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Abstract

The Totally Asymmetric Exclusion Process (TASEP) is a classical stochastic model for de-
scribing the transport of interacting particles, such as ribosomes moving along the mRNA during
translation. Applying this model to quantify translation dynamics from ribosome profiling data
is not straightforward, however, and it requires characterizing the extent of interference, since
the experimental protocol may be biased against nearby ribosomes. To evaluate and correct
for this potential bias, we provide here a theoretical analysis of the distribution of isolated par-
ticles in the TASEP. In the classical form of the model in which each particle occupies only
a single site, we obtain exact analytic solutions using the Matrix Ansatz. We then employ a
refined mean field approach to extend the analysis to a generalized TASEP with particles of
an arbitrary size. Our theoretical study has direct applications in mRNA translation and the
interpretation of experimental ribosome profiling data. In particular, our analysis of data from
S. cerevisiae suggests a potential bias against the detection of nearby ribosomes with gap dis-
tance less than ~ 3 codons, which leads to some ambiguity in estimating the initiation rate and
protein production flux for a substantial fraction of genes. Despite such ambiguity, however, we
demonstrate theoretically that the interference rate can be robustly estimated, and show that
approximately 1% of the translating ribosomes get obstructed. Lastly, we find that, on average,
the termination rate is near optimal in that it is close to the minimum value needed to not limit
the ribosome flux.
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Introduction

Translation of mRNAs into proteins is one of the most essential biological processes underlying
cellular function. To understand its complex dynamics, ribosome profiling (also known as Ribo-
Seq) has been developed to examine position-specific densities of ribosomes along each mRNA
[1]. However, although this powerful experimental technique captures the dynamics of mRNA
translation to some extent, analytical tools for interpreting ribosome profiling data and relating
the observed footprint density to the corresponding protein production rate are still much in need
of development [2].

In this context, a natural tool to use is the Totally Asymmetric Exclusion Process (TASEP),
which is a classical stochastic model for transport phenomena in a non-equilibrium particle system.
Although it has been widely studied by mathematicians and physicists, the TASEP was first in-
troduced in a biological context by McDonald et al. [3] to model mRNA translation and describe
the dynamics of ribosomes moving along the mRNA. Over the past fifteen years, the TASEP and
its extensions have been used for this purpose [4-13], and TASEP-based models have been used
to infer the translation rate from experimental data [11,14-16]. Yet, developing such inference
method for ribosome profiling data is not straightforward and still remains challenging for several
reasons [17]. One notable issue comes from the experimental protocol used to generate the ribo-
some profile. In general, long mRNA fragments that may account for stacked ribosomes are not
sequenced. As a result, the observed density may only include well-isolated ribosomes, thus leading
to a bias that needs to be corrected when evaluating the ribosome density [8,16-19]. Although the
TASEP has been broadly studied under different conditions and using various approaches [20,21],
to our knowledge, the density of isolated particles has not been studied previously.

These theoretical and technical issues motivate us to study the extent of isolated particles in
the TASEP, in order to quantify the relation between the mRNA translation dynamics and the
observed densities in ribosome profiling data. To do so, we first employ the matrix formulation
of Derrida et al. [22] to derive exact formulas for the density of isolated particles in the classical
TASEP model, in which each particle is pointlike and occupies a single site. For the case when the
number N of sites is large, we obtain simple asymptotic formulas. We then extend our study to
the general case with particles of an arbitrary size. Using a refined mean field approach introduced
by Lakatos and Chou [4], we derive new asymptotic formulas that agree well with Monte Carlo
simulations.

We obtain new results regarding the translation dynamics by applying our theory to ribosome
profiling data. In particular, our analysis of undetected ribosomes suggests a potential bias against
consecutive ribosomes less than ~ 3 codons apart. Furthermore, we characterize the variation of the
termination rate, which is a key parameter of the TASEP, across different transcripts. We show that
the termination rate is on average close to the minimum value needed to achieve maximal current,
and hence does not limit the translation speed. Combining these estimates with a measurement
of ribosome density called “translation efficiency” (TE), we provide estimates of the detection
and interference rates, and find that, for a significant fraction of genes, there is some ambiguity
in identifying the initiation rate and the flux from TE. Although the TE has been widely used
as a proxy for protein production rate [23], these results suggest that more refined methods and
estimates should be used to properly quantify gene expression at the translation level.

Theoretical Results

We first present our main theoretical results on the classical and generalized TASEP models.
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The density of isolated particles in the classical TASEP model. We first studied the density
of isolated particles in the context of the classical TASEP model with open boundaries [24]. Briefly,
the dynamics of this stochastic process can be described as follows (see Figure 1A). On a one-
dimensional lattice of IV sites, the classical TASEP describes the configuration of pointlike particles,
described by a vector 7 = (7q,...,7n) such that 7, = 0 if the i-th site is empty and 7; = 1 if it is
occupied. During every infinitesimal time interval dt, each particle at site i € {1,..., N — 1} has
probability dt of hopping to the next site to its right, provided that the site is empty. Additionally,
a new particle enters site 1 with probability adt if 71 = 0. If 7y = 1, the particle at site IV exits
the lattice with probability Sdt. The parameters o and [ are respectively called the initiation and
termination rates. In the long time limit, the system reaches steady state and the corresponding
expected marginal density of particles at position 7 on a lattice of size N, denoted (7;)n, is defined
as,
(Ti)n = Z TP(r =7) =P(1 = 1).

7€{0,1}

Averaging the process over the events that may occur between t and ¢ + dt leads to a system of
equations relating one-point correlators to two-point correlators [25]. Similarly, two-point correla-
tors can be related to three-point correlators (see Section 1 of Supporting Information), and so on.
To derive analytic expressions for the average densities, Derrida et al. [22] showed that the steady
state probability of a given configuration can be derived using a matrix formulation satisfying a
set of algebraic rules (see Section 2 of Supporting Information). Using these rules, they obtained
an exact formula for (7;)n, and showed that, in the large-N limit, the TASEP follows different
dynamics according to a phase diagram in («, 3)-space.

In our work, we employed the aforementioned matrix formulation to derive analytic expressions
for the average density of isolated particles. Specifically, consider the random variable 7/ defined as

(1 — 7o), for i =1,
7 =7l = 7o) (1 = 7iy1), for2<i<N -1, (1)
TN(]-iTNfl)? fOI‘i:N.

Note that 77 = 1 if there is an isolated particle at position ¢, and 7] = 0 otherwise. From (1), we
see that the average density (7/)ny of isolated particles at an interior site i, where 2 < i < N — 1,
is given by

(T))n = (Ti)N — (TicaTi) N — (TiTit1) N + (Ti1TiTig 1) N - (2)

As detailed in the Supporting Information, by analyzing the terms on the right hand side of (2),
we obtained

<TZ-,>N:Do(a,ﬂ,N)—Dl(a,ﬁ,N)<7'i,1>N_1, 2§Z§N—1, (3)

where
Do(e, B, N) = [l = (m2)n + (1 = (m1)n)({T1) N-1 — @) (4)
Dl(a,ﬁ,N) :a(1—<7'1>N). (5)
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For the boundaries, we obtained

(r)n = a(l = (m)n), (6)
(tn)nv = (tn)N(1 4 B) = (Tn-1) N (7)

As mentioned earlier, exact formulas for (7;) 5, are known [22] (Supporting Information), so plugging
them into (3)—(7) leads to exact results for the average densities of isolated particles along the lattice.

Large-N asymptotics in three different phases. We next derived the large-N asymptotics of
(t/Yn from those of (7;)n. In this section, we drop the dependence on N and write (7;) instead
of (1;)~n. In the large N limit, the dynamics of the TASEP can be separated into three different
phases—namely, maximal current (MC), low density (LD), and high density (HD)—depending
on the values of (a, ) (see Figure 1B and (8) below). Using the asymptotics of the particle
densities in these three phases (Section 4 of Supporting Information), we found that Dg(a, 3, N)
and Di(a, 8, N) in (4) and (5), respectively, are both asymptotically equivalent to D, g, given by

%, if > %, B8 > % (MC regime),
Dyg=1(a(l—a), fa< %, B > a (LD regime), (8)
B(l—p), ifs< %, B < a (HD regime).

At steady state, (7;(1 —7;41)) is the same for all ¢+ = 1,...,N — 1. This quantity is defined
as the current (or flux) and is denoted by J. We note that D, in (8) is in fact identical to
the asymptotics of J in the large-N limit. Hence, it turns out that the asymptotics of (7/) for
2 < i < N —1 are correctly given by using in (2) the mean-field approximation (7;_17;(1 — Ti+1)) ~
(Tic1){(1i(1 = 7i41)) = J{(7i—1). Finally, noting that (r]) = (11(1 — 72)) = J and B(7n) = J at steady
state, while (7y_1) ~ J + (J/B)? asymptotically, we obtain that (7{) is asymptotically given by

1
Da,ﬂv fOI' 7 = 17
(r!y ~ Dos(1—(1i21)), for2<i<N-—1,
(A

Dab’( Dag) ‘
11— —>), fori=N.
g g

Using the asymptotics of (7;) in different phases (Section 4 of Supporting Information), the resulting
densities at the boundaries and far from the right boundary ((7n_;), 1 < j < N) can be computed,
as summarized in Table 1. The asymptotics far from the left boundary ((7;), 1 < j < N) can be
derived using the “particle-hole symmetry” [22]

(Tn41-i)N (o, B) = 1 — (mi) N (B, ). 9)
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The fraction of isolated particles E:’li is given by

D
M, fori =1,
a—Dag
/ .
) ) Dap= (i) o iy,
(7i) (1)
D,z .
1 — =2 for i = N.
p

As shown in Figure 2, there is good agreement between our asymptotic formulas and the exact
results obtained from using the exact (7;), [22] in equations (3)-(7). We observed some large
boundary effects, as the density of isolated particles at the boundaries is always larger than in the
bulk. In the LD I regime (5 < %), slow termination creates queuing so that the density of isolated
particles decreases close to the end, in contrast to the total density. In the HD regime, high density
creates a lot of stacked particles so the proportion of isolated particles is very small. In the MC
regime, stacked particles are present more in the beginning of the lattice. As a result, the density
of isolated particles in the bulk increases along the lattice, in contrast to the total density.

The /-TASEP with extended particles. During translation, ribosomes move along mRNAs by
decoding one codon at a time, but occupy an extended space of ~ 10 codons. For that reason, it
is also of interest to generalize our theoretical results to a process where particles occupy a certain
size ¢ > 1 (this process is usually called the /-TASEP [26]). In this general case, using a matrix
product to represent the steady-state solution leads to equations that are more complex, making
the method employed above inapplicable (see Discussion). To cope with this complexity, we used a
refined mean field approach introduced by Lakatos and Chou [4]. Although this approach cannot
capture the variation of densities along the lattice as in the previous section, it well approximates
the global average density and the current of particles. The key idea is to approximate the distri-
bution of particles in the large- N limit by an equilibrium ensemble in which particles get uniformly
distributed. Using such approximation, we obtained (Section 5 of Supporting Information) that
the density of isolated particles far from the boundaries, simply denoted ('), is given by

/ 1 - €<7—> ?
) =0 [ =] - (10)

Using the asymptotic densities and currents found by Lakatos and Chou [4], we derived the
asymptotics of (7). As for the £ = 1 case, the phase diagram can be decomposed into three parts
(MC, HD, LD), separated by critical values a* = * = ﬁ. For ¢ = 1, we have o* = 8* = %,
in agreement with the previous section. Combining (10) with the asymptotic density (7) in the
large-N limit (Section 6 of Supporting Information), we obtained the following density of isolated

particles in the bulk:

(1+\/\2)3’ if > a*, f>p* (MC regime),
() =3I [(t=1)J+1 = (O=D)TF12=40]|, ifa<a*, B> a (LD regime), (1)
V=0T + 14+ T=T)T+ 17— 4lJ|, if B<B*, B < a (HD regime),
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where J is the particle flux given by [4]

(14_1\[@2, if a >a*, B> p" (MC regime),
J ~ m, if o < a®, B> a (LD regime),
m, if 8 < B*, B < a (HD regime).

Near the entrance and exit, particles potentially get stacked on one side only. At the entrance, the
density of isolated particles is, for i < £,

() =P(ti =1, tig=0)=J. (12)

Hence, (7]) at the entrance is exactly given by the current flux J, as in the case of £ = 1. Near the
exit, for i > N — ¢, (7]) satisfies

Using P(ANB) =1—-P(A¢) —P(B°) +P(A°N B®) and P(t;—y =1, t; = 0) = J yields
(th=J+Pt;=1) —P(ti_g=1) = J + (r;) — (1i_¢)-
As the flux satisfies J = B(ry) = (Tn—1) = -+ = (Tn—¢+1), We obtained

) 2J — (Ti—e), for N —¢<i <N,

(mi) = { J (1 + %) — (tn—¢), fori=N. (13)

Comparison with Monte Carlo simulations and estimation of interference rate. Com-
bining (11), (12) and (13) leads to approximate densities of isolated particles along the lattice in
the ¢-TASEP. The isolated particle densities in the bulk (11) and near the entrance (12) depend
only on the flux J, whereas near the exit the result (13) also depends on the density of particles
located ¢ sites behind. In the LD regime, this density can be approximated by the density in the
bulk (Section 6 of Supporting Information). However, in the other regimes, the density varies near
the boundary, so using this approximation might be inaccurate (see Figure S1). As Figure 3A
shows, however, our theoretical results agree well with the empirical densities of isolated particles
obtained from Monte Carlo simulations, for specific values of («, 8) in the LD, HD and MC regimes.
Contrary to the matrix method for the classical 1-TASEP model, the refined mean field approxi-
mation does not capture the variation of isolated particle densities across the lattice. However, this
variation is much smaller than that of the total density, especially in regions of high traffic. Thus,
assuming the density of isolated particles to be constant turns out to be a fine approximation for
the majority of the lattice.

More generally, we studied in Figure 3B and Figure S2 how the flux, density, and proportion
of isolated particles vary as a function of «, for fixed values of 5. Overall, our theoretical results
were in good agreement with Monte Carlo simulations. Interestingly, whereas the flux (Figure S2)
and total density (Figure 3B) increase and reach a plateau after transitioning to the HD (when
B < B*) or the MC (when 8 > [*) regime, the density of isolated particles follows a more complex
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pattern: First, there is a drop in the density of isolated particles when transition occurs from
LD to HD. In contrast, we observed an increase in the total density, showing that most particles
contributing to the density are stacked. Second, as [ increases, the amplitude of the drop decreases
until it becomes 0, when the MC regime replaces the HD regime. However, the maximum of (7') is
not reached in the MC regime but in the LD regime before phase transition occurs. In other words,
as the initiation rate increases, the level of interference increases faster than the global density. This
was confirmed when we plotted the ratio %(Figure 3B, right panels), showing a linear decrease
from o = 0 to @ = 3, while the total density gets sublinear as « gets closer to 5. The first-order

T/ —l{T 2 . . .
Taylor expansion in a of % = [%] in the LD regime gives

(') 2

-——=1-2a+0(a"). (14)
(1) ( )

Interestingly, this formula does not depend on ¢ and using the formula obtained for the classical
1-TASEP model leads to the same result. To estimate the amount of interference associated with

the dynamics of particles, we approximated the interference rate I, defined as the probability for a
particle to get obstructed, as
1 /
I:2<1—<T>>. (15)

{r)

Using equation (14), we obtained that the interference rate is close to « in the LD regime.

Generalization to larger isolation range. In the next section, one of our goals will be to
determine whether stacked particles are detected in ribosome profiling experimental protocols. A
problem is that we do not know a priori what is the exact range between two ribosomes that
may prevent them from being detected. For this reason, we considered the density associated with

isolation range d, denoted <Ti(d)>, as

TNy =P(ri =1, 2] <i—l—d, f >i+l+d),

where x;” and xj are the positions of the closest particles located before and after site ¢, respectively.

(d)>

In other words, (7;) gives the steady-state density of particles under the (-TASEP at position

(0)>

i such that the distance to their closest neighbor is at least d + ¢. In particular (7

total density of all particles, while <Ti(1) ) is equal to (7/), the density of isolated particles computed
above. Following the same method as in the previous section, we obtained the following expression

for particles in the bulk in the large-N limit:

gives the

—ir 2d
“n~ 0 =] 1

Hence, for two given isolation ranges d and d’, the associated fractions of isolated particles satisfy

O\ ()
(&) =)

Therefore, we can generalize (15) to obtain a formula for the interference rate for an arbitrary
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isolation range d > 1:

(17)

~
Il
N =
—_
|
VR
—~
—~ 1
2=
~
N~
=

Application

We applied our theoretical results to analyze ribosome profiling data and mRNA translation.
Briefly, the ribosome profiling procedure consists of using nuclease to digest translating ribosomes
and get ribosome-protected mRNA fragments [1]. Fragments of length ~ 10 codons, corresponding
to the size occupied by a ribosome, are extracted by the procedure and aligned to produce a po-
sitional distribution of ribosomes along the mRNA. However, it is possible that the nuclease may
fail to cleave stacked ribosomes [8,17-19]. Hence, the profile of ribosome counts along the mRNA
produced by the experimental procedure might be different from the true profile (see Figure 4).
Whether the nuclease can cleave two nearby ribosomes is still in debate, as the digestion and its
efficiency vary depending on the organism and the protocols which are used [27,28].

Estimating the isolation range associated with non-detection of ribosomes. To assess
the extent of non-detection of stacked ribosomes in an actual ribosome profiling dataset, we used
publicly available data of S. cerevisiae from Weinberg et al. [29] (more details in Materials and
Methods). The experimental protocol used for these data minimizes some of the other biases
known to affect the ribosome profiling, such as sequence biases introduced during ribosome footprint
library preparation and conversion to cDNA for subsequent sequencing, and mRNA-abundance
measurement biases and other artifacts caused by poly(A) selection [29]. For a given gene, a
measure of the average density of detected ribosomes is given by the so-called translation efficiency
(T'E) [23]. More precisely, the T'E is given by the ratio of the RPKM measurement for ribosomal
footprint to the RPKM measurement for mRNA, where RPKM denotes the number of Reads Per
Kilobase of transcript per Million mapped reads. Hence, the T'E is proportional to the average
density of detected ribosomes per site of a single mRNA; in our notation, TE <T(d)>. To get the
total density of ribosomes, we used another dataset from Arava et al. [30], obtained by polysome
profiling, which is another technique giving, for a specific gene, the distribution of the number of
ribosomes located on a single mRNA (and forming polysomes). While polysome profiling data is
not biased by the possible omission of stacked ribosomes, the advantage of ribosome profiling is
that it gives some local information about the ribosome occupancy.

When the density is low, ribosomes translating on the same mRNA are well isolated, so the TE
and the total ribosome density coincide. In order to get the scaling factor associated with the TFE,
we thus performed a linear fit between the two datasets in the region where the total density is
less than 1 ribosome per 100 codons (Figure S3). Depending on the gap between two ribosomes
that prevents them from being detected, the relation between the T'E and the total average density
D = (1) is, according to equation (16),

1—10D>2d

TE =aD [ ——2
@ <1—9D

(18)

where a is the rescaling factor (specifically, TE = a - (1(9))) obtained from fitting and d denotes
the detection gap-threshold mentioned previously (if the gap between a ribosome and its closest
neighbor is larger or equal to d, then it gets detected). Since a ribosome occupies 10 codons, the
parameter ¢ in (16) is set to 10. In Figure 5A, we plotted (18) for different values of d and
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compared it with the experimental data from Weinberg et al. and Arava et al. Our goal was then
to determine which value of d leads to the best match with the experimental data. In Figure 5B,
we plotted the root mean square error between (18) and the experimental data, as a function of d
and for the value of a corresponding to the fit obtained in Figure S3. We found that the minimum
error is obtained when d is between 4 and 6. On the other hand, as d increases, the maximum
value of TE that can be obtained using (18) decreases (Figure 5A), potentially leading to some
detected densities from experiment to be greater than the theoretical maximum of T'F; we call such
detected densities “anomalous” (as we shall see below, we can obtain a more refined estimate of
the maximum possible detected density using an estimate of the termination rate 3 for each gene).
In Figure 5C, we plotted for each d the fraction of genes with anomalous detected densities. For
d < 3, no anomalous detected density was found, while the fraction becomes positive for d > 4 (less
than 1% for d = 4, ~ 2.5% for d = 6, and ~ 8% for d = 8). We concluded that the best values
of d that both minimize the error and the fraction of anomalous detected density were obtained
for d = 3 or 4. In agreement with our estimate, previous ribosome profiling experiments found
disome fragments (accounting for the mapping of two ribosomes) of length ~ 65 nucleotides [19],
suggesting that d = 3 (2 times 30 nucleotides plus 2 other codons).

Near optimality of termination rates. We then studied how termination rates were distributed
in the dataset we analyzed. We restricted to those genes with length > 200 codons, and then used
a method developed previously [16] to estimate, for a given gene of length N, the termination rate
ry and position-specific elongation rates r; along the transcripts, where i € {1,...,N —1}. We
then estimated the scaled termination rate as

(N — 1)7“]\[
St

Applying this to each of our 3712 filtered genes, we obtained a distribution of termination rates
shown in Figure 6A. Interestingly, we found that the average termination rate was slightly larger
than g* = 1+1 NG for £ = 10. (Recall that 5* is the critical termination rate at which phase transition
to the MC regime occurs.) This suggests that although the termination is known to be slow in
order to complete the different steps associated with the completion of protein synthesis [31, 32],
on average, it does not limit the protein synthesis rate even if the initiation rate increases, as it
allows to achieve the maximal current.

We further studied the possible determinants of termination rate variation and studied the
influence of the stop codon (TAA, TGA, or TAG) on . As shown in Figure 6B, we found
that, when looking at increasing termination rates, the fraction of genes with the TAA stop codon
increases (from ~ 35% for the 500 genes with the lowest § to ~ 60% for the 500 genes with the
highest (3), while the opposite applies to TGA (with a slighter decrease from ~ 40% to ~ 25%)
and TAG (from ~ 25% to ~ 15%). As a consequence, the distribution of 8 for genes with the TAA
stop codon has a larger tail (Figure 6C).

B = (19)

Identifiability of initiation rates and flux from TE measurements. Under the /-TASEP
model in the LD regime, the T'F is related (Figure TA) to the initiation rate « through equation
(16) and the asymptotics of (7) and J (Section 6 of Supporting Information). Assuming that trans-
lation occurs in the LD regime (since translation is generally limited by initiation under realistic
physiological conditions [33,34]), we studied whether we could infer the gene-specific initiation rate
« using our theoretical results. Illustrated in Figure 7B is a histogram of detected densities for
our dataset, which shows that the detected density is bounded by ~ 0.02 ribosomes per codon.
From the plotted curves in Figure 7A, this suggests that for d < 5 and for all the experimental
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detected densities, there exists a value for the initiation rate satisfying (16). However, for d > 3,
the identifiability of « (i.e., the uniqueness of «) does not seem to be guaranteed.

More precisely, for a given gene and isolation range d, the theoretical maximal value of the TFE,
denoted <T(d)>max, is determined by the termination rate 3, as

(T'D)max(8) = sup((r'D) (a), a € [0, ). (20)

In Figure 7C, we computed for different values of d the fraction of genes satisfying TE’ < <T(d) ) max,
where TE' is the TE normalized by the scaling factor a (see (18)). We found that all the genes
satisfied this condition for d < 5, before observing a small decrease for d = 6 (98%).

We further looked at the fraction of genes for which we can identify a unique initiation rate that
matches the associated detected density with the measured TE. As « increases to its critical value
min(S, 5*) (leading to a transition from LD to the other regimes), the density of isolated particles
either only increases, or increases then decreases, to (7(9);4(3), given by

(ry(p), if B < B,

(T )a(8) = {(r(d)) (21)

MC, otherwise,

where <T(d)>MC is the density of isolated particles in the MC regime. As a consequence, there is only
one identifiable initiation rate in the LD region when TE’ < (7(9)i4(8), and two when (1(9));4(8) <
TE < (119} .x. In Figure 7C, we computed the fraction of genes satisfying TE < (7(9);q. We
found that all genes were then strictly identifiable for d < 2, before the fraction starts to decrease
for d = 3 (96%). For d > 4, a significant fraction of genes (at least 19%) is not strictly identifiable.
Thus, in the range of d associated with non-detection found from Figure 5, the TE measurement
may lead to some ambiguity in the initiation rates. In this case, two values of the initiation rate
a1 < ag lead to the same detected density: Although the total density for as is larger than for
a1, there are also more closely stacked ribosomes that are not detected. Hence, the density of
isolated particles is the same for both. As the flux is an increasing function of the initiation rate
(Figure S2), such ambiguity also applies for inferring the flux. Under the (-TASEP model, a way
to eliminate this ambiguity is to compare the variations of local densities. For example, we have
previously shown that the density at the entrance is exactly the flux (see (12)). Thus, two profiles
associated with different initiation rates in the LD regime also differ at the entrance.

The fraction of detected ribosomes and interference rates. Upon estimating the threshold
of gap distance between consecutive ribosomes leading to their non-detection and studying the
identifiability of the initiation rate o, we then quantified the resulting fraction of detected ribosomes
and the associated interference rate. As discussed above, for some values of d and (7(4), there
may be two distinct values of «, and hence two distinct values of the total average density (7),
corresponding to the same (7(9)). This implies that the fraction (7(D)/(r) of detected ribosomes
and the the interference rate (17) may not be uniquely determined for some values of d and (r(®).
Indeed, for some of the experimentally observed T'E values from Weinberg et al. [29], we encountered
ambiguity in estimating o when d > 3 (see Figure 7C). Thus, when such ambiguity occurred, we
considered both lower and upper estimates of «, and found their respective resulting fractions of
detected ribosomes (7(4))/(r) and interference rates (Figure 8). We obtained that for d = 3 or 4,
suggested by Figure 5B and C, the lower estimates of « lead to fractions of detected ribosomes
lying between 91.2 + 5% and 93.5 + 3.5% (Figure 8A). The upper estimates of « lead to smaller
mean and larger variability (between 80 + 26% and 91.6 + 11.7%). As expected, we observed no
substantial difference between the lower and upper estimates for d = 1 or 2 (since no gene presents
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any ambiguity). As d increases, however, the fraction of detected ribosomes decreases (notably
because of the increasing fraction of genes with ambiguity). Interestingly, in contrast to these
important variations, we observed that the interference rates corresponding to the lower estimates
of a remain stable around 1% for all d, with only a slight increase of standard deviation from 0.5 to
0.9% (Figure 8B). Somewhat larger variation is observed for the interference rates corresponding
to the upper estimates of «, with ranges 1.5 + 2.7% and 3.6 &+ 5.5% for d = 3 and 4, respectively.
This difference in the amplitude between the fraction of detected ribosomes and interference

rate can be explained theoretically, as illustrated in Figure S4. When plotting the fraction h{fd;)

of detected ribosomes as a function of (7(4)) (Figure S4A), we observed that for large values
of the fraction (associated with low «), the curves for different values of d were well separated,
such that for (7(¥) ~ 0.01 (corresponding to the range of our dataset), the fraction of detected
ribosomes can vary between 98% (for d = 1) and 85% (for d = 6). In contrast, the interference
rate takes approximately the same value for all d (~ 1%, see Figure S4B). More generally, the

formula (17) for interference rate shows that, as d increases, any observed decrease in the fraction

(d)y . . (d)
<T<T>> is compensated by the power é. Furthermore, as d increases, the range of the ratio <T<T)> also

increases (from 60 ~ 100% for d = 0 to 3 ~ 100% for d = 6), leading to larger differences between
the lower and upper estimates, and higher variability across genes. In contrast, the interference
rate remains bounded (by ~ 0.2), explaining its smaller variation across our dataset and different
values of d.

Discussion

In this article, we provided a complete analysis of the distribution of isolated particles in the TASEP
model with open boundaries. In the classical form of the model, we obtained exact analytic solutions
using the matrix formulation originally developed by Derrida et al. [22]. We also obtained accurate
asymptotic formulas in the limit of large N for different regimes of the phase diagram. In the past,
the classical 1-TASEP has been studied in various geometric settings [20,21], such as rings [35, 36]
and networks [37,38], or with more complex dynamics associated with pausing [39, 40], random
rates [35,41,42] or multiple species [22,36,42-44], to name a few. A possible extension of our work
would be to investigate the behavior of isolated particles in these different contexts. In many cases,
the solution of the associated master equation can be found using a matrix formulation [20,21,42,44],
suggesting that the work presented here could be generalized.

We further studied the -TASEP model with extended particles of size £ and derived asymptotic
formulas for densities using a refined mean field approach. In this more general case, the steady-state
solution of the associated master equation can, in principle, also be written in the form of a generic
matrix product [20,45]. In practice, however, the associated algebra is rather complex, making it
challenging to derive analytic results [4,20]. To cope with this complexity, several approaches using
mean field approximation have been developed [4,6,33]. Unlike simpler mean field approaches, the
refined analytic approximation proposed by Lakatos and Chou [4] leads to simple formulas that
agree extremely well with Monte Carlo simulations. In our work, we employed a similar approach
to obtain a simple, accurate formula for the density of isolated particles with a given minimum
distance to the closest neighbor.

We applied our theoretical results to study mRNA translation using ribosome profiling data.
In particular, our analysis suggests that the representation of the ribosome density may be biased
by the non-detection of ribosomes with gap distance less than ~ 3 codons. In general, different
protocols applied to different organisms can affect the nuclease action and in particular its ability
to cleave ribosomes [28]. Hence, it would be interesting to apply our method to other datasets
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and other organisms to find possible differences in the detection gap distance. In particular, such
differences could be visible near the terminal end of the transcript sequence, where slow termination
can cause interference [31,32]. In yeast (which is the organism studied in our dataset), no periodic
peaks of density were detected in this region across multiple datasets [19,46-53], suggesting non-
detection of stacked ribosomes. In contrast, such peaks have been detected for other organisms and
different protocols [54, 55].

As mentioned previously, termination has been shown to be significantly slower than elongation
along the transcript. We confirmed this result by estimating the termination rate from ribosome
profiling data. More precisely, we found that the average termination rate is only slightly larger than
the minimum value $* that ensures, for large enough initiation rate, being in the maximum current
regime. In other words, our study suggests that, on average, termination is as slow as possible,
while not being a possible limiting factor of translation. Related to this perspective, it would be
interesting to investigate in more detail the determinants of the variability of the termination rate.
In our study, we notably found that genes with faster termination rates are more likely to have the
TAA stop codon. A possible explanation for such a preference may be codon readthrough (which
happens when the ribosome moves through the stop codon). Interestingly, it has been found [56]
that in yeast a second stop codon is significantly more likely to be present after the TAA stop
codon, forming a tandem that reduces the chance of readthrough. This suggests that TAA is less
effective in stopping the ribosome, and our observation of faster termination at TAA could result
from a relatively higher fraction of ribosomes (compared to TGA and TAG) continuing to move
along the mRNA, instead of being stopped and waiting for release at TAA.

Other methods have also been developed previously to infer the initiation rates associated with
specific genes from polysome [11] or ribosome profiling [14]. These approaches used Monte Carlo
simulations that can be computationally expensive. Using our theoretical results, it is possible to
infer the initiation rate directly from the observed average detected density. Interestingly, we found
that for our typical detection gap distance, some initiation rates were not uniquely identifiable (i.e.,
two initiation rates can lead to the same observed T'E arising from isolated ribosomes), as having
a higher initiation rate also creates higher interference that decreases the detected density. As a
result, our work suggests that, for some genes, there could be ambiguity in identifying the initiation
rate and the flux from T'E, although this measurement has been widely used as a proxy for protein
production [23].

We also provided robust estimates of the average rate of interference that ribosomes experience
during translation. These estimates implicitly depend on the initiation rate and homogeneous elon-
gation rate, but do not include other possible sources of interference due to local heterogeneities.
While it has been shown that the average elongation speed along the transcript sequence is ap-
proximately constant around 5.6 codon/s [1], there is evidence of variation of the elongation rate
along the transcript, especially in the first ~ 200 codons, leading to the so-called “5’ translational
ramp” [23] (in another study [16], we quantified the extent of the interference created by this ramp).

Overall, our work shows how studying the interaction range of particles in exclusion process can
help to get a better understanding of the process, and that it can be applied to problems where the
data available are biased against this range. Similarly, while we focused here on isolated particles,
our methods can be applied to situations where only aggregated particles following a transport
process get detected.
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Materials and Methods

Experimental dataset. The flash-freeze ribosome profiling data from Weinberg et al. [29] can be
accessed from the Gene Expression Omnibus (GEO) database with the accession number GSE75897.
To map the A-sites from the raw short-read data, we used the following procedure: We selected
the reads of lengths 28, 29 and 30 nt, and, for each read, we looked at its first nucleotide and
determined how shifted (0,+1, or —1) it was from the closest codon’s first nucleotide. For the
reads of length 28, we assigned the A-site to the codon located at position 15 for shift equal to +1,
at position 16 for shift equal to 0, and removed the ones with shift —1 from our dataset, since there
is ambiguity as to which codon to select. For the reads of length 29, we assigned the A-site to the
codon located at position 16 for shift equal to +0, and removed the rest. For the reads of length
30, we assigned the A-site to the codon located at position 16 for shift equal to 0, at position 17
for shift equal to —1, and removed the reads with shift +1.

Estimation of termination rates. For a given profile (Pi,..., Py) containing the number
of footprints with A-site detected at each position, we estimate the associated elongation rates

(ri,...m) as
min | rmax, —— if P,#£0
T‘/L _ ax» PL 9 (2 Y

T'maxs else,

where Ppax = max (P;) and rpayx is a fixed threshold value (in practice, we set it to 40). Such
1

approximation is valid when there is little ribosomal interference [16]. In another study [16], we
developed a more refined inference procedure that uses these rates as first estimates (this method
applies for genes with high footprint coverage), leading to excellent agreement between the observed
and simulated profiles for the same dataset used here. As in average, our refined procedure lead to
correction for ~ 1.57 site per gene, these “naive” estimates are valid over a large majority of the
sites.
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Table 1: Asymptotics of (7') in the different phases of the classical 1-TASEP. These are
obtained by combining equations (3), (6) and (7) with asymptotics given in Section 4 of Supporting
Information. The asymptotics far from the left boundary ((7;), 1 < j < N) can be derived using
the “particle-hole symmetry” (9).

(r1) (Eq.(6)) (thv—;) (1< j<N) (Eq.(3)) (rnv) (Ea.(7))
Me , : {1 i 7r(19'+1) i (1 a ﬁ)
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Figure 1: Illustration of the TASEP with open boundaries. A: A schematic representation
of the TASEP model. Particles are introduced at the start of the lattice with exponential rate «
and move along with exponential rate 1, provided that there is no particle occupying the next site.
At the end of the lattice, they exit with exponential rate 5. B: Phase diagram of the average
particle density along the lattice. The profile of average density of particles along the lattice can be
classified according to a phase diagram in («, 3)-space, separating different regions: the maximal
current regime (MC), the low density regime (LD), and the high density regime (HD). The LD and
HD regions can also be decomposed into two separate ones: LD I/II, and HD I/II, respectively.
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Figure 2: The density of isolated particles in different regions of the TASEP phase
diagram. For the different regimes of the TASEP (Figure 1), the asymptotic formulas from
Table 1 (solid red lines) are compared with the exact densities (dotted black lines) of isolated

particles given by (3)—(7).
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Figure 3: Comparison of the results from the refined mean field approach with Monte
Carlo simulations. A: We simulated the TASEP with extended particles (size ¢ = 10, sample
size = 10%) and plotted (in red) the densities of isolate particles in the three different regimes of the
phase diagram. We compared these simulation results with the asymptotics obtain from (10), (12)
and (13) (in black). B: For fixed values of /3, these plots show how the total density, the density of
isolated particles, and their ratio vary as a function of o. The results obtained using Monte Carlo
simulations (open circles) of the TASEP with extended particles (size of particles ¢ = 10, sample
size of isolated particles 10, lattice size = 400) are compared with the results obtained from the
refined mean field approach (solid lines). Note that there are discontinuities when transitioning
from LD to HD regime (first and second rows).
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Figure 4: A schematic representation of ribosome profiling. A: Positions of ribosomes along
the mRNA are obtained by nuclease digestion and allow to count the number of ribosomes found at a
specific position. However, it is possible that the nuclease cannot cleave stacked ribosomes [8,16-19].
B: As a result, the profile of ribosome count along the mRNA recorded from isolated ribosomes
(plotted in red) might be different from the true profile (plotted in black).
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Figure 5: Estimation of undetected ribosomes from ribosome profiling experiment. A:
This plot shows experimental ribosome profiling data of S. cerevisiae from Weinberg et al. [29]
against the total ribosome density obtained from polysome profiling by Arava et al. [30] (482

2d
genes). Also shown are plots of y = ax (11__19(?) , obtained from computing the density of detected

particles of size £ = 10 as a function of the total density in the (-TASEP (see (18)) with various
isolation range d = 0,...,10. We set a = 0.82 (see Figure S3). B: For values of d € {0,...,10},
we plot the root mean square error obtained from comparing experimental data to the theoretical
plots in A. C: For d € {0,...,10}, we plot the corresponding fraction of genes with anomalous
detected densities, where a detected density said to be anomalous if it is larger than the theoretical
maximum value implied by (18), used in A.
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Figure 6: Analysis of termination rates from ribosome profiling data. A: A histogram of
the termination rates /3 for 3712 genes (longer than 200 codons) estimated (see (19)) from ribosome
profiling data of Weinberg et al. [29]. Note that the average value (0.29) of j is close to 8* = 0.24.
B: We binned the genes into subsets of 200 genes according to £, and computed for each subset the
fraction of genes corresponding to each stop codon (TAA, TGA and TAG). For each stop codon,
we plotted the resulting fractions as a function of the logarithm of the mean value of 3. C: Box

plots of 8 for each stop codon.
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Figure 7: Identifiability of initiation rates from TE measurements. A: For different
values of isolation range d, we plot the density of isolated particles (see (16)) as a function of the
initiation rate « in the LD regime. B: A histogram of average detected density, for the 3712 genes
in our dataset (see Materials and Methods). C: For different ranges d of isolation, we studied the
identifiability of the initiation rate from the experimentally observed density shown in B. Black line:
we estimated the fraction of genes for which there exists a corresponding value for the initiation
rate «, such that the associated density of isolated particles is equal to the detected density. This
happens when the detected density is less than (7(9),..(3) (see (20)), where B is the inferred
termination rate shown in Figure 6. Red line: we estimated the fraction of genes from B for which
the initiation rate can be inferred without ambiguity from the plotted curves in A, which happens
when the detected density is less than (7(4));4(3) (see (21)).
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Figure 8: The fraction of detected ribosomes and interference rates. A: From our dataset
of 3712 genes, we used (16) to estimate the fraction of detected ribosomes for different values of
the detection gap threshold d € {1,...,6}. To compute these fractions when there is an ambiguity
in identifying the initiation rate « (see Figure 7C), we considered two possible estimates: a lower
estimate and an upper one (see also Figure S4A). The plot represents the average fraction of
detected ribosomes, with error bars indicating the standard deviation, using lower estimates (in
blue) and upper estimates (in red) of a. B: Interference rates estimated using (17) (see also
Figure S4B).
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