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Abstract: 29 
 Changes in DNA methylation are important in development and disease, but not all 30 
regulatory elements act in a methylation-dependent (MD) manner. Here, we developed 31 
mSTARR-seq, a high-throughput approach to quantify the effects of DNA methylation on 32 
regulatory element function. We assay MD activity in 14% of the euchromatic human genome, 33 
identify 2,143 MD regulatory elements, and predict MD activity using sequence and chromatin 34 
state information. We identify transcription factors associated with higher activity in 35 
unmethylated or methylated states, including an association between pioneer transcription factors 36 
and methylated DNA. Finally, we use mSTARR-seq to predict DNA methylation-gene 37 
expression correlations in primary cells. Our findings provide a map of MD regulatory activity 38 
across the human genome, facilitating interpretation of the many emerging associations between 39 
methylation and trait variation. 40 
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Main text: 43 
DNA methylation—the covalent addition of methyl groups to nucleotide bases, most 44 

often at CpG motifs—is a gene regulatory mechanism that plays a fundamental role in 45 
development, disease susceptibility, and the response to environmental conditions1–6. These 46 
functions suggest that variation in DNA methylation should be important in explaining trait 47 
variation. In support of this idea, epigenome-wide association studies (EWAS) have now 48 
identified thousands of statistical relationships between phenotypic variation and DNA 49 
methylation levels at individual CpG sites across the genome7.  50 

However, not all changes in DNA methylation causally affect gene regulation8,9, making 51 
variation in DNA methylation more functionally important at some loci than others. Mapping 52 
methylation-dependent (MD) regulatory activity across the genome is therefore essential for 53 
interpreting the growing number of DNA methylation-trait associations, as well as understanding 54 
the basic biology of epigenetic gene regulation. Current approaches for assaying MD activity are 55 
either too low-throughput to support genome-scale analyses or have focused on measuring 56 
methylation-dependent transcription factor binding outside the cellular context8,10–17 (Table S1). 57 
These studies suggest widespread differential TF sensitivity to DNA methylation levels15–17, but 58 
leave open whether, and to what degree, differential sensitivity translates to differences in gene 59 
expression itself.  60 

To address these questions, we developed a high-throughput method, mSTARR-seq, that 61 
assays the causal relationship between DNA methylation and regulatory activity within a cellular 62 
context. mSTARR-seq combines genome-scale strategies for quantifying enhancer activity via 63 
self-transcribing episomal reporter assays (e.g., STARR-seq18) with enzymatic manipulation of 64 
DNA methylation at millions of unique CpG sites (Fig. 1). To eliminate the confounding effects 65 
of DNA methylation in the vector itself, we engineered a CpG-free mSTARR-seq-specific vector 66 
(pmSTARRseq) that also eliminates the potential for bacterial Dam- or Dcm-mediated 67 
methylation (Fig. 1A). As in STARR-seq, the pmSTARRseq vector enables a library of query 68 
fragments to be inserted in the 3’ untranslated region of a constitutively expressed reporter gene, 69 
such that fragments with regulatory activity drive their own transcription when transfected into a 70 
cell type of interest18. Prior to transfection, the plasmid input library can be treated with either 71 
the methyltransferase M.SssI, which methylates all CpG sites, or a sham treatment, which leaves 72 
them unmethylated. The regulatory activity of fully methylated fragments can then be compared 73 
to the activity of unmethylated fragments by using high-throughput sequencing to quantify their 74 
relative abundances in reporter gene-derived mRNA (Fig. 1B). 75 

To quantify MD activity across the human genome, we combined MspI-digested genomic 76 
DNA (to enrich for CpG-containing fragments) with randomly sheared DNA from the HapMap 77 
GM12878 cell line (Fig. 1C). We then transfected unmethylated and methylated versions of the 78 
plasmid library (n=6 replicates per condition) into the K562 cell line. Forty-eight hours post-79 
transfection, we isolated and sequenced both the plasmid-derived mRNA and the fragment 80 
inserts from each plasmid DNA pool (Table S2; fig. S1). We also performed bisulfite sequencing 81 
on the plasmid DNA to confirm maintenance of the expected DNA methylation state throughout 82 
the experiment (Fig. 1D). 83 

In total, we assayed ~750,000 unique DNA fragments in each library (mean ± SD = 84 
759,725 ± 252,187 fragments per replicate; one replicate from the methylated condition was 85 
excluded from all analyses due to low sequencing depth), comparable to or exceeding the 86 
diversity in published STARR-seq and massively parallel reporter assays (fig. S2). For 87 
subsequent analysis, we binned the genome into 200 bp non-overlapping intervals and filtered 88 
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these regions to focus on the 277,896 intervals that overlapped at least 1 mRNA read and 1 DNA 89 
read in at least half of the replicates in each condition. These 277,896 intervals were covered by 90 
724,391 unique fragments of size 314 bp ± 105 bp (mean ± S.D.; fig. S3). This stringently 91 
filtered data set represents 1.83 million unique CpG sites, 57% of fragments expected from a 92 
complete MspI digest of the human genome, and 14% of the euchromatic genome of the K562 93 
cell line (fig. S4).  94 
 We first focused on regions with regulatory capacity (i.e., enhancer-like activity), 95 
whether in the unmethylated condition, methylated condition, or both. We identified 24,945 96 
intervals of 200 bp (9% of analyzed regions, at a 10% false discovery rate) in which the 97 
abundance of plasmid-derived mRNA was significantly greater than the amount of input plasmid 98 
DNA (Table S3). As expected, the set of regions capable of enhancer-like activity was highly 99 
enriched for K562 ENCODE chromatin states19 associated with H3K4me1 and H3K27ac, which 100 
mark active enhancers (Fisher’s exact test, log2 odds=2.53, p<10-15) and highly depleted in 101 
regions that lacked both marks (log2 odds=-0.94, p<10-15; Fig. 2A). Regions that overlapped 102 
H3K4me1 and H3K27ac-marked chromatin states also consistently displayed the largest effect 103 
sizes (relative to regions that lacked these marks, or only exhibited one mark; linear model, 104 
p<10-15; Fig. 2B). Finally, regions annotated as strong enhancers in K562 cells exhibited the 105 
strongest effects of all 12 chromatin states (p<10-15), and contained the largest proportion of 106 
elements with significant regulatory activity relative to any other chromatin state (at a 10% FDR, 107 
37% of regions tested had significant activity). In general, power to detect enhancer activity 108 
increased with larger query fragment sizes (Fig. 2C), suggesting that short fragments may 109 
eliminate binding sites key to functional enhancer activity. 110 

We next investigated which regulatory elements were functionally affected by DNA 111 
methylation marks. We identified 2,143 regions with significant MD activity (8.59% of those 112 
tested; 10% FDR), 88% of which were more active when unmethylated and 12% which were 113 
more active when methylated (Fig. 3A; Table S4). Only 4 of the 941 CpG-free regions in the 114 
analysis set (0.4%) were inferred to have MD activity, indicating a low false positive rate (Fig. 115 
3B). Estimates of MD activity from mSTARR-seq were also consistent with estimates from 116 
single-locus luciferase reporter assays13 (Fig. 1E). Overall, we found that MD enhancers have 117 
higher CpG densities and contain more CpG sites than non-MD enhancers (Wilcoxon-signed 118 
rank test, W=3.51x107, p<10-15; Fig. 3C). However, CpG density only explained 6.8% of 119 
variation in the magnitude of methylation dependence, suggesting that other characteristics also 120 
contribute to quantitative variation in MD activity (Spearman’s rho=0.246, p<10-15; Fig. 3D).  121 
 To explore these characteristics, we used a random forests classifier to evaluate the 122 
contribution of 147 genomic features to differentiating MD enhancers (specifically, the n=1866 123 
regions suppressed by methylation) from non-MD enhancers (n=5703 regions that exceed an 124 
FDR of 50% in our test for MD activity). Our feature set included information about CpG site 125 
density; endogenous chromatin state, chromatin accessibility, and DNA methylation levels19,20; 126 
evolutionary conservation21; and TF binding from K562 ENCODE ChIP-seq data19 (Table S5). 127 
The resulting RF model predicted MD regulatory element activity with 82% accuracy (Fig. 3E). 128 
In addition to CpG site information, 25 features were identified as key predictors based on two 129 
measures of variable importance, the mean decrease in accuracy and the Gini coefficient 130 
(FDR<10%; Fig. 3 and Table S5). Relative to non-MD enhancers, enhancers suppressed by 131 
DNA methylation were more likely to occur in regions with endogenous promoter activity and 132 
less likely to occur in endogenously repressed regions of the genome. MD enhancers were also 133 
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more likely to contain binding sites for the TFs ELF1, E2F6, MAX, and MYC, all of which have 134 
CpG sites in their canonical binding motifs (Fig. 3F).  135 
 Previous work indicates that many TFs are sensitive to DNA methylation levels in or near 136 
their binding motifs15–17. This ability to “read” epigenetic modifications to DNA sequence could 137 
explain, at least in part, variation in MD regulatory activity in our data set. Indeed, among the 138 
1866 MD enhancers in which DNA methylation suppresses activity, we identified 24 139 
significantly enriched TF binding motifs (relative to the background set of all regions with 140 
mSTARR-seq regulatory activity; 1% FDR). 15 of these motifs belong to the ETS family, a 6.6x 141 
enrichment over chance (hypergeometric test p=3x10-13; Fig. 4A and Table S6). ETS binding is 142 
thought to be methylation dependent for ‘Class I’ ETS TFs22–27, which bind the canonical motif 143 
ACCGGAAGT, but not for ‘Class III’ ETS family TFs, whose binding motifs do not consistently 144 
include CpG sites28. In support, 12 of the 15 ETS TFs we identified belong to Class I, and none 145 
belong to Class III. The remaining 3 belong to Class II, for which methylation-dependent binding 146 
was previously unexplored: our results suggest they behave more similarly to Class I than Class 147 
III. 148 

We also identified 9 significantly enriched TF binding motifs in the 257 MD enhancers 149 
with increased activity in the methylated condition (1% FDR). TFs from the basic helix-loop-150 
helix (bHLH) family and GATA subfamily of zinc finger TFs were strongly enriched in this set 151 
(a 2.91x and 20x enrichment over chance, hypergeometric test p=0.33 and p=1.99x10-7, 152 
respectively; Fig. 4B and Table S7), consistent with reports that GATA3, GATA4, and bHLH 153 
family TFs bind to methylated DNA outside the cellular context16. We compared our findings to 154 
published chromatin accessibility data for wild type murine stem cells, which contain normal 155 
patterns of DNA methylation, and triple knockouts for DNMT1, DNMT3a, and DNMT3b, in 156 
which DNA methylation is abolished29. For 5 of 10 tested GATA family TFs, open chromatin 157 
regions specific to wild type (i.e., those absent in the triple knockouts) were significantly 158 
enriched for their cognate binding sites (Fig. 4C), in support of the idea that GATA family TFs 159 
preferentially bind methylated DNA in service of their function as “pioneer” factors30. In 160 
contrast, ETS family TF binding sites were almost universally (38 of 41 tested) enriched in 161 
DNMT knockout-specific open chromatin regions. 162 

Finally, for mSTARR-seq results to be maximally useful in interpreting DNA 163 
methylation-trait associations, we reasoned that they should explain the substantial heterogeneity 164 
in DNA methylation-gene expression correlations observed in real populations. To test this 165 
possibility, we drew on paired DNA methylation and gene expression data for 1202 human 166 
primary monocytes31 (a cell type closely related to K562s), in which the mean correlation 167 
between DNA methylation levels and gene expression at the nearest gene is 0.006 +/- 0.189 s.d. 168 
(and -0.023 +/- 0.304 for CpG sites significantly (FDR<10%) correlated with gene expression; 169 
n=81,883 site-gene pairs). Genome-wide, we observed that significant DNA methylation-gene 170 
expression correlations in monocytes (FDR<10%) were moderately enriched in mSTARR-seq 171 
MD enhancers versus non-MD enhancers (Fisher’s exact test, log2 odds=0.60, p=3.38x10-4). 172 
However, for CpG sites that display the canonical negative correlation between DNA 173 
methylation and gene expression levels, this relationship was greatly strengthened (log2 174 
odds=1.02, p<10-15). Thus, mSTARR-seq can identify the CpG sites for which DNA methylation 175 
variation is most tightly linked to gene expression variation in human primary cells.  176 

Together, our findings emphasize substantial variability in the functional relationship 177 
between DNA methylation and gene regulation across the genome. Using mSTARR-seq, we 178 
show that the magnitude of this relationship is both predictable from genome characteristics and 179 
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in turn predicts in vivo heterogeneity in real populations. The resulting map of MD regulatory 180 
activity thus provides useful guidance for prioritizing DNA methylation-trait associations for 181 
further investigation: CpG sites in which DNA methylation levels causally influence gene 182 
expression are more likely to be of interest than those that are effectively silent. In addition, we 183 
provide support for the hypothesis that pioneer TFs, such as members of the GATA TF family, 184 
have a higher affinity for methylated DNA, potentially aiding in their ability to bind condensed 185 
chromatin30. Indeed, in addition to GATA family TFs, TFs important in development and cell 186 
fate, such as FOXA, MyoD, and TCF21, are enriched among MD enhancers with increased 187 
activity when methylated. These results raise the interesting possibility that preferential binding 188 
of methylated loci could be used to aid in pioneer TF discovery. Finally, mSTARR-seq can be 189 
applied as an efficient, high-throughput strategy to map MD activity in a variety of settings, 190 
including at specific loci of interest, across cell types, or across cellular environments. 191 
Epigenome editing approaches will be useful for following up the most interesting loci. 192 
 193 
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FIGURE LEGENDS 209 
 210 
Figure 1. mSTARR-seq experimental design. (A) The pmSTARRseq vector is entirely CpG 211 
free. It is designed so that functional regulatory elements will self-transcribe to produce a fully 212 
processed mRNA transcript, including a transcribed region (dark blue) that spans a synthetic 213 
intron (teal), the sequence of the regulatory element itself (green), and an SV40 polyA signal 214 
(orange). (B) DNA fragments are cloned into pmSTARRseq in high-throughput. The resulting 215 
library is subjected to either experimental methylation (M.SssI treatment) or a sham treatment, 216 
and each pool is transfected into a cell line of interest (here, we used the K562 myeloid cell line; 217 
n=6 replicates per condition). After a 48 hr incubation period, plasmid DNA and plasmid-derived 218 
mRNA are extracted and the variable insert regions sequenced. (C) As input, we used GM12878 219 
DNA fragmented through random shearing or Msp1 digest (to enrich for CpG-containing regions 220 
of the genome). The resulting fragment pools were mixed in a 2:1 ratio. (D) Bisulfite sequencing 221 
of the GM12878 plasmid pool pre- and post-transfection confirms that M.SssI treatment almost 222 
completely methylates CpG sites contained in the candidate regulatory elements. High 223 
methylation levels are maintained throughout the experiment. Y-axis shows mean CpG 224 
methylation level per experimental replicate. (E) Low-throughput validation (CpG-free luciferase 225 
reporter assay12) of three candidate regulatory elements with no (FDR>0.2), weak 226 
(0.05<FDR<0.1), or strong evidence (FDR<0.001) for MD activity in mSTARR-seq (Wilcoxon 227 
p-value, comparison between conditions: 0.069, 1.55x10-4, and 1.55x10-4, respectively). 228 
 229 
Figure 2. mSTARR-seq identifies regions with endogenous regulatory activity. (A) Regions 230 
with significant regulatory activity in the mSTARR-seq assay are enriched for chromatin state 231 
annotations defined by active marks (H3K4me1 and H3K27ac, colored orange). The y-axis 232 
depicts the log2(odds) from a two-sided Fisher’s exact test for enrichment (or depletion) of 233 
mSTARR-seq identified enhancers in each of the 12 annotated chromatin states in K562 cells 234 
(p<0.05 for all tests). Positive y-axis values indicate enrichment and negative values indicate 235 
depletion. (B) Effect sizes for loci with significant enhancer activity (FDR<10%; x-axis) are 236 
consistently larger for mSTARR-seq identified enhancers that occur in chromatin state 237 
annotations defined by active marks. (C) Binning regions with significant mSTARR-seq 238 
enhancer activity by fragment length reveals that larger fragments are more strongly enriched for 239 
ENCODE-annotated ‘strong enhancers’. The y-axis depicts the log2(odds) from a Fisher’s exact 240 
test for enrichment of mSTARR-seq enhancers (binned by deciles of fragment length) in either 241 
of the two ‘strong enhancer’ chromatin states (p<0.05 for all tests). 242 
 243 
Figure 3. mSTARR-seq identification and prediction of MD enhancers. (A) The distribution 244 
of differences in normalized mRNA transcript abundance between the unmethylated and 245 
methylated conditions (all significant MD enhancers are shown). (B) CpG-free MD enhancers 246 
occur at a 20.2-fold lower rate than CpG-free windows with no MD enhancer activity. (C) 247 
Distribution of fragment CpG density for regions identified as MD versus non-MD enhancers. 248 
(D) CpG-dense mSTARR-seq enhancers tend to be repressed by DNA methylation, such that 249 
mRNA abundance is higher in the unmethylated condition relative to the methylated condition 250 
(positive y-axis value). X-axis: CpG sites/fragment window length (Spearman’s rho for 251 
correlation between x and y axes=0.246, p<10-15; n=24,945 regions with significant regulatory 252 
element activity). (E) The proportion of non-MD and MD enhancers that were accurately 253 
classified via a random forests (RF) classifier. (F) Features that distinguish MD and non-MD 254 
enhancers in the RF classifier (10% FDR). X-axis: mean decrease in predictive accuracy when 255 
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excluding the focal variable. Blue: positive prediction of non-MD enhancers; white: positive 256 
prediction of MD enhancers. 257 
 258 
Figure 4. mSTARR-seq identifies MD-dependent transcription factor-DNA binding. (A) 259 
Transcription factor motifs that are enriched in MD enhancers that are more active when 260 
unmethylated, colored by TF family. (B) TF motifs that are enriched in MD enhancers that are 261 
more active when methylated. (C) DNase hypersensitive sites (DHS) specific to murine stem 262 
cells that lack DNA methylation (DNMT triple knock-outs: TKO) are strongly enriched for ETS 263 
family binding sites relative to wild type cells with intact DNA methylation. In contrast, DHSs 264 
specific to wild type cells are enriched for GATA family binding sites relative to triple knock-265 
outs. DHS data are from25. X-axis: percent of knockout-specific DHSs that contain a given TF 266 
binding motif (n=1251 motifs). Y-axis: Ratio of knockout versus wild-type specific DHSs 267 
containing a given TF binding site motif. Colored dots circled in black show significant 268 
enrichment for a ETS or GATA family TF (10% FDR in a hypogeometric test). 269 
 270 
 271 
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