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Summary 

Somatic mutations show variation in density across cancer genomes. Previous studies have 

shown that chromatin organization and replication time domains are correlated with and thus 

predictive of this variation 1,2,3,4,5. Here, we analyse 1,809 whole-genome sequences from nine 

cancer types 6,7,8 to show that a subset of repetitive DNA sequences called non-B motifs that 

predict non-canonical secondary structure formation 9,10,11,12 can independently account for 

variation in mutation density. However, combined with epigenetic factors and replication timing, 

the variance explained can be improved to 43-76%. Intriguingly, ~2-fold mutation enrichment is 

observed directly within non-B motifs, is focused on exposed structural components, and is 

dependent on physical properties that are optimal for secondary structure formation. Therefore, 

there is mounting evidence that secondary structures arising from non-B motifs are not simply 

associated with increased mutation density, they are possibly causally implicated. Our results 

suggest that they are determinants of mutagenesis and increase the likelihood of recurrent 

mutations in the genome 13,6. This analysis calls for caution in the interpretation of recurrent 

mutations and highlights the importance of taking non-B motifs, that can simply be inferred from 

the reference sequence, into consideration in background models of mutability henceforth. 
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Main Text 

The canonical right-handed DNA double-helical structure, known as B-DNA, has been 

recognized since 1953. Although B-DNA is the predominant configuration inside the cell, more 

than 20 non-canonical secondary structures have been reported9. These alternative structures 

include triple-helices, hairpins, cruciforms and slipped structures, and they are more likely to 

form at particular repetitive sequences such as mirror repeats, inverted repeats, direct repeats 

and short tandem repeats 10. Non-canonical secondary structures are associated with increased 

mutability according to in vitro studies of prokaryotic 14,15 and eukaryotic cells 
16,17,18,19,20,21,22,23,24,25,26. Here, we methodically explore the relationship between secondary 

structures and somatic mutability, focusing on seven common types of sequence motifs prone 

to forming non-canonical secondary structures, hereafter referred to as non-B DNA motifs for 

brevity: direct repeats (DR), G-quadruplexes (G4), inverted repeats (IR), mirror repeats (MR), H-

DNA, short tandem repeats (STR) and Z-DNA (Fig. 1a-f, definitions of each of these can be 

found in Methods). 

 
We systematically explored each of the seven non-B DNA motifs in the human reference 

sequence (Methods)11. Most motifs are <50 bps (Fig. 1g), and each category encompasses 

0.07% to 4% of the human genome (Fig. 1h) which may seem small fractionally, but absolute 

numbers of motifs are substantial (range 69,154-6,006,266). Non-B motifs show non-uniform 

distributions across the genome reflected by their variable enrichments at different chromatin-

associated regions (Fig. 1i): G4 and Z-DNA are strongly enriched at GC-rich promoter regions; 

DR, H-DNA and MR are modestly enriched in low complexity repetitive sequences (e.g. 

heterochromatin); and IR and STR are more uniformly distributed between gene-rich through to 

gene-poor regions. Although some motifs are correlated with each other, there is limited overlap 

between distinct types of non-B motifs (Fig. S1 a-b).   

 

Genomic features such as histone epigenetic marks and replication time domains have been 

shown to be predictive of the variation in distribution of somatic mutations 1,2. We thus explored 

whether non-B motifs also had an impact on somatic mutagenesis. We used mutation 
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catalogues derived from 560 whole-genome sequenced (WGS) breast cancers6. The genome 

was binned, and mutations, non-B motifs, histone modifications and replication time domains 

were counted for each bin (methods, Fig. S2, Fig. S3). Consistent with previous reports 1,2,27,3,4, 

we find that genomic features linked to epigenetic modifications such as heterochromatin 

(H3K9me3, r=0.31) and late replicating domains (r=0.59) are associated with increased 

mutational density while open chromatin (DNASE r= -0.31), active cis-regulatory elements 

(H3K27ac, r= -0.52) and transcribed regions (H3K36me3, r= -0.57) are negatively associated 

with mutational density (Fig. 2a, Fig. S4). Surprisingly, crude correlations for selected non-B 

DNA motifs, particularly IR (r=0.28), STR (r= -0.33), G4 (r= -0.38), MR (r= 0.20) and Z-DNA (r= -

0.19) (Fig. 2a, Fig. S4) are seen. Partial correlation analysis reveals the association between 

somatic mutations and non-B motifs remains even after controlling for epigenetic marks and 

replication timing (Fig. S5), raising the possibility that non-B motifs are independent factors that 

could contribute to mutability 28,29,23,30.  

  

To explore this in more depth we assessed the predictability of mutation density given the 

number of non-B motifs (as well as epigenetic features and replication time domains) by 

constructing models using linear regression and random forest regression (Fig. 2b, Fig. S6). 

First, our analysis recapitulates previous studies showing that random forest regression is more 

accurate than linear regression for base substitutions and also identifies H3K9me3 and 

replication timing as the most informative features for predicting mutability 1,2 (Fig. 2c, Fig. S7). 

Second, we find that IRs and G4s are relatively strong predictors of mutability although other 

non-B motifs including MR, H-DNA, STR and Z-DNA contribute predictive power (Fig. 2d, Fig. 

S7). Third, although non-B motifs alone can explain 37% of observed variance in mutation 

density for base substitutions in breast cancer, regression models incorporating both epigenetic, 

replication time and non-B motifs substantially improve the variance explained to 52%, 

performing better than either model separately (Fig. 2b). The enhanced model predictions 

featuring combined data is unsurprising in light of a principal component analysis biplot: Non-B 

motifs and epigenetic features are separated by the second component (Fig. 2e) suggesting 

that they contribute towards predicted mutability in different ways, reinforcing the partial 
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correlation analyses described earlier. Since non-B motifs can be computed from the reference 

genome alone, our results suggest a straightforward and cost-effective way of improving 

mutability predictions. 

  
To validate our predictive model, we employed it across WGS cancer datasets from eight other 

tissue types including liver, ovarian, esophageal, gastric, pancreatic, renal cell carcinoma and 

pediatric brain cancers and malignant lymphoma 31,32,33,7,8. The predictive accuracy of the 

regression model varied by cancer type, with between 43-76% of the variance explained (Fig. 

2b-d, Fig. S6-S7). Consistently across all tumour types, non-B motifs made a smaller 

independent contribution towards predicting mutability, but in combination with epigenetic 

factors/replication timing, improved predictive ability overall. Regression analyses were 

performed for other mutation classes - indels and rearrangements - and predictive ability of the 

model similarly improved when the factors were combined (Fig. S8). The model performed 

better for indels than for rearrangements, although the number of rearrangements is much lower 

than substitutions and indels (by orders of magnitude), hence we cannot exclude the possibility 

that model performance is limited by sample size. Our findings bring together and reinforce 

previous observations of indel enrichment at disparate non-B motifs in experimental systems 

(e.g. IRs 34,35,36,37; DRs 38,39; and G4s 40,35,41. 

 

We thus conclude that primary sequence features, as represented by non-B DNA motifs, are 

collectively informative for predicting local mutability across many tissue types, predominantly of 

substitutions and indels. Is it the physical presence of a non-canonical secondary structure that 

mechanistically drives the increased likelihood of mutagenesis? The evidence in favour of this 

possibility is described below.  

 

First, we find that somatic mutations are not simply increased in the vicinity of non-B motifs, they 

are elevated within non-B motifs themselves (Fig. 3a-b). H-DNA, STR and Z-DNA motifs were 

most enriched for substitutions 1.7-fold, 1.6-fold and 1.7-fold respectively, while other motifs 

showed more modest enrichment: G4 (1.2-fold), IR (1.1-fold), DR (1.1-fold) and MR (1.1-fold) 
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when compared to their immediate surrounding sequence (i.e. corrects for genomic GC 

variation). There is more striking enrichment of indels in general: Z-DNA (10.7-fold), H-DNA (6-

fold), STR (5.8-fold), MR (2.5-fold), DR (2.3-fold) and G4 (1.5-fold), a finding that is not 

surprising given that most indels in human cancer occur at repeat tracts which are present at a 

higher frequency particularly at Z-DNA, H-DNA and STRs. For rearrangements, enrichment was 

observed within IRs in breast cancer (1.2-fold) (Fig. 3a) reinforcing observations in yeast and 

mammalian in vitro studies17. Enrichment of mutagenesis within non-B motifs is remarkably 

consistent across all tumor types for some motifs (e.g. Z-DNA, STR, G4, H-DNA) (Fig. S9). 

Essentially, we find that there is an excess of mutability not just associated with non-B motifs, 

but directly within them (Fig. 3a, Fig. S9). 

 
Second, we find that the elevated mutation densities in non-B motifs show domain-specificity. 

Selected non-B motifs have identifiable subcomponents - DR, IR and MR consist of two 

symmetric “arms” flanking a stretch of “spacer” sequence (Fig. 1d-f). The arms can hybridize 

forming a transiently stable structure leaving the spacer sequence exposed to damage to 

potentially be more mutable (Fig. 1d-f). We find that spacer sequences are more enriched for 

substitutions than arm sequences (1.8-fold for DR, 2-fold for MR and 1.7-fold for IR) (Fig. 3c, 

Fig. S10, Fig. S11). This is in-keeping with previous experimental reports demonstrating how 

the loop domain formed by the spacer sequence tended to mutate more frequently in hairpin 

structures 42,43. It also reinforces a report that specifically explores a more conservative subset 

of IRs (with specific spacer and arm lengths), which suggests that mutability is an intrinsic 

property of these IRs, because nearly all mutational processes are elevated in IRs regardless of 

mutational process active in each tumor (Xueqing Zou et al., manuscript in submission).  

 

Third, non-B motifs do not have a uniform thermodynamic capacity to form secondary 

structures. Experimental and biophysical simulation studies suggest that hairpin formation (for 

example) is optimal at certain spacer and arm lengths 44,45,46. If the physical formation of a 

secondary structure influenced mutability, then we would expect to observe elevated 

mutabilities particularly for spacer and arm lengths that are most favorable for hairpin/cruciform 
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formation 47,48. Intriguingly, we find that spacer-to-arm mutation enrichment is indeed variable for 

different spacer sizes and various arm lengths (Fig. 3d, Fig. S10, Fig. S11). Heatmaps of 

mutation enrichment demonstrate that for IRs, which form hairpin and cruciform structures, 

mutability is greatest for spacer sequences of 1-3nt and arm lengths of 10-14nts (Fig. 3d) in-

keeping with previous reports highlighting physical specifications of in vitro IR mutability 47,48. 

Also, DRs with short spacers and longer arms are more mutable (S10-S11) consistent with 

them being more likely to induce slipped structure misalignment49. By contrast, MRs exhibit 

more modest enrichment for particular spacer or arm lengths (Fig. S12). However, a small 

subset of MRs are H-DNAs that have high AG content (>90%) and are more likely to form triple-

helical structures held together by Hoogsteen bonds (Fig. 1f). H-DNAs are believed to be more 

mutable than MRs16 and we do observe an excess of mutability in H-DNA in our analysis (Fig. 

3a). These observations across IRs, DRs and MRs are recapitulated in other tumor types (Fig. 

S13).  

 

Fourth, our findings are reinforced by assessing non-canonical secondary structures with very 

different physical properties. Primary sequence comprising G-runs and interspersed loop 

elements can form a complex G4 structure (Fig. 1c). Experiments in yeast systems have shown 

that smaller loop elements confer greater thermodynamic stability to G4 formation where the 

exposed loops are prone to mutation (Fig. 1c) 50,51,52. Indeed, our analysis supports these 

experiments showing that loops have a ~1.15-1.8 fold enrichment in mutagenesis over G-runs 

(Fig. 3e) and the subset of G-quadruplexes with average loop size of up to 3nt is more mutable 

than their counterparts with larger loop elements (Fig. 3f).  

 

In conclusion, the relationship between somatic mutation and non-B motifs is not simply an 

association - we find incriminating evidence to suggest that it is the physical formation of 

secondary structures that predispose to damage and mutagenesis: Not only are non-B motifs 

enriched for mutation (Fig. 3a), the enrichment is domain-specific for selected non-B motifs (Fig. 

3g), and biophysical characteristics that predispose to stable secondary structure formation 

(such as loop size and stem length) appear to be associated with increased mutability (Fig. 3h). 
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Non-canonical configurations are therefore primary determinants of mutagenesis - potentially 

raising the prior probability of mutability to considerable levels in a highly localised way, at 

specific locations. This has significant consequences for the biological interpretation of recurrent 

mutations.    

  
A central tenet in cancer biology is the identification of driver mutations - those causally 

implicated mutations that are believed to drive tumorigenesis. Most drivers are found in protein 

coding sequences, although recent WGS studies permit the exploration of non-coding 

sequences13,6,53,54. Due to the difficulties of interpreting non-protein coding sequences, a useful 

criterion for identifying putative non-coding driver mutations is to focus on recurrently mutated 

loci13,6. We have demonstrated that non B-DNA motifs confer a marked propensity for increased 

mutability at local levels. Thus, we hypothesize that these motifs could be overrepresented 

amongst recurrently mutated loci. Indeed, one example of a statistically significant recurrently 

mutated locus is the promoter of the PLEKHS1 gene that has been shown to be an inverted 

repeat13,6. For the cancer-types in our study, we first find that there are more recurrent 

substitutions than expected based on a truncated Poisson null model (Fig. 4a). Second, non-B 

DNA motifs are indeed overrepresented (five-fold) amongst recurrent substitutions (same site 

mutated two or more times) than non-recurrent ones (Fig. 4b-c, Fig. S14). Enrichment is 

variable from one motif to another, with short tandem repeats having 20-fold enrichment. Our 

finding that non-B DNA motifs are enriched for mutations, and in particular recurrent mutations, 

due to the formation of secondary structures (Fig. 4d) has important implications - effectively 

obfuscating the interpretation of recurrently mutated loci. Consequently, the cautionary note is 

this: statistical models of background mutability should consider the contribution to localised 

mutability provided by non-B DNA motifs in all future analyses. 
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Figure 1: Non-canonical secondary structures arising from non-B DNA motifs in the 
human genome (a) Normal configuration of human DNA. (b) Left-handed helical structure 
caused by Z-DNA (c-f) Schematic representations of the primary sequence of various non-B 
motifs and their corresponding predicted secondary structures. (g) Distribution of lengths of non-
B-DNA motifs. (h) Fraction of the human reference genome (hg19) covered by different non-B-
DNA motifs. (i) Enrichment of occurrences of non-B DNA motifs associated with various 
chromatin states (Methods for calculation).  
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Figure 2: Non-B-DNA motifs predict somatic mutability in human cancers (a) Correlations 
between the number of non-B-DNA motifs, and epigenetic features and replication timing, with 
the number of substitutions (Spearman rank). Please note interpretation is directional e.g. A 
positive correlation with replication time would indicate increased mutability with early replication 
time domains, while a negative correlation denotes increased mutability in late replication time 
domains.  (b) Fraction of variance explained for predicting the number of mutations in 500 kb 
bins with random forest regression using non B-DNA motifs and epigenetic features/replication 
timing as predictors for multiple tumor types (BRCA = breast cancer, LIRI=liver cancer, OVCA = 
ovarian cancer, ESAD = esophageal adenocarcinoma, GACA = gastric cancer, PBCA =  
pedriatic brain cancer, PACA = pancreatic cancer, RECA = renal cell carcinoma, MALY= 
malignant lymphoma). Error bars represent standard error from 10-fold cross-validation.  (c, d) 
Importance of the different predictors for the random forest regression. The y-axis shows the 
increase in mean square error (MSE) when the variable is excluded. Bars with * have an 
FDR<.05 and ** have FDR<.01 as determined by a permutation test. (e) PCA Analysis. The first 
two principal components separate mutations (green), non-B DNA motifs (blue) and epigenetics 
and replication timing domains (red). 
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Figure 3: Non-B DNA motifs are mechanistically linked to mutability through formation of 
secondary structures. (a) Enrichment of mutagenesis for non-B motifs within their genomic 
bins, thus correcting for genomic GC variation.  Error bars represent the standard error.  (b) 
Depiction of enrichment per genomic bin, for results in (a), demonstrating how mutations are 
enriched for non-B motifs. Red and blue boxes represent non-B motifs. (c) Mutational density in 
spacers compared to arms for direct repeats, inverted repeats and mirror repeats across 10 
tumour types. Error bars representing standard error are too small to visualise. Wilcoxon 
signed-rank test was performed (p-value <0.001 across all tumours for IR, MR, DR) (d) 
Heatmap of mutational density as a function of spacers and arms for breast cancer. (e) 
Enrichment of mutation density in loops: G-runs across ten cancer types. Error bars represent 
standard deviation from bootstrapping with replacement (n=10,000). (f) Enrichment of mutation 
density at G-quadruplexes for small loop sizes (less and equal to 3nt) relative to large loop sizes 
(more than 3nt) across ten cancer types. Error bars represent standard deviation from 
bootstrapping with replacement (n=10,000). Mann-Whitney U test was performed for each 
cancer type (p-value < 0.001 across all tumour types), (g) Depiction of two very different 
secondary structures that both have loop domains which are more mutable than their other 
components (h) Some non-B motifs have characteristics such as arm or spacer lengths that 
increase the likelihood of stable hairpin formation. There perhaps can occur stably more 
frequently and thus, their exposed regions are more likely to be damaged and mutated.  
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 A. 

 
B.        C. 

 
        
Figure 4: Non-B motifs contribute to locally elevated mutation rates resulting in recurrent 
mutations the human genome. (a) Distribution of the number of recurrent events for 3,476,890 
somatic mutations from 560 breast cancers6.The values do not fit a truncated Poisson 
distribution (Chi2-test, p<1e-16) as there are more recurrent mutations than predicted by the 
null model. (b) Enrichment of non-recurrent mutations overlapping non-B-DNA motifs for indels 
(I) and substitutions (S). (c) Enrichment of recurrent mutations overlapping non-B DNA motifs 
for indels (I) and substitutions (S). Mann-Whitney U test for substitutions: p-value <0.001 for all 
non-B DNA motifs. Mann-Whitney U test for indels: p-value < 0.001 for STR, H-DNA, Z-DNA, 
MR and p-value <0.05 for DR and G4. 
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Materials and Methods 

 
 
1. Somatic variants from cancer data 

 

Data were obtained from whole genome sequenced cancers for breast cancer (n=560) from 6 

and from 9 cancer types publicly available in ICGC8. The ICGC project codes for the cancer 

types were: PACA-CA (n=148)55 and PACA-AU (n=94) for pancreatic cancer32, OV-AU (n=72) 

for ovarian cancer31, LIRI-JP (n=264) for liver cancer56, PRAD-CA (n=120) for prostate cancer33, 

ESAD-UK (n=98) for esophageal adenocarcinoma7, GACA-CN (n=40) for gastric cancer7, 

RECA-EU (n=74) for renal cell cancer8, PBCA-DE (n=239) for pediatric brain cancer8 and 

MALY-DE (n=100) for malignant lymphoma8. In total, 1809 whole genome sequenced cancers 

were analysed. Sequencing coverage exceeded 25X for all tumours and matched normal 

samples.  

 
Short insert paired-end reads were aligned to the reference human genome (GRCh37) using 

Burrows-Wheeler Aligner, BWA (v0.5.9). 

 

High quality curated somatic variant calls (substitutions, insertions/deletions and structural 

variations) were derived from the Wellcome Trust Sanger Institute’s Cancer Genome Project 

whole genome sequencing pipeline as previously described6. This is constituted by a bespoke, 

Expectation-Maximisation- based substitution-calling algorithm (CaVEMan)57,58, a modified 

version of an insertion/deletion detection algorithm, Pindel59 and a bespoke structural variant 

algorithm which uses de Bruijn graphing for discovery of somatic rearrangements and local 

reassembly for mapping breakpoints to base pair level. 

 

A subset of all somatic variants for breast cancer samples had been previously validated using 

alternative sequencing platforms to ensure high specificity of data6. In short, 70 samples were 

used for validation across a mix of histopathological subtypes and were sourced from different 

collaborating centres. 
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● On average 3% (range 0.6-20%) of the total burden of substitutions per sample were 

used for validation (total 11,581 mutations). The positive predictive value was ~95.5% (average) 

for substitutions. 

● On average of 40% (range 8%-68%) of the total number of indels were validated per 

sample (total 7,192). The positive predictive value was 85% for indels. 

● Rearrangements were discovered using Brass I and an additional in silico method was 

used (de novo breakpoint assembly) to validate the finding. Only breakpoints that were de novo 

assembled with high confidence (80% and above only) were included in order to reduce the 

likelihood of false positive calls. PCR-based Sanger sequencing validation confirmed the 

presence of 803 randomly sampled breakpoints from this conservative dataset. 

 
Table1: Number of substitutions, indels and rearrangement breakpoints per tumour type. 

Cancer Name  Samples Substitutions Indels Rearrangement 
breakpoints 

BRCA  560 3,479,651 371,993 131,068 

LIRI  264 3,575,056 852,361 51,034 

OVCA 72 732,189 141,296 39,078 

ESAD  98 2,890,654 347,680 48,394 

GACA  40 525,850 185,213 12,268 

PBCA  239 299,241 231,874 13,120 

PACA  242 1,881,336 625,803 48,404 

RECA  74 584,144 123,180 1,972 

MALY  100 1,242,356 203,051 10,752 

PRAD 120 602,729 799,583 24,104 

 
Furthermore, these datasets have all been published and therefore been through peer-review 
previously.  
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2. Reference non-B DNA annotations 

 
Non-B DNA sequence motif annotations were derived from11. We have focused on the following 

categories in this analysis: Mirror repeats, H-DNA, short tandem repeats, Z-DNA, inverted 

repeats, direct repeats and G-quadruplexes. 

 
● A mirror repeat is a section of sequence that is repeated with a center of symmetry on 

the same strand, length of at least 20nt and arm size of at least 10nt. A subset of mirror repeats 

are termed Hinged DNA (H-DNA), because they are predisposed to forming a triple helical 

structure connected through alternative chemical bonds called Hoogsteen bonds. H-DNA have 

a high (>90%) AG content, arm lengths of >=10nt and spacer size of less than 8nt. 

● Z-DNA is a left-handed double helical structure that is formed by alternating purine-

pyrimidine tracts of at least 12nt (excluding AT repeats). 

● Direct repeats are defined as repeated sequences with arm length of >=10nt, with 

maximum size 300nt. 

● Short tandem repeats are defined as motifs of 1-9nt, repeated at least 3 times with a 

minimum length of 9nt and without any interruptions. Short tandem repeats are prone to 

misalignment and formation of looped or slipped structures. 

●      Inverted repeats are palindromic sequences with minimum arm length of 6nt, spacer size 

up to 100nt and have a tendency to form hairpin or cruciform structures. 

●      G-quadruplexes are defined as 4 or more runs of at least 3 guanines, separated by 

spacers of 1-7nt of other nucleotides. For G-quadruplex motifs we referred to G-runs as the 

guanine runs that can form Hoogsteen bonds and the loops as the spacer between the G-runs.  

 
Bedtools utilities v2.21.0 were used to manipulate genomic files and intervals. 

 
To count the number of nucleotides shared between different non-B DNA motifs bedtools 

intersect and coverage functions were used. Bedtools jaccard was used to calculate the Jaccard 

index for each pair of motifs (Fig. S1b). 
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3. Epigenomic Data 

  
DNase and histone modification narrowpeak files were downloaded from Roadmap 

Epigenomics Mapping Consortium data coordination center ( 

http://www.roadmapepigenomics.org/data/ ) and BAM files were derived from ENCODE Project 

repository ( http://genome.ucsc.edu/ENCODE/downloads.html). HMEC cell line epigenetic 

narrowpeak data were used to model breast cancer, whereas PANC1, HepG2 and GM12878 

cell line narrowpeak epigenomic data were used to model pancreatic cancer, liver cancer and 

malignant lymphoma. Ovary, esophagus, fetal female brain, stomach mucosa, fetal kidney 

primary tissue narrowpeak epigenomic data were used to model ovarian cancer, esophageal 

carcinoma, pediatric brain cancer, gastric cancer and renal cell cancer respectively. BAM files 

for the same epigenetic modifications were derived from ENCODE consortium to validate the 

findings derived from narrowpeak files, for MCF-7 cell line which is used to model breast cancer.  

 

4. Chromatin States 

Chromatin states represent partitions of the genome derived using epigenetic data.  Here they 

were defined with Segway as described in 60,61.  

 

The background or “expected” density of each non-B DNA motif (DN-background) was 

calculated as the total number of occurrences of the motif (TO) over all mappable nucleotides 

across the Segway states (TN). The density of each non-B DNA motif at a particular state (DN-

specific) was calculated as the fraction of the number of occurrences of the non-B DNA motif at 

that state (SO) over the number of mappable nucleotides covered in that state (SN). The 

enrichment of a non-B DNA motif at a given state was the fraction of the density at the state 

over the background density of the motif. 

 

Background density of a non-B DNA motif: DN-background: TO /TN 

Density of a non-B DNA motif at the state = DN-specific: SO /SN 

Enrichment:  DN-specific / DN-background 
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The mean enrichment across 6 human cell lines (GM12878, H1-Hesc, HepG2, HUVEC, K562, 

HelaS3) was calculated. Hierarchical clustering of chromatin states and plotting was performed 

with the python package “Seaborn” using default parameters (Fig. 1i). 

  
 
5. Repli-Seq Data 

Reference coordinates for replication landmarks were inferred from Repli-Seq data of 14 cell-

lines, which were NHEK, IMR90, HUVEC, HeLa-S3, GM12813, GM12812, GM12801, 

GM06990, BJ, BG02ES, MCF-7, GM12878, HepG2 and K562. Repli-Seq data were obtained 

from the ENCODE project (https://www.encodeproject.org/) and processed as described 

in4. Replication timing was measured at each genomic interval using bedtools map utility 

function. Repli-Seq data for MCF-7 were used for breast cancer, HepG2 Repli-seq data were 

used for liver cancer, GM12878 for malignant lymphoma and MCF-7 for all other cancer types. 

A positive correlation between mutations and replication time indicates positive correlation for 

early replication time domains and mutations, while a negative correlation denotes a positive 

correlation for late replication time domains (Fig. 2a, Fig. S4). Pearson correlation between any 

two cell lines with Repli-Seq data exceeded 0.69 in all cases, using 500kB genomic windows 

(Fig. S2).  

 
 
6. Modelling the relationship between mutations and genomic features (epigenetics, 

replication time domains and non-B DNA motifs) 

  
The human genome (hg19) was partitioned in equal-sized regions of 500kB segments. 

Centromeric sites, simple repeats and regions of excessive sequencing depth (UCSC Top 0.01 

Hi Seq Depth) were downloaded from the UCSC genome browser and used to identify bins with 

low mappability. Bedtools coverage was used to calculate the coverage of centromeric sites and 

low complexity sequences at each genomic interval. We excluded the first and last bin from 

each chromosome as well as any bin where <50% of the bases were mappable or where 

replication time data is missing, and the sex chromosomes. This resulted in 5,581 non-

overlapping bins. All quantities except for the replication times were transformed as x’ = log2(1 + 

x) for the downstream analysis. 
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To map reads from histone modification BAM files from ENCODE consortium at each genomic 

interval, bedtools multicov utility function was used. In case of multiple replicates per file, the 

mean number of reads per segment was calculated across replicates. 

 
To calculate the number of non-B DNA motifs, mutations, genomic features and narrowpeak 

files from Roadmap epigenetic consortium at each genomic segment, bedtools intersect utility 

was used (bedtools intersect -a segments.file -b mutation.file  with flags -u, -v, -c). 

 
Bedtools nuc algorithm was used to calculate the GC content at each interval as well as the 

number of As, Gs, Cs, Ts and Ns at each interval for the hg19 reference genome. 

 

Partial correlation is a measure of association between two variables, controlling for the effect of 

covariates. Partial correlations were applied to measure the relationship between mutations and 

non-B DNA motifs, controlling for the effect of epigenetic markers and replication timing. Partial 

correlations were calculated in R with the package ‘ppcor’. Results are noted in Fig. S3. 

 
7. Linear and random forest regression 

  
To model the relationship between the number of mutations and a plethora of explanatory 

variables we applied two predictive models; linear regression and random forest regression. In 

the former, additive relationships are modeled using linear predictor functions, whereas a 

random forest model is an ensemble learning model in which multiple regression trees are 

constructed and evaluated. In both models, the relative importance of each predictor variable 

can be measured. The two models were applied independently to each cancer type. Prostate 

cancer, for which epigenetic data from a relevant cell of origin were not available, was excluded. 

 

Both models were evaluated using 10-fold cross-validation, whereby the model was trained 

using 90% of the data and tested using the held out 10%. The same bins and transformations 

that were used for the correlation calculations were used for the regression. For the linear model 

we used the command “lm” in R and for the random forest regression, we used the R-package 
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“randomForest” with default parameters. For the random forest regression model feature 

importance was measured using the predictive measure of the original and the permuted 

dataset. In particular, the variable importance for Fig. 2 panels c and d was evaluated using the 

R-package “pRF”, which uses a permutation test. The parameters for the pRF function were 

“n.perms = 200” and “mtry = 4”. The biplot in Fig. 2e represents the first two loadings obtained 

using the princomp command in R. 

 

 
 8. Enrichment of mutagenesis within non-B DNA motifs 
  
For each bin of size B and non B-DNA motif, we calculated the number of bps covered, b, as 

well as the number of mutations that overlapped the motif type, m, and the number of mutations 

not overlapping the motif, n. The fraction of mutations overlapping non B-DNA motifs is m/b, and 

the fraction of mutations not overlapping motifs is n/(B-b). The enrichment of mutations 

overlapping non B-DNA motifs is given by r = m(B-b)/nb. When calculating r we exclude the bins 

where b = 0. When calculating ratios in Fig. 3a, Fig. S9, the expected values and the variances 

are adjusted to account for correlations as: 

 

E[X/Y] = E[X]/E[Y] - Cov[X, Y]/E[Y]2 + Var[Y]E[X]/E[Y]3 

  
and 

 
Var[X/Y] = (E[X]/E[Y])(Var[X]/E[X]2 - 2Cov[X,Y]/E[X]E[Y] + Var[Y]/E[Y]2). 

 
For panels in Fig. S10, Fig. S11 this correction was not applied since it results in negative 

values for some of the spacer or arm lengths. For all cases, the correlation between the 

mutation densities of spacer and arms is positively correlated and for all but a handful, the 

adjusted ratios are an order of magnitude higher than the unadjusted, suggesting that the latter 

is an underestimate. 

 
When discussing mirror repeats, direct repeats and inverted repeats “spacer” is used to denote 

the part of the motif that is not repeated, whereas “arm” is used to denote the repeating parts 

(Fig. 1d-f). The number of mutations overlapping spacers and arms was recorded separately. 
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For each direct repeat, inverted repeat and mirror repeat motif we calculated the length of the 

spacer and the arms. The mutation density was calculated as the number of mutations 

overlapping each motif part divided by the length of the spacer or arm respectively, averaged 

across all instances of the motif-type. Figure 3c is a summary figure across the ten tumour types 

of Fig. S10 and Fig. S11, measuring the average mutational density in the spacer and arm for 

spacer sizes 1-10nt. 

 

We measured the mutational density in each sub-component of the G-quadruplex motif (G-run 

and loop) and calculated the enrichment as the fraction of the mutational densities of the two 

sub-components. Furthermore, we separated G-quadruplexes into two groups based on the 

average size of the loops (less or equal than 3nt or longer than 3nt) and compared the 

mutational density of each group. In all cases, error bars displayed standard deviation 

measured using bootstrapping with replacement (n=10,000), with a custom python script. 

 

9.  Analysis of recurrent mutations 

  
The number of somatic mutations, indels and rearrangements at the each genomic site was 

calculated per cancer type across patients using a python script, which is available upon 

request. The overlap between recurrently mutated sites for each mutation type and each non-B 

DNA motif was subsequently calculated using bedtools intersect utility. A truncated poisson 

model was applied as the null model. 

 
The truncated Poisson model was estimated using the “mle” function from the “stats4” R-

package. Mann-Whitney test for recurrent and non-recurrent indels and substitutions 

overlapping each non-B DNA motif was calculated to measure significance. 
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