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Abstract

We characterize different tumour types in the search for multi-tumour drug targets, in 

particular aiming for drug repurposing or novel drug combinations. Starting from 11 

tumour types from The Cancer Genome Atlas, we obtain three clusters based on 

transcriptomic correlation profiles. A network-based analysis, integrating gene 

expression profiles and protein interactions of cancer-related genes, allowed us to 

define three cluster-specific signatures, with genes belonging to NF-κB signaling, 

chromosomal instability, ubiquitin-proteasome system, DNA metabolism, and apoptosis 

biological processes. These signatures have been characterized by different 

approaches based on mutational, pharmacological and clinical evidences, 

demonstrating the validity of our selection. Moreover, we defined new pharmacological 

strategies validated by in vitro experiments that showed inhibition of cell growth in two 

tumour cell lines, with significant synergistic effect. Our study thus provides a list of 

genes and pathways with the potential to be used, singularly or in combination, for the 

design of novel treatment strategies.
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High-throughput molecular profiling has changed the approach to study cancer. For 

decades, anatomical localization and histological features have guided the identification 

of cancer subtypes, but the genomic profiling of tumour samples has revealed 

differences and similarities that go beyond the histopathological classification. The 

diversity in genomic alteration patterns often stratifies tumours from the same organ or 

tissue, while tumours in different tissues may present similar patterns1–3. For example, 

mutational profiling of transcription factors/regulators show tissue specificity, while 

histone modifiers can be mutated similarly across several cancer types4. Hoadley et. al.2

suggests that lung squamous, head and neck, and a subset of bladder cancers form a 

unique cancer category typified by specific alterations, while copy number, protein 

expression, somatic mutations and activated pathways divide bladder cancer into 

different subtypes. The analysis of cancer transcriptomes revealed that the same 

tumour may originate from several cell types, and different biological processes may 

lead to malignant transformation4. Moreover, similar pathways may be activated in 

different cancers, like ovarian, endometrial and basal-like breast carcinomas6,7.

Notwithstanding the enormous increase of knowledge on tumour processes, 

actually, a practical application of this knowledge to new treatment strategies has not 

advanced with the same pace. For example, common genetic alterations can predict 

similar responses to pharmacological therapies across multiple cancer cell lines8–10, thus

such common molecular and functional profiles could enable the repurposing of 

therapies from one cancer to another.
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The huge amount of heterogeneous types of data for a large number of tumours 

requires novel approaches capable to integrate such information into a unified 

framework: for this aim, we propose a study of gene networks based on expression 

profiling and mutational data, in combination with cancer-specific functional annotation. 

Starting from whole-genome transcriptional profiling extracted from The Cancer 

Genome Atlas (TCGA) data portal (https://gdc-portal.nci.nih.gov/), we selected a 

curated subset of cancer-related genes and pathways described in the Ontocancro 

database (http://ontocancro.inf.ufsm.br/), and mapped these data onto the BioPlex 

protein-protein interaction network11. A structural analysis of the obtained networks, 

based on node centrality, allowed us to rank their relevance and to obtain specific 

signatures, that may provide multi-tumour drug targets, prognostic markers, and a 

molecular taxonomy for effective cancer categorization.

The validation of our signatures through literature interrogation, clinical 

information and by in vitro testing, makes us confident that this study can help both 

clinical and research communities, providing novel targets for multi-drug approaches 

and for repurposing of existing drugs.

Results
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We analyzed transcriptomic data of 2378 samples from 11 tumour types (Table 1) 

considering 760 cancer-related genes with protein-protein interaction annotation 

(Bioplex-Ontocancro network, see Methods). The tumour datasets were clustered in 

three groups based on their gene-gene correlation matrices (see Methods) containing , 

respectively, 2, 6 and 3 cancer types: 1) Colon adenocarcinoma (COAD) and Rectum 

Adenocarcinoma (READ); 2) Lung Adenocarcinoma (LUAD), Lung Squamous Cell 

Carcinoma (LUSC), Glioblastoma Multiforme (GBM), Ovarian Serous 

Cystadenocarcinoma (OV), Breast Invasive Carcinoma (BRCA), and Uterine Corpus 

Endometrial Carcinoma (UCEC); and 3) Brain Lower Grade Glioma (LGG), Kidney 

Renal Clear Cell Carcinoma (KIRC), and Kidney Renal Papillary Cell Carcinoma (KIRP) 

(Figure 1). By superimposing the correlation matrices (specific to each cluster) onto the 

BioPlex-Ontocancro network (common to all tumours), we obtained three weighted 

networks with approximately 80% of the original nodes and 60% of the original edges 

(Table 2, see Supplementary Figures 1-4). 
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We hypothesized that the most central genes in each network should play a 

fundamental role in the tumours represented in the cluster. To find the most central 

genes we measured the Spectral Centrality (SC)12, related to the changes in network 

global diffusivity by node perturbation through a Laplacian formalism, and considered 

the nodes with SC above the 90th percentile (25, 27 and 24 genes for clusters 1, 2, 3 

respectively, Table 3). We remark that the chosen signatures have only a small overlap 

with the most central nodes on the original “full” Bioplex-Ontocancro network not filtered

by the cluster-specific correlation matrices (3/25, 13/27 and 4/24 common genes for 

clusters 1, 2, 3, respectively) showing how the information on gene expression profile is 

highly specific for the considered tumour clusters. The top-ranking nodes also differ 

significantly from those obtained from other centrality measures such as degree and 

betweenness centrality (see Supplementary table 5). Moreover, even if some signature 

genes overlap between clusters, their links are different (Figures 2, 3, 4, and 

Supplementary Figure 5) evidencing a specific interaction pattern.
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We  observed  that  all  signatures  contain  genes  related  to  three  biological

categories: NF-κB signaling pathway, chromosomal instability and ubiquitin-proteasome

system (Table 4).  The chromosomal instability category relates to genes involved in

kinetochore formation, microtubule dynamics and chromosome segregation functions.

All signatures have at least one substrate recognition component of E3 ubiquitin ligase

complexes:  BTRC in clusters 1 and 2; and FBXW11 in cluster 3. Cluster 1 has genes

involved in spindle checkpoint (BUB1, CDC20). The cluster 2 signature has many genes

related to DNA repair (CETN2,  FANCB,  H2AFX,  ERCC1,  ERCC4,  PARP1,  XPA) and

DNA  replication  (RPA2,  MCM10).  Moreover,  it  has  three  important  genes  in  the

signaling path that activates the  STAT3 transcription factor:  SRC,  NFKB1 and  IL6R.

Indeed, the STAT3 gene expression levels are significantly higher in cluster 2 (ANOVA

p-value: 5.58 x 10-15) both in comparison with cluster 1 (T-Test p-value: 1.08 x 10 -9) and

cluster 3 (T-Test p-value: 1.14 x 10-8) patients (see Supplementary Figure 6). The cluster

3 signature contains genes involved in three different apoptotic mechanisms: induced

by  TNF-α  (TNFRSF1A and  BAG4),  induced  by  Endoplasmatic  Reticulum  stress

(CAPN1 and CAPN2) and caspase-independent apoptosis (ENDOG).
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Then, we searched for possible relationships between the gene signatures and

genes commonly mutated in the studied tumours. We observed that some signature

genes also present somatic mutations (REL and RAD21 in cluster 1, ERCC4 and XPA in

cluster 2, and  AKT2  in cluster 3) or that mutated genes are direct neighbors of the

signature  genes  in  the  network  (see  Figures  2,  3,  4).  A permutation  test  over  the

signature labels (see Methods)  reveals a significant  proximity  of  signature genes to

mutated genes for cluster 1 and cluster 2 (p-value=8.76 x 10 -4 and p-value=6.9 x 10-3

respectively, Supplementary Figure 9). For the particular case of cluster 3, only one

mutated gene is present in the network and it is successfully selected as a signature

gene. These outcomes highlight the strict relationship between signature genes and key

processes  in  tumour  development  (in  analogy  with  the  network-based  approach  of

Novarino et. al.13). 

Since  the  signature  genes  are  the  most  central  nodes  in  each  cluster,  we

hypothesized that they might be suitable drug targets. For this purpose we collected,

from  the  DrugBank  database,  the  drugs  that  target  genes  in  the  signatures

(Supplementary Table 1) and we evaluated in the ClinicalTrials repository if these drugs

are under ongoing clinical trials for cancer treatment. We observed that 11 genes from

the  cluster  signatures  are  being  tested:  4  and  3  genes,  from  cluster  1  and  2,

respectively; 3 genes from both cluster 1 and 2; and 1 gene from both cluster 1 and 3

(Table 5, Supplementary Table 2).
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We then asked whether the expression level of the signature genes could predict

the patients survival in each cluster, independently of the tumour type. For cluster 1 and

3, survival information were available only for 17 and 32 patients, respectively, which

resulted in non-significantly different survival curves, possibly due to the low power of

the test (see Supplementary Figures 7 and 8). For cluster 2, we retrieved the clinical

information  for  448  patients:  the  survival  curves  showed  that  the  gene  signature

significantly separated the patients in two groups according to good or bad survival

outcome (Log-rank test p-value = 4.54 x 10-3, see Methods and Figure 5).
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We tried to translate our results into novel therapeutic strategies by applying, for

a subset of tumours in cluster 2 (which contained the largest and most heterogeneous

set of tumours), a set of drugs on targets taken from the signature and from related

biological functions. We selected three drugs: Bortezomib, for targeting the proteasome

and the NF-κB pathway; BI6727, for targeting the cluster 2 signature gene PLK1; and

the PF-00477736 drug, to target the CHK1/2 genes, which are not in the signature, but

also plays a role in the DNA damage response. We tested these drugs, alone or in

combination, on the glioblastoma cell line T98G and the breast adenocarcinoma model

MCF-7. Both cell lines were highly sensitive to Bortezomib, with an IC50 of 200 nM for

MCF-7  and  0.6  nM  for  T98G  (Figure  6).  BI6727  treatment  reduced  viability  in  a

concentration-dependent manner in both models, with the glioblastoma model showing

increased  responsiveness  (IC50  of  69.2  nM  versus 1.8  μM  for  MCF-7, Figure  6).

Moreover, both cell lines showed low response to CHK1/2 inhibition, with IC50 of 26.9

μM for MCF-7 and 15.1 μM for T98G (Figure 6). We then asked whether these drugs

might synergize in the selected models.  Although the combinations of PF-00477736

with either BI6727 or Bortezomib did not show any additive or synergistic effect in both

cell lines (data not shown), we observed a cooperation effect between inhibition of PLK1

and proteasome activity (Figure 7A-B). Indeed, we observed in the treatment with the

drug combination  that  the cell  viability  was significantly  lower  compared with  single

agent treatments in MCF-7 cells (Figure 7A, p < 0.05), showing a general additive effect

(Supplementary Table 4). We observed low Combination Index values (< 1) for both cell

lines,  indicating  synergistic  effect  for  all  concentrations  tested  in  the  breast  cancer

model,  and  for  selected  concentrations  in  the  glioblastoma  model  (Figure  7,

Supplementary Tables 3 and 4).
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Discussion and conclusion

We studied the expression profiles of 11 tumours by considering a selected set of

genes  from  the  Ontocancro  database  and  the  BioPlex  protein-protein  interaction

network. This knowledge-based selection reduced the dimensionality of the data to a

highly curated list of cancer-related genes, involved in pathways that are hallmarks of

cancer as cell cycle, inflammation, and apoptosis14. This approach also ensured that all

studied  genes  had  protein-protein  interaction  annotations,  which  are  crucial  to  the

understanding of how the signaling transduction propagates in the cell15. We clustered

tumours by their gene-gene relationships defined by the Pearson’s correlation matrices,

to  evaluate  the  functional  relationships  between  genes  and  their  impact  on

transcriptome organization16,17. tumours from the same organ tended to group together,

in agreement with previous studies showing that tissue-of-origin features provide the

dominant signals in the identification of cancer subtypes2,18. However, the clustering also

grouped tumours originating from different tissues, according to similarities in genomic

alterations,  as  in  the  case of  BRCA,  OV, LUSC, and UCEC,  which share common

characteristics  as  presence  of  TP53 mutations  and  multiple  recurrent  chromosomal

gains and losses3.  In  particular, BRCA and UCEC grouped into a well  defined sub-

cluster, which may reflect their  better prognosis when compared to other 10 tumour

types2.
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We integrated different types of biological information by a network approach,

that  allowed  us  to  identify  functional  modules  and  to  rank  genes  as  network

elements19,20. We created a network for each cluster (starting from a common template

of  protein  interactions  and  superimposing  cluster-specific  correlation  profiles)  and

obtained specific gene signatures based on node ranking by centrality measures. These

signatures  presented  genes  mainly  involved  in  three  biological  processes:  NF-κB

signaling, chromosomal instability and the ubiquitin-proteasome system (Table 4).  The

NF-κB signaling pathway regulates genes that participate in cell proliferation, innate and

adaptive  immune  responses,  inflammation,  cell  migration,  and  apoptosis  regulation

processes. The aberrant activity of NF-κB may act as survival factor for transformed

cells which would otherwise become senescent or apoptotic21. The genes classified into

the  chromosomal  instability  category  involve  kinetochore  formation,  microtubule

dynamics and chromosome segregation functions. The dysfunction in these genes may

cause cell inability to faithfully segregate chromosomes, generating genomic alterations

as  DNA mutation,  chromosomal  translocation,  and  gene  amplification.  The  mutant

genotypes may confer beneficial phenotypic traits to cancer cells, such as sustained

proliferative  signaling  and  resistance  to  cell  death14.  Two  genes  classified  into  this

category have already been related to clinical practice: the prognostic marker KIF2C22,23;

and the  BUB1 gene, which expression correlates with poor clinical diagnosis24,25. The

ubiquitin-proteasome  system  is  the  major  degradation  machinery  that  controls  the

abundance  of  critical  regulatory  proteins.  Perturbation  of  the  regulatory  proteins

turnover  disturbs  the  intricate  balance  of  signaling  pathways  and  the  cellular

homeostasis,  contributing  to  the  multi-step  process  of  malignant  transformation26.

Proteasome inhibitors have become valuable tools in the treatment of certain types of

cancer, mainly because malignant cells show greater sensitivity to the cytotoxic effects

of proteasome inhibition than non-cancer cells27.
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In addition to common features, cluster 2 signature has several genes related to

DNA  repair  (CETN2,  FANCB,  H2AFX,  ERCC1,  ERCC4,  PARP1,  XPA)  and  DNA

replication (RPA2,  MCM10).  Interestingly, the tumours in this cluster usually present

high rates (50% to 90%) of samples with mutated TP53, which is an important sensor

for the cell DNA damage response2,4,28. The cluster 2 signature also presents the genes

SRC,  NFKB,  and  IL6R,  which participates in the activation of  STAT3,  a transcription

factor  that  is  necessary  for  cell  transformation29.  We  observed  that  STAT3 gene

expression is higher in the tumours of cluster 2 when compared with the tumours of

clusters  1  and 3  (Anova p-value:  5.58  x  10 -15). The cluster  3  signature  has  genes

involved in three apoptotic mechanisms, which are induced by TNF-α (TNFRSF1A and

BAG4),  or  Endoplasmatic  Reticulum  stress  (CAPN1 and  CAPN2)  and  caspase-

independent apoptosis (ENDOG). As the regulation of cell death serves as a natural

barrier  to  cancer  development,  these processes may reflect  different  strategies that

these tumours use in response to various cellular stresses.

Since  the  transcriptional  disturbances  observed  in  cancer  can  sometimes  be

explained by underlying somatic mutations30,31 we retrieved TCGA mutational data, and

focused on cancer related mutations reported in the Catalogue of Somatic Mutations in

Cancer (COSMIC) database. Many signature genes resulted also somatically mutated,

or first neighbours to mutated genes (Figures 2, 3, 4), showing their strict relationship

and the functional relevance of the biologically processes they are involved in. 
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In  addition,  several  genes  in  the  signatures  or  in  their  direct  network

neighborhood are already under clinical investigation in a variety of tumour conditions

(as annotated in Clinicaltrials.org database). For example, the AKT pathway has been

described as a potential drug intervention in clear cell renal carcinoma32:  AKT2 gene

belongs  to  the  signature  of  cluster  3  (comprising  LGG,  KIRC,  and  KIRP),  it  is

somatically mutated in the tumours of cluster 3 and it has been annotated as drug-target

according to the Drug Bank database.

We also asked whether the gene signatures could predict survival outcomes in

each cluster, thus independently on the tumour type. Our results show that in cluster 2

(the only one with enough available samples) the gene signature defined two groups of

patients with significantly different Kaplan-Meier survival curves (log-rank test p-value:

4.54 x 10-3).

Finally, we tested 3  existing  drugs (targeting  2  genes belonging to  cluster  2

signature, and 1 involved in a related biological process, but not directly belonging to

the signature) on 2 tumour types of the cluster, T98G and MCF-7 models. PF-00477736

drug (a CHK1/2 inhibitor, not in the signature)33 had poor effect on both cell lines, but

they resulted highly sensitive to BI6727 (an inhibitor of the signature gene PLK134) and

to Bortezomib (proteasome activity  inhibitor35,36),  with  a significant  synergic action at

several  dosages,  suggesting  a  novel  therapeutic  strategy  to  be  further  explored  in

preclinical models of cluster 2 tumours.
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These observations indicate that our study succeeded in: 1) clustering tumours

highlighting common functional mechanisms related to their transcriptional profile, and

2) selecting genes with a relevant functional role in the studied tumours, thus amenable

of drug targeting. The combination of these results may thus provide the rationale for

choosing novel drug targets and drug combinations, or for repurposing existing drugs

towards tumours of the same cluster. As a possible future direction, once obtained an

enlarged list of novel and repurposed drugs, the specific transcriptional and mutational

profile  of  single  patients,  prioritized  onto  our  signatures,  might  suggest  specific

combinations of drugs for a more targeted and personalized therapeutic approach.

Methods

Gene expression datasets

The  gene  expression  datasets  used  in  this  study  were  retrieved  from  The  Cancer

Genome Atlas (TCGA) Data Portal,  and included Agilent  expression arrays of  2378

samples from 11 tumour types, with a different number of samples each (from 16 to 595,

see Table 1). We selected for our analysis the genes from the BioPlex protein-protein

interaction  network11 (n=10961)  that  were  also  present  in  the  Ontocancro  database

(n=1104), resulting in a list of 760 cancer-associated genes related to specific biological

functions (such as cell cycle control, DNA damage response, and inflammation).

tumour clustering
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For  each  tumour  dataset,  we  calculated  a  correlation  matrix  containing  pairwise

Pearson rij coefficients between genes across all samples available for the tumour. In

order  to  eliminate  false correlations and indirect  influences,  the absolute correlation

values  (|rij|)  were  adjusted  with  the  Context  Likelihood  of  Relatedness  (CLR)

algorithm37,38 implemented in the R/Bioconductor package ‘minet’39. The matrices were

clustered  using  hierarchical  clustering  analysis  (with  Ward  linkage)  based  on  the

element-wise  Euclidean  distance  between  each  pair  of  tumour  matrices  A and  B,

calculated as follows:

d ( A ,B )=√∑i=1

n

∑
j=1

n

(aij−bij )
2

where  aij is the correlation between the genes  i and  j in the tumour A and  bij is the

correlation between the genes i and j in the tumour B.

Multi-tumour gene signatures
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A network approach was applied to find gene signatures that characterized the clusters

of tumours. First, we created a backbone network (BioPlex-Ontocancro) by selecting the

genes  present  in  the  BioPlex  protein-protein  interaction  network  that  were  also

annotated in the Ontocancro database. Then, for each cluster the gene-gene correlation

coefficients rij were computed, and their absolute values |r ij| were adjusted with the CLR

algorithm,  producing  the  zij scores37,38.  Each score  matrix  was superimposed to  the

BioPlex-Ontocancro network, producing three weighted networks (one for each cluster)

in which genes were linked only if having correlated expression profiles (with weights

given by positive zij scores, specific to each cluster) and a physical interaction at protein

level (given by Bioplex-Ontocancro network, common to all clusters). We remark that

the three cluster-related networks result different because of different weight values, or

missing links (due to negative z scores set to zero). The networks were analyzed and

visualized by Networkx Python package, Matlab and Cytoscape40. 

For the networks of clusters 1 and 3, we selected the giant components (245 and

244 nodes, respectively), and for the cluster 2 we selected the two biggest components

(149 and 118 nodes). After this selection, we retrieved a gene signature for each cluster

composed by the most central genes (nodes), which were defined as those having the

Spectral  Centrality12 topological  measure  SC  above  the  90th percentile.  The  SC

calculates the effect of node removal on the network diffusivity based on the spectral

properties  of  the  Laplacian  graph, and  it  has  already  been  applied  successfully  to

biological data such as the Immune System mediator network. Different results were

obtained by considering Betweeness Centrality or weighted degree (Strength  W)  as

centrality measures, as shown in Supplementary Table 5.

Validation of the multi-tumour gene signatures
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We evaluated the relevance of the genes in the signatures by several approaches.

First,  we verified  the  proximity  with  the  somatic  mutational  data  extracted from the

TCGA data portal for the considered tumours. To avoid cancer unrelated mutations, we

considered  only  mutations  that  were  reported  also  in  the  Catalogue  of  Somatic

Mutations in Cancer (COSMIC) database41. We checked whether the signature genes

had  been  reported  as  somatic  mutated  or  if  they  occurred  in  the  neighborhood  of

mutated genes in the networks. To quantify the proximity of gene signatures to mutated

genes we located the nearest mutation (in terms of shortest paths on the network) for

each signature gene,  resulting  in  a  collection  of  minimum distance values for  each

cluster. The average minimum distance from the mutated genes  ⟨dmin ⟩
real

 was then

calculated  for  each  cluster  and  tested  with  a  permutation  test.  We  performed  106

permutations of the signature labels and recalculated the average minimum distance of

each new signature from the mutated genes. The p-values were calculated as

p=
∑
i=1

106

⟨dmin ⟩
i
<⟨dmin ⟩

real

106

The results of the proximity analysis are reported in Supplementary Material Figure 9:

the signatures of cluster 1 and cluster 2 are significantly closer to mutated genes than

expected (p-values 9 x 10-4 and 6.9 x 10-3, respectively). The permutation test for cluster

3 is not completely meaningful because there is only one mutated gene, that anyway

results to be one of the signature genes.
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Secondly, we retrieved from the DrugBank42 (http://www.drugbank.ca/) and Drug

Gene Interaction (DGIdb)43 databases which genes in the signatures were also mapped

as  drug  targets.  Third,  we  checked  in  the  Aggregate  Analysis  of  ClinicalTrials.gov

(AACT) database (https://www.ctti-clinicaltrials.org/aact-database) for the existence of

ongoing clinical trials evaluating the inhibition of genes in the signatures. Fourth, the

prognostic potential of each gene signature was evaluated by considering the clinical

data (days to death) available in the TCGA data portal.  The patients having clinical

information were clustered according to the expression levels of the gene signatures by

using the k-means algorithm (Python package ‘scikit’), considering two patient groups:

good versus bad survival outcome. Survivals curves were calculated for both groups:

we applied the Kaplan-Meier method and evaluated their significance with the log-rank

test (Python package “lifelines”). Fifth, we tested the effect of drugs inhibiting genes in

our  signatures  or  strictly  related  to  them.  The  glioblastoma  T98G  and  the  breast

adenocarcinoma MCF-7 cell lines were obtained from ATCC and DSMZ, respectively.

Cells were cultured at a density of 105 cells/ml in RPMI medium plus 10% FBS (plus 5%

Sodium orthovanadate for T98G) for 72h with increasing concentrations of the following

drugs: Bortezomib, BI6727, PF-00477736 (Selleckchem), alone or in combination. One

hour and 30 minutes before the end of treatment, WST-1 reagent was added to the cell

medium  and  cell  viability  was  measured  according  to  manufacturer’s  instruction

(Roche). The dose-effect response and the IC50 of each drug were calculated using

GraphPad Prism 6 (GraphPad Software). To determine synergy, combination indexes

were obtained with the CompuSyn software (ComboSyn Inc.): combination index values

<1, =1, and >1 indicate synergism, additive effect and antagonism, respectively.
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Tables

Table 1 – The datasets. List of tumours and their respective number of gene expression 

arrays

Abbreviation Cancer Number of patients

BRCA Breast invasive carcinoma 593
COAD Colon adenocarcinoma 172
GBM Glioblastoma multiforme 595
KIRC Kidney renal clear cell carcinoma 72
KIRP Kidney renal papillary carcinoma 16
LGG Brain lower grade glioma 27

LUAD Lung adenocarcinoma 32
LUSC Lung squamous cell carcinoma 155

OV Ovarian serous cystadenocarcinoma 590
READ Rectum adenocarcinoma 72
UCEC Uterine corpus endometrial carcinoma 54

Total 2378

Table 2 – Network Properties. The table shows the main topological features of the 

cluster networks. Cluster 1: COAD and READ; Cluster 2: LUAD, LUSC, GBM, OV, 

BRCA, and UCEC; and Cluster 3: LGG, KIRC and KIRP.

BioPlex-
Ontocancro

Cluster 1 Cluster 2 Cluster 3

Clustering Coefficient 0.25 0.21 0.19 0.18

Connected Components 24 41 42 41

Network Diameter 16 18 19 18

Avg Path Length 6.52 7.41 6.88 7.31

Avg Degree 3.84 3.2 3.14 2.98

Number of Nodes 511 406 408 410

Number of Edges 981 650 642 612
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Table 3 – Gene Signatures. List of signature genes for the three tumour clusters.

21

387

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 5, 2017. ; https://doi.org/10.1101/146209doi: bioRxiv preprint 

https://doi.org/10.1101/146209


BioPlex-Ontocancro Cluster 1 Cluster 2 Cluster 3

Spectral
Centrality > 90th

percentile

ALOX5
APP

C17orf70
CCDC99
CETN2

CSNK2A1
CSNK2A2

EME1
ERCC1
ERCC4
ERCC6L
FANCB
GAB1
GRB2
H2AFX

IL6R
MAP4K5
MCM10
MLF1IP
MUS81
NFKBIA
NRP1

PIK3CA
PIK3CB
PIK3CD
PIK3R2
PIK3R3
PLK1

POLA1
POLA2
PRIM1
PRIM2
PSMB3
PSMC3
RAC1
SEC13

TNF

ALOX5
BTRC
BUB1

CDC20
CENPC1

CHUK
CUL1
MIS12

MLF1IP
NDC80
NFKB1
NFKB2
NFKBIA
PMF1

PPP2CB
PPP2R5D

PSMB9
PSMC2
PSMF1
RAD21

REL
RELB
RPS27
SRC

STAG1

BTRC
CENPC1
CETN2
DSN1

ERCC1
ERCC4
FANCB

FYN
H2AFX

IL6R
MCM10
MIS12

MLF1IP
NEDD1
NFKB1
NFKBIA
NUP43
PARP1
PLK1

PSMB3
PSMC3
RPA2
SRC

TNFRSF10B
TUBGCP5
TUBGCP6

XPA

AKT2
ALOX5
BAG4

CAPN1
CAPN2
CDC16
CDC27
CDT1

ENDOG
FBXW11

FNTA
GMNN
KIF2B
KIF2C
LSP1

NEDD1
PRKACG
PSMC3
PSMD9
SKP2

TNFRSF1A
TUBGCP5

UBB
VIM
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TNFRSF1A
TRAF6

UBB
UBE2T

XPA
XPC

Table 4 – Common biological categories present in the gene signatures. All cluster 

signatures have genes that can be grouped in the following categories: NF-κB signaling,

chromosomal instability and ubiquitin-proteasome system.

NF-κB Signaling Chromosomal Instability
Ubiqutin-

Proteasome
System

Cluster 1

BTRC, CUL1, SRC,
NFKBIA, NFKB1,

NFKB2, REL, RELB,
CHUK

CDC20, BUB1, MLFPIP,
CENPC1, MIS12, PMF1, NDC80,

RAD21, STAG1

BTRC, CUL1,
PSMB9, PSMC2,

PSMF1

Cluster 2
BTRC, SRC,

NFKBIA, TNFRS10B,
IL6R

MIS12, DSN1, MLFPIP,
CENPC1, PLK1, NEDD1,

TUBGCP5, TUBGCP6

BTRC, PSMB3,
PSMC3

Cluster 3
FBXW11, AKT2,

TNFR1A
CDC16, CDC27, NEDD1,
TUBGCP5, KIF2B, KIF2C

FBXW11, PSMC3,
PSMD9
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Table 5 – List of genes from the signatures that are also being tested in ongoing clinical 

trials studies (according ClincalTrials.gov).

Inhibition target Number of clinical trials Cluster signature

ALOX5 18 1, 3

CHUK 9 1

FYN 97 2

IL6R 2 2

NFKB1 40 1, 2

NKFB2 8 1

NKFBIA 8 1, 2

PARP1 106 2

PPP2CB 5 1

PSMB9 25 1

SRC 135 1, 2
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Figures

Figure 1 – tumour clustering. For each tumour, we produced a matrix from the 

correlation (Pearson) of the expression profiles among 760 genes. The correlations 

values were adjusted by the CLR algorithm. Then, we clustered the resulting matrices 

by euclidean metrics.
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Figure 2 – Network composed by the first neighbors of the cluster 1 signature 

genes
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Figure 3 – Network composed by the first neighbors of the cluster 2 signature 

genes.
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Figure 4 – Network composed by the first first neighbors of the cluster 3 signature

genes

Figure 5 – Gene signature and survival outcome. The cluster 2 signature defined two

groups of patients with significantly different Kaplan-Meier survival curves.
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Figure 6 – In vitro response of cancer cell lines from signature 2 to treatment with

Bortezomib, BI6727 and PF-00477736 as single agents. MCF-7 and T98G cells were

treated with increasing doses of Bortezomib (0.01 to 10 μM for MCF-7, 0.02 to 10 nM

for T98G), BI6727 (0.04 to 10 μM for MCF-7, 0.004 to 10 μM for T98G), PF-00477736

(5.6 to 100 μM) and cell viability was measured 72h after drug administration by WST-1

assay (three independent experiments). Cell viability is represented as (mean ± SEM).

IC50 values are reported in the boxes (GraphPad Prism 6).
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Figure 7 – Sensitivity of MCF-7 and T98G cells to combined inhibition of PLK1 and

proteasome activity.  MCF-7 and T98G cells were treated with  increasing doses of

Bortezomib (0.05 to 0.8 μM for MCF-7, 0.15 to 2.4 nM for T98G) and BI6727 (0.5 to 7.2

μM for MCF-7, 17 to 277 nM for T98G), alone or in combination and cell viability was

measured  72h  after  drug  administration  by  WST-1  assay  (three  independent

experiments). Statistical significance was determined by Student’s t test (*, P < 0.05; ***,

P < 0.001). Combination index (C.I.) was calculated by CompuSyn software. (A) MCF-7

cells: combinations with a C.I. lower than 0.5 are shown. (B) T98G cells: combinations

showing synergistic effect are shown.

Supplementary Information

Supplementary Figure 1 – Bioplex-Ontocancro Network. Network built from the 760 

genes found both in BioPlex protein-protein interaction network and Ontocancro 

database
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Supplementary Figure 2 – Overview of the cluster 1 network. Diamonds with red 

borders represent the genes in the cluster 1 signature and orange circles represent the 

mutated genes

Supplementary Figure 3 – Overview of the cluster 2 network. Diamonds with red 

borders represent the genes in the cluster 2 signature and orange circles represent the 

mutated genes

Supplementary Figure 4 – Overview of the cluster 3 network. Diamonds with red 

borders represent the genes in the cluster 3 signature and orange circles represent the 

mutated genes

Supplementary Figure 5 – Network of signature genes common to cluster 1 and 2. Even

though the signatures can present common genes, they have different set of interactors 

in each cluster network.

Supplementary Figure 6 – Boxplot of STAT3 levels for clusters 1, 2, 3. Cluster 2 patients

presented higher STAT3 gene expression in comparison with cluster 1 (T-Test p-value: 

1.08 x 10-9) and cluster 3 (T-Test p-value: 1.14 x 10-8).

Supplementary Figure 7 – Kaplan-Meier curves for the two groups of cluster 1 patients 

defined by K-means clustering approach. The clustering was applied only to the genes 

in cluster 1 signature. Only 17 patients had the survival information in the TCGA data 

portal (logrank-test pvalue = 0.9118)
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Supplementary Figure 8 – Kaplan-Meier curves for the two groups of cluster 3 patients 

defined by K-means clustering approach. The clustering was applied considering only 

the genes in cluster 3 signature. Only 32 patients had the survival information in the 

TCGA data portal (logrank-test pvalue = 0.9056)

Supplementary Figure 9 - Plot of the distribution of the 106 permutations for the 3 

clusters (from left to right). The inboxes show the minimum average distances for the 

signatures (represented in the plots as red vertical lines), and the p-values with respect 

to the permutations.

Supplementary Table 1 – List of drug-gene interactions for the genes in the signatures, 

extracted from the Drug Gene Interaction database (DGIdb).

Supplementary Table 2 – List of ongoing clinical trials (according to ClinicalTrials.gov) 

that evaluate the inhibition of the genes in the signatures.

Supplementary Table 3 – Combination Indexes for BI6727 and Bortezomib treatment at 

different concentrations in the T98G cell line.

Supplementary Table 4 – Combination Indexes for BI6727 and Bortezomib treatment at 

different concentrations in the MCF-7 cell line.
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Supplementary Table 5 - Spearman's rank correlation values for the centrality measures

(Spectral Centrality SC, Betweenness Centrality BC, strength W) on the nodes for the 3 

clusters. The results refer to the whole node list ("All") or only to the signatures, 

obtained as the top 10% of the ranked measures ("90th"). We remark the drop in 

correlation when considering only the gene signatures obtained by the different 

centrality measures.
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