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ABSTRACT 20 

 21 

Background:  Analysis of microbiome data involves identifying co-occurring taxa associated 22 

with a specific set of sample attributes (e.g., disease presence) but is often hindered by the data 23 

being compositional, high dimensional, and sparse. Also, the configuration of co-occurring taxa 24 

may represent overlapping subcommunities that contribute to host status. Preserving the 25 

configuration of co-occurring microbes is superior to detecting indicator species since this 26 

approach is more likely to represent underlying microbiome mechanisms and thus facilitate 27 

more biologically meaningful interpretations. Moreover, analysis which simultaneously utilizes 28 

taxonomic and functional abundances typically requires independent characterization of 29 

taxonomic and functional profiles before linking them to sample information. However, this 30 

limits investigators from identifying which specific functional components associate with which 31 

subsets of co-occurring taxa.  32 

Results:  We provide a pipeline to explore co-occurring taxa using topics generated via a topic 33 

model approach and then link these topics to specific sample classes. Also, rather than inferring 34 

predicted functional content independently from taxonomic information, we instead focus on 35 

within-topic functional content, which we parse via estimating pathway-topic interactions 36 

through a multilevel fully Bayesian regression model. We apply our methods to two large 16S 37 

amplicon sequencing datasets: an inflammatory bowel disease (IBD) dataset from Gevers et al. 38 

and data from the American Gut (AG) project. When applied to the Gevers et al. IBD study, we 39 

determine that a topic highly associated with Crohn’s disease (CD) diagnosis is (1) dominated 40 

by a cluster of bacteria known to be linked with CD and (2) uniquely enriched for a subset of 41 

lipopolysaccharide (LPS) synthesis genes. In the AG data, our approach found that individuals 42 

with plant-based diets were enriched with Lachnospiraceae, Roseburia, Blautia, and 43 

Ruminococcaceae, as well as fluorobenzoate degradation pathways, whereas pathways involved 44 

in LPS biosynthesis were depleted. 45 

Conclusions:  We therefore introduce an approach for uncovering latent thematic structure in 46 

the context of host state for 16S rRNA surveys. Using our topic-model approach, investigators 47 

can (1) capture sets of co-occurring taxa, (2) uncover their functional potential, and (3) identify 48 

gene sets that may help guide future inquiry. These methods have been implemented in a freely 49 

available R package https://github.com/EESI/themetagenomics.  50 
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LIST OF ABBREVIATIONS 51 

 52 

AG, American gut 53 

CD, Crohn's disease 54 

CV, cross validation 55 

IBD, inflammatory bowel disease 56 

LDA, latent Dirichlet allocation 57 

LFC, log-fold change 58 

LPS, lipopolysaccharide 59 

OTU, operational taxonomic unit 60 

PPD, posterior predictive distribution 61 

RF, random forest 62 

STM, structural topic model  63 
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BACKGROUND 64 

 65 

With the decreasing cost of high-throughput sequencing, large datasets are becoming 66 

increasingly available, particularly microbiome datasets rich in sample data. These data consist 67 

of categorical and numeric information associated with each sample, which in turn are linked to 68 

a set of taxonomic abundances that are derived from clustering sequencing reads. Such clusters 69 

are based on taxonomic marker genes – typically a portion of the 16S rRNA gene that meet a 70 

fixed degree of sequence similarity, termed Operational Taxonomic Units (OTUs). Analysis of 71 

these data often involves identifying co-occurring groups of taxa associated with specific 72 

sample features via unsupervised exploratory methods such as principal component analysis, 73 

correspondence analysis, multidimensional scaling, and hierarchical clustering, in addition to 74 

statistical inference strategies aimed at identifying differentially abundant taxa and differences 75 

in alpha and beta diversity. Nevertheless, model building is hindered by the complexity 76 

inherent to these data, which have a disproportionate number of samples relative to features 77 

(Knights et al., 2011), a substantial degree of sparsity, and are typically strictly positive and 78 

constrained to sum to 1, i.e., compositional  (Gilbert et al., 2016; Li, 2015).  79 

From an ecological perspective, the configuration of these co-occurring microbiota may 80 

represent related, overlapping sets of subcommunities consisting of taxa that correlate with, for 81 

example, host phenotype. Identifying subcommunities that contribute to host status as opposed 82 

to single indicator species  facilitates a more biologically meaningful interpretation by 83 

preserving the natural configuration of co-occurring bacteria when making inferences with 84 

respect to host phenotype (Shafiei et al., 2015).  Recent work has attempted to explore such 85 

relationships (Jiang et al., 2012; Ning & Beiko, 2015; Ren et al., 2016; Shafiei et al., 2015).  86 

Still, suitable approaches to uncover these relationships in the context of functional information 87 

is deficient – that is, few methods successfully integrate subcommunity-host phenotype with 88 

functional profiles specific to these subcommunities.  In both metagenomic and 16S rRNA 89 

surveys, analyses utilizing taxonomic and functional abundance information typically involve 90 

independently characterizing the taxonomic and functional profiles of the samples and 91 

subsequently associating these profiles with host information. In the former, this is done 92 

directly by analyzing taxonomic and functional sequence information, whereas the latter 93 

requires predicting functional profiles from 16S rRNA survey information using methods such 94 

as PICRUSt, Tax4fun, and Piphillin (Aßhauer et al., 2015; Iwai et al., 2016; Langille et al., 2013). 95 

In either approach, despite obtaining information regarding which taxa co-occur and whether 96 

specific taxa or functional categories are associated with sample data, the investigator remains 97 

limited from identifying which specific functional components associate with which subsets of 98 

co-occurring taxa. 99 

In the context of 16S rRNA gene sequencing data, our objective is therefore two-fold: to 100 

implement a modeling framework that can (1) capture sets of co-occurring taxa associated with 101 
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specific sample data and (2) uncover the functional potential that further characterizes the 102 

configuration of these subcommunities.  103 

For our first objective, we will employ a topic model approach. Topic models have had 104 

considerable use in natural language processing, but have also been explored as a method for 105 

exploring genomic count data. Knights et al. (Knights et al., 2013) utilized latent Dirichlet 106 

allocation (LDA) to infer the relative contributions of an unknown number of source 107 

environments to a set of indoor samples. Shafiei et al. (Shafiei et al., 2015), alternatively, took a 108 

supervised approach where they first trained their model on sets of co-occurring OTUs to learn 109 

how they correlate with sample classes of interest. They were then able to predict the class of 110 

new samples given the trained model. 111 

Our approach utilizes a structural topic model (STM) (Roberts et al., 2014), which generalizes 112 

previously described topic models such as LDA, the correlated topic model (Blei & Lafferty, 113 

2007), and Dirichlet-Multinomial regression topic model (Mimno & McCallum, 2012). Like the 114 

Dirichlet-Multinomial regression topic model, the STM permits the influence of sample data on 115 

the distribution of samples-over-topics; LDA, on the other hand, can only incorporate sample 116 

information if done so in a two-stage process – first performing topic extraction, and then 117 

identifying linear relationships between the topic assignments and sample information (Blei et 118 

al., 2003; Roberts et al., 2014). A two-stage approach limits the breadth of sample information 119 

one can use, typically forcing the user to use only a single vector of covariate information, and 120 

moreover prevents propagating uncertainty throughout the model. Similar to the correlated 121 

topic model, the STM’s logistic normal distribution defines the prevalence of topics across 122 

samples and permits correlation between topics.  123 

With the STM, we will uncover a thematic representation of 16S rRNA survey abundance data 124 

and jointly measure its relationship with sample information (figure 1.1). Two latent 125 

distributions will be estimated: a samples-over-topics and a topics-over-OTU distribution, 126 

which represent the probability of a topic occurring in a sample and the probability of an OTU 127 

occurring in a topic, respectively (figure 1.2). By utilizing sample information (figure 1.3), we 128 

will then be able to determine whether particular sample covariates increase or decrease the 129 

probability of a given topic occurring in a set of samples (figure 1.4).  130 

Our second objective will exploit the estimated topics-over-OTUs distribution. These posterior 131 

probabilities dictate the taxonomic composition of the topics and therefore should capture 132 

meaningful co-occurrences. Moreover, these probabilities resemble relative abundances of 133 

samples across taxa. We can therefore infer the functional potential of these topics using tools 134 

such as PICRUSt, allowing us to predict topic-specific gene composition, using a database of 135 

reference genomes (figure 1.5).  Then, by identifying topics of interest based on their 136 

relationship to sample covariates, we can subsequently link this predicted within-topic 137 

functional profile to both within-topic taxonomic abundances, as well as the specific samples 138 

that have high probability of containing these topics.  139 
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It should be noted how this approach differs from the naïve approach where taxonomic and 140 

functional profiles are independently estimated and then jointly interpreted. A naïve approach 141 

will successfully identify taxonomic abundances that associate with covariate information, and 142 

the same for (predicted) functional abundances, but the result lacks the ability to infer which 143 

sets of functions are directly linked to specific sets of taxa. The ability to uncover such 144 

information provides context as to why specific co-occurrences are present. 145 

We apply our methods on two large 16S rRNA amplicon sequencing datasets: an inflammatory 146 

bowel disease (IBD) dataset from Gevers et al. (Gevers et al., 2014) and data from the American 147 

Gut (AG) project. After confirming the generalizability of extracted topics, we identified distinct 148 

taxonomic subcommunities that, in the case of the Gevers dataset, were consistent with 149 

published results. These subcommunities were in turn composed of distinct predicted 150 

functional profiles, and moreover, our approach provided gene-sets specific to topics of interest 151 

that may warrant further exploration. In a companion paper, we performed simulations to 152 

further validate a topic model approach for 16S survey data and to determine a suitable 153 

normalization strategy (Woloszynek et al., 2017). Our simulations suggested that predefined 154 

taxonomic subcommunities concentrate with high probability to extracted topics and that no 155 

library size normalization is required to maximize power or ability to infer taxonomic structure, 156 

thus making a topic model approach a more direct, suitable procedure for inferring the 157 

subcommunity configuration. Also, in the context of topic models, while DESeq2 normalization 158 

outperforms rarefying, it results in decreased power compared to simply using raw, 159 

unnormalized abundances. 160 

These methods have been implemented in a freely available R package themetagenomics: 161 

https://github.com/EESI/themetagenomics.  162 
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METHODS 163 

 164 

Review of the Structural Topic Model  165 

The STM is a Bayesian generative model such that, given a set of M samples, each consisting N 166 

OTUs, belonging to a vocabulary of V unique OTU terms, K latent topics (chosen a priori) are 167 

generated from the data. These topics consist of overlapping sets of co-occurring OTUs, 168 

potentially sharing some biological context. The samples-over-topics distribution is given a 169 

logistic Normal (LN) prior, which allows for estimation of topic-topic correlations, giving a 170 

means to infer co-occurring topics across samples. The topics-over-OTUs prior, on the other 171 

hand, estimates the deviation of OTU frequencies from a background distribution that 172 

encompasses all samples in the dataset (Eisenstein et al., 2011). Word and topic assignments are 173 

both generated via V- and K-multinomial distributions, respectively.  174 

The STM is estimated by a semi-collapsed variational expectation maximization procedure. 175 

Convergence is reached when a relative change in the variational objective (i.e., the estimated 176 

lower bound) falls below a predetermined tolerance. 177 

 178 

Datasets and Preprocessing 179 

16S rRNA sequencing data from two human microbiome studies were downloaded from their 180 

corresponding repositories. The Gevers et al. dataset (“Gevers”) (PRJNA237362, 03/30/2016) is a 181 

multicohort, IBD dataset that includes control, Crohn's disease (CD), and ulcerative colitis 182 

samples taken from multiple locations throughout the gastrointestinal tract (Gevers et al., 2014). 183 

The AG project (“AG”) (ERP012803, 02/21/2017), on the other hand, is a crowd sourced dataset 184 

that includes user-submitted microbiome samples from a variety of body sites and associated 185 

subject information provided through questionnaires (http://americangut.org/).    186 

Human gut microbiota from an inflammatory bowel disease cohort (Gevers).  Paired-end 187 

reads were joined and quality filtered (maximum unacceptable Phred quality score = 32; 188 

maximum number of consecutive low quality base calls before read truncation = 3; minimum 189 

number of consecutive high quality base calls included per read as a fraction of input read 190 

length = 0.75) using QIIME version 1.9.1. Closed-reference OTU picking was performed using 191 

SortMeRNA against GreenGenes v13.5 at 97% sequence identity. This was followed by copy 192 

number normalization via PICRUSt version 1.0.0 (Kembel et al., 2012).  193 

We selected only terminal ileum samples. Those with fewer than 1000 total reads were omitted. 194 

We subsequently removed OTUs with fewer than 10 total reads across samples and OTUs that 195 

lacked a known classification at the Phylum level.  196 

Human gut microbiota from samples differing in terms of diet (AG). Quality trimming and 197 

filtering were performed in the following manner on single-end reads using the fastqFilter 198 
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command found in the dada2 R package. The first 10 bases were trimmed from each read. 199 

Reads were then trimmed to position 135 based on visualizing the quality score of sampled 200 

reads as a function of base position. Further truncation occurred at positions with quality scores 201 

less than or equal to 2. Any truncated read with total expected errors greater than 2 were 202 

removed. A portion of AG samples were affected by bacterial blooming during shipment. These 203 

sequences were removed using the protocol provided in the AG documentation (02-204 

filter_sequences_for_blooms.md). 205 

OTU picking and copy number normalization were implemented as above. Samples with fewer 206 

than 1000 reads, and OTUs with fewer than 10 total reads across samples and lacking any 207 

known classification at the Phylum level were discarded. We filtered samples falling into the 208 

“baby” age category (thus the minimum age was 3) and retained only fecal samples. Within the 209 

diet category, unknown, vegetarian-with-shellfish, and omnivore-without-red-meat diets types 210 

were removed. We then merged vegan and vegetarian-without-shellfish into one class, 211 

resulting in a binary set of labels: “O” for omnivores and “V” for vegans and vegetarians. 212 

 213 

Structural Topic Model Fitting (figure 1.1) 214 

Each resulting OTU table consists of sets of raw counts normalized by 16S rRNA copy number. 215 

No other normalization was conducted based on the simulation results in Woloszynek et al. 216 

(2017). A series of topic models with different parameterizations in terms of topic number (K ∈ 217 

15, 25, 50, 75, 100, 150, 250) and sample covariates (e.g., indicators for presence of disease, diet 218 

type, etc.) were fit to the OTU tables.  219 

We evaluated each model fit for presence of overdispersed residuals. We also conducted 220 

permutation tests where the covariate of interest is randomly assigned to a sample, prior to 221 

STM fitting. To compare parameterizations between models, we evaluated predictive 222 

performance using held-out likelihood estimation (Blei et al., 2003). 223 

 224 

Assessment of topic generalizability 225 

We performed classification to assess the generalizability of the extracted topics. No sample 226 

information was used as covariates. OTU tables were first split into 80/20 training-testing 227 

datasets. A topic model was trained to estimate the topics-over-OTUs distribution. We then 228 

held this distribution fixed; hence, only the testing set’s samples-over-topics distribution was 229 

estimated. For both the training and testing sets, simulated posterior samples from the samples-230 

over-topics distribution were averaged. The resulting posterior topic probabilities in the 231 

training set were then used as predictors to classify sample labels, similar to using 𝑍̅ in 232 

supervised LDA (Blei et al., 2008). The generalization error was then assessed by using the 233 
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optimal parametrization based on cross validation performance (CV) on the test set topic 234 

probabilities. Classification was performed using a random forest (RF). 235 

For the RF, parameter tuning to determine the number of variables for each split was 236 

accomplished through repeated (10x) 10-fold CV, using up- or down-sampling to overcome 237 

class unbalance (for Gevers and AG, respectively). We performed a parameter sweep over the 238 

number of randomly selected features, while setting the number of trees fixed at 128. The 239 

optimal parameterizations were selected based on maximizing ROC area under the curve 240 

(AUC).  241 

 242 

Assessing Concentration of OTUs as a function of topic number 243 

Comparison of Shannon entropy across topics was performed via ANOVA and Tukey HSD 244 

post-hoc analysis. To quantify the relationship between taxonomic abundance and continuous 245 

predictors (e.g., PCDAI), we performed negative binomial regression (log link), using total 246 

sample coverage as an offset. The family-wise error rate was adjusted via Bonferroni correction. 247 

Critical values for hypothesis testing were set at 0.05 unless stated otherwise.  248 

 249 

Comparison of topic taxonomic profile to a network approach 250 

To further validate the clusters of high probability taxa identified in the topics-over-OTUs 251 

distribution, we compared our results to those generated from an OTU-OTU association 252 

network on the raw (copy number normalized) OTU tables using SPIEC-EASI’s neighborhood 253 

selection method (Kurtz et al., 2015). 254 

 255 

Inferring within-topic functional potential (figure 1.5) 256 

We obtained the topics-over-OTUs distribution for each model fit and mapped the within-topic 257 

OTU probabilities to integers (“pseudo-counts”) using a constant: 10000 × 𝛽. A large constant 258 

was used to prevent low probability OTUs from being set to zero, although their contribution to 259 

downstream analysis was likely negligible. Gene prediction was then performed on each topic-260 

OTU pseudo-count table using PICRUSt version 1.0.0 (Langille et al., 2013). Recall that copy 261 

number normalization was performed prior to topic model fitting. 262 

 263 

Identifying topics of interest (figure 1.3, 1.4) 264 

Topics of interest were identified by regressing the sample-specific topic probabilities against 265 

their set of sample covariates. We calculated 95% uncertainty intervals using an approximation 266 

that accounts for uncertainty in estimation of both the coefficients and the topic probabilities.  267 
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Identifying predicted functions that distinguish topics (figure 1.6) 268 

To determine which predicted gene functions best distinguish topics, we utilized the following 269 

multilevel negative binomial regression model: 270 

𝜃𝑘,𝑐 = exp[𝜇 + 𝛽𝑘 + 𝛽𝑐 + 𝛽𝑘,𝑐] 271 

𝑦𝑘,𝑐~NB(𝜃𝑘,𝑐 , 𝜆) 272 

where μ is the intercept, βk is the per topic weight, βc is the per level-3 gene category weight, βk,c 273 

is the weight for a given topic-gene category combination, yk,c is the count for a given topic-gene 274 

category combination, and λ is the dispersion parameter. All weights were given normal priors. 275 

Convergence was assessed across 4 chains using diagnostic plots to assess mixing and by 276 

evaluating the Gelman-Rubin convergence diagnostic (Gelman & Rubin, 1992). To reduce 277 

model size, we used genes belonging to only 15 (arbitrary number) level-2 KEGG pathway 278 

categories (table S1). For large topic models, we fit only the top 25 topics, ranked in terms of the 279 

regression weights that measure the degree of association between sample-over-topic 280 

probabilities and our covariate of interest.  281 

 282 

Comparison of within-topic pathway profile to OTU-table approach 283 

We compared the profile of predicted functions obtained from the hierarchical negative 284 

binomial model to a differential abundance approach. We performed (KEGG) functional 285 

prediction via PICRUSt on raw OTU abundances that were copy number normalized. The 286 

resulting functional abundances were collapsed into level-3 KEGG pathways. Note that we 287 

again restricted our genes to the 15 level-2 KEGG pathways used previously to remain 288 

consistent. The resulting level-3 pathway abundances underwent DESeq2 differential 289 

abundance analysis followed by Bonferroni correction (McMurdie & Holmes, 2014). Adjusted p-290 

values below 0.1 were deemed significant. 291 

 292 

Packages utilized 293 

All analysis was done in R version 3.2.3. Topic models, RFs, and NB regression models were fit 294 

using stm (Roberts, Margaret E., Stewart & Tingley, 2017), caret (Kuhn, 2008), and rstanarm 295 

(Stan Development Team, 2016), respectively. AG filtering was performed using dada2 296 

(Callahan et al., 2015). SPIEC-EASI was fit using the SPIEC-EASI package (Kurtz et al., 2016). 297 

DESeq2 differential abundance analysis was conducted with phyloseq (McMurdie & Holmes, 298 

2013). 299 

  300 
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RESULTS 301 

 302 

We will explore the use of a topic model approach on datasets of gut and fecal microbial 303 

community profiles, beginning with the IBD data from Gevers, followed by the dietary data 304 

from AG. For each dataset, we show that the topics extracted from the STM generalize well to 305 

test set data not initially seen by the model, suggesting that co-occurrence profiles identified by 306 

the STM are robust to overfitting. Then, we apply our complete pipeline, where we successfully 307 

link within-topic predicted functional profiles to taxonomic subcommunity configurations and 308 

host features. 309 

 310 

Thematic Structure of IBD-Associated Microbiota (Gevers) 311 

Dimensionality reduction using topics facilitates classification of CD diagnosis and 312 

generalizes well to test data. We aimed to assess whether (1) topics fit in the absence of sample 313 

covariates are associated with positive CD diagnosis (CD+), and (2) they generalize to new data 314 

– that is, whether they captured meaningful information inherent to the data while ignoring 315 

characteristics associated exclusively with the fitted data.  316 

The 80/20 training/testing splits for terminal ilium samples from Gevers are shown in table S2. 317 

We hypothesized that there would be a drop in performance using OTU relative abundances as 318 

features compared to topics, since the former has much higher dimensionality and is sparser. 319 

These are both relaxed when using topics, since the size of the feature space is decreased 320 

through dimensionality reduction.  There was little difference between the two approaches 321 

during training CV with at least 25 topics (figure S1, table S3). During testing, however, topics 322 

outperformed OTU relative abundances, particularly in terms of F1 score, with scores of 0.808 323 

and 0.857 for OTUs and topics (K=25 and K=100), respectively (table S4). 324 

As one example, the largest discrepancy in classification performance between OTUs and topics 325 

was in terms of their negative predictive value, with the OTU model being correct only half the 326 

time (0.517) when predicting the negative class (CD-), whereas the worst performing topic 327 

model (K=15) performed slightly better (0.526), and topic models seemingly improved as the 328 

number of topics increased: 0.655 (K=25), 0.559 (50), 0.577 (75), 0.682 (100), and 0.643 (150) (table 329 

S4). Such a high proportion of false negatives with the OTU model was likely due to its reliance 330 

on few, relatively rare taxa (figure S2). 331 

As another example, OTU 319708 (Clostridiaceae family) was the fourth most important feature 332 

for distinguishing classes. It was over twice as common in CD- training samples. Over 10% of 333 

correctly classified CD- samples contained this feature. This was also the case for 10% of 334 

misclassified CD+ samples, some of which contained this OTU at a greater proportion than 335 

other samples in the training set. A similar scenario can be seen for the OTU with the largest 336 
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importance score, OTU 186723 (Ruminococcaceae family), which associated predominately with 337 

disease presence, and hence its absence in CD+ samples resulted in false negatives. 338 

Concentration of high probability OTUs across topics begins to plateau at 75 topics. After 339 

assessing the generalizability of extracted topics, we implemented our full pipeline using 340 

sample covariates, specifically a binary indicator for IBD diagnosis. After fitting the topic model 341 

to the OTU abundance data, we aimed to uncover how OTUs concentrate within topics as a 342 

function of topic number. We performed an ANOVA to compare Shannon entropy for 343 

individual topics across OTUs for topic models of varying sizes, followed by post-hoc multiple 344 

comparisons testing using Tukey HSD (α=0.05) (figure S2). We found a significant difference in 345 

the mean Shannon entropy among the models considered. When we tested for differences 346 

between pairwise model combinations, we found that the drop in entropy with increasing topic 347 

number diminished, such that differences between models with 75, 100, and 150 topics were not 348 

significantly different from one another. This suggests that the probability mass of the topics-349 

over-OTUs distribution concentrates on OTU subsets of similar sizes as topic number increases. 350 

Analyzing topics in this way may help guide the user in the selection of topic number. 351 

CD diagnosis was associated with unique thematic and hence taxonomic profiles. The 352 

configuration of topics K25 and K75 are shown in figures S3 and S4, exemplifying how our 353 

pipeline represents 16S rRNA abundance data. For the topics shown, their posterior estimates 354 

did not span 0, a result that was also present when we performed permutation tests to confirm 355 

(figure S5). The panels are ordered in terms of mean effect estimate using the samples-over-356 

topic distribution against sample diagnosis. We consider topics with larger mean effect 357 

estimates as “high-ranking topics.” Both panels show that CD- training samples had a topic 358 

distribution that differed from CD+ samples. Moreover, a given topic’s association with disease 359 

presence in most influenced by the disease burden of its samples, particularly for K25, where 360 

CD+ samples with high probability for T19, T13, and T26 (the topics most associated with CD-) 361 

tend to have minimal disease burden. We henceforth focus on the K25 model. 362 

Focusing on these eight key topics, we identified multiple clusters of bacterial species that 363 

disproportionately dominated the top topics associated with CD+ (figure 2, top). For example, 364 

T2 contained a cluster dominated by Enterobacteriaceae taxa, whereas T12’s cluster contained a 365 

mixture of Fusobacteria and Enterobacteriaceae. The T15 cluster contained Haemophilus spp., 366 

Neisseria, Fusobacteria, and Streptococcus, all of which were noted as having a positive correlation 367 

with CD+ subjects in Gevers et al, as well as Aggregatibacter, a genus reportedly associated with 368 

colorectal cancer (Tjalsma et al., 2012). 369 

 370 

Given that T15 contains a cluster of bacteria known for their association with bowel 371 

inflammation and this topic occurs disproportionately in subjects with greater disease burden, 372 

we asked whether the abundance of these OTUs in CD+ subjects correlated with PCDAI, a 373 

clinical measure of CD burden. After performing negative binomial regression (figure 3), we 374 
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identified significant positive trends as a function of PCDAI for Aggregatibacter (p<0.0001), 375 

Erwinia (p=0.0004), Fusobacterium (p=0.0001), and Haemophilus (p=0.0484). 376 

The topics most associated with CD-, on the other hand, were dominated by taxa belonging to 377 

Lachnospiraceae, Roseburia, Rubinococcus, Blautia, Bacteroidetes, and Coprococcus, all of which were 378 

noted by Gevers et al. as being negativity associated with CD (figure 2, bottom; figure S6). In 379 

addition to these taxa, Akkermania, Dialister, and Dorea contributed to these topics, which is 380 

consistent with the findings of Lewis et al. who found a reduction of these taxa in CD+ subjects 381 

(Lewis et al., 2015).  382 

Within-topic co-occurrence profiles were confirmed via SPIEC-EASI. We compared the 383 

resulting topics to the correlations obtained via a network approach. The SPIEC-EASI network 384 

edges for the clusters of high probability OTUs in our most correlated topics are showed in 385 

figure S7. For each of these topic clusters, the majority of taxa were connected by a non-zero 386 

edge (table S5). Of the 11 taxa in the T15 cluster, 8 had first order connections (direct 387 

connections to other taxa within the cluster, OTUc-OTUc’), whereas 9 had second order 388 

connections (indirect connections to other taxa within the cluster via an intermediate OTU not 389 

present in the cluster, OTUc-OTUnc-OTUc’). Moreover, the two OTUs connected by largest edge 390 

weight, H. parainfluenzae and Haemophilus spp., had the largest probabilities of the taxa in the 391 

topic cluster, 0.320 and 0.245, respectively. Of these 6 topics, none had more than one OTU with 392 

zero connections or fewer than 75% of taxa joined by first order connections. Predictably, the 393 

taxa that lacked within-cluster connections received low probability from the topic model, with 394 

one exception, Catenibacterium spp. in T19. Taken together, this reaffirms that the within-topic 395 

co-occurrence profiles are consistent with alternative approaches. 396 

Predicted functional potential of notable topics further described their association with CD. 397 

We sought to further explore the co-occurrence profiles of these topics, thereby exploiting the 398 

posterior estimates of the topic model in a way unique compared to other approaches. To do so, 399 

we predicted the topic-specific functional content using PICRUSt and then performed a fully 400 

Bayesian multilevel regression analysis on the abundances of each gene function.  401 

Like Gevers et al., we identified an increase in membrane transport associated with CD+, 402 

particularly topics T2 and T12; however, through our approach, we were able to pinpoint the 403 

specific topics these functional categories associated with. This, in turn, allowed us to link these 404 

categories to specific taxa. For example, the two aforementioned topics were dominated by 405 

Enterobacteriaceae (figure S8). Topic T15, on the other hand, contained the cluster of 406 

Haemophilus spp., Neisseria, and Fusobacteria taxa, and despite being most associated with CD+, 407 

had a less substantial shift in membrane transport genes, suggesting that this pathogenic cluster 408 

contributed less to the shift of those genes.  409 

A considerable degree of cell motility genes was found in T19 relative to all other topics, which 410 

is consistent with this topic being dominated by mobile bacteria that belong to Lachnospiraceae, 411 

Roseburia, and Clostridiales. More specifically, this topic was enriched for genes belonging to 412 
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the following KEGG categories: bacterial motility proteins, bacterial chemotaxis, and flagellar 413 

assembly (figure 4).  The aforementioned Enterobacteriaceae-enriched topics were also enriched 414 

for siderophore and secretion system related genes. Enrichment of two lipopolysaccharide (LPS) 415 

synthesis categories were associated with CD+ topics; however, one of these categories was 416 

specific for T15 (table S7).  417 

 418 

Considerably more pathways were deemed significant via a DESeq2 approach on the OTU 419 

abundance table, hindering interpretability. We compared our within-topic functional profiles 420 

to the profiles obtained by performing PICRUSt on the copy-number normalized OTU 421 

abundance table and then performing a DESeq2 differential abundance analysis. Of the 160 422 

level-3 KEGG categories, 87 were found significant (α < .1) (figure S9) in the DESeq2 approach. 423 

Pathways with the largest log-fold change (LFC) associated with CD+ samples included 424 

degradation pathways (caprolactam, LFC=0.542; fluorobenzoate, 0.532; geraniol, 0.371; and 425 

toluene degradation, 0.371), alphalinolenic acid metabolism (0.641), and electron transfer 426 

carriers (0.635). Interestingly, these degradation pathways also demonstrated strong effects 427 

between topics; however, they associated with T1, a topic unrelated to disease status. Electron 428 

transfer carriers was identified in both approaches, but the topic model approach isolated T12, 429 

placing high probability on bacteria also enriched for functions linked to secretion systems, LPS 430 

biosynthesis, and motility. The DESeq2 approach also found fewer categories associated with 431 

CD- that had large LFC. For example, only 1 category had an LFC less than -0.04, whereas there 432 

were 8 greater than 0.04. The categories with the largest LFCs relative to CD- included 433 

germination (LFC=-0.450) and sporulation (-0.346). The topic model identified 10 topics with 434 

functional profiles significantly enriched or depleted in sporulation genes, three of which were 435 

associated with CD- samples. Moreover, multiple topics demonstrated an inverse relationship 436 

between sporulation and LPS genes, such that topics that contained taxa enriched in one were 437 

depleted in the other. 438 

 439 

Thematic Structure in Terms of Diet (AG) 440 

 441 

Despite consisting of far more samples, the AG dataset, split into O and V diet groups from self-442 

reported dietary information, offered a new challenge for our approach, given that there were 443 

far more data and features (taxa), as well as severe imbalance between classes. Of the 4864 444 

samples that fit into our diet classes, 4527 and only 337 were O and V samples, respectively. 445 

This renders comparisons between group means a worse estimate of treatments effects (Gelman 446 

& Hill, 2006). 447 

Accounting for potential confounding. Before applying our pipeline, we aimed to eliminate 448 

any potential sources of confounding. Male and female samples were distributed similarly with 449 
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respect to diet (table S9; figure S10). There was no significant difference in mean age between 450 

diet groups (t=-0.03, df=373.93, p=0.98). Sample body mass index was not normally distributed 451 

(Shapiro-Wilk: W=0.86, p<0.001) and was plagued with many mislabeled heights and weights 452 

(figure S11). After attempting to remove samples we deemed unreliable, we found a significant 453 

mean difference in body mass index between diet groups via a Mann Whitney U test (p<0.001). 454 

Classification using topics is less conservative and, for low dimensional models, less 455 

generalizable. Unlike Gevers, models with fewer topics (K < 75) generalized poorly compared 456 

to using OTUs as features, which may be due to AG having nearly 3-times as many unique 457 

OTUs, causing too few topics to dampen any meaningful signal (table S11). Interestingly, all 458 

parameterizations outperformed the raw data in terms of sensitivity but not specificity (table 459 

S11), suggesting that classification using OTU features is more conservative. 460 

Diet was associated with specific taxonomic and predicted functional profiles. We will 461 

henceforth report the results from a 100 topic model fit with dietary prior information. As 462 

before, we identified our topics of interest by regressing the samples-over-topics distribution 463 

against diet and further validated these results via permutation tests, resulting in 9 topics, 5 of 464 

which were associated with the O group, and 4 with the V group (figure S13). 465 

Across the 9 topics, members of the family Lachnospiraceae were well represented, which is not 466 

surprising given that it typically accounts for over half of bacteria in healthy human fecal 467 

samples (Flint, 2012). Within topics, we identified roughly 11 clusters of interest that contained 468 

high probability taxa, one of which belonged to T61, the topic most associated with the V group 469 

(figure 5). This cluster was dominated by taxa belonging to Lachnospiraceae (11/23), but T61 470 

still placed high probability on Roseburia, Blautia, and Ruminococcaceae. Given T61’s associated 471 

the V diet, this result is consistent with literature associating Roseburia and Ruminococcaceae with 472 

starch and plant polysaccharide metabolism (Flint et al., 2012) and Roseburia and Blautia with 473 

whole grains (Flint et al., 2015; Martínez et al., 2013). Also, consistent with this topic being 474 

dominated by Gram positive bacteria, we identified a significant depletion in predicted LPS 475 

biosynthesis genes. (figure 6)  476 

T12 contained a small yet diverse cluster of bacteria within Acinetobacter, a genus often 477 

associated with fermented foods and beverages, having high topic probability (Tamang et al., 478 

2016). Quinn et al. (2016), investigating the effect home-fermented foods had on human 479 

microbiota, identified enrichment of predicted fluorobenzoate degradation pathways (Quinn et 480 

al., 2016). This same pathway, T12, had the largest shift of any predicted pathways within a 481 

given topic (figure 6). To further investigate relationship between fluorobenzoate degradation 482 

pathways and diet group, we performed a logistic regression (logit link) on all samples aged at 483 

least 21y. Diet type (V=1) and the z-scored probability of containing T61 were independent 484 

variables with alcohol consumption (nno=837, nyes=3692) as the binary outcome (yes=1). Both T61 485 

(βT61=1.10, z=3.64, p<0.001) and diet (βdiet=-0.89, z=-6.78, p<0.001) were significant, suggesting a 486 
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potential relationship with fermented foods (specifically alcohol), Acinetobacter, and 487 

fluorobenzoate degradation. 488 

Finally, while T76 contained bacteria typically associated with a western lifestyle such as 489 

Clostridiales (Gorvitovskaia et al., 2016), it also placed the most probability mass on the 490 

Faecalibacterium prausnitzii (figure S14), as well as predicted butyrate production. This is 491 

significant because butyrate has not only critical in the fermentation of plant matter (Gill et al., 492 

2006), but reduction of fecal butyrate has been implicated in obesity and a shift toward a less 493 

carbohydrate-rich diet (Duncan et al., 2007). Moreover, the remaining bacteria present in this 494 

T76 cluster, Ruminiococus and Roseburia, have been shown to be elevated after fiber consumption 495 

(Flint et al., 2015). 496 

The topics associated with the O group, on the other hand, had predicted enrichment for LPS 497 

and secretion system pathways. A noteworthy cluster in T77 was surprisingly quite similar to 498 

the aforementioned cluster in T61. Lachnospiraceae composed the majority of each cluster: 499 

47.8% (11/23) of taxa for T61 compared to 20.6% (13/63) for T61. Moreover, the profiles of 500 

predicted functional content were analogous for all pathways except carotenoid biosynthesis 501 

and porphyrin and chlorophyll metabolism. A notable distinguishing characteristic is the lack 502 

of any Roseburia in the T77 cluster compared to T61. 503 

T20 also was enriched in predicted carotenoid biosynthesis, but the specific genes differed 504 

between the two topic clusters (table S12). T77 contained a disproportionate amount of the gene 505 

that codes for the enzyme in the final step of the synthesis of bacterial antioxidant 506 

staphyloxanthin (Clauditz et al., 2006) (figure S16). T20 was also abundant in genes belonging 507 

associated with secretion system function and LPS biosynthesis, and with respect to T20, a 508 

relative shift away from a subset of LPS genes key in one specific branch of the LPS pathway. 509 

High probability mass was placed on two taxa (order RF32) belonging to the class 510 

alphaproteobacteria, which has been identified in a cluster associated with animal based diets 511 

(David et al., 2014).  512 
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 DISCUSSION 513 

 514 

We have introduced our approach for uncovering latent thematic structure in the context of 515 

host state for 16S rRNA surveys. We contend that using a topic model to explore taxonomic and 516 

predicted functional structure improves interpretability in its natural ability to uncover the 517 

relationship between collections of co-occurring taxa (topics) and samples, topics and 518 

individual taxa, as well as topics and host covariates. Also, rather than inferring predicted 519 

functional content independently from taxonomic information, we shifted our focus to 520 

predicting within-topic functional content, which we parse by estimating pathway-topic 521 

interactions using a multilevel fully Bayesian regression model. The result not only provides a 522 

means to further explore our topics, it also allows us to link functions to specific clusters which 523 

can in turn be linked to sample covariates. This has notable implications in that we are 524 

drastically reducing the dimensionality of three sources of information, thus achieving a novel 525 

means to interpret these data. Moreover, we can identify gene sets of interest from noteworthy 526 

topics. For example, when the pipeline was applied to Gevers, we determined that T15 is (1) 527 

associated with CD+ samples; (2) dominated by a cluster of bacteria known to be associated 528 

with CD; and (3) uniquely enriched for a subset of LPS synthesis genes. Being able to explore 529 

this topic’s gene profile demonstrates the utility of this topic model approach. Using this 530 

information, one could focus on gene subsets associated with topic specific bacterial clusters 531 

that are known disease biomarkers, which in turn may facilitate targeted approaches for 532 

manipulating the microbiome. 533 

We present our approach at a time when novel means to analyze complex microbiome 534 

abundance data is called for. Current methods often link the abundance of a single OTU across 535 

samples to some particular sample outcome. These methods routinely identify important 536 

subsets of taxa, but ignore OTU co-occurrence. Network methods overcome this concern, but 537 

instead fail to do so in the context of sample data and hence are incapable of linking sections of 538 

the network with sample subsets of interest. Constrained ordination methods, such as canonical 539 

correspondence analysis, do in fact couple inter-community distance with sample information, 540 

but the user is limited to specific distance metrics (e.g., Chi-squared) and must follow key 541 

assumptions (e.g., the distributions of taxa along environmental gradients are unimodal) 542 

(Legendre & Legendre, 1998). Moreover, interpretation of biplots becomes increasingly difficult 543 

as more covariates are included, and, unlike our approach, linking key subsets of taxa with 544 

corresponding subsets of gene functions is not easily achievable. 545 

The ability to make meaningful inferences is further compounded by the fact that microbiome 546 

data is often inadequately sampled (justifying some type of normalization procedure), 547 

compositional (due to normalization), sparse, and overdispersed. Compositional data restricts 548 

the appropriateness of many statistical methods due to the sum constraint placed across 549 

samples. SPIEC-EASI provides a robust network approach for overcoming compositional 550 
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artifacts in an attempt to infer community level interactions. We hence compared our within 551 

topic taxonomic clusters to the first and second order interactions identified by SPIEC-EASI, to 552 

which we found coherence between the two approaches, suggesting a topic model approach for 553 

compositional data is in fact appropriate.  554 

Others have explored the use of Dirichlet-Multinomial models, which are well equipped at 555 

managing overdispersed count data (Brien & Record, 2016; Holmes et al., 2012; De Valpine & 556 

Harmon-Threatt, 2013). The fact that Dirichlet-Multinomial conjugacy is exploited for the 557 

topics-over-OTUs component of the topics models described above reflects their suitability for 558 

abundance data. We selected the recently developed STM for our workflow because of its 559 

ability to not only utilize sample data prior information in the flavor of the Dirichlet-560 

Multinomial topic model, but also its ability to capture topic correlation structure and apply 561 

partial pooling over samples or regularization across regression weights.  562 

Normalization is also a chief concern when analyzing sequencing abundance data (McMurdie & 563 

Holmes, 2014); hence, we found it imperative to determine a suitable approach. In the original 564 

LDA paper, the generative process assumed a fixed document length N, but N was considered 565 

a simplification and could easily be removed because it is independent of all other components 566 

of the model. This allows for the possibility of more realistic document size distributions (Blei et 567 

al., 2003). Given this fact, coupled with the ability of the Dirichlet-Multinomial distribution in 568 

handling overdispersion, and the results of our simulations, we concluded that raw abundance 569 

data could be adequately modeled in our approach (Woloszynek et al., 2017). The variance 570 

stabilization through DESeq2, while potentially ideal for large sample sizes with adequate 571 

signal, seemed to dampen the ability to identify topic-sample associations. Despite performing 572 

well at mapping SCs to topics, the rarefied approach suffered from reduced power when 573 

identifying topics with large covariate effects. 574 

Finally, there are limitations to our approach. First, the workflow from OTU abundance table 575 

through pathway-topic inference scales poorly in terms of computation time for large numbers 576 

of topic, which may be more necessary as datasets continue to grow in size. Regularization and 577 

sparsity inducing priors help limit the number of important topics; hence, exploring only a 578 

subset of topics during the final regression step can offer substantial speed improvements at 579 

little cost, but utilizing the complete set of topic information would be ideal. Also, we utilize 580 

Hamiltonian MC via Stan. Other posterior inference procedures such as variational inference 581 

using software packages such as Edward may provide additional speed enhancements (Brevdo 582 

et al., 2017). Second, we are capable of separately estimating the uncertainty in our topic model, 583 

the hierarchical regression model, and the functional predictions from PICRUSt, but we 584 

currently do not propagate the uncertainty throughout the workflow. Doing so would improve 585 

downstream interpretation with better estimation of the topic-sample covariates and pathway-586 

topic effects, which in turn would greatly improve one’s confidence with utilizing within-topic 587 

gene sets. Third, we do not incorporate phylogenetic branch length information, which could 588 

lead to more meaningful topics. 589 
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 705 

Figure 1. Given a 16S rRNA abundance table (1), a topic model is used to uncover the thematic structure of the data, represented by 706 
the proportions of topics within samples and OTUs within topics (2). The former is then regressed against sample data (3), to 707 
identify the strength of a topic-covariate relationship to rank the topics (4). The latter is then placed into PICRUSt to generate 708 

predictions of the within-topic functional potential (5). Important pathways are identified via a fully Bayesian multilevel regression 709 
model (6). The end result is the ability to identify clusters of bacteria associated with covariates of interest, in addition to specific 710 

pathways and orthologous groups specific to these clusters. 711 
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Figure 2. Subsections of the heatmap for the Gevers data of the topics over OTU distribution in log space generated by the K25 topic 715 
model with covariate prior information. Shown are the top 3 topics associated with CD- and CD+, ordered by mean regression 716 

estimate (left to right, respectively, separated by the white line). Clusters of interest are marked with red dotted lines. Clustering 717 
was performed via Ward’s method on Bray-Curtis distances. Low probabilities (p < 1x10-5) are set to 0 to minimize the range of the 718 

color gradient to ease visualization. Yellow=high probability, Blue=low probability. 719 
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 721 

Figure 3. Scatterplots of Gevers data for the relative abundance of taxa that compose a high probability cluster in T15 versus PCDAI, 722 
a clinical measure of CD disease burden. Red points reflect significance (alpha=.05) for negative binomial regression (log linked, 723 

sample coverage offset) with Bonferroni correction. 724 

 725 

Figure 4. Heatmap for Gevers data of the level-3 pathway category-topic interaction regression coefficients from the multiple level 726 
negative binomial model. KEGG information was predicted via PICRUSt on the topics over OTU distribution from the K25 topic 727 
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model with covariate prior information. Topics are ordered based on their mean regression weight when using topic probabilities as 728 
linear predictors for disease presence, where leftmost topics are most associated with CD-, whereas right most topics are most 729 

associated with CD+. Clustering was performed via Ward’s method on Bray-Curtis distances. Red and blue crosses indicate weights 730 
or pathway-topic combinations that do not span 0 with 80% uncertainty and are positive or negative, respectively. Only pathways 731 

with at least one such combination are shown. 732 

 733 

Figure 5. Subsection of the heatmap for AG data for the topics over OTU distribution in log space generated by the K100 topic 734 
model with covariate prior information. Shown are the topics with 95% uncertainty intervals that do not enclose 0 when regressed 735 

against diet type (O=0, V=1), ordered negative to positive by increasing mean regression estimate (left to right), such that T77 is most 736 
associated with O and T61 is most associated with V. The white light signifies a shift from positive to negative means regression 737 
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estimates. Clustering was performed via Ward’s method on Bray-Curtis distances. Low probabilities (p < 1x10-5) are set to 0 to 738 
minimize the range of the color gradient to ease visualization. Yellow=high probability, Blue=low probability. 739 

 740 

Figure 6. Heatmap for AG data of the level 3 pathway category-topic interaction regression coefficients from the multiple level 741 
negative binomial model. KEGG information was predicted via PICRUSt on the topics over OTU distribution from the K100 topic 742 

model with covariate prior information. Only the top 25 topics based on mean regression weight (when using topic probabilities as 743 
linear predictors for disease presence) were chosen for the negative binomial to alleviate computational concerns. Topics are 744 

ordered based on their mean regression weight, where leftmost topics are most associated with O, whereas right most topics are 745 
most associated with V, separated by the white line. Clustering was performed via Ward’s method on Bray-Curtis distances. Red 746 
and blue crosses indicate weights for pathway-topic combinations that do not enclose 0 with 80% uncertainty and are positive or 747 

negative, respectively. Only pathways with at least one such combination are shown. 748 
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