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 2 

ABSTRACT: 20 

Asthma is a common, under-diagnosed disease affecting all ages. We sought to identify a nasal 21 

brush-based classifier of mild/moderate asthma. One hundred ninety subjects with 22 

mild/moderate asthma and controls underwent nasal brushing and RNA sequencing of nasal 23 

samples. A machine learning-based pipeline, comprised of feature selection, classification, and 24 

statistical analyses, identified a diagnostic classifier of asthma consisting of 90 nasally 25 

expressed genes interpreted via an L2-regularized logistic regression classification model. This 26 

nasal brush-based classifier performed with strong predictive value and sensitivity across eight 27 

validation test sets, including (1) a test set of independent asthmatic and non-asthmatic subjects 28 

profiled by RNA sequencing (positive and negative predictive values of 1.00 and 0.96, 29 

respectively; AUC of 0.994), (2) two independent case-control cohorts of asthma profiled by 30 

microarray, and (3) five independent cohorts of subjects with other respiratory conditions 31 

(allergic rhinitis, upper respiratory infection, cystic fibrosis, smoking), where the panel had a low 32 

to zero rate of misclassification. Translational development of this classifier into a diagnostic 33 

nasal brush-based biomarker for clinical use could aid in asthma detection and care.  34 
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Introduction 35 

Asthma is a chronic respiratory disease that affects 8.6% of children and 7.4% of adults 36 

in the United States [1]. Its true prevalence may be higher. The fluctuating airflow obstruction, 37 

bronchial hyper-responsiveness, and airway inflammation that characterize mild to moderate 38 

asthma can be difficult to detect in busy, routine clinical settings [2]. In one study of US middle 39 

school children, 11% reported physician-diagnosed asthma with current symptoms, while an 40 

additional 17% reported active asthma-like symptoms without a diagnosis of asthma [3]. 41 

Undiagnosed asthma leads to missed school and work, restricted activity, emergency 42 

department visits, and hospitalizations [3, 4]. Given the high prevalence of asthma and 43 

consequences of missed diagnosis, there is high potential impact of improved diagnostic tools 44 

for asthma [5].  45 

National and international guidelines recommend that the diagnosis of asthma should be 46 

based on a history of typical symptoms and objective findings of variable expiratory airflow 47 

limitation [6, 7]. However, obtaining such objective findings can be challenging given currently 48 

available tools. Pulmonary function tests (PFTs) require equipment, expertise, and experience 49 

to execute well [8, 9]. Many individuals have difficulty with PFTs because they require 50 

coordinated breaths into a device. Results are unreliable if the procedure is done with poor 51 

technique [8]. Further, PFTs are usually not immediately available in primary care settings. 52 

Despite guidelines recommending objective tests such as PFTs to assess possible asthma, 53 

PFTs are not done in over half of patients suspected of having asthma [8]. Induced sputum and 54 

exhaled nitric oxide have been explored as asthma biomarkers, but their implementation 55 

requires technical expertise and does not yield better clinical results than physician-guided 56 

management alone [10]. Given the above, the reality is that most asthma is still clinically 57 

diagnosed and managed based on self-report [8, 9]. This is suboptimal for mild/moderate 58 

asthma given its waxing/waning nature, and because self-reported symptoms and medication 59 

use are biased [11].  60 
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A nasal biomarker of asthma is of high interest given the accessibility of the nose and 61 

shared airway biology between the upper and lower respiratory tracts [12-15]. The easily 62 

accessible nasal passages are directly connected to the lungs and exposed to common 63 

environmental and microbial factors. In this study, we applied next-generation sequencing and 64 

machine learning to identify a novel nasal brush-based classifier of asthma (Figure 1). 65 

Specifically, we used RNA sequencing (RNAseq) to comprehensively profile gene expression 66 

from nasal brushings collected from subjects with mild to moderate asthma and controls, 67 

creating the largest nasal RNAseq data set in asthma to date. Using a robust machine learning-68 

based pipeline comprised of feature selection [16], classification [17], and statistical analyses 69 

[18], we identified an asthma gene panel that accurately differentiates subjects with and without 70 

mild-moderate asthma. This pipeline was designed with a systems biology-based perspective 71 

that many genes, even ones with marginal effects, can collectively classify phenotypes (here 72 

asthma) more accurately than individual genes [19]. 73 

We validated this asthma gene panel on eight test sets of independent subjects with 74 

asthma and other respiratory conditions, finding that it performed with high accuracy, sensitivity, 75 

and specificity. As the study of nasal transcriptomics in asthma has been marked by small 76 

studies thus far, our relatively large study importantly adds RNAseq data to the field while also 77 

leveraging smaller existing data sets for external validation. We see our identification of a 78 

diagnostic nasal brush-based classifier of asthma as the first step in the development of 79 

minimally invasive, nasal biomarkers for asthma care, with translational development for clinical 80 

implementation to follow next. As with any disease, the first step is to accurately identify affected 81 

patients, and a next phase of research will be to develop nasal biomarkers to predict treatment 82 

response.  83 

 84 

Results 85 

Study population and baseline characteristics 86 
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We performed nasal brushing on 190 subjects for this study, including 66 subjects with 87 

well-defined mild to moderate persistent asthma (based on symptoms, medication need, and 88 

demonstrated airway hyper-responsiveness by methacholine challenge) and 124 subjects 89 

without asthma (based on no personal or family history of asthma, normal spirometry, and no 90 

bronchodilator response). The definitional criteria we used for mild-moderate asthma are 91 

consistent with US National Heart Lung Blood Institute guidelines for the diagnosis of asthma 92 

[7], and are the same criteria used in the longest NIH-sponsored study of mild-moderate asthma 93 

[20, 21]. 94 

From these 190 subjects, a random selection of 150 subjects were a priori assigned as 95 

the development set (to be used for asthma classifier development), and the remaining 40 96 

subjects were a priori assigned as the RNAseq test set (to be used as one of 8 validation test 97 

sets for testing of the asthma classifier identified from the development set).  98 

The baseline characteristics of the subjects in the development set (n=150) are shown in 99 

the left section of Table 1. The mean age of subjects with asthma was somewhat lower than 100 

subjects without asthma, with slightly more male subjects with asthma and more female 101 

subjects without asthma. Caucasians were more prevalent in subjects without asthma, which 102 

was expected based on the inclusion criteria. Consistent with reversible airway obstruction that 103 

characterizes asthma [2], subjects with asthma had significantly greater bronchodilator 104 

response than control subjects (T-test P = 1.4 x 10-5). Allergic rhinitis was more prevalent in 105 

subjects with asthma (Fisher’s exact test P = 0.005), consistent with known comorbidity 106 

between allergic rhinitis and asthma [22]. Rates of smoking between subjects with and without 107 

asthma were not significantly different.108 

RNA isolated from nasal brushings from the subjects was of good quality, with mean RIN 109 

7.8 (±1.1). The median number of paired-end reads per sample from RNA sequencing was 36.3 110 

million. Following pre-processing (normalization and filtering) of the raw RNASeq data, 11,587 111 

genes were used for statistical and machine learning analysis. VariancePartition analysis [23], 112 
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which is designed to analyze the contribution of technical and biological factors to variation in 113 

gene expression, showed that age, race, and sex contributed minimally to total gene expression 114 

variance (Supplementary Figure 1). For this reason, we did not adjust the pre-processed 115 

RNASeq data for these factors. 116 

Differential gene expression analysis by DeSeq2 [24] showed that 1613 and 1259 genes 117 

were respectively over- and under-expressed in asthma cases versus controls (false discovery 118 

rate (FDR) ≤0.05) (Supplementary Table 1). These genes were enriched for disease-relevant 119 

pathways in the Molecular Signature Database [25],  including immune system (fold 120 

change=3.6, FDR=1.07 x 10-22), adaptive immune system (fold change=3.91, FDR=1.46 x 10-121 

15), and innate immune system (fold change=4.1, FDR=4.47 x 10-9) (Supplementary Table 1). 122 

 123 

Identifying a nasal brush-based classifier to predict asthma status 124 

To identify a nasal brush-based classifier that accurately predicts asthma status using 125 

the RNAseq data generated, we developed a rigorous machine learning pipeline that combined 126 

feature (gene) selection [16] and classification techniques [17] that was applied to the 127 

development set (Materials and Methods and Supplementary Figure 2). This pipeline was 128 

designed with a systems biology-based perspective that many genes, even ones with marginal 129 

effects, can collectively classify phenotypes (here asthma) more accurately than individual 130 

genes. Each gene expression trait can be evaluated on its own or in combination with other 131 

gene expression traits to assess how well it distinguishes asthma cases from controls (a 132 

process referred to as feature selection).  Once the most predictive gene expression traits 133 

(features) are identified, various machine learning algorithms can be applied to build a classifier 134 

that is optimized to predict asthma status as accurately as possible given the data (a process 135 

referred to as classification analysis).  136 

Feature selection in our pipeline involved a cross validation-based protocol [26] using 137 

the well-established Recursive Feature Elimination (RFE) algorithm [16] combined with L2-138 
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regularized Logistic Regression (LR or Logistic) and Support Vector Machine (SVM-Linear 139 

(kernel)) algorithms [17] (combinations referred to as LR-RFE and SVM-RFE respectively) 140 

(Supplementary Figure 3). Classification analysis was then performed by applying four global 141 

classification algorithms (SVM-Linear, AdaBoost, Random Forest, and Logistic) [17] to the 142 

expression profiles of the gene sets identified by feature selection. To reduce the potential 143 

adverse effect of overfitting, this process (feature selection and classification) was repeated 100 144 

times on 100 random splits of the development set into training and holdout sets. The final 145 

classifier was selected by statistically comparing the models in terms of both classification 146 

performance and parsimony, i.e., the number of genes included in the model [18] 147 

(Supplementary Figure 4).  148 

Due to the imbalance of the two classes (asthma and controls) in our cohort (consistent 149 

with imbalances in the general population), we used F-measure as the main evaluation metric in 150 

our study [27]. This class-specific measure is a conservative mean of precision (predictive 151 

value) and recall (same as sensitivity), and is described in detail in Box 1 and Supplementary 152 

Figure 5. F-measure can range from 0 to 1, with higher values indicating superior classification 153 

performance. An F-measure value of 0.5 does not represent a random model. To provide 154 

context for our performance assessments, we also computed commonly used evaluation 155 

measures, including positive and negative predictive values (PPVs and NPVs) and Area Under 156 

the Receiver Operating Characteristic (ROC) Curve (AUC) scores (Box 1 and Supplementary 157 

Figure 5).158 
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___________________________________________________________________________ 159 

Box 1: Evaluation measures for predictive models 160 

Many measures exist for evaluating the performance of classifiers. The most commonly 161 

used evaluation measures in medicine are the positive and negative predictive values (PPV and 162 

NPV respectively; Supplementary Figure 5), and Area Under the Receiver Operating 163 

Characteristic (ROC) Curve (AUC score) [27].  However, these measures have several 164 

limitations. PPV and NPV ignore the critical dimension of sensitivity [27]. For instance, a 165 

classifier may predict perfectly for only one asthma sample in a cohort and make no predictions 166 

for all other asthma samples. This will yield a PPV of 1, but poor sensitivity, since none of the 167 

other asthma samples were identified by the classifier. ROC curves and their AUC scores do 168 

not accurately reflect performance when the number of cases and controls in a sample are 169 

imbalanced [27], which is frequently the case in clinical studies and medical practice. For such 170 

situations, precision, recall, and F-measure (Supplementary Figure 5) are considered more 171 

meaningful performance measures for classifier evaluation. Note that precision for cases (e.g. 172 

asthma) is equivalent to PPV, and precision for controls (e.g. no asthma) is equivalent to NPV 173 

(Supplementary Figure 5). Recall is the same as sensitivity. F-measure is the harmonic 174 

(conservative) mean of precision and recall that is computed separately for each class, and thus 175 

provides a more comprehensive and reliable assessment of model performance for cohorts with 176 

unbalanced class distributions. Like PPV, NPV and AUC, F-measure ranges from 0 to 1, with 177 

higher values indicating superior classification performance, but a value of 0.5 for F-measure 178 

does not represent a random model and could in some cases indicate superior performance 179 

over random. For the above reasons, we consider F-measure as the primary evaluation 180 

measure in our study, although we also provide PPV, NPV and AUC measures for context. 181 

  182 
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The best performing and most parsimonious combination of feature selection and 183 

classification algorithm identified by our machine learning pipeline was LR-RFE & Logistic 184 

(Regression) (Supplementary Figure 4). The classifier inferred using this combination was built 185 

on 90 predictive genes and will be henceforth referred to as the asthma gene panel. We 186 

emphasize that the expression values of the panel’s 90 genes must be used in combination with 187 

the Logistic classifier and the model’s optimal classification threshold (i.e. predicted 188 

label=asthma if classifier’s probability output≥0.76, else predicted label=no asthma) to be used 189 

effectively for asthma classification. 190 

 191 

Validation of the asthma gene panel classifier in an RNAseq test set of independent subjects 192 

Our next step was to validate the asthma gene panel in an RNAseq test set of 193 

independent subjects, for which we used the test set (n=40) of nasal RNAseq data from 194 

independent subjects. The baseline characteristics of the subjects in this test set are shown in 195 

the right section of Table 1. Subjects in the development and test sets were generally similar, 196 

except for a lower prevalence of allergic rhinitis among those without asthma in the test set. 197 

The asthma gene panel performed with high accuracy in the RNAseq test set’s 198 

independent subjects, achieving AUC = 0.994 (Figure 2), PPV 1.00, and NPV 0.96 (Figures 3B 199 

and 3D, left most bar). In terms of the F-measure metric, the panel achieved F = 0.98 and 0.96 200 

for classifying asthma and no asthma, respectively (Figures 3A and 3C, left most bar). For 201 

comparison, the much lower performance of permutation-based random models is shown in 202 

Supplementary Figure 6. 203 

Our machine learning pipeline evaluated models from several combinations of feature 204 

selection and classification algorithms to select the most predictive classifier. Potentially 205 

predictive genes can also be identified from differential expression analysis and results from 206 

prior asthma-related studies. Figure 4 shows the performance of the asthma gene panel in the 207 

RNAseq test set relative to that of alternative classifiers trained on the development set using: 208 
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(1) other classifiers tested in our machine learning pipeline, (2) all genes in our data set (11587 209 

genes after filtering), (3) all differentially expressed genes in the development set (2872 genes) 210 

(Supplementary Table 1), (4) genes associated with asthma from prior studies[28] (70 genes) 211 

(Supplementary Table 2), and (5) a commonly used one-step classification model (L1-Logistic) 212 

[29] (243 genes). The asthma gene panel identified by our pipeline outperformed all these 213 

alternative classifiers despite its reliance on a small number of genes.  214 

We emphasize that our panel produced more accurate predictions than models using all 215 

genes, all differentially expressed genes, and all known asthma genes. This supports that data-216 

driven methods can build more effective classifiers than those built exclusively on traditional 217 

statistical methods (which do not necessarily target classification), and current domain 218 

knowledge (which may be incomplete and subject to investigation bias). Our panel also 219 

outperformed and was more parsimonious than the model learned using the commonly used 220 

L1-Logistic method, which combined feature selection and classification into a single step. The 221 

fact that our asthma gene panel performed well in an independent RNAseq test set while also 222 

outperforming alternative models lends confidence to the panel’s classification ability. 223 

 224 

Validation of the asthma gene panel in external asthma cohorts 225 

To assess the generalizability of our asthma gene panel for asthma classification in 226 

other populations and profiling platforms, we applied the panel to microarray-derived nasal gene 227 

expression data generated from independent cohorts of asthmatics and controls : Asthma1 228 

(GEO GSE19187)[30] and Asthma2 (GEO GSE46171)[31]. Supplementary Table 3 229 

summarizes the characteristics of these external, independent case-control cohorts. In general, 230 

RNAseq-based predictive models are not expected to translate well to microarray-profiled 231 

samples [32, 33]. A major reason is that gene mappings do not perfectly correspond between 232 

RNAseq and microarray due to disparities between array annotations and RNAseq gene models 233 
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[33]. Our goal was to assess the performance of our asthma gene panel despite discordances in 234 

study designs, sample collections, and gene expression profiling platforms.  235 

The asthma gene panel performed relatively well (Figure 3 middle bars) and 236 

consistently better than permutation-based random models (Supplementary Figure 6) in 237 

classifying asthma and no asthma in both the Asthma1 and Asthma2 microarray-based test 238 

sets. The panel achieved similar F-measures in the two test sets (Figures 3A and 3C middle 239 

bars), although the PPV and NPV measures were more dissimilar for Asthma2 (PPV 0.93, NPV 240 

0.31) than for Asthma1 (PPV 0.61, NPV 0.67) (Figure 3B and 3D middle bars). Although the 241 

panel’s performance was better than its random counterparts for both these test sets, the 242 

difference in this performance was smaller for Asthma2. This occurred partially because 243 

Asthma2 includes many more asthma cases than controls (23 vs. 5), which is counter to the 244 

expected distribution in the general population. In such a skewed data set, it is possible for a 245 

random model to yield an artificially high F-measure for asthma by predicting every sample as 246 

asthmatic. We verified that this occurred with the random models tested on Asthma2.  247 

To assess how the asthma gene panel might perform in a larger external test set , we 248 

combined samples from Asthma1 and Asthma2 and performed the evaluation on this combined 249 

set. We chose this approach because no single large, external dataset of nasal gene expression 250 

in asthma exists, and combining cohorts could yield a joint test set with heterogeneity that 251 

partially reflects real-life heterogeneity of asthma.  As expected, all the performance measures 252 

for this combined test set were intermediate to those for Asthma1 and Asthma2 (Figure 3 right 253 

most bars), and they still outperformed random counterparts of the panel (Supplementary 254 

Figure 6). These results supported that our panel also performs  well in a larger and more 255 

heterogeneous cohort. 256 

Overall, despite the discordance of gene expression profiling platforms, study designs, 257 

and sample collection methods, our asthma gene panel performed reasonably well in these 258 

external test sets, supporting a degree of generalizability of the panel across platforms and 259 
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cohorts. Such a translatable result is not frequently observed in genomic medicine research, 260 

especially those based on gene expression [34, 35]. 261 

 262 

Specificity of the asthma gene panel: validation in external cohorts with non-asthma respiratory 263 

conditions 264 

To assess the specificity of our panel, we next sought to determine if it would misclassify 265 

as asthma other respiratory conditions with symptoms that overlap with asthma. To this end, we 266 

evaluated the performance of the asthma gene panel on nasal gene expression data derived 267 

from case-control cohorts with allergic rhinitis (GSE43523) [36], upper respiratory infection 268 

(GSE46171) [31], cystic fibrosis (GSE40445) [37], and smoking (GSE8987) [12]. 269 

Supplementary Table 4 details the characteristics for these external cohorts with non-asthma 270 

respiratory conditions. In three of these five non-asthma cohorts (Allergic Rhinitis, Cystic 271 

Fibrosis and Smoking), the panel appropriately produced one-sided classifications, i.e., samples 272 

were all appropriately classified as “no asthma.” This is shown by the zero F-measure for the 273 

positive (asthma) class (Figure 5A) and perfect F-measure for the negative (no asthma) class 274 

(Figure 5C) obtained by the panel in these cohorts. In other words, the precision for the asthma 275 

class (PPV) of our panel was exactly and appropriately zero (Figure 5B), and NPV was 276 

perfectly 1.00 for these cohorts with non-asthma conditions (Figures 5D). The URI day 2 and 6 277 

cohorts were slight deviations from these trends, where the panel achieved perfect NPVs of 278 

1.00 (Figure 5D), but marginally lower F-measure for the “no asthma” class (Figure 5C) due to 279 

slightly lower than perfect sensitivity. This may have been influenced by common inflammatory 280 

pathways underlying early viral inflammation and asthma [38]. Nonetheless, consistent with the 281 

other non-asthma test sets, the panel’s misclassification of URI as asthma was rare and 282 

substantially less than its random counterpart classifiers (Supplementary Figure 7).  283 

To assess the asthma gene panel’s performance if presented with a large, 284 

heterogeneous collection of non-asthma respiratory conditions reflective of real clinical settings, 285 
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we aggregated the non-asthma cohorts into a “Combined non-asthma” test set and applied the 286 

asthma gene panel. The results included an appropriately zero F-measure for asthma and zero 287 

PPV, and F-measure 0.97 for no asthma and NPV 1.00 (Figure 5, right most bars). Results 288 

from the individual and combined non-asthma test sets collectively support that the asthma 289 

gene panel would rarely misclassify other respiratory diseases as asthma.  290 

 291 

Statistical and Pathway Examination of Genes in the Asthma Gene Panel 292 

An interesting question to ask for a disease classification panel is how does its predictive 293 

ability relate to the individual differential expression status of the genes constituting the panel? 294 

We found that 46 of the 90 genes included in our panel were differentially expressed (FDR 295 

≤0.05), with 22 and 24 genes over- and under-expressed in asthma respectively (Figure 6, 296 

Supplementary Table 1). More generally, the genes in our panel had lower differential 297 

expression FDR values than other genes (Kolmogorov-Smirnov statistic=0.289, P-298 

value=2.73x10-37) (Supplementary Figure 8).  299 

In terms of biological function, pathway enrichment analysis of our panel’s 90 genes, 300 

though statistically limited by the small number of genes, yielded enrichment for pathways 301 

including defense response (fold change=2.86, FDR=0.006) and response to external stimulus 302 

(fold change=2.50, FDR=0.012). Only four (C3, DEFB1, CYFIP2 and GSTT1) of the 90 genes 303 

are known asthma genes and are functionally involved in complement activation, microbicidal 304 

activity, T-cell differentiation, and oxidative stress, respectively [28]. These results suggest that 305 

our machine learning pipeline was able to extract information beyond individually differentially 306 

expressed or previously known asthma genes, allowing for the identification of a parsimonious 307 

panel of genes that collectively enabled accurate asthma classification.  308 
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Discussion 309 

We identified a panel of genes expressed in nasal brushings that accurately classifies 310 

subjects with mild/moderate asthma from controls. This nasal brush-based panel, consisting of 311 

the expression profiles of 90 genes interpreted via a logistic regression classification model, 312 

performed with high precision (PPV=1.00 and NPV=0.96) and recall for classifying asthma 313 

(AUC=0.994). The performance of the asthma gene panel across independent asthma test sets 314 

demonstrates the generalizability of the panel across study populations and two major 315 

modalities of gene expression profiling (RNAseq and microarray). Additionally, the panel’s low 316 

to zero rate of misclassification on external cohorts with non-asthma respiratory conditions 317 

supported the specificity of this panel.  318 

 Our nasal brush-based asthma gene panel is based on the common biology of the upper 319 

and lower airway, a concept supported by clinical practice and previous findings [12-15]. 320 

Clinically, we rely on the united airway by screening for lower airway infections (e.g. influenza, 321 

methicillin-resistant Staphylococcus aureus) with nasal swabs [39]. Sridhar et al. found that 322 

gene expression consequences of tobacco smoking in bronchial epithelial cells were reflected in 323 

nasal epithelium [12]. Wagener et al. compared gene expression in the nasal and bronchial 324 

epithelia from 17 subjects, finding that 99% of the 33,000 genes tested exhibited no differential 325 

expression between the nasal and bronchial epithelia in those with airway disease [13]. In a 326 

study of 30 children, Guajardo et al. identified gene clusters with differential expression in nasal 327 

epithelium between subjects with exacerbated asthma vs. controls [14]. The above studies were 328 

done with small sample sizes and microarray technology. More recently, Poole et al. compared 329 

RNAseq profiles of nasal brushings from 10 asthmatic and 10 control subjects to publicly 330 

available bronchial transcriptional data, finding correlation (ρ = 0.87) between nasal and 331 

bronchial transcripts, as well as correlation (ρ=0.77) between nasal differential expression and 332 

previously observed bronchial differential expression in asthmatics [15]. To our knowledge, our 333 
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study has generated the largest nasal RNAseq data set in asthma to date and is the first to 334 

identify a nasal brush-based classifier of asthma. 335 

Although based on only 90 genes, our asthma gene panel classified asthma with greater 336 

accuracy than models based on all genes, all differentially expressed genes, and known asthma 337 

genes (Figure 4). Its superior performance supports that our machine learning pipeline 338 

successfully selected a parsimonious set of informative genes that (1) captures more actionable 339 

knowledge than traditional differential expression and genetic association analyses, and (2) cuts 340 

through the potential noise of genes irrelevant to asthma. These results show that data-driven 341 

methods can build more effective classifiers than those built exclusively on current domain 342 

knowledge. About half the genes in our asthma gene panel were not differentially expressed at 343 

FDR ≤ 0.05, and as such would not have been examined with greater interest had we only 344 

performed traditional differential expression analysis, which is the main analytic approach of 345 

virtually all studies of gene expression in asthma. [12-15, 40, 41]. Consistent with basic 346 

hypotheses underlying systems biology approaches, our study demonstrated that the asthma 347 

gene panel captures signal from differential expression as well as genes below traditional 348 

significance thresholds that may still have a contributory role to asthma classification. Only four 349 

of the 90 genes (complement component 3 (C3), defensing beta-1 (DEFB1), cytoplasmic FMR1 350 

interacting protein (CYFIP2) and glutathione S-transferase theta 1 (GSTT1)) were previously 351 

identified to be relevant to asthma by genetic association studies [28].  352 

Our asthma gene panel has the potential to be developed into a minimally invasive 353 

biomarker to aid asthma diagnosis at clinical frontlines, where time and resources often 354 

preclude pulmonary function testing (PFT). Nasal brushing can be performed quickly, does not 355 

require machinery for collection, and implementation of our classification model yields a 356 

straightforward, binary result of asthma or no asthma. According to the Global Initiative for 357 

Asthma and US National Heart Lung Blood Institute, the diagnosis of asthma should be based 358 

on a history of typical symptoms and objective findings of variable expiratory airflow limitation by 359 
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PFT [6, 7]. Practically, however, objective measures are often not obtained. Patients with 360 

mild/moderate asthma are frequently asymptomatic at the time of exam. PFTs are often not 361 

done, with one study showing that over half of 465,866 patients over age 7 years with newly 362 

diagnosed asthma had no PFTs performed within a 3.5 year window surrounding diagnosis [8]. 363 

Clinicians defer PFTs due to lack of equipment, time, and/or expertise to perform and interpret 364 

results [8, 9]. Diagnosing asthma based on history alone contributes to its under-diagnosis, as 365 

patients with asthma under-perceive and under-report their symptoms [11]. Misdiagnosis of 366 

asthma also occurs frequently given overlapping symptoms between asthma and other 367 

conditions [42]. Even if PFTs are obtained, spirometric abnormalities in mild/moderate 368 

asthmatics are not always present. An objective, accurate diagnostic classifier that is easy to 369 

obtain and interpret with minimal effort from the provider and patient could improve asthma 370 

diagnostic accuracy so that appropriate management can then be pursued.  371 

 Implementation of the asthma gene panel could involve clinicians brushing a patient’s 372 

nose, placing the brush in a prepackaged tube, and submitting the sample for gene expression 373 

profiling targeted to the panel. Some platforms allow for direct transcriptional profiling of tissue 374 

without an RNA isolation step, avoiding inconveniences associated with direct RNA work [43, 375 

44] and yielding comparable results to RNAseq [45]. Bioinformatic interpretation of the output 376 

via the logistic regression-based classifier and classification threshold check could be 377 

automated, resulting in a determination of asthma or no asthma for the clinician to consider. 378 

Gene expression-based diagnostic classifiers are being successfully used in other disease 379 

areas, with prominent examples including the commercially available MammaPrint [46] and 380 

Oncotype DX [47] for diagnosing/predicting breast cancer phenotypes. These examples from 381 

the cancer field demonstrate an existing path for moving a diagnostic gene panel such as ours 382 

to clinical use. 383 

 Because it takes seconds for nasal brushing, an asthma gene panel such as ours may 384 

be attractive to time-strapped clinicians, particularly primary care providers at the frontlines of 385 
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asthma diagnosis. Asthma is frequently diagnosed and treated in the primary care setting [48] 386 

where access to PFTs is often not immediately available. Although PFTs yield results without 387 

specimen handling, these advantages do not seem to overcome its logistical limitations as 388 

evidenced by their low rate of real-life implementation [8, 9]. The direct costs of our panel are 389 

likely to be slightly higher than PFTs. Targeted profiling of our 90-gene panel currently costs 390 

about $100 per sample, while PFTs cost about $80 according to the Medicare Physician Fee 391 

Schedule [49]. However, gene expression profiling costs are likely to decrease [50], and 392 

implementation of the asthma gene panel could result in cost savings if it reduces the under-393 

diagnosis and misdiagnosis of asthma [4].  Undiagnosed asthma leads to costly healthcare 394 

utilization worldwide [4], including in the United States, where asthma accounts for $56 billion in 395 

medical costs, lost school and work days, and early deaths [51]. Clinical implementation of our 396 

asthma gene panel could identify undiagnosed asthma, leading to its appropriate management 397 

before high healthcare costs from unrecognized asthma are incurred. Given the panel’s 398 

demonstrated specificity, use of our asthma gene panel could also reduce asthma misdiagnosis 399 

by correctly providing a determination of “no asthma” in non-asthmatic subjects with conditions 400 

often confused with asthma. Clinical benefit from gene-expression based classification has 401 

already been seen in the breast cancer field, where use of the 70-gene panel test MammaPrint 402 

to guide chemotherapy in a clinical trial leads to a lower 5-year rate of survival without 403 

metastasis compared to standard management [46].  404 

We recognize that our asthma gene panel did not perform quite as well in the 405 

microarray-based vs. RNAseq-based asthma test sets, which was to be expected due to 406 

differences in study design and technological factors between RNAseq and microarray profiling. 407 

First, the baseline characteristics and phenotyping of the subjects differed. Subjects in the 408 

RNAseq test set were adults who were classified as mild/moderate asthmatic or healthy using 409 

the same strict criteria as the development set, which required subjects with asthma to have an 410 

objective measure of obstructive airway disease (i.e. positive methacholine challenge 411 
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response). In contrast, subjects in the Asthma1 microarray test set were all children (i.e. not 412 

adults) with nasal pathology, as entry criteria included dust mite allergic rhinitis specifically [30] 413 

(Supplementary Table 3). Subjects from the Asthma2 cohort were adults who were classified 414 

as having asthma or healthy based on history. As mentioned, the diagnosis of asthma based on 415 

history alone without objective lung function testing can be inaccurate [52]. The phenotypic 416 

differences between these test sets alone could explain differences in performance of our 417 

asthma gene panel in these test sets. Second, the differential performance may be due to the 418 

difference in profiling approach. Gene mappings do not perfectly correspond between RNAseq 419 

and microarray due to disparities between array annotations and RNAseq gene models [33]. 420 

Compared to microarrays, RNAseq quantifies more RNA species and captures a wider range of 421 

signal [40]. Prior studies have shown that microarray-derived models can reliably predict 422 

phenotypes based on samples’ RNAseq profiles, but the converse does not often hold [33]. 423 

Despite the above limitations, our asthma gene panel performed with reasonable accuracy in 424 

classifying asthma in these independent microarray-based test sets. These results support a 425 

degree of generalizability of our panel to asthma populations that may be phenotyped or profiled 426 

differently. 427 

An effective clinical classifier should have good positive and negative predictive value 428 

[53]. In our case, if an individual has asthma, the ideal classifier would reliably indicate asthma 429 

so that an accurate diagnosis is made, and if an individual does not have asthma, the ideal 430 

classifier would indicate “no asthma” so that misdiagnosis does not occur. This was indeed the 431 

case with our asthma gene panel, which achieved high positive and negative predictive values 432 

of 1.00 and 0.96 respectively in the RNAseq test set. We also tested our asthma gene panel on 433 

independent tests sets of subjects with allergic rhinitis, upper respiratory infection, cystic 434 

fibrosis, and smoking, and showed that the panel had a low to zero rate of misclassifying other 435 

respiratory conditions as asthma (Figure 5). These results were particularly notable for allergic 436 

rhinitis, a predominantly nasal condition. Although our panel is based on nasal gene expression, 437 
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and asthma and allergic rhinitis frequently co-occur [22], our panel did not misdiagnose allergic 438 

rhinitis as asthma. Although these conclusions are based on relatively small validation sets due 439 

to the scarcity of nasal gene expression data in the public domain, the strong performance of 440 

our panel gives hope that it will be generalizable and specific in other larger cohorts as well. 441 

One of the current limitations of using RNAseq is the cost of processing large number of 442 

samples and generating large datasets. Although we have generated one of the largest nasal 443 

RNAseq data set in asthma to date, a future direction of this study is to recruit additional cohorts 444 

for nasal gene expression profiling and extend validation of our findings in a prospective 445 

manner, which will aid in the panel’s path to clinical translation. This will also be facilitated by 446 

the rapidly falling costs of sequencing technologies [50], especially if done in a targeted manner. 447 

We recognize that our development set was from a single center and its baseline characteristics 448 

do not characterize all populations. For example, the development set consisted of adults, and 449 

our control subjects were largely Caucasian. However, variancePartition analysis demonstrated 450 

minimal contribution of age, race, and gender to gene expression variance in our data 451 

(Supplementary Figure 1). We also find it reassuring that the panel performed reasonably well 452 

in multiple external data sets spanning children and adults of varied racial distributions, and with 453 

asthma and other respiratory conditions defined by heterogeneous criteria. Subjects with 454 

asthma in our development cohort were not all symptomatic at the time of sampling. The fact 455 

that the performance of our asthma gene panel does not rely on symptomatic asthma is a 456 

strength, as many mild/moderate asthmatics are only sporadically symptomatic given the 457 

fluctuating nature of the disease. 458 

We see our diagnostic nasal brush-based classifier of asthma as the first step in the 459 

development of nasal biomarkers for multiple aspects of asthma care. As with any disease, the 460 

first step is to accurately identify affected patients. The asthma gene panel described in this 461 

study provides an accurate path to this critical diagnostic step. With a correct diagnosis, an 462 

array of existing asthma treatment options can be considered [6]. A next phase of research will 463 
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be to develop a nasal biomarker to predict endotypes and treatment response, so that asthma 464 

treatment can be targeted, and even personalized, with greater efficiency and effectiveness 465 

[54].  466 

In summary, we applied RNA sequencing and machine learning to identify a panel of 467 

genes expressed in nasal brushings that accurately classifies subjects with mild/moderate 468 

asthma from controls. This panel performed with accuracy across independent and external test 469 

sets, indicating reasonable generalizability across study populations and gene expression 470 

profiling modality, as well as specificity to asthma. Our asthma gene panel has the potential to 471 

be developed into a clinical biomarker to aid in asthma diagnosis, as it could be quickly obtained 472 

by simple nasal brush, does not require machinery for collection, and can be easily interpreted. 473 

Technical translation of panel implementation in the clinical environment, as well as prospective 474 

trials of its clinical effectiveness as a diagnostic asthma biomarker, are needed next. If further 475 

developed and applied to clinical practice, this nasal brush-based asthma gene panel could 476 

improve asthma detection and care.  477 
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Materials and Methods 478 

Study design and subjects 479 

Subjects with mild/moderate asthma were a subset of participants of the Childhood 480 

Asthma Management Program (CAMP), a multicenter North American study of 1041 subjects 481 

with mild to moderate persistent asthma [20, 21]. Findings from the CAMP cohort have defined 482 

current practice and guidelines for asthma care and research [21]. Asthma was defined by 483 

symptoms ≥2 times per week, use of an inhaled bronchodilator ≥ twice weekly or use of daily 484 

medication for asthma, and increased airway responsiveness to methacholine (PC20≤12.5 485 

mg/ml). The subset of subjects included in this study were CAMP participants who presented for 486 

a visit between July 2011 and June 2012 at Brigham and Women’s Hospital (Boston, MA), one 487 

of the eight study centers for CAMP.  488 

Subjects with “no asthma” were recruited during the same time period by advertisement 489 

at Brigham & Women’s Hospital. Selection criteria were no personal history of asthma, no family 490 

history of asthma in first-degree relatives, and self-described Caucasian ethnicity. Participation 491 

was limited to Caucasian individuals because a concurrent independent study was planned that 492 

would compare these same subjects to 968 Caucasian CAMP subjects who participated in the 493 

CAMP Genetics Ancillary study [55]. Subjects underwent pre- and post-bronchodilator 494 

spirometry according to American Thoracic Society guidelines. Only those meeting selection 495 

criteria and with demonstrated normal lung function without bronchodilator response were 496 

considered to have “no asthma.”  497 

 498 

Nasal brushing and RNA sequencing 499 

 Nasal brushing was performed with a cytology brush. Brushes were immediately placed 500 

in RNALater (ThermoFisher Scientific, Waltham, MA) and then stored at 400C until RNA 501 

extraction. RNA extraction was performed with Qiagen RNeasy Mini Kit (Valencia, CA). 502 
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Samples were assessed for yield and quality using the 2100 Bioanalyzer (Agilent Technologies, 503 

Santa Clara, CA) and Qubit fluorometry (Thermo Fisher Scientific, Grand Island, NY).  504 

Of the 190 subjects who underwent nasal brushing (66 with mild/moderate asthma, 124 505 

with no asthma), a random selection of 150 subjects were a priori assigned as the development 506 

set (for classification model development), with the 40 remaining subjects earmarked to serve 507 

as a test set of independent subjects (for testing the classification model). To minimize potential 508 

batch effects, all samples were submitted together for RNA sequencing (RNAseq). Staff at the 509 

Mount Sinai genomics core were blinded to the assignment of samples as development or test 510 

set. The sequencing library was prepared with the standard TruSeq RNA Sample Prep Kit v2 511 

protocol (Illumina). The mRNA libraries were sequenced on the Illumina HiSeq 2500 platform 512 

with a per-sample target of 40-50 million 100 bp paired-end reads. The data were put through 513 

Mount Sinai’s standard mapping pipeline[56] (using Bowtie [57] and TopHat [58], and 514 

assembled into gene- and transcription-level summaries using Cufflinks [59]). Mapped data 515 

were subjected to quality control with FastQC and RNA-SeQC [60]. Data were pre-processed 516 

separately for the development and test sets to avoid leakage of information across the two data 517 

sets and maintain fairness of the machine learning procedures as much as possible. Genes with 518 

fewer than 100 counts in at least half the samples were dropped to reduce the potentially 519 

adverse effects of noise. DESeq2 [24] was used to normalize the data sets using its variance 520 

stabilizing transformation method. 521 

 522 

VariancePartition Analysis of Potential Confounders 523 

Given differences in age, race, and sex distributions between the asthma and “no 524 

asthma” classes, we used the variancePartition method [23] to assess the degree to which 525 

these variables influenced gene expression and potentially confounded the target phenotype 526 

(asthma status). The total variance in gene expression was partitioned into the variance 527 

attributable to age, race, and sex using a linear mixed model implemented in variancePartition 528 
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v1.0.0 [23]. Age (continuous variable) was modeled as a fixed effect while race and sex 529 

(categorical variables) were modeled as random effects. The results showed that age, race, and 530 

sex accounted for minimal contributions to total gene expression variance (Supplementary 531 

Figure 1). Downstream analyses were therefore performed with gene expression data 532 

unadjusted for these variables. 533 

 534 

Differential gene expression and pathway enrichment analysis 535 

DESeq2 [24] was used to identify differentially expressed genes in the development set. 536 

Genes with FDR ≤ 0.05 were deemed differentially expressed, with fold change <1 implying 537 

under-expression and vice versa. To identify the functions underlying these genes, pathway 538 

enrichment analysis was performed using the Gene Set Enrichment Analysis method applied to 539 

the Molecular Signature Database (MSigDB) [25]. 540 

 541 

Identification of the Asthma Gene Panel by Machine Learning Analyses of the RNAseq 542 

Development Set 543 

To identify gene expression-based classifiers that predict asthma status, we applied a 544 

rigorous machine learning pipeline implemented in Python using the scikit-learn package [61] 545 

that combined feature (gene) selection [16], classification [17], and statistical analyses of 546 

classification performance [18] to the development set (Supplementary Figure 2). Feature 547 

selection and classification were applied to a training set comprised of 120 randomly selected 548 

samples from the development set (n=150) as described below. For an independent evaluation 549 

of the candidate classifiers generated from the training set by this process, they were then 550 

evaluated on the remaining 30 samples (holdout set). Finally, to reduce the dependence of the 551 

finally chosen classifier on a specific training-holdout split, this process was repeated 100 times 552 

on 100 random splits of the development set into training and holdout sets. The details of the 553 

overall process as well as the individual components are as follows. 554 
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Feature selection: The purpose of the feature selection component was to identify 555 

subsets of the full set of genes in the development set, whose expression profiles could be used 556 

to predict the asthma status as accurately as possible. The two main computations constituting 557 

this component were (i) the optimal number of features that should be selected, and (ii) the 558 

identification of this number of genes from the full gene set. To reduce the likelihood of 559 

overfitting when conducting both these computations on the entire training set, we used a 5x5 560 

nested (outer and inner) cross-validation (CV) setup [26] for selecting features from the training 561 

set (Supplementary Figure 3). The inner CV round was used to determine the optimal number 562 

of genes to be selected, and the outer CV round was used to select the set of predictive genes 563 

based on this number, thus separating the samples on which these decisions are made. The 564 

supervised Recursive Feature Elimination (RFE) algorithm [62] was executed on the inner CV 565 

training split to determine the optimal number of features. The use of RFE within this setting 566 

enabled us to identify groups of features that are collectively, but not necessarily individually, 567 

predictive. This reflects our systems biology-based expectation that many genes, even ones 568 

with marginal effects, can play a role in classifying diseases/phenotypes (here asthma) in 569 

combination with other more strongly predictive genes [19]. Specifically, we used the L2-570 

regularized Logistic Regression (LR or Logistic) [63] and SVM-Linear (kernel) [64] classification 571 

algorithms in conjunction with RFE (combinations henceforth referred to as LR-RFE and SVM-572 

RFE respectively). For this, for a given inner CV training split, all the features (genes) were 573 

ranked using the absolute values of the weights assigned to them by an inner classification 574 

model, trained using the LR or SVM algorithm, over this split. Next, for each of the conjunctions, 575 

the set of top-k ranked features, with k starting with 11587 (all filtered genes) and being reduced 576 

by 10% in each iteration until k=1, was considered. The discriminative strength of feature sets 577 

consisting of the top k features as per this ranking was assessed by evaluating the performance 578 

of the LR or SVM classifier based on them over all the inner CV training-test splits. The optimal 579 

number of features to be selected was determined as the value of k that produces the best 580 
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performance. Next, a ranking of features was derived from the outer CV training split using 581 

exactly the same procedure as applied to the inner CV training split. The optimal number of 582 

features determined above was selected from the top of this ranking to determine the optimal 583 

set of predictive features for this outer CV training split. Executing this process over all the five 584 

outer CV training splits created from the development set identified five such sets. Finally, the 585 

set of features (genes) that was common to all these sets (i.e. in their intersection/overlap), 586 

which is expected to yield a more robust feature set than the individual outer CV splits, was 587 

selected as the predictive gene set for this training set. One such set was identified for each of 588 

LR-RFE and SVM-RFE. 589 

Classification analyses: Once predictive gene sets had been selected from feature 590 

selection, four global classification algorithms (L2-regularized Logistic Regression (LR or 591 

Logistic) [63], SVM-Linear [64], AdaBoost [65], and Random Forest (RF) [66]) were used to 592 

learn intermediate classification models over the training set. These intermediate models were 593 

then applied to the corresponding holdout set to generate probabilistic asthma predictions for 594 

the samples. An optimal threshold for converting these probabilistic predictions into binary ones 595 

(higher than threshold=asthma, lower than threshold=no asthma) was then computed as the 596 

threshold that yielded the highest classification performance on the holdout set. This 597 

optimization resulted in the proposed classification models. 598 

Statistical analyses of classification performance: After the above components have 599 

been run on 100 training-holdout splits of the development set, we obtain 100 proposed 600 

classification models for each of eight feature selection-global classification combinations (two 601 

feature selection algorithms (LR-RFE and SVM-RFE) and four global classification algorithms 602 

Logistic, SVM-Linear, AdaBoost and RF). The next step of our pipeline was to determine the 603 

best performing combination. Instead of making this determination just based on the highest 604 

evaluation score, as is typically done in ML studies, we utilized this large population of models 605 

and their optimized holdout evaluation scores to conduct a statistical comparison to make this 606 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2017. ; https://doi.org/10.1101/145771doi: bioRxiv preprint 

https://doi.org/10.1101/145771


Pandey et al., p.26 

 26 

determination. Specifically, we applied the Friedman test followed by the Nemenyi test [18, 67] 607 

to this population of modules and their evaluation scores. These tests, which account for 608 

multiple hypothesis testing, assessed the statistical significance of the relative difference of 609 

performance of the combinations in terms of their relative ranks across the 100 splits.  610 

Optimization for parsimony: For an effective phenotype classifier, it is essential to 611 

consider parsimony in model selection (i.e. minimize number of features (i.e. genes)) to 612 

enhance its biological and clinical utility and acceptability. To enforce this for our classifier, an 613 

adapted performance measure, defined as the absolute performance measure (F-measure) 614 

divided by the number of genes in that model, was used for the above statistical comparison, 615 

i.e. as input to the Friedman-Nemenyi tests. In terms of this measure, a model that does not 616 

obtain the best performance measure among all models, but uses much fewer genes than the 617 

others, may be judged to be the best model. The result of the statistical comparison using this 618 

adapted measure was visualized as a Critical Difference plot [18] (Supplementary Figure 4), 619 

and enabled us to identify the best combination of feature selection and classification method as 620 

the left-most entry in this plot. 621 

Final model development: The final step in our pipeline was to determine the 622 

representative model out of the 100 learned the above best combination by finding which of 623 

these models yielded the highest evaluation measure (F-measure). In case of ties among 624 

multiple candidates, the gene set that produced the best average asthma classification F-625 

measure (Box 1 and Supplementary Figure 5) across all four global classification algorithms 626 

was chosen as the gene set constituting the representative model for that combination. This 627 

analysis yielded the representative gene set, global classification algorithm, and the optimized 628 

asthma classification threshold. Finally, our asthma gene panel was built by training the global 629 

classification algorithm to the expression profiles of the representative gene set, and using the 630 

optimized threshold for classifying samples with and without asthma. 631 

 632 
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Validation of the Asthma Gene Panel in an RNAseq test set of independent subjects 633 

The asthma gene panel identified by our machine learning pipeline was then tested on 634 

the RNAseq test set (n=40) to assess its performance in independent subjects. F-measure was 635 

used as the primary measure for classification performance, as described in Box 1 and 636 

Supplementary Figure 5. AUC, PPV and NPV were additionally calculated for context.  637 

 638 

Performance Comparison to Alternative Classification Models 639 

For comparison, the same machine learning methodology was used to train and 640 

evaluate models from all combinations of feature selection and global classification methods 641 

considered in our pipeline. We also applied our machine learning pipeline with replacement of 642 

the feature (gene) selection step with these pre-determined gene sets: (1) all filtered RNAseq 643 

genes, (2) all differentially expressed genes, and (3) known asthma genes from a recent review 644 

of asthma genetics [28]. To maintain consistency with the machine learning pipeline-derived 645 

models, these were each used as a predetermined gene set that was run through the same 646 

pipeline (Supplementary Figure 2 with the feature selection component turned off) to identify 647 

the best performing global classification algorithm and the optimal asthma classification 648 

threshold for this predetermined set of features. The algorithm and threshold were used to train 649 

each of these gene sets’ representative classification model over the entire development set, 650 

and the resulting model for each of these gene sets was then evaluated on the RNAseq test set. 651 

Finally, as a baseline representative of alternative sparse classification algorithms, which 652 

represent a one-step option for doing feature selection and classification simultaneously, we 653 

also trained an L1-regularized logistic regression model (L1-Logistic) [29] on the development 654 

set and evaluated it on the RNAseq test set. 655 

 656 

Performance Comparison to Permutation-based Random Models 657 
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To determine the extent to which the performance of all the above classification models 658 

could have been due to chance, we compared their performance with that of their random 659 

counterpart models (Supplementary Figure 6, Supplementary Figure 7). These counterparts 660 

were obtained by randomly permuting the labels of the samples in the development set and 661 

executing each of the above model training procedures on these randomized data sets in the 662 

same way as for the real development set. These random models were then applied to each of 663 

the test sets considered in our study, and their performances were also evaluated in terms of 664 

the same measures. For each of real models tested in our study, 100 corresponding random 665 

models were learned and evaluated as above, and the performance of the real models was 666 

compared with the average performance of the corresponding random models. 667 

 668 

Validation of the asthma gene panel in external independent asthma cohorts 669 

To assess the generalizability of the asthma gene panel to other populations, 670 

microarray-profiled data sets of nasal gene expression from two external asthma cohorts-- 671 

Asthma1 (GSE19187) [30] and Asthma2 (GSE46171) [31] (Supplementary Table 3)-- were 672 

obtained from NCBI Gene Expression Omnibus (GEO) [68]. The asthma gene panel was then 673 

applied and its performance evaluated on these external asthma cohorts.. 674 

 675 

Validation of the asthma gene panel in external cohorts with other respiratory conditions 676 

To assess the panel’s ability to distinguish asthma from respiratory conditions that can 677 

have overlapping symptoms with asthma, i.e. its specificity to asthma, microarray-profiled data 678 

sets of nasal gene expression were also obtained for five external cohorts with allergic rhinitis 679 

(GSE43523) [36], upper respiratory infection (GSE46171) [31], cystic fibrosis (GSE40445) [37], 680 

and smoking (GSE8987) [12] (Supplementary Table 4). The asthma gene panel was then 681 

applied and its performance evaluated on these external cohorts with non-asthma respiratory 682 

conditions. 683 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2017. ; https://doi.org/10.1101/145771doi: bioRxiv preprint 

https://doi.org/10.1101/145771


Pandey et al., p.29 

 29 

Declarations 684 

Ethics approval and consent to participate: The institutional review boards of Brigham & 685 

Women’s Hospital and the Icahn School of Medicine at Mount Sinai approved the study 686 

protocols. Written informed consent was obtained from all subjects. 687 

 688 

Competing interests: SB, GP, and EES have filed a patent application related to the findings of 689 

this manuscript. The remaining authors declare that they have no competing interests. 690 

 691 

Funding: This study was supported by the US National Institutes of Health (NIH R01AI118833, 692 

K08AI093538, R01GM114434) and the Icahn Institute for Genomics and Multiscale Biology. 693 

 694 

Author contributions: SB directed the study. SB, BAR, and EES designed the study. SB and 695 

AJR directed the recruitment of subjects and sample collection. BAR and STW provided 696 

guidance for access to subjects. EES advised on sequencing strategy. SB curated the clinical 697 

data. SB, GP, and OPP designed and performed the statistical and computational analyses. SB 698 

and GP wrote the manuscript. SB, GP, OPP, AJR, GEH, BAR, STW, and EES edited the 699 

manuscript. All authors contributed significantly to the work presented in this paper. 700 

 701 

Acknowledgments: We thank Kathryn Paul, Laura Ting, Anne Plunkett, Nancy Madden, Ann 702 

Fuhlbrigge, Kelan Tantisira, Dan Cossette, Aimee Garciano, and Roxanne Kelly for their 703 

assistance and support with recruitment, specimen collection, and sample processing. We thank 704 

Robert Griffin and Ana Stanescu for critically reviewing the paper.705 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2017. ; https://doi.org/10.1101/145771doi: bioRxiv preprint 

https://doi.org/10.1101/145771


Pandey et al., p.30 

 30 

References 

1. Current Asthma Prevalence Percents by Age, Sex, and Race/Ethnicity, United 

States, 2012. Asthma Surveillance Data. National Health Interview Survey, National 

Center for Health Statistics, Centers for Disease Control and Prevention 

wwwcdcgov/asthma/asthmadatahtm, downloaded 1/30/2017. 

2. Fanta CH: Asthma. N Engl J Med 2009, 360:1002-1014. 

3. Yeatts K, Shy C, Sotir M, Music S, Herget C: Health consequences for children with 

undiagnosed asthma-like symptoms. Arch Pediatr Adolesc Med 2003, 157:540-544. 

4. Stempel DA, Spahn JD, Stanford RH, Rosenzweig JR, McLaughlin TP: The economic 

impact of children dispensed asthma medications without an asthma diagnosis. J 

Pediatr 2006, 148:819-823. 

5. Szefler SJ, Wenzel S, Brown R, Erzurum SC, Fahy JV, Hamilton RG, Hunt JF, Kita H, 

Liu AH, Panettieri Jr RA, et al: Asthma outcomes: Biomarkers. Journal of Allergy and 

Clinical Immunology 2012, 129:S9-S23. 

6. Reddel HK, Bateman ED, Becker A, Boulet LP, Cruz AA, Drazen JM, Haahtela T, Hurd 

SS, Inoue H, de Jongste JC, et al: A summary of the new GINA strategy: a roadmap 

to asthma control. Eur Respir J 2015, 46:622-639. 

7. Expert Panel Report 3: Guidelines for the Diagnosis and Management of Asthma. 

Washington DC: National Heart Lung and Blood Institute and National Asthma 

Education and Prevention Program; 2007. 

8. Gershon AS, Victor JC, Guan J, Aaron SD, To T: Pulmonary function testing in the 

diagnosis of asthma: a population study. Chest 2012, 141:1190-1196. 

9. Sokol KC, Sharma G, Lin YL, Goldblum RM: Choosing wisely: adherence by 

physicians to recommended use of spirometry in the diagnosis and management 

of adult asthma. Am J Med 2015, 128:502-508. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2017. ; https://doi.org/10.1101/145771doi: bioRxiv preprint 

https://doi.org/10.1101/145771


Pandey et al., p.31 

 31 

10. Petsky HL, Cates CJ, Lasserson TJ, Li AM, Turner C, Kynaston JA, Chang AB: A 

systematic review and meta-analysis: tailoring asthma treatment on eosinophilic 

markers (exhaled nitric oxide or sputum eosinophils). Thorax 2012, 67:199-208. 

11. van Schayck CP, van Der Heijden FM, van Den Boom G, Tirimanna PR, van 

Herwaarden CL: Underdiagnosis of asthma: is the doctor or the patient to blame? 

The DIMCA project. Thorax 2000, 55:562-565. 

12. Sridhar S, Schembri F, Zeskind J, Shah V, Gustafson AM, Steiling K, Liu G, Dumas YM, 

Zhang X, Brody JS, et al: Smoking-induced gene expression changes in the 

bronchial airway are reflected in nasal and buccal epithelium. BMC Genomics 2008, 

9:259. 

13. Wagener AH, Zwinderman AH, Luiten S, Fokkens WJ, Bel EH, Sterk PJ, van Drunen 

CM: The impact of allergic rhinitis and asthma on human nasal and bronchial 

epithelial gene expression. PLoS One 2013, 8:e80257. 

14. Guajardo JR, Schleifer KW, Daines MO, Ruddy RM, Aronow BJ, Wills-Karp M, Hershey 

GK: Altered gene expression profiles in nasal respiratory epithelium reflect stable 

versus acute childhood asthma. J Allergy Clin Immunol 2005, 115:243-251. 

15. Poole A, Urbanek C, Eng C, Schageman J, Jacobson S, O'Connor BP, Galanter JM, 

Gignoux CR, Roth LA, Kumar R, et al: Dissecting childhood asthma with nasal 

transcriptomics distinguishes subphenotypes of disease. J Allergy Clin Immunol 

2014, 133:670-678 e612. 

16. Saeys Y, Inza I, Larranaga P: A review of feature selection techniques in 

bioinformatics. Bioinformatics 2007, 23:2507-2517. 

17. Witten IH, Frank E, Hall MA: Data mining : practical machine learning tools and 

techniques. 3rd edn. Burlington, MA: Morgan Kaufmann; 2011. 

18. Demsar J: Statistical Comparisons of Classifiers over Multiple Data Sets. J Mach 

Learn Res 2006, 7:1-30. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2017. ; https://doi.org/10.1101/145771doi: bioRxiv preprint 

https://doi.org/10.1101/145771


Pandey et al., p.32 

 32 

19. Schadt EE, Friend SH, Shaywitz DA: A network view of disease and compound 

screening. Nat Rev Drug Discov 2009, 8:286-295. 

20. The Childhood Asthma Management Program (CAMP): design, rationale, and 

methods. Childhood Asthma Management Program Research Group. Control Clin 

Trials 1999, 20:91-120. 

21. Covar RA, Fuhlbrigge AL, Williams P, Kelly HW, the Childhood Asthma Management 

Program Research G: The Childhood Asthma Management Program (CAMP): 

Contributions to the Understanding of Therapy and the Natural History of 

Childhood Asthma. Curr Respir Care Rep 2012, 1:243-250. 

22. Egan M, Bunyavanich S: Allergic rhinitis: the "Ghost Diagnosis" in patients with 

asthma. Asthma Research and Practie 2015, 1:DOI: 10.1186/s40733-40015-40008-

40730. 

23. Hoffman GE, Schadt EE: variancePartition: Quantifying and interpreting drivers of 

variation in complex gene expression studies. bioRxiv 2016:doi: 

http://dx.doi.org/10.1101/040170. 

24. Love MI, Huber W, Anders S: Moderated estimation of fold change and dispersion 

for RNA-seq data with DESeq2. Genome Biol 2014, 15:550. 

25. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich 

A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a 

knowledge-based approach for interpreting genome-wide expression profiles. 

Proc Natl Acad Sci U S A 2005, 102:15545-15550. 

26. Whalen S, Pandey OP, Pandey G: Predicting protein function and other biomedical 

characteristics with heterogeneous ensembles. Methods 2016, 93:92-102. 

27. Lever J, Krzywinski M, Altman N: Points of Significance: Classification Evaluation. 

Nature Methods 2016, 13:603-604. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2017. ; https://doi.org/10.1101/145771doi: bioRxiv preprint 

http://dx.doi.org/10.1101/040170
https://doi.org/10.1101/145771


Pandey et al., p.33 

 33 

28. Mathias RA: Introduction to genetics and genomics in asthma: genetics of asthma. 

Adv Exp Med Biol 2014, 795:125-155. 

29. Vidaurre D, Bielza C, Larrañaga P: A Survey of L1 Regression. International Statistical 

Review 2013, 81:361-387. 

30. Giovannini-Chami L, Marcet B, Moreilhon C, Chevalier B, Illie MI, Lebrigand K, Robbe-

Sermesant K, Bourrier T, Michiels JF, Mari B, et al: Distinct epithelial gene expression 

phenotypes in childhood respiratory allergy. Eur Respir J 2012, 39:1197-1205. 

31. McErlean P, Berdnikovs S, Favoreto S, Jr., Shen J, Biyasheva A, Barbeau R, Eisley C, 

Barczak A, Ward T, Schleimer RP, et al: Asthmatics with exacerbation during acute 

respiratory illness exhibit unique transcriptional signatures within the nasal 

mucosa. Genome Med 2014, 6:1. 

32. Zhang W, Yu Y, Hertwig F, Thierry-Mieg J, Zhang W, Thierry-Mieg D, Wang J, Furlanello 

C, Devanarayan V, Cheng J, et al: Comparison of RNA-seq and microarray-based 

models for clinical endpoint prediction. Genome Biol 2015, 16:133. 

33. Su Z, Fang H, Hong H, Shi L, Zhang W, Zhang W, Zhang Y, Dong Z, Lancashire LJ, 

Bessarabova M, et al: An investigation of biomarkers derived from legacy 

microarray data for their utility in the RNA-seq era. Genome Biol 2014, 15:523. 

34. Venet D, Dumont JE, Detours V: Most Random Gene Expression Signatures Are 

Significantly Associated with Breast Cancer Outcome. PLoS computational biology 

2011, 7:e1002240. 

35. Chibon F: Cancer gene expression signatures - the rise and fall? Eur J Cancer 2013, 

49:2000-2009. 

36. Imoto Y, Tokunaga T, Matsumoto Y, Hamada Y, Ono M, Yamada T, Ito Y, Arinami T, 

Okano M, Noguchi E, Fujieda S: Cystatin SN upregulation in patients with seasonal 

allergic rhinitis. PLoS One 2013, 8:e67057. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2017. ; https://doi.org/10.1101/145771doi: bioRxiv preprint 

https://doi.org/10.1101/145771


Pandey et al., p.34 

 34 

37. Clarke LA, Sousa L, Barreto C, Amaral MD: Changes in transcriptome of native nasal 

epithelium expressing F508del-CFTR and intersecting data from comparable 

studies. Respir Res 2013, 14:38. 

38. Oliver BG, Robinson P, Peters M, Black J: Viral infections and asthma: an 

inflammatory interface? Eur Respir J 2014, 44:1666-1681. 

39. Cowling BJ, Chan KH, Fang VJ, Lau LL, So HC, Fung RO, Ma ES, Kwong AS, Chan 

CW, Tsui WW, et al: Comparative epidemiology of pandemic and seasonal 

influenza A in households. N Engl J Med 2010, 362:2175-2184. 

40. Bunyavanich S, Schadt EE: Systems biology of asthma and allergic diseases: A 

multiscale approach. J Allergy Clin Immunol 2014. 

41. Sordillo J, Raby BA: Gene expression profiling in asthma. Adv Exp Med Biol 2014, 

795:157-181. 

42. Scott S, Currie J, Albert P, Calverley P, Wilding JP: Risk of misdiagnosis, health-

related quality of life, and BMI in patients who are overweight with doctor-

diagnosed asthma. Chest 2012, 141:616-624. 

43. Kulkarni MM: Digital multiplexed gene expression analysis using the NanoString 

nCounter system. Curr Protoc Mol Biol 2011, Chapter 25:Unit25B 10. 

44. Veldman-Jones MH, Brant R, Rooney C, Geh C, Emery H, Harbron CG, Wappett M, 

Sharpe A, Dymond M, Barrett JC, et al: Evaluating Robustness and Sensitivity of the 

NanoString Technologies nCounter Platform to Enable Multiplexed Gene 

Expression Analysis of Clinical Samples. Cancer Res 2015, 75:2587-2593. 

45. Leong HS, Galletta L, Etemadmoghadam D, George J, Australian Ovarian Cancer S, 

Kobel M, Ramus SJ, Bowtell D: Efficient molecular subtype classification of high-

grade serous ovarian cancer. J Pathol 2015, 236:272-277. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2017. ; https://doi.org/10.1101/145771doi: bioRxiv preprint 

https://doi.org/10.1101/145771


Pandey et al., p.35 

 35 

46. Cardoso F, van't Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, Pierga JY, Brain E, 

Causeret S, DeLorenzi M, et al: 70-Gene Signature as an Aid to Treatment Decisions 

in Early-Stage Breast Cancer. N Engl J Med 2016, 375:717-729. 

47. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, 

Park T, et al: A multigene assay to predict recurrence of tamoxifen-treated, node-

negative breast cancer. N Engl J Med 2004, 351:2817-2826. 

48. Wechsler ME: Managing asthma in primary care: putting new guideline 

recommendations into context. Mayo Clin Proc 2009, 84:707-717. 

49. Physician Fee Schedule Search. Centers for Medicare & Medicaid Services, available 

at https://wwwcmsgov/apps/physician-fee-schedule/search/search-criteriaaspx and 

accessed on 1/30/2017 2016. 

50. Goodwin S, McPherson JD, McCombie WR: Coming of age: ten years of next-

generation sequencing technologies. Nat Rev Genet 2016, 17:333-351. 

51. Asthma in the US. Centers for Disease Control and Prevention Vitalsigns 

http://wwwcdcgov/vitalsigns/asthma/, downloaded 1/30/2017 2011. 

52. Jain VV, Allison DR, Andrews S, Mejia J, Mills PK, Peterson MW: Misdiagnosis Among 

Frequent Exacerbators of Clinically Diagnosed Asthma and COPD in Absence of 

Confirmation of Airflow Obstruction. Lung 2015, 193:505-512. 

53. Brower V: Biomarkers: Portents of malignancy. Nature 2011, 471:S19-21. 

54. Muraro A, Lemanske RF, Jr., Hellings PW, Akdis CA, Bieber T, Casale TB, Jutel M, Ong 

PY, Poulsen LK, Schmid-Grendelmeier P, et al: Precision medicine in patients with 

allergic diseases: Airway diseases and atopic dermatitis-PRACTALL document of 

the European Academy of Allergy and Clinical Immunology and the American 

Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol 2016, 137:1347-

1358. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2017. ; https://doi.org/10.1101/145771doi: bioRxiv preprint 

https://wwwcmsgov/apps/physician-fee-schedule/search/search-criteriaaspx
http://wwwcdcgov/vitalsigns/asthma/
https://doi.org/10.1101/145771


Pandey et al., p.36 

 36 

55. Himes BE, Hunninghake GM, Baurley JW, Rafaels NM, Sleiman P, Strachan DP, Wilk 

JB, Willis-Owen SA, Klanderman B, Lasky-Su J, et al: Genome-wide association 

analysis identifies PDE4D as an asthma-susceptibility gene. Am J Hum Genet 2009, 

84:581-593. 

56. Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, Ruderfer 

DM, Oh EC, Topol A, Shah HR, et al: Gene expression elucidates functional impact 

of polygenic risk for schizophrenia. Nat Neurosci 2016. 

57. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient 

alignment of short DNA sequences to the human genome. Genome Biol 2009, 

10:R25. 

58. Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-

Seq. Bioinformatics 2009, 25:1105-1111. 

59. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, 

Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals 

unannotated transcripts and isoform switching during cell differentiation. Nat 

Biotechnol 2010, 28:511-515. 

60. DeLuca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire MD, Williams C, Reich M, 

Winckler W, Getz G: RNA-SeQC: RNA-seq metrics for quality control and process 

optimization. Bioinformatics 2012, 28:1530-1532. 

61. Pedregosa F, Varoquaux Ge, Gramfort A, Michel V, Thirion B, others: Scikit-learn: 

Machine Learning in Python. Journal of Machine Learning Research 2011, 12:2825-

2830. 

62. Guyon I, Weston, J, Barnhill, S, Vapnik, V: Gene selection for cancer classification 

using support vector machines. Machine Learning 2002, 46:389-422. 

63. Bewick V, Cheek L, Ball J: Statistics review 14: Logistic regression. Crit Care 2005, 

9:112-118. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2017. ; https://doi.org/10.1101/145771doi: bioRxiv preprint 

https://doi.org/10.1101/145771


Pandey et al., p.37 

 37 

64. Burges CJ: A tutorial on support vector machines for pattern recognition. Data 

mining and knowledge discovery 1998, 2:121-167. 

65. Freund Y, Schapire RE: A Decision-Theoretic Generalization of On-Line Learning 

and an Application to Boosting. J Comput Syst Sci 1997, 55:119-139. 

66. Breiman L: Random Forests. Machine Learning 2001, 45:5-32. 

67. Hollander M, Wolfe DA, Chicken E: Nonparametric statistical methods. John Wiley & 

Sons; 2013. 

68. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, 

Phillippy KH, Sherman PM, Holko M, et al: NCBI GEO: archive for functional 

genomics data sets--update. Nucleic Acids Res 2013, 41:D991-995. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2017. ; https://doi.org/10.1101/145771doi: bioRxiv preprint 

https://doi.org/10.1101/145771


Pandey et al., p.38 

 38 

Figure Legends 

 

Figure 1: Study flow for the identification of a nasal brush-based classifier of asthma by 

machine learning analysis of RNAseq data. Subjects with mild/moderate asthma and controls 

without asthma were recruited for phenotyping, nasal brushing, and RNA sequencing of nasal 

brushings. The RNAseq data generated were then a priori split into development and test sets. 

The development set was used for differential expression analysis and machine learning 

(involving feature selection, classification, and statistical analyses of classification performance) 

to identify an asthma gene panel that can accurately classify asthma from no asthma. The 

asthma gene panel was then tested on eight validation test sets, including (1) the RNAseq test 

set of independent subjects with and without asthma, (2) two external test sets of subjects with 

and without asthma with nasal gene expression profiled by microarray, and (3) five external test 

sets of subjects with non-asthma respiratory conditions (allergic rhinitis, upper respiratory 

infection, cystic fibrosis, and smoking) and nasal gene expression profiled by microarray.  

 

Figure 2: Receiver operating characteristic (ROC) curve of the predictions generated by 

applying the asthma gene panel to the samples in the RNAseq test set of independent 

subjects (n=40). The ROC curve for a random model is shown for reference. The curve and its 

corresponding AUC score show that the panel performs well for both asthma and no asthma 

(control) samples in this test set. 

 

Figure 3: Validation of the asthma gene panel on test sets of independent subjects with 

asthma. Performance of the asthma panel in classifying asthma (A) and no asthma (C) in terms 

of F-measure, a conservative mean of precision and sensitivity. F-measure ranges from 0 to 1, 

with higher values indicating superior classification performance. The panel was applied to an 

RNAseq test set of independent subjects with and without asthma, and two external microarray 
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data sets from subjects with and without asthma (Asthma1 and Asthma2). Positive (B) and 

negative (D) predictive values are also provided for context. 

 

Figure 4: Comparative performance of the asthma gene panel and other classification 

models in the RNAseq test set. Performances of the asthma gene panel and other 

classification models in classifying asthma (left panel) and no asthma (right panel) are shown in 

terms of F-measure, with individual measures shown in the bars. The number of genes in each 

model is shown in parentheses within the bars. The asthma gene panel is labeled in red and 

classification models learned from the machine learning pipeline using other combinations of 

feature selection and classification are labeled in black. These other classification models were 

combinations of two feature selection algorithms (LR-RFE and SVM-RFE) and four global 

classification algorithms (Logistic Regression, SVM-Linear, AdaBoost and Random Forest). For 

context, alternative classification models (labeled in blue) are also shown and include: (1) a 

model derived from an alternative, single-step classification approach (sparse classification 

model learned using the L1-Logistic regression algorithm), and (2) models substituting feature 

selection with each of the following preselected gene sets - all genes after filtering, all 

differentially expressed genes in the development set, and known asthma genes [28] - with their 

respective best performing global classification algorithms. These results show the superior 

performance of the asthma gene panel compared to all other models, in terms of classification 

performance and model parsimony (number of genes included). LR = Logistic Regression. SVM 

= Support Vector Machine. RFE = Recursive Feature Elimination. RF = Random Forest.  

 

Figure 5: Validation of the asthma gene panel on test sets of independent subjects with 

non-asthma respiratory conditions. Performance statistics of the panel when applied to 

external microarray-generated data sets of nasal gene expression derived from case/control 

cohorts with non-asthma respiratory conditions. Performance is shown in terms of F measure (A 
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and C), a conservative mean of precision and sensitivity, as well as positive (B) and negative 

predictive values (D). The panel had a low to zero rate of misclassifying other respiratory 

conditions as asthma, supporting that the panel is specific to asthma and would not misclassify 

other respiratory conditions as asthma. 

 

Figure 6: Heatmap showing expression profiles of the 90 gene members of the asthma 

gene panel. Columns shaded pink at the top denote asthma samples, while samples from 

subjects without asthma are denoted by columns shaded grey. 22 and 24 of these genes were 

over- and under-expressed in asthma samples (DESeq2 FDR ≤ 0.05), denoted by orange and 

purple groups of rows, respectively. The four genes in this set that have been previously 

associated with asthma [28] are marked in blue. The panel’s inclusion of genes not previously 

known to be associated with asthma as well as genes not differentially expressed in asthma 

(beige group of rows) demonstrates the ability of our machine learning methodology to move 

beyond traditional analyses of differential expression and current domain knowledge. 
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Table 1: Baseline characteristics of subjects in the RNAseq development and test sets 

 Development set Test Set 
Development 
vs. Test Set 
P valueB 

 All  
(n=150) 

Asthma  
(n=53) 

No Asthma   
(n=97) 

All  
(n=40) 

Asthma  
(n=13) 

No Asthma 
(n=27)   

Age: years 26.9 (5.4) 25.7 (2.0) 27.6 (6.5) 26.2 (5.1) 25.3 (2.1) 26.6 (6.1) 0.47 

Sex: female 89 (59.3%) 24 (45.3%) 65 (67.0%) 21 (52.5%) 2 (15.3%) 19 (70.4%) 0.40 

Race       0.60 

   Caucasian 116 (77.3%) 21 (40.4%) 96 (99.0%) 32 (80.0%) 5 (38.5%) 27 (100.0%)  

   African    
   American 24 (16.0%) 23 (43.4%) 1 (1.0%) 5 (12.5%) 5 (38.5%) 0 (0.0%)  

   Latino 5 (3.3%) 5 (9.4%) 0 (0.0%) 3 (7.5%) 3 (23.1%) 0 (0.0%)  

   Other 5 (3.3%) 4 (7.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)  

FEV1A:   
% predicted 94.7 (10.0) 94.6% (10.9) 94.8 (9.7) 94.5 (11.4) 94.4 (12.0) 94.6 (11.3) 0.90 

FEV1/FVCA: % 82.5 (6.4) 81.5 (6.7) 83.1 (6.3) 82.7 (5.5) 84.8 (4.4) 81.6 (5.8) 0.91 

Bronchodilator 
response: % 5.6 (6.0) 8.7 (6.4) 3.9 (5.1) 4.5 (5.4) 7.0 (6.1) 3.3 (4.7) 0.29 

Age asthma 
onset: years  3.2 (2.7) n/a  3.4 (2.0)  0.78 

Allergic rhinitis 60 (40.0%) 29 (54.7%) 31 (32.0%) 7 (17.5%) 7 (53.8%) 0 (0.0%) 0.009 

Nasal steroids 14 (9.3%) 9 (17.0%) 5 (5.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0.07 

Smoking 7 (4.7%) 1 (1.9%) 6 (6.2%) 1 (2.5%) 0 (0.0%) 1 (3.7%) 1.0 

 
Mean (SD) or Number (%) provided 
 
Apre-bronchodilator measures. FEV1 = forced expiratory flow volume in 1 second, FVC = forced vital capacity 
 
BFisher’s Exact test for categorical variables and t-test for continuous variables
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Supplementary Materials 

 
Supplementary Figure 1: variancePartition analysis of the RNAseq development set.  
 
Supplementary Figure 2: Visual description of the machine learning pipeline used to select 
predictive features (genes) and develop classification models based on them in the RNAseq 
development set.  
 
Supplementary Figure 3: Visual description of the feature (gene) selection component of the 
machine learning pipeline.  
 
Supplementary Figure 4: Critical Difference plots demonstrating results of the statistical 
comparison of the performance of 100 asthma classification models obtained by various 
combinations of feature selection and global classification algorithms in terms of the 
classification performance and parsimony (numbers of genes included) of the models.  
 
Supplementary Figure 5: Evaluation measures for classification models.  
 
Supplementary Figure 6: Performance of permutation-based random classification models in 
test sets of independent subjects with asthma and controls.  
 
Supplementary Figure 7: Performance of permutation-based random classification models in 
test sets of independent subjects with non-asthma respiratory conditions and controls.  
 
Supplementary Figure 8: Distribution of DESeq2 FDR values of differential expression in the 
asthma gene panel (blue bars) vs. other genes in the RNAseq development set (coral bars).  
 
 
 
Supplementary Table 1: Lists of over- and under-expressed genes and pathways in asthma 
cases compared to controls (in different tabs of this file). Differentially expressed genes were 
identified using DESeq2 [24] applied to the development set, and enriched pathways were 
identified from the Molecular Signature Database [25], both using an upper FDR threshold of 
0.05. 
 
Supplementary Table 2: List of known asthma-associated genes from a recent review of 
asthma genetics [28] that overlap with genes in our RNAseq data sets.  
 
Supplementary Table 3: Characteristics of the external asthma cohorts used in the validation 
of the asthma gene panel. 
 
Supplementary Table 4: Characteristics of the external cohorts with non-asthma respiratory 
conditions and controls used in the validation of the asthma gene panel. 
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