi〉N . In this section, we drop the dependence
on N and write 〈τi〉 instead of 〈τi〉N . In the large-N
limit, the dynamics of the TASEP can be separated into
three different phases—namely, maximal current (MC),
low density (LD), and high density (HD)—depending on
the values of (α, β) (see Fig. 1b and (9) below). At steady
state, 〈τi(1− τi+1)〉 is the same for all i = 1, . . . , N − 1.
This quantity is defined as the current (or flux) and is
denoted by J . Using the asymptotics of the particle den-
sities in the three phases [22], we found that D0(α, β,N)
and D1(α, β,N) in (5) and (6), respectively, are both
asymptotically equivalent to the asymptotics of J in the
large-N limit, given by

J ∼


1
4 , if α > 1

2 , β >
1
2 (MC regime),

α(1− α), if α < 1
2 , β > α (LD regime),

β(1− β), if β < 1
2 , β < α (HD regime).

(9)

Hence, it turns out that the asymptotics of 〈τ ′i〉 for
2 ≤ i ≤ N − 1 are correctly given by using in
(3) the mean-field approximation 〈τi−1τi(1 − τi+1)〉 ∼
〈τi−1〉〈τi(1−τi+1)〉 = J〈τi−1〉. Finally, noting that 〈τ ′1〉 =
〈τ1(1− τ2)〉 = J and β〈τN 〉 = J at steady state, while
〈τN−1〉 ∼ J + (J/β)2 asymptotically, we obtain that 〈τ ′i〉
is asymptotically given by

〈τ ′i〉 ∼


J, for i = 1,
J(1− 〈τi−1〉), for 2 ≤ i ≤ N − 1,
J
β

(
1− J

β

)
, for i = N.

(10)

Using the asymptotics of 〈τi〉 in different phases [22],
the resulting densities at the boundaries and far from the
right boundary (〈τN−j〉, 1 � j � N) can be computed,
as summarized in Table I. The asymptotics far from the
left boundary (〈τj〉, 1 � j � N) can be derived using
the “particle-hole symmetry” [22]

〈τN+1−i〉N (α, β) = 1− 〈τi〉N (β, α). (11)

The fraction of isolated particles
〈τ ′i〉
〈τi〉 is given by

〈τ ′i〉
〈τi〉
∼



αJ

α− J
, for i = 1,

J(1− 〈τi−1〉)
〈τi〉

, for 2 ≤ i ≤ N − 1,

1− J

β
, for i = N.

(12)
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FIG. 2. The density of isolated particles in different
regions of the TASEP phase diagram. For the different
regimes of the TASEP (see also Fig. 1), the asymptotic for-
mulas from Table I (red points) are compared with the exact
densities (black points) of isolated particles given by (4)–(8).

As shown in Fig. 2, there is good agreement between
our asymptotic formulas and the exact results obtained
from using the exact 〈τi〉N in equations (4)–(8). We ob-
served some large boundary effects, as the density of iso-
lated particles at the boundaries is always larger than in
the bulk. In the LD I regime (β < 1

2 ), slow termination
creates queuing so that the density of isolated particles
decreases close to the end, in contrast to the total density.
In the HD regime, high density creates a lot of stacked
particles so the proportion of isolated particles is very
small. In the MC regime, stacked particles are present
more in the beginning of the lattice. As a result, the den-
sity of isolated particles in the bulk increases along the
lattice, in contrast to the total density. In this regime,
some mismatches can be observed at the boundaries and
in the middle of the lattice. The apparent discontinuity
in the middle of the lattice is due to the fact that we re-
spectively employed in left and right parts of the lattice
the asymptotics of the densities far from left and far from
right of the boundaries, obtained from Table I. The re-
sulting order of magnitude of the discontinuity gap in the
middle is 1√

N
, and it thus vanishes as the lattice length

increases. Interestingly, this gap can also be reduced to
any arbitrary size by considering larger order approxi-
mations of the exact formulas for the densities found in
[22]. Close to the boundaries, the formulas we used in
Fig. 2 also lead to a mismatch with Monte Carlo simula-
tions, which can be attributed to using asymptotics for
positions far from the boundaries. This mismatch can
be easily corrected by using the exact formulas for the
densities at positions N −1 and 2 (Equation 77 in [22]).
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TABLE I. Asymptotics of 〈τ ′〉 in the different phases of the classical 1-TASEP. These are obtained by combining
equations (4), (7) and (8) with asymptotics given in [22]. The asymptotics far from the left boundary (〈τj〉, 1 � j � N) can
be derived using the “particle-hole symmetry” (11).

〈τ ′1〉 (Eq.(7)) 〈τ ′N−j〉 (1� j � N) (Eq.(4)) 〈τ ′N 〉 (Eq.(8))

MC 1
4

1
8

[
1 + 1√

π(j+1)

]
1
4β

(
1− 1

4β

)
LD I (β < 1

2
) α(1− α) α(1− α)2

[
1 + 2β−1

1−α

(
α(1−α)
β(1−β)

)j+2
]

α(1−α)
β

[
1− α(1−α)

β

]
LD II (β > 1

2
) α(1− α) α(1− α)2

[
1 +

[
1

(2α−1)2
− 1

(2β−1)2

]
α(4α(1−α))j+1

√
π(j+1)3/2

]
α(1−α)

β

(
1− α(1−α)

β

)
HD β(1− β) β2(1− β) β(1− β)

C. The `-TASEP with extended particles

During translation, ribosomes move along mRNAs by
decoding one codon at a time, but occupy an extended
space of ∼ 10 codons. For that reason, it is also of inter-
est to generalize our theoretical results to a process where
particles occupy a certain size ` ≥ 1 (this process is usu-
ally called the `-TASEP [26]). In this general case, using
a matrix product to represent the steady-state solution
leads to equations that are more complex, making the
method employed above inapplicable (see Discussion).
To cope with this complexity, we used a refined mean field
approach introduced by Lakatos and Chou [2]. Although
this approach cannot capture the variation of densities
along the lattice as in the previous section, it well ap-
proximates the global average density and the current of
particles. The key idea is to approximate the distribution
of particles in the large-N limit by an equilibrium ensem-
ble in which particles get uniformly distributed. Using
such approximation, we obtained (Appendix D) that the
density of isolated particles far from the boundaries, sim-
ply denoted 〈τ ′〉, is given by

〈τ ′〉 = 〈τ〉
[

1− `〈τ〉
1− (`− 1)〈τ〉

]2
. (13)

Using the asymptotic densities and currents found by
Lakatos and Chou [2], we derived the asymptotics of 〈τ ′〉.
As for the ` = 1 case, the phase diagram can be de-
composed into three parts (MC, HD, LD), separated by
critical values α∗ = β∗ = 1

1+
√
`
. For ` = 1, we have

α∗ = β∗ = 1
2 , in agreement with the previous section.

Combining (13) with the asymptotic density 〈τ〉 in the
large-N limit [2], we obtained the following density of

isolated particles in the bulk:

〈τ ′〉 =



√
`

(1+
√
`)3
,

if α > α∗, β > β∗ (MC regime),

1
2J
[
(`− 1)J + 1−

√
((`− 1)J + 1)2 − 4`J

]
,

if α < α∗, β > α (LD regime),

1
2J
[
(`− 1)J + 1 +

√
((`− 1)J + 1)2 − 4`J

]
,

if β < β∗, β < α (HD regime),

(14)
where J is the particle flux given by [2]

J ∼



1

(1 +
√
`)2

, in MC regime,

α(1− α)

1 + (`− 1)α
, in LD regime,

β(1− β)

1 + (`− 1)β
, in HD regime.

(15)

Near the entrance and exit, particles potentially get
stacked on one side only. At the entrance, the density
of isolated particles is, for i < `,

〈τ ′i〉 = P(ti = 1 , ti+` = 0) = J. (16)

Hence, 〈τ ′i〉 at the entrance is exactly given by the current
flux J , as in the case of ` = 1. Near the exit, for i > N−`,
〈τ ′i〉 satisfies

〈τ ′i〉 = P(ti = 1 , ti−` = 0). (17)

Using P(A ∩ B) = 1 − P(Ac) − P(Bc) + P(Ac ∩ Bc) and
P(ti−` = 1 , ti = 0) = J yields

〈τ ′i〉 = J+P(ti = 1)−P(ti−` = 1) = J+〈τi〉−〈τi−`〉. (18)

As the flux satisfies J = β〈τN 〉 = 〈τN−1〉 = · · · =
〈τN−`+1〉, we obtained

〈τ ′i〉 =

{
2J − 〈τi−`〉, for N − ` < i < N,

J
(

1 + 1
β

)
− 〈τN−`〉, for i = N.

(19)
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FIG. 3. The density of particles in the `-TASEP model.
We simulated and plot (in black) the density of particles of
the `-TASEP (` = 10) in the different regimes LD, HD and
MC. In red, we plot the estimates of the density in the bulk
from Lakatos and Chou [2].

D. Comparison with Monte Carlo simulations and
estimation of interference rate

Combining (14), (16) and (19) leads to approximate
densities of isolated particles along the lattice in the `-
TASEP. The isolated particle densities in the bulk (14)
and near the entrance (16) depend only on the flux J ,
whereas near the exit the result (19) also depends on the
density of particles located ` sites behind. In the LD
regime, this density can be approximated by the density
in the bulk [2]. In the other regimes, the density varies
near the boundary, so using this approximation might be
inaccurate (see Fig. 3). As Fig. 4a shows, however, our
theoretical results agree well with the empirical densities
of isolated particles obtained from Monte Carlo simula-
tions, for specific values of (α, β) in the LD, HD and
MC regimes (for a lattice of length 300, typical of the
mRNA sequences we studied next). Contrary to the ma-
trix method for the classical 1-TASEP model, the refined
mean field approximation does not capture the variation
of isolated particle densities across the lattice. However,
this variation is much smaller than that of the total den-
sity, especially in regions of high traffic. Thus, assuming
the density of isolated particles to be constant turns out
to yield a better match with simulated data than when
the same is done for the total density.

More generally, we studied in Fig. 4b how the density
and proportion of isolated particles vary as a function of
α, for fixed values of β. Overall, our theoretical results
were in good agreement with Monte Carlo simulations.
Interestingly, whereas the total density (Fig. 4b) increase
and reach a plateau after transitioning to the HD (when
β < β∗) or the MC (when β > β∗) regime, the den-
sity of isolated particles follows a more complex pattern:
First, there is a drop in the density of isolated particles
when transition occurs from LD to HD. In contrast, we
observed an increase in the total density, showing that
most particles contributing to the density are stacked.
Second, as β increases, the amplitude of the drop de-
creases until it becomes 0, when the MC regime replaces
the HD regime. However, the maximum of 〈τ ′〉 is not
reached in the MC regime but in the LD regime before

phase transition occurs. In other words, as the initiation
rate increases, the level of interference increases faster
than the global density. This was confirmed when we

plotted the ratio 〈τ
′〉
〈τ〉 (Fig. 4b, right panels), showing a

linear decrease from α = 0 to α = β, while the total den-
sity gets sublinear as α gets closer to β. The first-order

Taylor expansion in α of 〈τ
′〉
〈τ〉 =

[
1−`〈τ〉

1−(`−1)〈τ〉

]2
in the LD

regime gives

〈τ ′〉
〈τ〉

= 1− 2α+O
(
α2
)
. (20)

Interestingly, this formula does not depend on ` and using
the formula obtained for the classical 1-TASEP model
leads to the same result. To estimate the amount of
interference associated with the dynamics of particles,
we approximated the interference rate I, defined as the
probability for a particle to get obstructed, as

I =
1

2

(
1− 〈τ

′〉
〈τ〉

)
. (21)

Using equation (20), we obtained that the interference
rate is close to α in the LD regime.

E. Generalization to larger isolation range

In the next section, one of our goals will be to deter-
mine whether stacked particles are detected in ribosome
profiling experimental protocols. A problem is that we
do not know a priori what is the exact range between two
ribosomes that may prevent them from being detected.
For this reason, we considered the density associated with

isolation range d, denoted 〈τ (d)i 〉, as

〈τ (d)i 〉 = P(τi = 1, x−i ≤ i− `− d, x
+
i ≥ i+ `+ d), (22)

where x−i and x+i are the positions of the closest parti-
cles located before and after site i, respectively. In other

words, 〈τ (d)i 〉 gives the steady-state density of particles
under the `-TASEP at position i such that the distance
to their closest neighbor is at least d + `. In particular

〈τ (0)i 〉 gives the total density of all particles, while 〈τ (1)i 〉
is equal to 〈τ ′i〉, the density of isolated particles computed
above. Following the same method as in the previous sec-
tion, we obtained the following expression for particles in
the bulk in the large-N limit:

〈τ (d)〉 ∼ 〈τ〉
[

1− `〈τ〉
1− (`− 1)〈τ〉

]2d
. (23)

Hence, for two given isolation ranges d and d′, the asso-
ciated fractions of isolated particles satisfy

(
〈τ (d)〉
〈τ〉

) 1
d

=

(
〈τ (d′)〉
〈τ〉

) 1
d′

. (24)
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FIG. 4. Comparison of the results from the refined mean field approach with Monte Carlo simulations. (a):
We simulated the TASEP with extended particles (size ` = 10, sample size = 109) and plotted (in red) the densities of isolate
particles in the three different regimes of the phase diagram. We compared these simulation results with the asymptotics
obtain from (13), (16) and (19) (in black). (b): For fixed values of β, these plots show how the total density, the density of
isolated particles, and their ratio vary as a function of α. The results obtained using Monte Carlo simulations (open circles)
of the TASEP with extended particles (size of particles ` = 10, sample size of isolated particles 104, lattice size = 400) are
compared with the results obtained from the refined mean field approach (solid lines). Note that there are discontinuities when
transitioning from LD to HD regime (first and second rows).

Therefore, we can generalize (21) to obtain a formula
for the interference rate for an arbitrary isolation range
d ≥ 1:

I =
1

2

[
1−

(
〈τ (d)〉
〈τ〉

) 1
d

]
. (25)

APPLICATION

We applied our theoretical results to analyze ribosome
profiling data and mRNA translation. Ribosomes are
complex molecular machines (corresponding to particles
in the TASEP) that move along mRNA (the lattice) to
translate its associated sequence of codons into proteins.
Once bound to the mRNA, ribosomes occupy a space
of ∼ 10 codons (` = 10 in the TASEP). For the reader
who is new to biology, more basics on how proteins are
synthesized in a cell can be found in [4]. Briefly, the ri-
bosome profiling procedure consists of using nuclease to

digest translating ribosomes and get ribosome-protected
mRNA fragments [15]. These fragments are then aligned
to the mRNA sequence to produce a positional distri-
bution of ribosomes along the mRNA. Assuming that
there is no bias in ribosome detection and that sufficiently
many fragments are observed, this distribution can be as-
sociated with the stationary average density of particles
in the `-TASEP. However, it is possible that the nucle-
ase may fail to cleave stacked ribosomes [6, 17–19], so
only the density of “isolated” ribosomes gets measured.
Hence, the profile of ribosome counts along the mRNA
produced by the experimental procedure might be dif-
ferent from the true profile (see Fig. 5). Whether the
nuclease can cleave two nearby ribosomes is still in de-
bate, as the digestion and its efficiency vary depending on
the organism and the protocols which are used [27, 28].

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2017. ; https://doi.org/10.1101/147017doi: bioRxiv preprint 

https://doi.org/10.1101/147017
http://creativecommons.org/licenses/by-nc-nd/4.0/


7

(a)

00003000000000310000000001030000
00001000000000100000000000030000

0 5 10 15 20 25 30
Position

0

1

2

3

4

R
ib

os
om

e 
co

un
t

Total
Isolated

Position

R
ib

os
om

e 
co

un
t

Total
Isolated

(b)

FIG. 5. A schematic representation of ribosome pro-
filing. (a): Positions of ribosomes along the mRNA are ob-
tained by nuclease digestion and allow to count the number of
ribosomes found at a specific position. However, it is possible
that the nuclease cannot cleave stacked ribosomes [6, 14, 17–
19]. (b): As a result, the profile of ribosome count along
the mRNA recorded from isolated ribosomes (plotted in red)
might be different from the true profile (plotted in black).

F. Estimating the isolation range associated with
non-detection of ribosomes

To assess the extent of non-detection of stacked ribo-
somes in an actual ribosome profiling dataset, we used
publicly available data of S. cerevisiae from Weinberg et
al. [29] (more details in Appendix E). The experimen-
tal protocol used for these data minimizes some of the
other biases known to affect the ribosome profiling, such
as sequence biases introduced during ribosome footprint
library preparation and conversion to cDNA for subse-
quent sequencing, and mRNA-abundance measurement
biases and other artifacts caused by poly(A) selection
[29]. For a given gene, a measure of the average den-
sity of detected ribosomes is given by the so-called trans-
lation efficiency (TE) [23]. More precisely, the TE is
given by the ratio of the RPKM measurement for ribo-
somal footprint to the RPKM measurement for mRNA,
where RPKM denotes the number of Reads Per Kilo-
base of transcript per Million mapped reads. Hence, the
TE is proportional to the average density of detected
ribosomes per site of a single mRNA; in our notation,
TE ∝ 〈τ (d)〉. To get the total density of ribosomes, we
used another dataset from Arava et al. [30], obtained
by polysome profiling, which is another technique giv-
ing, for a specific gene, the distribution of the number
of ribosomes located on a single mRNA (and forming
polysomes). While polysome profiling data is not biased
by the possible omission of stacked ribosomes, the ad-
vantage of ribosome profiling is that it gives some local
information about the ribosome occupancy.

Depending on the gap between two ribosomes that pre-

vents them from being detected, the relation between the
TE and the total average density D = 〈τ〉 is, according
to equation (23),

TE = aD

(
1− 10D

1− 9D

)2d

, (26)

where a is the rescaling factor (specifically, TE = a ·
〈τ (d)〉), that we estimate in practice in Fig. 6a, and d de-
notes the detection gap-threshold mentioned previously
(if the gap between a ribosome and its closest neighbor
is larger or equal to d, then it gets detected). Since a
ribosome occupies 10 codons, the parameter ` in (23) is
set to 10. In Fig. 6a, we plotted (26) for different values
of d and compared it with the experimental data from
Weinberg et al. and Arava et al. Our goal was then to
determine which value of d leads to the best match with
the experimental data. In Fig. 6b, we plotted the root
mean square error between (26) and the experimental
data, as a function of d and for the value of a corre-
sponding to the linear fit to genes with total density less
than 1 ribosome per 100 codons. We found that the min-
imum error is obtained when d is between 4 and 6. On
the other hand, as d increases, the maximum value of
TE that can be obtained using (26) decreases (Fig. 6a),
potentially leading to some detected densities from ex-
periment to be greater than the theoretical maximum of
TE; we call such detected densities “anomalous” (as we
shall see below, we can obtain a more refined estimate of
the maximum possible detected density using an estimate
of the termination rate β for each gene). In Fig. 6c, we
plotted for each d the fraction of genes with anomalous
detected densities. For d ≤ 3, no anomalous detected
density was found, while the fraction becomes positive
for d ≥ 4 (less than 1% for d = 4, ∼ 2.5% for d = 6, and
∼ 8% for d = 8). We concluded that the best values of d
that both minimize the error and the fraction of anoma-
lous detected density were obtained for d = 3 or 4. In
agreement with our estimate, previous ribosome profiling
experiments found disome fragments (accounting for the
mapping of two ribosomes) of length ∼ 65 nucleotides
[19], suggesting that d = 3 (2 times 30 nucleotides plus 2
other codons).

G. Identifiability of initiation rates and flux from
TE measurements

Under the `-TASEP model in the LD regime, the TE
is related (as shown in Fig. 7a) to the initiation rate α
through equation (23) and the asymptotics of 〈τ〉 and J
(given in [2]). Assuming that translation occurs in the
LD regime (since translation is generally limited by ini-
tiation under realistic physiological conditions [31, 32]),
we studied whether we could infer the gene-specific initi-
ation rate α using our theoretical results. The detected
density is bounded by ∼ 0.02 ribosomes per codon in our
dataset. From the plotted curves in Fig. 7a, this suggests
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FIG. 6. Estimation of undetected ribosomes from ribo-
some profiling experiment. (a): This plot shows experi-
mental ribosome profiling data of S. cerevisiae from Weinberg
et al. [29] against the total ribosome density obtained from
polysome profiling by Arava et al. [30] (482 genes). Also

shown are plots of y = ax
(

1−10x
1−9x

)2d
, obtained from com-

puting the density of detected particles of size ` = 10 as a
function of the total density in the `-TASEP (see (26)) with
various isolation range d = 0, . . . , 10. We set a = 0.82, ob-
tained by linear fit to genes with total density less than 1
ribosome per 100 codons. (b): For values of d ∈ {0, . . . , 10},
we plot the root mean square error obtained from comparing
experimental data to the theoretical plots in (a). (c): For
d ∈ {0, . . . , 10}, we plot the corresponding fraction of genes
with anomalous detected densities, where a detected density
said to be anomalous if it is larger than the theoretical max-
imum value implied by (26), used in (a).

that for d ≤ 5 and for all the experimental detected den-
sities, there exists a value for the initiation rate satisfying
(23). However, for d ≥ 3, the identifiability of α (i.e., the
uniqueness of α) does not seem to be guaranteed.

More precisely, for a given gene and isolation range
d, the theoretical maximal value of the TE, denoted
〈τ (d)〉max, is determined by the termination rate β, as

〈τ (d)〉max(β) = sup(〈τ (d)〉(α), α ∈ [0, β]). (27)

After estimating the termination rates from our ribosome
profiling data (see Appendix F), in Fig. 7b we computed
for different values of d the fraction of genes satisfying
TE′ ≤ 〈τ (d)〉max, where TE′ is the TE normalized by
the scaling factor a (see (26)). We found that all the
genes satisfied this condition for d ≤ 5, before observing
a small decrease for d = 6 (98%).

We further looked at the fraction of genes for which
we can identify a unique initiation rate that matches the
associated detected density with the measured TE. As
α increases to its critical value min(β, β∗) (leading to a
transition from LD to the other regimes), the density of
isolated particles either only increases, or increases then
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FIG. 7. Analysis of initiation and interference. (a):
For different values of isolation range d, we plot the density of
isolated particles (see (23)) as a function of the initiation rate
α in the LD regime. (b): For different ranges d of isolation,
we studied the identifiability of the initiation rate. Black line:
we estimated the fraction of genes for which there exists a
corresponding value for the initiation rate α, such that the
associated density of isolated particles is equal to the detected
density. This happens when the detected density is less than
〈τ (d)〉max(β) (see (27)), where β is the inferred termination
rate Red line: we estimated the fraction of genes for which
the initiation rate can be inferred without ambiguity from
the plotted curves in (a), which happens when the detected

density is less than 〈τ (d)〉id(β) (see (28)). (c): From our
dataset of 3712 genes, we used (23) to estimate the fraction
of detected ribosomes for different values of the detection gap
threshold d ∈ {1, . . . , 6}. To compute these fractions when
there is an ambiguity in identifying the initiation rate α (see
(b)), we considered two possible estimates: a lower estimate
and an upper one (see also Fig. 8a). The left plot represents
the average fraction of detected ribosomes, with error bars
indicating the standard deviation, using lower estimates (in
blue) and upper estimates (in red) of α. (d): The same as in
(c) for interference rates, using (25) (see also Fig. 8b).

decreases, to 〈τ (d)〉id(β), given by

〈τ (d)〉id(β) =

{
〈τ (d)〉(β), if β ≤ β∗,
〈τ (d)〉MC, otherwise,

(28)

where 〈τ (d)〉MC is the density of isolated particles in the
MC regime. As a consequence, there is only one iden-
tifiable initiation rate in the LD region when TE′ <
〈τ (d)〉id(β), and two when 〈τ (d)〉id(β) ≤ TE′ ≤ 〈τ (d)〉max.
In Fig. 7b, we computed the fraction of genes satisfying
TE ≤ 〈τ (d)〉id. We found that all genes were then strictly
identifiable for d ≤ 2, before the fraction starts to de-
crease for d = 3 (96%). For d ≥ 4, a significant fraction
of genes (at least 19%) is not strictly identifiable. Thus,
in the range of d associated with non-detection found
from Fig. 6, the TE measurement may lead to some am-
biguity in the initiation rates. In this case, two values
of the initiation rate α1 < α2 lead to the same detected
density: Although the total density for α2 is larger than
for α1, there are also more closely stacked ribosomes that
are not detected. Hence, the density of isolated particles
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is the same for both. As the flux is an increasing func-
tion of the initiation rate, such ambiguity also applies for
inferring the flux.

H. The fraction of detected ribosomes and
interference rates

Upon estimating the threshold of gap distance between
consecutive ribosomes leading to their non-detection and
studying the identifiability of the initiation rate α, we
then quantified the resulting fraction of detected ribo-
somes and the associated interference rate. As discussed
above, for some values of d and 〈τ (d)〉, there may be
two distinct values of α, and hence two distinct values
of the total average density 〈τ〉, corresponding to the
same 〈τ (d)〉. This implies that the fraction 〈τ (d)〉/〈τ〉 of
detected ribosomes and the interference rate may not be
uniquely determined for some values of d and 〈τ (d)〉. In-
deed, for some of the experimentally observed TE values
from Weinberg et al. [29], we encountered ambiguity in
estimating α when d ≥ 3 (see Fig. 7b). Thus, when such
ambiguity occurred, we considered both lower and up-
per estimates of α, and found their respective resulting
fractions of detected ribosomes 〈τ (d)〉/〈τ〉 and interfer-
ence rates (Fig. 7c and d). We obtained that for d = 3
or 4, suggested by Fig. 6b and c, the lower estimates of
α lead to fractions of detected ribosomes lying between
91.2±5% and 93.5±3.5%. The upper estimates of α lead
to smaller mean and larger variability (between 80±26%
and 91.6 ± 11.7%). As expected, we observed no sub-
stantial difference between the lower and upper estimates
for d = 1 or 2 (since no gene presents any ambiguity).
As d increases, however, the fraction of detected ribo-
somes decreases (notably because of the increasing frac-
tion of genes with ambiguity). Interestingly, in contrast
to these important variations, we observed that the in-
terference rates corresponding to the lower estimates of
α remain stable around 1% for all d, with only a slight
increase of standard deviation from 0.5 to 0.9%. Some-
what larger variation is observed for the interference rates
corresponding to the upper estimates of α, with ranges
1.5± 2.7% and 3.6± 5.5% for d = 3 and 4, respectively.

This difference in the amplitude between the fraction
of detected ribosomes and interference rate can be ex-
plained theoretically, as illustrated in Fig. 8. When plot-

ting the fraction 〈τ
(d)〉
〈τ〉 of detected ribosomes as a function

of 〈τ (d)〉 (Fig. 8a), we observed that for large values of the
fraction (associated with low α), the curves for different
values of d were well separated, such that for 〈τ (d)〉 ∼ 0.01
(corresponding to the range of our dataset), the fraction
of detected ribosomes can vary between 98% (for d = 1)
and 85% (for d = 6). In contrast, the interference rate
takes approximately the same value for all d (∼ 1%, see
Fig. 8b). More generally, the formula (25) for interference
rate shows that, as d increases, any observed decrease in

the fraction 〈τ
(d)〉
〈τ〉 is compensated by the power 1

d . Fur-
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FIG. 8. The fraction of isolated particles and inter-
ference rate as a function of 〈τ (d)〉.(a): For different
isolation ranges d ∈ {1, . . . , 6} , we plot the fraction of iso-
lated particles as a function of the average density of isolated
particles 〈τ (d)〉, according to (23). Note that for given d,

some values of 〈τ (d)〉 can lead to two possible fractions of iso-
lated particles. (b): As in (a), we plot the isolation rate as

a function of the average density of isolated particles 〈τ (d)〉,
according to (25). Note that for 〈τ (d)〉 ≤ 0.02 and all d,
the initiation rates associated with the lower branch are very
close.

thermore, as d increases, the range of the ratio 〈τ
(d)〉
〈τ〉 also

increases (from 60 ∼ 100% for d = 0 to 3 ∼ 100% for
d = 6), leading to larger differences between the lower
and upper estimates, and higher variability across genes.
In contrast, the interference rate remains bounded (by
∼ 0.2), explaining its smaller variation across our dataset
and different values of d.

DISCUSSION

I. Comparison with existing literature

In this article, we provided a complete analysis of the
distribution of isolated particles in the TASEP model
with open boundaries. This study was motivated by the
possible non-detection of stacked ribosome in ribosome
profiling, which is a recent experimental technique [23].
As shown in (3), the density of isolated particle is related
to two- and three-point correlators, while most past anal-
yses focused on computing the total density profile and
the flux, which involve one- and two-point correlators.
In the classical form of the model, we obtained exact an-
alytic solutions using the matrix formulation originally
developed by Derrida et al. [22]. We also obtained ac-
curate asymptotic formulas in the limit of large N for
different regimes of the phase diagram. In the past, the
classical 1-TASEP has been studied in various geomet-
ric settings [20, 21], such as rings [33, 34] and networks
[35, 36], or with more complex dynamics associated with
pausing [37, 38], random rates [33, 39, 40] or multiple
species [22, 34, 40–42], to name a few. A possible ex-
tension of our work would be to investigate the behavior
of isolated particles in these different contexts. In many
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cases, the solution of the associated master equation can
be found using a matrix formulation [20, 21, 40, 42], sug-
gesting that the work presented here could be general-
ized.

We further studied the `-TASEP model with extended
particles of size ` and derived asymptotic formulas for
densities using a refined mean field approach. In this
more general case, the steady-state solution of the asso-
ciated master equation can, in principle, also be written
in the form of a generic matrix product [20, 43]. In prac-
tice, however, the associated algebra is rather complex,
making it challenging to derive analytic results [2, 20]. To
cope with this complexity, several approaches using mean
field approximation have been developed [2, 4, 37, 44, 45].
Although the mean-field treatment may inaccurately cap-
ture the full profile in some regimes [37], it provides
a more accurate approximation when the profile is re-
stricted to isolated particles. More generally, the “level”
of “mean-field” can also impact the quality of the ap-
proximation. At the simplest level, assuming a uniform
distribution of particles without anti-correlations due to
local interactions and using (13), one may obtain a rather
poor approximation of the density of isolated particle, as
the different regimes are not even separated correctly (all
the cases in Fig. 4 would, for example, be considered as
being in HD). Unlike this simple mean-field approach,
the refined analytic approximation proposed by Lakatos
and Chou [2] leads to formulas that show good agreement
with simulations for current and bulk density [37]. In our
work, we employed a similar approach to obtain a sim-
ple, accurate formula for the density of isolated particles
with a given minimum distance to the closest neighbor.
Higher “levels” of “mean-field” [44, 45] can help to im-
prove the accuracy of the local density, but at the cost
of losing analytic expressions, and possible existence of
numerical instabilities and imprecisions [45].

The choice of lattice length (n = 300) in our compari-
son with Monte Carlo simulations was motivated by the
typical size of the mRNA found in our dataset. As the
length of the lattice increases, we expect the accuracy to
improve, especially in the bulk, as the density would vary
less. For much longer lattices, it would also be natural to
study the hydrodynamic limit of the `-TASEP with open
boundaries. Interestingly, while previous studies derived
a general PDE satisfied by the density for the `-TASEP
in the hydrodynamic limit [46, 47], a rigorous derivation,
notably including that of boundary conditions, and anal-
ysis of the PDE to determine the associated phase dia-
gram are still missing. We are currently exploring this
research direction.

J. Application to ribosome profiling data and
comparison with other approaches

We applied our theoretical results to study mRNA
translation using ribosome profiling data. In particular,
our analysis suggests that the representation of the ri-

bosome density may be biased by the non-detection of
ribosomes with gap distance less than ∼ 3 codons. In
general, different protocols applied to different organisms
can affect the nuclease action and in particular its ability
to cleave ribosomes [28]. Hence, it would be interesting to
apply our method to other datasets and other organisms
to find possible differences in the detection gap distance.
In particular, such differences could be visible near the
terminal end of the transcript sequence, where slow ter-
mination can cause interference [48, 49]. In yeast (which
is the organism studied in our dataset), no periodic peaks
of density were detected in this region across multiple
datasets [19, 50–57], suggesting non-detection of stacked
ribosomes. In contrast, such peaks have been detected
for other organisms and different protocols [58, 59].

Other methods have also been developed previously to
infer the initiation rates associated with specific genes
from polysome [9] or ribosome profiling [12]. These ap-
proaches used Monte Carlo simulations that can be com-
putationally expensive. Using our theoretical results, it
is possible to infer the initiation rate directly from the ob-
served average detected density. Interestingly, we found
that for our typical detection gap distance, some initi-
ation rates were not uniquely identifiable (i.e., two ini-
tiation rates can lead to the same observed TE arising
from isolated ribosomes), as having a higher initiation
rate also creates higher interference that decreases the
detected density. As a result, our work suggests that,
for some genes, there could be ambiguity in identifying
the initiation rate and the flux from TE, although this
measurement has been widely used as a proxy for protein
production [23].

We also provided robust estimates of the average rate
of interference that ribosomes experience during transla-
tion. These estimates implicitly depend on the initiation
rate and homogeneous elongation rate, but do not include
other possible sources of interference due to local hetero-
geneities. More precisely, there is evidence of variation of
the elongation rate along the transcript, especially in the
first ∼ 200 codons, leading to the so-called “5’ transla-
tional ramp” [23] (in another study [14], we quantified the
extent of the interference created by this ramp). How-
ever, it has been shown that the average elongation speed
along the transcript sequence is approximately constant
around 5.6 codon/s [15], allowing the use of the homo-
geneous TASEP model as a first approximation of the
translation dynamics.

Overall, our work shows how studying the interaction
range of particles in exclusion process can help to get a
better understanding of the process, and that it can be
applied to problems where the data available are biased
against this range. Similarly, while we focused here on
isolated particles, our methods can be applied to situa-
tions where only aggregated particles following a trans-
port process get detected.
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Appendix A: Equations satisfied by the correlators
in the TASEP

Averaging the master equation associated with the
TASEP, the particle densities satisfy the following re-
lations [60]:

0 = 〈τ1〉N − 〈τ1τ2〉N − α(1− 〈τ1〉N ), (A1)

0 = 〈τiτi+1〉N − 〈τi−1τi〉N − 〈τi〉N + 〈τi−1〉N
, for 2 ≤ i ≤ N − 1, (A2)

0 = β〈τN 〉N − 〈τN−1〉N + 〈τN−1τN 〉N . (A3)

Note that (A2) implies 〈τi(1− τi+1)〉N = 〈τi−1(1− τi)〉N
for all i = 2, . . . , N − 1. This translation-invariant quan-
tity is called the current (or flux) and is denoted by J .
One can also relate the two-point correlators with the
three-point correlators as

0 = 〈τ1τ2τ3〉N − 〈τ1τ2〉N (1 + α) + α〈τ2〉N , (A4)

0 = 〈τi−1τiτi+1〉N − 〈τi−2τi−1τi〉N − 〈τi−1τi〉N + 〈τi−2τi〉N
, for 3 ≤ i ≤ N − 1, (A5)

0 = 〈τN−2τN−1τN 〉N − 〈τN−2τN 〉N + β〈τN−1τN 〉N .
(A6)

Appendix B: Description of the matrix Ansatz used
in the simple TASEP

To derive analytical expressions for the average densi-
ties of the TASEP, Derrida et al. [22] showed that the
steady state probability of a given configuration can be
derived using a matrix formulation as

P(t1, . . . , tN ) =
fN (t1, . . . , tN )∑

θ1=0,1 · · ·
∑
θN=0,1 fN (θ1, . . . , θN )

,

(B1)

where

fN (t1, . . . , tN ) = 〈W |
N∏
i=1

(tiD + (1− ti)E|V 〉. (B2)

Here, D and E are infinite dimensional square matrices
and |V 〉 and 〈W | are column and row vectors respectively
satisfying

DE = D + E, (B3)

D |V 〉 =
1

β
|V 〉, (B4)

〈W | E =
1

α
〈W |. (B5)

Using this formulation, the particle density can be de-
rived as

〈τi〉N =
〈W |Ci−1DCN−i|V 〉
〈W |CN |V 〉

, (B6)

where C = D + E. More generally, for any given index
set i1, i2, . . . , ik such that 1 ≤ i1 < · · · < ik ≤ N , we get

〈τi1 · · · τik〉N = (B7)

〈W |Ci1−1DCi2−i1−1 · · ·Cik−ik−1−1DCN−ik |V 〉
〈W |CN |V 〉

.

Appendix C: Computing the density of isolated
particles

Using the matrix Ansatz, we derive here an analytical
expression for the average density of isolated particles
〈τ ′j〉N . Our goal is to get 〈τ ′j〉N as a function of the av-
erage densities 〈τj〉N . The density of isolated particles
inside the lattice (2 ≤ i ≤ N − 1) is given by (see equa-
tion (3))

〈τ ′i〉N = 〈τi〉N − 〈τi−1τi〉N − 〈τiτi+1〉N + 〈τi−1τiτi+1〉N .
(C1)

For 2 ≤ j ≤ N − 1, we first derive the expression of
the two point correlators 〈τjτj+1〉N by summing equation
(A2) over i ∈ {2, . . . , j} and using the boundary equation
(A1)

〈τjτj+1〉N = 〈τj〉N − α (1− 〈τ1〉N ) . (C2)

Similarly, for 3 ≤ j ≤ N − 1, summing equation (A5)
from i = 3 to j and using boundary equations (A1) and
(A4) gives

〈τj−1τjτj+1〉N =〈τ1τ2τ3〉N +

j∑
p=3

〈τp−1τp〉N − 〈τp−2τp〉N

(C3)

=(1 + α)2〈τ1〉N − α(1 + α+ 〈τ2〉N )+

j∑
p=3

〈τp−1τp〉N − 〈τp−2τp〉N . (C4)
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Using the matrix formulation and the identities DCD =
D(DC −DE + ED) = DDC −DC + CD, we get

〈τp−2τp〉N =
〈W |Cp−3DCDCN−p|V 〉

〈W |CN |V 〉
= 〈τp−2τp−1〉N + JN (〈τp−1〉N−1 − 〈τp−2〉N−1) ,

(C5)

where JN = 〈W |CN−1|V 〉
〈W |CN |V 〉 = α (1− 〈τ1〉N ) is the particle

current at steady state [22]. Combining (C5) with (C4)
and using (C1) and (A1) yield the result for the three-
point correlator

〈τj−1τjτj+1〉N = 〈τj−1〉N − α [1 + α+ 〈τ2〉N − · · ·
(2 + α)〈τ1〉N ]− JN (〈τj−1〉N−1 − 〈τ1〉N−1) ,

(C6)

for 3 ≤ j ≤ N − 1. Using (A1) and (A4), this equation
is also true for j = 2. Using (C6), (C2) and (3) gives
us the formula for the density of isolated particles, for
2 ≤ i ≤ N − 1

〈τ ′i〉N = α [1− 〈τ2〉N + α(〈τ1〉N − 1)]− · · ·
JN (〈τi−1〉N−1 − 〈τ1〉N−1) . (C7)

Finally we can use JN = α (1− 〈τ1〉N ) to write the above
formula in a more compact notation, as

〈τ ′i〉N = D0(α, β,N)−D1(α, β,N)〈τi−1〉N−1, (C8)

where

D0(α, β,N) = α [1− 〈τ2〉N + (1− 〈τ1〉N ) (〈τ1〉N−1 − α)] ,
(C9)

D1(α, β,N) = α(1− 〈τ1〉N ). (C10)

Similarly, using equations (A1) and (A3) at the bound-
aries yields

〈τ ′1〉N = α(1− 〈τ1〉N ), (C11)

〈τ ′N 〉N = 〈τN 〉N (1 + β)− 〈τN−1〉N . (C12)

Appendix D: Density of isolated particles in the
bulk for the `-TASEP

We compute here an estimate of the density of isolated
particles of size ` in the bulk (〈τi〉, 1 � i � N − l). To
do so, we use an approximation from Lakatos and Chou
[2], assuming that the number of states of n particles of
length l, confined to a length of N ′ ≥ n` lattice sites, is
given by the partition function [61]

Z(n,N ′) =

(
N ′ − (`− 1)n

n

)
. (D1)

For a given position i ∈ {1, . . . ,≤ N − l}, we introduce
x−i and x+i as the positions of the closest particles to the

left and the right of i, respectively, so we get

〈τ ′i〉 = P(τi = 1, x−i < i− `, x+i > i+ `) (D2)

= P(τi = 1)P(x−i < i− `, x+i > i+ ` | τi = 1).
(D3)

Assuming x−i and x+i being independent yields

〈τ ′i〉 = P(τi = 1)P(x−i < i−` | τi = 1)P(x+i > i+` | τi = 1).
(D4)

Using (D1), the probability p+n,N ′ that x+i > i + `, con-
ditioned on τi = 1 and there being n particles in the
window [i+ ` : i+ `+N ′ − 1] is

p+n,N ′ =
Z(n,N ′ − 1)

Z(n,N ′)
=

1− ρ`
1− ρ(`− 1)

, (D5)

where ρ = n
N ′ . When n and N ′ get large and assuming

the density of particles in the bulk of the lattice to be ap-
proximately constant (denoted 〈τ〉), we can replace p+n,N ′

and ρ in equation (D5) by P(x+i > i+ ` | τi = 1) and 〈τ〉,
respectively, which gives

P(x+i > i+ ` | τi = 1) =
1− 〈τ〉`

1− 〈τ〉(`− 1)
. (D6)

Similarly, we obtain P(x−i < i− ` | τi = 1) = 1−〈τ〉`
1−〈τ〉(`−1) .

Combining these relations and replacing P(τi = 1) by 〈τ〉
in equation (D3), we obtain that the density of isolated
particles in the bulk, simply denoted 〈τ ′〉, is given by

〈τ ′〉 = 〈τ〉
(

1− `〈τ〉
1− (`− 1)〈τ〉

)2

. (D7)

Similarly, for isolation range d, we obtain

〈τ (d)i 〉 ∼ P(τi = 1)

[
Z(n,N ′ − d)

Z(n,N ′)

]2
, (D8)

which simplifies to the following expression in the large-
N limit:

〈τ (d)〉 ∼ 〈τ〉
[

1− `〈τ〉
1− (`− 1)〈τ〉

]2d
. (D9)

Appendix E: Experimental dataset

The flash-freeze ribosome profiling data from Weinberg
et al. [29] can be accessed from the Gene Expression
Omnibus (GEO) database with the accession number
GSE75897. To map the A-sites from the raw short-read
data, we used the following procedure: We selected the
reads of lengths 28, 29 and 30 nt, and, for each read, we
looked at its first nucleotide and determined how shifted
(0,+1, or −1) it was from the closest codon’s first nu-
cleotide. For the reads of length 28, we assigned the
A-site to the codon located at position 15 for shift equal
to +1, at position 16 for shift equal to 0, and removed
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the ones with shift −1 from our dataset, since there is
ambiguity as to which codon to select. For the reads of
length 29, we assigned the A-site to the codon located at
position 16 for shift equal to +0, and removed the rest.
For the reads of length 30, we assigned the A-site to the
codon located at position 16 for shift equal to 0, at posi-
tion 17 for shift equal to −1, and removed the reads with
shift +1.

Appendix F: Estimation of termination rates

For a given profile (P1, . . . , PN ) containing the number
of footprints with A-site detected at each position, we

estimate the associated scaled termination rate as

β =
(N − 1)

PN
∑N−1
i=1

1
Pi

. (F1)

Such estimation is valid when there is little ribosomal
interference, such that the elongation rate can be ap-
proximated by the inverse of the profile [14]. In another
study [14], we developed a more refined inference proce-
dure that uses these rates as first estimates (this method
applies for genes with high footprint coverage), leading to
excellent agreement between the observed and simulated
profiles for the same dataset used here. As in average,
our refined procedure lead to correction for ∼ 1.57 site
per gene, these “naive” estimates are valid over a large
majority of the sites.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2017. ; https://doi.org/10.1101/147017doi: bioRxiv preprint 

https://doi.org/10.1101/147017
http://creativecommons.org/licenses/by-nc-nd/4.0/

