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Abstract	22	
Estimation	of	 the	 joint	distribution	of	effect	size	and	minor	allele	 frequency	(MAF)	 for	genetic	23	

variants	is	important	for	understanding	the	genetic	basis	of	complex	trait	variation	and	can	be	24	

used	 to	detect	 signature	of	natural	 selection.	We	develop	 a	Bayesian	mixed	 linear	model	 that	25	
simultaneously	estimates	SNP-based	heritability,	polygenicity	(i.e.	the	proportion	of	SNPs	with	26	

nonzero	 effects)	 and	 the	 relationship	 between	 effect	 size	 and	 MAF	 for	 complex	 traits	 in	27	
conventionally	unrelated	individuals	using	genome-wide	SNP	data.	We	apply	the	method	to	28	28	

complex	traits	in	the	UK	Biobank	data	(N	=	126,752),	and	show	that	on	average	across	28	traits,	29	

6%	of	SNPs	have	nonzero	effects,	which	in	total	explain	22%	of	phenotypic	variance.	We	detect	30	
significant	 (p	 <	 0.05/28	 =	 1.8×10-3)	 signatures	 of	 natural	 selection	 for	 23	 out	 of	 28	 traits	31	

including	 reproductive,	 cardiovascular,	 and	 anthropometric	 traits,	 as	 well	 as	 educational	32	
attainment.	 We	 further	 apply	 the	 method	 to	 27,869	 gene	 expression	 traits	 (N	 =	 1,748),	 and	33	

identify	 30	 genes	 that	 show	 significant	 (p	 <	 2.3×10-6)	 evidence	 of	 natural	 selection.	 All	 the	34	

significant	estimates	of	the	relationship	between	effect	size	and	MAF	in	either	complex	traits	or	35	
gene	 expression	 traits	 are	 consistent	 with	 a	 model	 of	 negative	 selection,	 as	 confirmed	 by	36	
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forward	 simulation.	 We	 conclude	 that	 natural	 selection	 acts	 pervasively	 on	 human	 complex	37	

traits	shaping	genetic	variation	in	the	form	of	negative	selection.		38	
	39	

Introduction	40	
Dissecting	the	genetic	architecture	of	complex	traits	is	important	for	understanding	the	genetic	41	

basis	of	phenotypic	variation	and	evolution.	For	a	complex	trait	that	influences	fitness,	natural	42	

selection	 plays	 an	 important	 role	 in	 shaping	 its	 genetic	 architecture1,	which	 in	 turn	 provides	43	
information	 to	 infer	 the	 action	 of	 natural	 selection.	 Given	 most	 traits	 are	 polygenic,	 natural	44	

selection	is	likely	to	act	simultaneously	on	many	trait-associated	variants	that	have	pleiotropic	45	
effects	on	fitness	(known	as	polygenic	selection2-4).	Unlike	a	selective	sweep	model5	where	there	46	

are	often	a	limited	number	of	mutations	under	relatively	strong	selection,	it	is	difficult	to	detect	47	

the	signals	of	polygenic	selection	due	to	the	selection	pressure	being	spread	over	many	variants	48	
of	 small	 effect.	However,	 evidence	 for	 natural	 selection	 can	 be	 inferred	 from	 the	 relationship	49	

between	effect	size	and	minor	allele	frequency	(MAF)	at	the	genome-wide	variants.	For	example,	50	
mutations	that	are	deleterious	to	fitness	are	selected	against	and	thus	kept	at	 low	frequencies	51	

by	negative	selection,	resulting	in	a	correlation	between	effect	sizes	and	MAF6,7.	The	estimation	52	

of	 the	 joint	 distribution	 of	 effect	 size	 and	 MAF	 can	 be	 used	 to	 detect	 signature	 of	 natural	53	
selection	and	thereby	to	infer	the	relationship	between	a	complex	trait	and	fitness.		54	

	55	
Genome-wide	 association	 studies	 (GWAS)	 have	 detected	 thousands	 of	 SNPs	 associated	 with	56	

complex	 traits,	 which	 have	 helped	 to	 characterize	 the	 genetic	 architecture	 of	 these	 traits8-13.	57	

However,	the	genome-wide	significant	SNPs	discovered	in	GWAS	jointly	tend	to	explain	only	a	58	
fraction	of	the	heritability	as	many	SNPs	with	small	effects	yet	to	be	detected14.	Furthermore,	a	59	

proportion	is	missed	due	to	the	incomplete	linkage	disequilibrium	(LD)	between	causal	variants	60	
and	 SNP	markers14.	 To	 address	 the	 “missing	 heritability”	 problem14,15	 in	 GWAS,	mixed	 linear	61	

model	(MLM)	approaches	have	been	used	to	estimate	the	genetic	variance	explained	by	all	SNPs	62	

used	in	a	GWAS.	GREML	is	a	prevailing	class	of	MLM-based	approaches	where	all	SNP	effects	are	63	
fitted	 together	 as	 random	 effects16.	 GREML	 analyses	 using	 common	 SNPs	 (MAF	 >	 0.01)	 have	64	

uncovered	 a	 large	 proportion	 of	 the	 “missing	 heritability”	 for	 height17,	 BMI17	 and	 psychiatric	65	
disorders18.	 The	 GREML	method	 assumes	 that	 all	 SNPs	 have	 an	 effect	 on	 the	 trait16	 and	 thus	66	

does	 not	 allow	 us	 to	 estimate	 the	 degree	 of	 polygenicity	 (i.e.	 the	 proportion	 of	 SNPs	 with	67	

nonzero	 effects).	 Bayesian	 multiple	 regression	 is	 another	 class	 of	 MLM-based	 methods	 that	68	
enable	us	 to	make	posterior	 inference	 about	polygenicity	by	 assuming	 SNP	effects	 are	drawn	69	

from	a	mixture	distribution	of	zero	and	nonzero	components19-21.	Bayesian	MLM	methods	have	70	
been	widely	used	 in	 livestock	and	plant	breeding22	 and	have	attracted	 increasing	attention	 in	71	

humans	 for	 characterizing	 the	 genetic	 architecture	 of	 complex	 traits	 and	 diseases20,23,24.	72	
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However,	 neither	 GREML	 nor	 Bayesian	 MLM	 approaches	 explicitly	 model	 the	 relationship	73	

between	effect	size	and	MAF,	an	important	characteristic	of	the	genetic	architecture	for	complex	74	
traits.	This	relationship	can	be	used	to	detect	signatures	of	natural	selection7,25	and	inform	the	75	

design	of	future	genetic	mapping	studies.		76	
	77	

In	this	study,	we	developed	an	MLM-based	Bayesian	method	that	can	simultaneously	estimate	78	

SNP-based	 heritability,	 polygenicity	 and	 the	 joint	 distribution	 of	 effect	 size	 and	 MAF	 in	79	
conventionally	unrelated	 individuals	using	GWAS	data.	We	applied	 the	method	 to	28	complex	80	

traits	in	the	UK	Biobank	(UKB)	data26,	and	27,869	gene	expression	traits	in	the	Consortium	for	81	
the	Architecture	of	Gene	Expression	(CAGE)	dataset27,	and	identified	a	number	of	complex	traits	82	

and	 gene	 expression	 traits	 for	which	 there	 is	 significant	 evidence	 of	 natural	 selection	 on	 the	83	

associated	SNPs.		84	
	85	

Results	86	
Method	overview	87	

Under	the	Bayesian	MLM	framework,	we	propose	to	model	the	relationship	between	effect	size	88	

and	MAF	using	the	following	mixture	distribution	as	prior	for	each	SNP	effect		89	
	90	

𝛽"	~	𝑁 0, 2𝑝"(1 − 𝑝")
.
𝜎0
1 𝜋 + 	𝜙 1 − 𝜋 	91	

	92	

where	𝛽" 	is	 the	 allelic	 substitution	 effect	 of	 a	 SNP	 j,	𝑝" 	is	 the	MAF	of	 the	 SNP,	𝜎0
1	is	 a	 constant	93	

factor	(i.e.	variance	of	SNP	effects	under	a	neutral	model),	𝜙	is	a	point	mass	at	zero,	and	𝜋	is	the	94	
proportion	of	SNPs	with	nonzero	effects	(polygenicity).	The	variance	of	the	effect	size	of	SNP	j	is	95	

𝜎"1 = 2𝑝"(1 − 𝑝")
.
𝜎0
1,	which	is	a	function	of	MAF	of	the	SNP.	Thus,	the	parameter	𝑆	measures	96	

the	 relationship	 between	 effect	 size	 and	MAF.	 If	𝑆 = 0,	 the	 effect	 size	 is	 independent	 of	MAF	97	

(neutral	model).	If	there	is	selection,	the	effect	size	can	be	positively	(S	>	0)	or	negatively	(S	<	0)	98	
related	to	MAF.	All	these	parameters	are	treated	as	unknown	with	appropriate	priors	(Online	99	

Methods).	 Our	 model	 (referred	 to	 as	 BayesS)	 allows	 simultaneous	 estimation	 of	 multiple	100	

characteristics	of	 the	 genetic	 architecture:	 SNP-based	heritability	 (ℎ.891 ),	 polygenicity	 (𝜋)	 and	101	

the	relationship	between	SNP	effect	and	MAF	(S).	We	use	a	gradient-based	sampling	algorithm,	102	

Hamiltonian	Monte	Carlo28,	to	sample	S	from	the	posterior	distribution,	and	use	Gibbs	sampling	103	

for	other	parameters	in	the	model	by	assuming	conjugate	priors.	Furthermore,	we	use	a	parallel	104	
computing	strategy	following	Fernando	et	al.29	to	allow	the	analysis	to	be	scalable	to	very	large	105	

samples	sizes	(𝑁 > 100,000).	Details	of	sampling	scheme	and	parallel	computing	strategies	are	106	
given	in	the	Supplementary	Note.	107	
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	108	

In	the	hypothesis	test	against	S	=	0,	we	used	two	approaches	to	control	false	positives.	The	first	109	
approach	 is	 to	 control	 the	 family-wise	 type	 I	 error	 rate	 (FWER)	 using	 the	 theory	 that	 the	110	

posterior	 mode	 standardized	 by	 the	 posterior	 standard	 error	 (s.e.)	 asymptotically	 follows	 a	111	
standard	 normal	 distribution	 under	 the	 null30.	 The	 asymptotic	 normality	 of	 the	 posterior	112	

distribution	 was	 justified	 by	 simulation	 with	 the	 UKB	 cohort	 (Supplementary	 Fig.	 1).	 The	113	

second	approach	 is	 to	control	 the	proportion	of	 false	positives31	 (PFP)	among	rejections	 (also	114	
known	as	the	marginal	false	discovery	rate	or	mFDR32)	based	on	the	posterior	probability	given	115	

the	 data,	 e.g.	Pr 𝑆 < 0 𝒟 	(Supplementary	 Note).	 We	 show	 by	 simulation	 that	 if	 the	 true	116	
distribution	of	S	is	used	as	the	prior,	then	rejecting	𝑆 = 0	with	Pr 𝑆 < 0 𝒟 ≥ 𝛾	guarantees	PFP	117	

or	mFDR	to	be	less	than	1 − 𝛾	(Supplementary	Fig.	2).	The	former	approach	is	more	stringent	118	

but	the	advantage	of	the	latter	approach	is	that	the	power	is	not	inversely	related	to	the	number	119	
of	traits	(tests)31.	120	

	121	
Assessing	 the	 robustness	 of	 parameter	 estimation	 through	 simulations	 based	 on	 real	122	

genotype	data	123	

We	 used	 simulations	 based	 on	 real	 GWAS	 genotype	 data	 from	 the	 Atherosclerosis	 Risk	 in	124	

Communities	(ARIC)	study33	to	assess	our	method	in	estimating	the	parameters	𝜽 = 𝑆, ℎ.891 , 𝜋 .	125	

The	ARIC	data	consist	of	12,942	unrelated	individuals	and	564,959	Affymetrix	SNPs	with	MAF	>	126	

1%	 after	 quality	 control	 (Online	 Methods).	 In	 our	 simulation,	 1,000	 SNPs	 were	 chosen	 at	127	

random	to	be	causal	variants,	with	their	effects	related	to	MAF	through	an	S	value	ranging	from	128	
-1	to	1	in	different	scenarios	(Online	Methods).	Since	the	number	of	causal	variants	was	known,	129	

polygenicity	 was	 assessed	 by	 the	 number	 of	 SNPs	with	 nonzero	 effects	 (𝑚8C).	 Based	 on	 the	130	

Markov	 chain	 Monte	 Carlo	 (MCMC)	 samples,	 the	 point	 estimate	 (𝜃),	 standard	 error	 (s.e.)	 or	131	

credible	interval	for	each	parameter	was	given	by	the	mode,	standard	deviation	(s.d.)	or	highest	132	
probability	density	(HPD)	of	its	posterior	distribution,	respectively.		133	

	134	
Results	 (Fig.	 1)	 show	 that	 when	 both	 causal	 variants	 and	 SNP	 markers	 were	 fitted	 in	 the	135	

analysis,	𝜽	from	 BayesS	 was	 unbiased	 with	 respect	 to	 the	 true	 parameters.	 When	 the	 causal	136	

variants	were	not	 included	 in	 the	analysis,	both	ℎ.891 	and	 the	absolute	value	of	𝑆	were	slightly	137	

underestimated,	 due	 to	 imperfect	 tagging,	 a	 similar	 issue	 as	 discussed	 in	 Yang	 et	 al.16.	 For	138	

polygenicity,	 however,	𝑚8C	estimate	 tended	 to	 be	 larger	 than	 the	 number	 of	 causal	 variants,	139	

probably	 because	 some	 causal	 variants	 could	 be	 better	 tagged	 by	 multiple	 SNPs.	 Thus,	 in	140	
practice,	𝜋	should	be	interpreted	as	the	proportion	of	non-null	SNPs,	which	is	likely	to	be	larger	141	

than	 the	 proportion	 of	 causal	 variants.	 Results	 also	 show	 that	 the	 s.e.	 for	𝑆,	ℎ.891 	and	𝜋	is	142	
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consistent	with	the	s.d.	of	the	estimates	from	100	simulation	replicates	(Supplementary	Table	143	

1).		144	
	145	

Analysis	of	28	complex	traits	in	the	UK	Biobank	data	146	
We	 applied	 the	 BayesS	 method	 to	 36	 complex	 traits	 on	 126,545	 unrelated	 individuals	 of	147	

European	 ancestry	 in	 the	 UKB26	 with	 483,634	 Affymetrix	 SNPs	 (MAF	 >	 1%)	 after	 quality	148	

controls	 (Online	Methods).	 Out	 of	 the	 36	 traits	 21	 have	𝑁 > 100,000.	 Two	 commonly	 used	149	

long-chain	 diagnostic	 tests	 were	 adopted	 to	 assess	 the	 convergence	 of	 the	 MCMC	 algorithm	150	
(Supplementary	Note).	Traits	with	results	that	did	not	pass	our	convergence	tests	were	those	151	

with	the	smallest	sample	sizes,	ℎ.891 	close	to	zero,	or	both	(Supplementary	Fig.	3).	We	focus	on	152	

the	 results	 of	 28	 traits	 that	 passed	 both	 convergence	 tests	 for	 all	 of	 the	 three	 genetic	153	

architecture	 parameters.	 These	 traits	 include	 24	 quantitative	 traits,	 2	 diseases:	 major	154	
depressive	 disorder	 (MDD)	 and	 type	 2	 diabetes	 (T2D),	 and	 2	 categorical	 traits:	male	 pattern	155	

baldness	(MPB)	and	years	of	schooling	(educational	attainment).	Supplementary	Fig.	4	shows	156	
the	 distributions	 of	 the	 estimates	 across	 these	 traits	 for	 the	 three	 genetic	 architecture	157	

parameters.		158	

	159	
Comparison	of	the	genetic	architecture	between	Height	and	BMI	160	

The	 genetic	 architectures	 of	 height	 and	 BMI	 have	 been	 relatively	 well	 studied	 compared	 to	161	
other	complex	traits34-40.	Thus,	it	is	interesting	to	compare	our	results	for	height	and	BMI	(Fig.	2)	162	

with	 the	 previous	 findings.	 Both	 traits	 have	 a	 large	 sample	 size	 in	 the	 UKB:	N	 =	 126,545	 for	163	

height	and	N	=	126,389	for	BMI.	For	both	traits,	a	negative	S	was	detected	with	extremely	high	164	

significance	level	(𝑃 = 1.8×10IJKL	for	height	and	𝑃 = 2.8×10IJM	for	BMI),	meaning	that	lower-165	

MAF	variants	tend	to	have	 larger	effect	size	(absolute	values).	These	results	suggest	 that	both	166	
height-	and	BMI-associated	SNPs	have	been	under	selection,	in	line	with	the	conclusions	drawn	167	

from	 two	 recent	 studies36,39.	 The	 posterior	 mode	 of	 S	 was	 -0.422	 (s.e.	 =	 0.019)	 for	 height,	168	

remarkably	 lower	 than	 that	of	 -0.295	(s.e.	=	0.039)	 for	BMI,	 suggesting	 that	 the	proportion	of	169	
genetic	 variation	 attributable	 to	 SNPs	 with	 low	 MAF	 for	 height	 is	 larger	 than	 that	 for	 BMI,	170	

consistent	with	the	result	from	a	previous	study36.	These	results	also	imply	that	overall	height-171	
associated	 SNPs	 are	 under	 stronger	 selection	 than	 BMI-associated	 SNPs.	 The	 phenotypic	172	

variance	explained	by	common	SNPs	(MAF	>	0.01)	was	52.8%	(s.e.	=	0.3%)	for	height	and	27.7%	173	

(s.e.	 =	 0.4%)	 for	 BMI,	 consistent	 with	 the	 estimates	 of	ℎ.891 	for	 height	 and	 BMI	 based	 on	174	

common	SNPs	reported	previously34-36.	The	posterior	distribution	of	𝜋	provides	an	estimate	of	175	
4.8%	(s.e.	=	0.1%)	of	SNPs	having	nonzero	effects	on	height,	significantly	lower	than	that	of	9.4%	176	

(s.e.	=	0.5%)	for	BMI.	These	results	suggest	that	BMI	is	more	polygenic	but	less	heritable	than	177	
height,	 consistent	 with	 the	 results	 from	 a	 recent	 study	 using	 BayesR,	 a	 Bayesian	 multi-178	
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component	mixture	model41.	As	a	consequence,	a	BMI-associated	SNP	on	average	would	explain	179	

a	 relatively	 smaller	 proportion	 of	ℎ.891 ,	 compared	 with	 a	 height-associated	 SNP,	 which	 may	180	

explain	the	higher	uncertainty	in	the	estimates	of	the	hyperparameters	such	as	S	and	𝜋	for	BMI.	181	
These	results	also	explain	why	the	number	of	genome-wide	significant	SNPs	(𝑚NO.)	identified	182	

from	the	GIANT	meta-analysis	for	BMI	(𝑚NO. = 97)	was	smaller	than	that	for	height	(𝑚NO. =183	

697)	 despite	 the	 fact	 that	 the	 sample	 size	 for	 BMI	 (N	 =~	 340,000)35	was	 considerably	 larger	184	
than	that	for	height	(N	=	~250,000)34.	185	

	186	
Inference	on	natural	selection	187	

Of	 the	 28	 traits	 that	 passed	 our	 convergence	 tests,	 23	 traits	 (including	 reproductive,	188	

cardiovascular	and	anthropometric	traits	and	educational	attainment)	had	significant	negative	S	189	
estimates	with	Pr 𝑆 < 0 𝒟 = 1	and	𝑃 < 0.05/28	(Supplementary	Table	2),	 providing	 strong	190	

evidence	that	these	traits	have	been	under	selection.	The	estimates	of	S	over	traits	ranged	from	191	
-0.601	(age	at	menopause)	to	0.016	(fluid	intelligence	score)	with	mean	-0.348,	median	-0.364	192	

and	 s.d.	 0.112.	 Interestingly,	 all	 the	 significant	 estimates	 of	 S	 were	 negative	 (see	 below	 for	193	

forward	simulation	to	infer	the	type	of	selection	from	the	sign	of	S).	The	magnitudes	of	𝑆,	i.e.	 𝑆 ,	194	

reflects	 the	 strength	 of	 selection	 on	 the	 trait-associated	 SNPs.	 Traits	 with	 the	 largest	 𝑆 	are	195	

related	 to	 fertility	and	heart	 function	 (Fig.	3),	 including	age	at	menopause	 (𝑆 = −0.601,	 s.e.	=	196	

0.073),	pulse	rate	(𝑆 = −0.481,	s.e.	=	0.048),	waist	circumference	adjusted	for	BMI	(WCadjBMI,	197	

𝑆 = −0.436,	s.e.	=	0.036)	and	waist-hip	ratio	adjusted	for	BMI	(WHRadjBMI,	𝑆 = −0.436,	s.e.	=	198	

0.049).	It	has	been	reported	that	WCadjBMI	and	WHRadjBMI	are	associated	with	cardiovascular	199	
events42,	and	WHRadjBMI	is	strongly	correlated	with	pregnancy	rate43.	Other	reproductive	and	200	

cardiovascular	 traits,	 such	 as	 age	 at	 first	 live	 birth,	 age	 at	menarche	 and	blood	pressure,	 had	201	

relatively	high	 𝑆 	as	well.	Thus,	our	results	suggest	that	reproductive	and	cardiovascular	traits	202	

are	closely	related	to	fitness	and	the	SNPs	that	are	associated	with	these	traits	have	been	under	203	

relatively	stronger	selection	than	SNPs	associated	with	other	traits.	204	

	205	

Height	(𝑆 = −0.422),	handgrip	strength	(right:	-0.404,	left:	-0.374),	lung	function	related	traits	206	

(-0.405	–	 -0.362),	 heel	bone	mineral	density	 (-0.394)	 and	basal	metabolic	 rate	 (-0.367)	had	a	207	

moderate	to	high	 𝑆 	(Fig.	3	and	Supplementary	Table	2).	Evidence	of	selection	for	height	has	208	

been	reported	from	multiple	studies	using	different	approaches36-40.	The	two	diseases,	MDD	and	209	

T2D,	had	negative	𝑆	but	 the	P-values	did	not	 reach	FWER	significance	 threshold,	 although	 the	210	

posterior	 probability	 of	 S	 <	 0	 for	 T2D	was	 as	 high	 as	 0.983.	 However,	 the	 power	 to	 detect	 a	211	

significant	𝑆	may	not	be	comparable	to	those	quantitative	traits,	given	the	number	of	cases	was	212	

less	than	10,000	for	each.	A	recent	large-scale	GWAS	based	on	whole-genome	sequencing	data	213	
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also	did	not	detect	a	signal	of	selection	on	T2D-associated	variants8.	Fluid	intelligence	score	is	214	

the	only	trait	with	𝑆	at	almost	zero	(𝑆 = 0.016,	s.e.	=	0.096),	which	seems	to	suggest	that	fluid	215	
intelligence	 (FI)	 is	 not	 pertinent	 to	 fitness.	 However,	 there	 is	 strong	 evidence	 of	 negative	216	

selection	 on	 the	 SNPs	 associated	 with	 educational	 attainment	 (EA,	𝑆 = −0.350,	 s.e.	 =	 0.055),	217	

which	is	thought	to	be	a	proxy	of	intelligence.	Indeed,	the	genetic	correlation	between	EA	and	FI	218	
was	as	high	as	0.665	(s.e.	=	0.052)	estimated	from	a	bivariate	LD	score	regression44.	Thus,	it	may	219	

be	due	to	the	limited	statistical	power	that	we	did	not	detect	the	signal	of	selection	for	FI.		220	
	221	

For	traits	with	a	significant	estimate	of	S,	we	demonstrated	the	relationship	between	effect	size	222	

and	MAF	by	a	plot	of	the	cumulative	genetic	variance	explained	by	SNPs	(Vg)	against	MAF	(Fig.	223	
4),	where	MCMC	samples	of	SNP	effects	were	used	 to	 compute	Vg	 for	SNPs	with	MAF	smaller	224	

than	a	threshold	on	the	x-axis	(Supplementary	Note).	Under	an	evolutionarily	neutral	model,	225	
Vg	is	linearly	proportional	to	MAF45	(diagonal	line),	therefore	the	area	under	the	curve	(AUC)	is	226	

0.5.	All	traits	with	significant	estimates	of	S	had	the	curve	of	cumulative	genetic	variance	above	227	

the	 diagonal	 line,	 with	 𝑆 	highly	 correlated	 with	 the	 AUC	 (r	 =	 0.902),	 an	 alternative	 way	 of	228	

illustrating	the	evidence	of	natural	selection.		229	
	230	

Inference	on	SNP-based	heritability	231	

The	28	 traits	had	 low	 to	moderate	estimates	of	ℎ.891 	with	mean	0.221,	median	0.212,	 and	s.d.	232	

0.093,	 and	were	 all	 significantly	 above	 zero	 (Supplementary	Table	3).	 Note	 that	 traits	with	233	

ℎ.891 	close	 to	 zero	 had	 failed	 in	 MCMC	 convergence	 tests,	 therefore	 the	 mean	ℎ.891 	estimate	234	

across	traits	is	likely	to	be	inflated.	For	MDD	(ℎ.891 = 0.111,	s.e.	=	0.021)	and	T2D	(ℎ.891 = 0.222,	235	

s.e.	 =	0.015),	 the	 estimates	were	on	 the	 liability	 scale	 and	were	 converted	 from	 the	observed	236	
scale	 15,	 assuming	 a	 population	 prevalence	 of	 15%46	 and	 3%47,	 respectively.	 The	 sorted	237	

estimates	 across	 traits	 are	 shown	 in	 Supplementary	 Fig.	 5.	 Besides	 height	 (ℎ.891 = 0.528),	238	

traits	with	the	highest	ℎ.891 	include	basal	metabolic	rate	(0.336),	which	has	been	reported	to	be	239	

0.2—0.4	in	model	animals48,	and	MPB	(0.335),	which	has	been	reported	to	be	a	highly	heritable	240	

trait	 in	both	pedigree49	and	genomic50	analysis.	Traits	with	the	 lowest	ℎ.891 	include	mean	time	241	

to	correctly	identify	matches	(0.081),	MDD	(0.111),	birth	weight	(0.114)	and	neuroticism	score	242	

(0.125),	in	line	with	the	low	estimates	of	ℎ.891 	from	previous	studies	in	MDD51	and	neuroticism	243	

score52.	Given	that	most	published	estimates	were	obtained	using	whole-genome	imputed	SNPs,	244	

they	 are	 likely	 to	 be	 slightly	 higher	 than	 our	 estimates	 that	 are	 only	 based	 on	 the	 SNPs	 on	245	

Affymetrix	Axiom	Genotyping	Arrays.	For	example,	a	recent	study53	on	educational	attainment	246	
in	UKB	gave	an	estimate	of	0.21	(s.e.	=	0.006),	slightly	higher	than	our	estimate	of	0.182	(s.e.	=	247	

0.004).	Our	estimate	of	0.528	(s.e.	=	0.003)	for	height	is	slightly	but	not	significantly	lower	than	248	
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that	of	0.56	(s.e.	=	0.023)	in	Yang	et	al.36.	For	BMI,	our	estimate	of	0.277	(s.e.	=	0.004)	is	highly	249	

consistent	 with	 that	 of	 27%	 (s.e.	 =	 2.5%)	 in	 Yang	 et	 al.36.	 Across	 traits,	ℎ.891 	seems	 to	 be	250	

independent	of	either	𝑆	or	𝜋	but	the	s.e.	of	𝑆	and	𝜋	decrease	as	ℎ.891 	increases	(Supplementary	251	

Fig.	6).	252	

	253	
Inference	on	polygenicity	254	

The	distribution	of	𝜋	had	mean	5.9%,	median	5.5%	and	s.d.	3.6%	across	traits,	and	ranged	from	255	

0.6%	(s.e.	=	0.1%)	to	13.6%	(s.e.	=	1.3%)	(Supplementary	Table	4).	This	suggests	that	all	the	256	
28	complex	traits	are	polygenic	with	~30,000	common	SNPs	with	nonzero	effects	on	average.	257	

Note	that	our	simulation	above	suggests	that	this	is	likely	to	be	an	overestimation	of	the	number	258	

of	causal	variants	(Fig.	1).	Interestingly,	age	at	menopause,	the	trait	with	highest	magnitude	of	𝑆	259	

(-0.601),	had	the	lowest	estimate	of	polygenicity	𝜋	(0.6%,	s.e.	=	0.1%)	(Supplementary	Fig.	5).	260	

Educational	attainment	had	the	highest	𝜋	(13.6%,	s.e.	=	1.3%),	which	is	reasonable	because	it	is	261	
a	compound	trait	of	several	sub-phenotypes	so	that	many	SNPs	have	an	effect.	It	is	followed	by	262	

age	at	first	live	birth	(𝜋 =	13.3%,	s.e.	=	2.5%),	body	fat	percentage	(𝜋 =	11.1%,	s.e.	=	0.8%)	and	263	

BMI	(𝜋 =	9.4%,	s.e.	=	0.5%).	On	the	contrary,	these	traits	had	low	to	moderate	magnitude	of	𝑆.		264	
	265	

Analysis	of	gene	expression	traits	in	the	CAGE	data	266	

Analysing	expression	levels	of	all	probes	in	the	CAGE	dataset27	(1,748	unrelated	individuals	of	267	
European	ancestry)	using	the	standard	BayesS	approach	would	be	computationally	challenging,	268	

as	 it	would	 require	us	 to	perform	36,778	distinct	BayesS	analyses.	However,	 given	 that	many	269	
probes	have	a	very	 limited	number	of	 associated	SNPs,	we	developed	a	nested	version	of	 the	270	

BayesS	model.	This	nested	approach	speeds	up	the	analyses	by	considering	SNPs	in	proximity	271	

collectively	as	a	window,	which	allows	for	fast	“jumping”	over	windows	with	zero	effect	(Online	272	
Methods).	 We	 showed	 by	 simulation	 that	 the	 nested	 model	 produces	 similar	 results	 as	 the	273	

standard	BayesS	approach	in	the	analyses	of	both	simulated	(Supplementary	Fig.	7)	and	UKB	274	
data	(Supplementary	Fig.	8)	while	being	six	times	as	fast	as	the	standard	BayesS	approach	for	275	

traits	with	low	polygenicity	(Supplementary	Fig.	9).	Using	the	nested	BayesS	model,	we	were	276	

able	to	 fit	1,066,738	imputed	SNPs	(MAF	>	1%	and	 in	common	with	those	on	HapMap354)	 for	277	
the	 gene	 expression	 traits	 by	 partitioning	 the	 genome	 into	 12,937	 non-overlapping	 200-Kb	278	

segments.	Thus,	the	polygenicity	(𝜋)	is	interpreted	as	the	proportion	of	segments	with	nonzero	279	
effects	in	nested	BayesS.		280	

	281	

After	convergence	 tests,	27,869	probes	remained,	most	of	which	had	 low	ℎ.891 	(mean	=	0.147,	282	

median	=	0.122	and	s.d.	=	0.088)	and	polygenic	architecture	(mean	𝜋	=	median	𝜋	=	5.2%	and	s.d.	283	

=	2.3%)	(Supplementary	Fig.	10).	With	unrelated	individuals	only,	our	ℎ.891 	were	moderately		284	
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correlated	with	the	GREML	estimates	(r	=	0.568,	Supplementary	Fig.	11)	despite	the	relatively	285	

small	sample	size.	The	estimates	of	polygenicity	𝜋	suggest	widespread	trans-regulatory	effects	286	
on	gene	expression	in	humans.	To	identify	genes	under	selection,	we	mapped	21,303	out	of	the	287	

27,869	 probes	 to	 the	 genome	 with	 at	 least	 “good”	 probe	 annotation	 quality55,	 which	 tagged	288	
15,615	 genes.	 Applying	 a	 Bonferroni	 correction	 for	 the	 number	 of	 probes	 mapped	 to	 the	289	

genome,	 we	 identified	 32	 probes	 that	 had	𝑆	significantly	 different	 from	 zero	 (𝑃	 < 	0.05/290	

21,303 = 2.3×10IL;	 Fig.	 5	 and	 Supplementary	 Table	 5).	 These	 probes	 were	mapped	 to	 30	291	

unique	genes	(Fig.	6)	and	all	had	negative	𝑆	(mean	=	-1.259,	s.d.	=	0.185),	moderate	ℎ.891 	(mean	292	

=	 0.412,	 s.d.	 =	 0.075)	 and	 small	π	(mean	 =	 0.0268,	 s.d.	 =	 0.011).	 The	 alternative	 approach	 to	293	
control	false	positives	is	to	limit	PFP,	which	is	less	stringent	but	more	powerful	compared	with	294	

limiting	 FWER.	 With	 this	 approach,	 a	 number	 of	 additional	 probes	 were	 identified	 with	295	
Pr 𝑆 < 0 𝒟 ≥ 0.95 ,	 giving	 a	 significant	 set	 of	 266	 probes	 for	 which	 67	 probes	 had	296	

Pr 𝑆 < 0 𝒟 = 1	(Fig.	 5).	 After	 mapping	 these	 probes	 to	 genes,	 a	 total	 of	 252	 genes	 were	297	

identified	with	the	proportion	of	false	positives	<	5%.	The	results	of	gene	ontology	(GO)	over-298	
representation	 tests	 showed	 that	 these	 genes	were	 enriched	 in	 the	molecular	 function	 of	 IgG	299	

binding	 (P	 =	 0.032	 after	 Bonferroni	 correction).	 Moreover,	 we	 detected	 45	 genes	 that	 had	300	

Pr 𝑆 > 0 𝒟 ≥ 0.95	(Fig.	 5),	 which	were	 enriched	 in	 the	molecular	 function	 of	α1-adrenergic	301	

receptor	 activity	 (P	 =	 0.048)	 and	 potassium	 channel	 activity	 (P	 =	 0.016).	 These	 results	 are	302	
consistent	with	 a	 previous	 review56	 that	 a	 proportion	of	 genes	 showing	 evidence	 of	 selection	303	

were	 significantly	 enriched	 in	 the	 function	 of	 immunity,	 receptor	 and	 potassium	 channel	304	

activity.	305	
	306	

The	directions	of	parameter	S	under	different	types	of	natural	selection	307	
Besides	detecting	selection	and	quantifying	its	strength	on	the	trait-associated	SNPs,	the	sign	of	308	

S	 allows	 us	 to	 further	 infer	 the	 type	 of	 selection.	 To	 demonstrate	 this,	 we	 used	 forward	309	

simulations	(Online	Methods)	to	simulate	common	types	of	natural	selection	for	a	quantitative	310	
trait	by	relating	the	normally	distributed	phenotype	to	fitness	through	a	hypothetical	 function	311	

(Fig.	7,	top	row).	In	the	last	generation	of	selection,	the	relationship	between	the	variance	𝜎"1	in	312	

the	effect	of	coded	allele	and	 its	 frequency	showed	different	patterns	across	different	types	of	313	

selection	 (Fig.	7,	 bottom	row).	As	expected,	when	all	 the	variants	were	 selectively	neutral,	𝜎"1	314	

was	 uniformly	 distributed	 across	 MAF	 (S	 =	 0).	 Under	 stabilizing	 selection,	𝜎"1	was	 negatively	315	

related	to	MAF	(S	<	0),	a	result	of	purifying	trait-associated	variants	with	large	effect	size	which	316	

was	 deleterious	 to	 fitness	 through	 pleiotropy	 (also	 known	 as	 negative	 selection).	 Both	317	
directional	(in	either	direction)	and	disruptive	selection	led	to	a	positive	relationship	between	318	

𝜎"1	and	MAF	(S	>	0).	This	 is	because	 in	both	cases,	 alleles	with	 favourable	effects	 increased	 in	319	
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frequency	due	to	positive	selection,	so	that	high	MAF	bins	were	enriched	with	derived	alleles	of	320	

large	effect.	The	difference	is	that	disruptive	selection	kept	the	alleles	with	 large	effects	at	the	321	
intermediate	 frequencies,	while	directional	 selection	persistently	drove	 them	 toward	 fixation,	322	

resulting	 in	 a	 sigmoidal	 or	 convex	 shape	 of	 the	 relationship	 between	 𝜎"1 	and	 MAF	323	

(Supplementary	Fig.	12).	In	conclusion,	estimate	of	S	is	informative	to	detect	the	signature	of	324	
natural	selection	and	is	able	to	distinguish	stabilising	selection	from	directional	and	disruptive	325	

selection	for	a	trait.	At	the	level	of	genetic	variants,	a	negative	(positive)	value	of	S	is	indicative	326	
of	negative	(positive)	selection	on	the	variants	associated	with	the	trait.	327	

	328	

Discussion	329	
We	infer	the	action	of	natural	selection	on	a	complex	trait	from	the	signature	left	in	the	genetic	330	

architecture	 –	 the	 relationship	 between	 effect	 size	 and	 MAF.	 We	 introduced	 a	 method	 to	331	
simultaneously	estimate	the	SNP-based	heritability,	polygenicity	and	the	relationship	between	332	

effect	size	and	MAF	using	all	genome-wide	SNPs.	In	contrast	to	the	contemporary	methods	that	333	

use	independent	SNPs	that	are	significantly	associated	with	traits3,37,57,58,	our	method	accounts	334	
for	 genome-wide	 SNP	 effects	 jointly	 and	 therefore	 has	 more	 statistical	 power	 to	 detect	 the	335	

signature	 of	 selection	 for	 polygenic	 traits.	 Results	 of	 the	 simulations	 using	 real	 genotypes	336	
showed	 that	 our	 estimate	 of	 the	 relationship	 (S)	 is	 unbiased	 when	 the	 causal	 variants	 are	337	

observed;	otherwise,	the	estimate	tends	to	be	conservative	depending	on	the	LD	between	SNPs	338	

and	the	causal	variants	(Fig.	1).	We	detected	significant	signatures	of	natural	selection	(S	≠	0)	339	
for	23	out	of	28	complex	 traits	 in	 the	UKB	data,	with	 the	 strongest	 selection	 signals	 from	 the	340	

reproductive	and	cardiovascular	trait-associated	SNPs,	followed	by	those	associated	with	height,	341	
handgrip	 strength,	 lung	 function	 and	 other	 anthropometric	 traits	 as	 well	 as	 educational	342	

attainment	(Fig.	3).	Our	findings	are	in	line	with	an	increasing	body	of	literature	supporting	the	343	

hypothesis	 of	widespread	 polygenic	 selection	 on	 standing	 variants	 in	 complex	 traits4,39,40,59,60.	344	
Together	 with	 the	 high	 prevalence	 of	 selection	 signals	 across	 traits	 (23/28	 =	 82%),	 our	345	

observation	of	high	degree	of	polygenicity	(~6%	on	average)	underlines	the	role	of	pleiotropy	346	
in	the	action	of	natural	selection.			347	

	348	

In	the	analysis	of	the	UKB	data,	all	the	significant	estimates	of	S	for	23	traits	were	negative	(Fig.	349	
3),	 consistent	with	 a	model	 of	 negative	 selection	 (Fig.	 7).	 The	 evidence	 of	 negative	 selection	350	

against	the	trait-associated	variants	has	been	previously	reported	in	some	of	these	traits,	such	351	
as	height	and	BMI36.	A	recent	study	on	~110,000	Icelanders	also	detected	negative	selection	on	352	

EA-increasing	variants	over	recent	generations,	as	a	result	of	delayed	reproduction	and	 fewer	353	

children	for	the	people	with	higher	EA61.	To	support	our	results	on	some	of	the	other	traits,	we	354	
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used	 the	 imputed	 SNPs	 based	 on	 a	 reference	 panel	 constructed	 by	 Haplotype	 Reference	355	

Consortium62	 to	 estimate	 the	 genetic	 variance	 across	 SNPs	 that	 are	 stratified	by	MAF	 and	LD	356	
scores	(GREML-LDMS36).	We	 found	that	 the	genetic	contribution	of	rare	SNPs	(MAF	<	0.01)	 is	357	

disproportional	to	that	of	common	SNPs	(MAF	>	0.01)	in	height,	BMI,	WHR,	and	diastolic	blood	358	
pressure	 (Supplementary	 Table	 6).	 These	 results	 also	 suggest	 that	 negative	 selection	 is	359	

pervasive	across	traits,	in	line	with	the	conclusion	drawn	from	the	BayesS	analysis.		360	

	361	
In	the	analyses	of	CAGE	data,	we	identified	30	genes	showing	significant	signatures,	all	of	which	362	

had	 negative	𝑆	(Fig.	 6).	 With	 a	 less	 stringent	 criterion	 for	 hypothesis	 testing,	 we	 identified	363	

additional	267	genes	but	only	45	of	them	had	positive	𝑆	(Fig.	5).	These	results	again	suggest	the	364	
predominant	role	of	negative	selection	in	the	human	genome59,63,64	and	support	the	hypothesis	365	

that	gene	expression	evolves	primarily	under	 stabilizing	 selection65,66.	The	genes	 that	 showed	366	
evidence	of	negative	selection	in	our	analysis	may	be	functionally	important	and	may	deserve	a	367	

downstream	study.	There	are	gene-level	metrics,	such	as	Residual	Variation	Intolerance	Score	368	

(RVIS)67	 and	 Gene	 Damage	 Index	 (GDI)68,	 aiming	 to	 prioritize	 genes	 for	 disease	 involvement	369	
based	 on	 the	 functional	 variation	 within	 a	 gene,	 which	 can	 be	 used	 to	 infer	 the	 strength	 of	370	

natural	 selection	 on	 the	 (coding)	 sequence	 of	 the	 gene.	 In	 contrast,	 our	method	 interrogates	371	
genome-wide	 SNPs	 to	 detect	 signals	 of	 selection	 on	 the	 SNPs	 associated	with	 the	 expression	372	

level	of	 a	 gene,	which	 largely	depend	on	 the	 trans-effects	 for	polygenic	 transcripts.	We	 found	373	

that	𝑆	is	not	correlated	with	either	RVIS	or	GDI	(Supplementary	Fig.	13).	However,	some	genes	374	

indeed	showed	strong	evidence	of	selection	in	both	lines.	For	example,	HERC2	(𝑆	=	-1.16,	RVIS	=	375	

-5.99)	is	a	pigmentation-related	gene	which	has	been	suggested	a	target	of	recent	selection69,70.	376	

In	addition,	genes	with	significantly	negative	𝑆	generally	also	had	low	GDI,	which	is	considered	377	
to	 be	 an	 indicator	 of	 the	 relative	 biological	 indispensability68.	 	We	do	not	 expect	 to	 detect	 all	378	

genes	that	are	known	to	be	under	selection,	such	as	the	lactase	gene	LCT	(𝑆	=	0.221,	s.e.	=	0.317).	379	

One	possible	reason	 is	 that	 the	signatures	of	selection	for	these	genes	are	concentrated	 in	the	380	
cis-regions	and	therefore	might	be	diluted	when	we	use	all	genome-wide	SNPs	to	estimate	S.	381	

	382	

We	conclude	with	several	caveats.	First,	the	polygenicity	estimate	(𝜋)	only	partially	reflects	the	383	
actual	 fraction	 of	 causal	 variants	 since	 SNPs	 can	 possess	 nonzero	 effects	 through	 LD	 with	384	

unobserved	causal	variants.	Nevertheless,	𝜋	can	be	used	 to	 compare	 the	 levels	of	polygenicity	385	
across	traits.	Second,	the	power	of	detecting	a	signal	of	natural	selection	(i.e.	testing	against	S	=	386	

0)	may	 improve	 if	whole-genome	sequence	(WGS)	or	 imputed	sequence	data,	which	 include	a	387	

large	 number	 of	 rare	 variants,	 are	 used	 in	 the	 analysis.	 However,	 it	 is	 computationally	388	
challenging	to	run	BayesS	on	all	the	WGS	variants	in	a	large	cohort	like	UKB,	a	common	problem	389	

in	the	analysis	of	individual-level	data	with	Bayesian	methods.	Depending	on	the	sparsity	of	the	390	
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genetic	 signals,	 the	 nested	 BayesS	 provides	 a	 possibility	 to	 run	 the	 analysis	 in	 a	manageable	391	

amount	of	time	but	would	still	require	a	huge	amount	of	memory	to	store	the	genotype	matrix	392	
for	 the	 WGS	 variants.	 A	 more	 practical	 approach	 is	 to	 model	 the	 genetic	 architecture	 using	393	

summary	statistics.	Finally,	in	the	simulation	we	observed	a	small	inflation	in	estimating	S	using	394	
the	 nested	BayesS	model,	when	 all	 causal	 variants	were	 genotyped	 and	 the	 true	S	 is	 positive	395	

(Supplementary	Fig.	7).	This	suggests	that	the	positive	𝑆	may	be	slightly	overestimated	in	the	396	

CAGE	 data	 analysis,	 but	 it	 would	 not	 change	 our	 conclusions	 since	 there	 was	 no	 significant	397	

positive	𝑆.	Given	that	most	complex	traits	have	negative	estimates	of	the	relationship	between	398	

effect	 size	 and	MAF,	we	 expect	 to	 discover	more	 rare	 variants	 of	 large	 effect	 in	 future	GWAS	399	

using	WGS	or	imputed	data.	400	
	401	

Online	Methods	402	
The	BayesS	model.	BayesS	is	a	Bayesian	multiple	regression	that	simultaneously	fits	all	the	403	

SNP	effects	as	random:		404	

𝒚 = 	𝟏𝜇 + 𝐗𝜷 + 𝒆	405	
where	𝒚	is	the	vector	of	phenotypes,	𝜇	is	the	fixed	effect,	𝐗	is	the	matrix	of	SNP	genotype	scores	406	

centred	 by	 the	 column	means,	𝜷	is	 the	 vector	 of	 SNP	 effects,	 and	𝒆	is	 the	 residuals.	 The	 fixed	407	
effect	 has	 a	 flat	 prior:	𝜇 ∝ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.	 In	 practice,	 we	 fitted	 principal	 components	 and	 other	408	

covariates	as	well	in	the	model	as	fixed	effects.	It	is	common	to	standardize	the	SNP	genotypes	409	

such	that	each	column	of	𝐗	has	variance	one.	But	we	do	not	standardize	the	SNP	genotypes,	as	410	
the	 standardization	 implicitly	assumes	a	 strong	negative	 relationship	between	SNP	effect	 size	411	

and	MAF	(S	=	-1)36,71-73.	As	shown	in	Method	Overview,	we	assume	that	the	SNP	effect	𝛽" 	has	a	412	

hierarchical	mixture	prior		413	

𝛽"	~	𝑁 0, 2𝑝"(1 − 𝑝")
.
𝜎0
1 𝜋 + 	𝜙 1 − 𝜋 	414	

where	𝜙	is	 a	 point	 mass	 at	 zero	 and	𝜋,	 the	 proportion	 of	 SNPs	 with	 nonzero	 effects,	 is	 the	415	

polygenicity.	We	allow	data	 to	dominate	 the	 inference	on	polygenicity	by	assuming	a	uniform	416	
prior	417	

𝜋~𝑈(0, 1).	418	
The	variance	of	SNP	effects,	which	quantifies	our	prior	belief	on	the	effect	size,	is	modelled	to	be	419	

related	to	MAF	𝑝" 	through	S,	which	is	assumed	to	have	a	normal	prior		420	

𝑆	~	𝑁(0, 𝜎.1).	421	

Namely,	we	a	priori	believe	a	selectively	neutral	model	with	some	certainty	(quantified	by	the	422	

given	variance)	to	allow	the	detection	of	selection	to	be	driven	by	the	data.	We	set	𝜎.1 = 1	as	the	423	

prior	in	the	analysis	of	UK	Biobank	traits,	but	a	more	informative	prior	𝜎.1 = 0.1	was	used	in	the	424	
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analysis	of	CAGE	gene	expressions	to	shrink	noise	heavier	toward	zero	given	the	much	smaller	425	

sample	size.	The	prior	for	the	common	variance	factor	is	426	

𝜎0
1	~	𝜈0𝜏0

1𝜒��
I1	427	

where	𝜈0 = 4	and	𝜏0
1	is	computed	utilizing	 the	characteristic	of	 the	distribution:	 if	σ1	~	ντ1χ�I1,	428	

then	E σ1 = ντ1 (ν − 2).	Rearranging	the	equation	gives	429	

𝜏0
1 =

𝜈0 − 2
𝜈0

𝐸 𝜎0
1 	430	

where		431	

𝐸 𝜎0
1 =

𝑉�
𝜋 2𝑝"(1 − 𝑝")

J�.
"

	432	

with	𝑉�, 𝜋	and	𝑆	are	 the	 prior	 knowledge	 of	 the	 genetic	 variance,	 π	 and	 S.	 To	 remove	 the	433	

dependence	of	 the	hyperparameter	𝜏0
1	on	 the	prior	values	of	 the	genetic	variance,	π	 and	S,	we	434	

compute	𝜏0
1	deterministically	using	 the	 sampled	values	of	 these	parameters	 for	 the	 first	2,000	435	

MCMC	cycles,	and	then	set	𝜏0
1	to	the	average	value	across	these	cycles.	Likewise,	the	prior	for	the	436	

residual	variance	is	437	

𝜎�1	~	𝜈�𝜏�1𝜒��
I1	438	

where	𝜈� = 4	and	𝜏�1 =
��I1
��

𝑉� 	with	𝑉� 	a	 prior	 knowledge	 of	 the	 residual	 variance.	 Note	 that	439	

when	S	=	0,	our	model	becomes	BayesC𝜋	19,	 a	method	 that	has	been	widely	used	 for	genomic	440	
prediction	 in	 agriculture,	 or	 Bayesian	 Variable	 Selection	 Regression	 (BVSR)	 in	 statistics	441	

literature74.	The	sampling	scheme	of	the	parameters	is	given	in	the	Supplementary	Note.	442	

	443	
The	nested	BayesS	model	 is	developed	based	on	a	previously	published	method,	BayesN75,	 to	444	

speed	up	computation	when	a	 large	number	of	SNPs	 is	 included	 in	 the	analysis.	 In	 the	nested	445	
BayesS,	the	genome	is	partitioned	into	W-Kb	non-overlapping	segments.	Each	window	a	priori	446	

has	k	 SNPs	with	 nonzero	 effects,	where	W	 and	k	 are	 some	 given	 numbers.	 SNPs	 in	 the	 same	447	

window	are	individually	modelled	as	in	BayesS	as	well	as	collectively	considered	as	a	window	448	
effect	with	a	normal-zero	mixture	prior.	Remarkable	speedups	are	obtained	by	“jumping”	 fast	449	

over	the	windows	with	zero	effect,	focusing	solely	on	the	windows	that	harbour	genetic	signals.	450	
Thus,	the	reduction	in	computing	time	is	inversely	related	to	the	polygenicity,	which	is	defined	451	

here	 as	 the	 proportion	 of	 segments	 with	 nonzero	 effects.	 When	 the	 causal	 variants	 are	 not	452	

observed,	choosing	k	>	1	may	lead	to	better	performance	in	parameter	estimation	than	BayesS,	453	
as	it	refines	the	signal	of	causal	variant	by	allowing	the	flanking	SNPs	to	jointly	capture	its	effect.	454	

Details	 on	 the	 nested	 BayesS	 and	 the	 comparison	with	 the	 standard	 BayesS	 are	 given	 in	 the	455	
Supplementary	Note.	456	

	457	
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Estimation	of	heritability.	We	estimate	the	SNP-based	heritability	using	the	sampled	values	of	458	

SNP	 effects	 in	MCMC.	By	 definition,	 the	 genetic	 variance	 is	 the	 variance	 of	 the	 genetic	 values	459	
across	individuals.	In	each	MCMC	cycle,	we	calculate	the	genetic	values	for	each	individual	 𝑔� 	460	

using	SNPs	with	sampled	nonzero	effects	 𝛽" :	461	

𝑔� = 𝑋�"𝛽"
"

	462	

Then,	the	genetic	variance	in	the	current	cycle	is	463	

𝜎�1 =
𝑔�1�

𝑁
−

𝑔��

𝑁

1

	464	

Conditional	on	the	sampled	value	of	residual	variance	 𝜎�1 ,	the	SNP-based	heritability	is		465	

ℎ.891 =
𝜎�1

𝜎�1 + 𝜎�1
	466	

The	mean	over	all	cycles	after	burn-in	is	the	estimate	of	heritability	467	

ℎ.891 = 𝐸 ℎ.891 	468	

The	standard	deviation	of	the	MCMC	samples	gives	the	standard	error	of	the	estimate	and	the	469	

highest	probability	density	gives	the	credible	interval	for	posterior	inference.	470	
	471	

ARIC	simulation	analysis.	The	simulation	based	on	Atherosclerosis	Risk	in	Communities	(ARIC)	472	

cohort33	was	used	 for	 testing	 the	methods.	We	used	PLINK	1.976	 to	carry	out	standard	quality	473	
control	 (QC)	 procedures	 on	 the	 dataset,	 including	 removal	 of	 SNPs	 with	 missingness	 >	 5%,	474	

Hardy-Weinberg	 equilibrium	 test	𝑃 < 10IL,	 or	 MAF	 <	 1%,	 and	 removal	 of	 individuals	 with	475	
missing	genotypes	<	1%	and	genetic	relationship	<	0.05	estimated	from	all	SNPs	after	QC	using	476	

GCTA-GRM77.	After	all	 the	QC	steps,	 a	 total	of	12,942	unrelated	 individuals	and	564,959	SNPs	477	

remained.	 A	 quantitative	 trait	 was	 simulated	 by	 choosing	 1,000	 SNPs	 at	 random	 as	 causal	478	
variants	with	their	effects	sampled	from	a	standard	normal	distribution.	To	simulate	a	spectrum	479	

of	 relationships	between	MAF	and	 effect	 size,	 the	 effect	 size	was	multiplied	by	 2𝑝"(1 − 𝑝")
.
	480	

where	𝑆 = −2,−1, 0, 1,	or	2,	 representing	negative	 to	positive	 relationship	between	 effect	 size	481	

and	MAF	including	the	case	of	independence	when	𝑆 = 0.	An	individual	phenotype	specific	to	a	482	
given	value	of	𝑆	was	generated	by	adding	a	random	normal	residual	with	the	variance	identical	483	

to	the	genetic	variance,	giving	each	simulated	trait	a	heritability	of	0.5.	The	simulation	process	484	

was	repeated	for	100	times.	BayesS	and	the	nested	BayesS	were	used	to	analyse	the	simulated	485	
data	 with	 and	 without	 the	 causal	 variants	 in	 the	 model.	 To	 evaluate	 the	 robustness	 of	 our	486	

method	 to	 the	 starting	 values	 of	 parameters,	 we	 used	 an	 arbitrary	 value	 of	 0	 for	 S,	 0.2	 for	487	
heritability,	and	0.05	for	𝜋,	respectively	to	start	the	MCMC.	In	the	nested	BayesS,	the	 length	of	488	

window	was	set	to	be	200-Kb	with	2	SNPs	a	priori	fitted	in	the	model.	It	is	noteworthy	that	the	489	

distribution	of	genetic	variance	explained	by	each	causal	variant	was	not	identical	for	different	490	
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scenarios	 of	 S	 in	 the	 true	 model.	 Under	 HWE,	 the	 genetic	 variance	 at	 locus	 j	 is	 2𝑝"(1 −491	

𝑝")
.�J

𝛽"1	with	𝛽"	~	𝑁 0, 1 	in	the	simulation.	Compared	to	a	trait	with	𝑆 < 0,	a	trait	with	𝑆 > 0	492	

has	a	larger	proportion	of	loci	each	explaining	a	small	proportion	of	variance,	given	an	identical	493	

distribution	of	MAF	at	the	causal	variants	between	traits	(Supplementary	Fig.	14).	Thus,	in	the	494	

scenario	 of	𝑆 > 0,	 it	 is	more	 difficult	 to	 capture	 the	 causal	 variants	 by	 SNP	markers	 if	 causal	495	
variants	are	not	observed.	496	

	497	
Analyis	 of	 the	UK	Biobank	data.	We	 have	 access	 to	 46	 complex	 traits	 in	 the	 UK	 Biobank26,	498	

where	the	phenotype	data	were	collected	from	over	500,000	individuals	aged	between	40	and	499	

69	across	the	United	Kingdom.	The	interim	release	contains	genotypes	for	152,736	samples	at	500	
806,466	 SNPs	 on	 a	 customized	 Affymetrix	 Axiom	 array	 after	 QC	 procedures78.	We	 selected	 a	501	

subset	 of	 140,408	 individuals	 that	 had	 a	 self-reported	 gender	 identical	 to	 the	 genetically	502	
inferred	gender	and	a	European	ethnicity	derived	from	a	principal	component	analysis	together	503	

with	self-reported	ethnicity.	Furthermore,	we	removed	individuals	with	genomic	relatedness	>	504	

0.05	 estimated	 from	 all	 SNPs	 using	GCTA-GRM77	 and	 SNPs	with	 genotype	missing	 rate	 >	 5%,		505	

Hardy-Weinberg	 equilibrium	 test	𝑃 < 10IL,	 or	 MAF	 <	 1%.	 The	 final	 data	 set	 consisted	 of	506	

126,752	 individuals	 of	 European	 ancestry	 with	 483,634	 common	 SNPs	 (MAF	 >	 1%).	 After	507	
removal	 of	 5	 duplicated	 traits	 and	 5	 traits	 with	 sample	 size	 (N)	<	 20,000,	 we	 had	 36	 traits	508	

remained	 for	 analysis,	 including	 32	 quantitative	 traits	 (anthropometric,	 cardiovascular	 and	509	

reproductive),	 2	 categorical	 traits	 –	 male	 pattern	 baldness	 (MPB)	 and	 years	 of	 schooling	510	
(educational	attainment)	and	2	diseases	–	type	2	diabetes	(T2D)	and	major	depressive	disease	511	

(MDD).	The	sample	sizes	of	the	traits	are	shown	in	Supplementary	Table	2,	where	most	traits	512	
had	 N	 >	 100,000.	 The	 prevalence	 of	 T2D	 and	 MDD	 in	 the	 sample	 was	 5.35%	 and	 6.70%,	513	

respectively.	 The	 phenotypes	 of	 quantitative	 traits	 were	 standardized	within	 each	 sex	 group	514	

after	regressing	out	 the	age	effect.	For	educational	attainment,	 the	years	of	schooling	are	pre-515	
adjusted	by	sex,	a	third	order	polynomial	of	year-of-birth	and	year-of-birth	by	sex	interactions.	516	

We	used	BayesS	 for	 the	 analysis,	where	 the	 first	 20	 principal	 components	 (PC)	 of	 GRM	were	517	
fitted	as	fixed	effects	to	account	for	the	effects	due	to	population	stratification.	For	the	disease	518	

traits,	sex	and	age	were	fitted	as	covariates	in	addition	to	PCs,	and	for	MPB,	only	age	was	fitted	519	

as	the	additional	covariate.		520	
		521	

Consortium	 for	 the	 Architecture	 of	 Gene	 Expression	 (CAGE)	 data	 set.	We	 analyzed	 the	522	
mRNA	 levels	 for	 36,778	 transcript	 expression	 traits	 (probes)	 from	 the	 Consortium	 for	 the	523	

Architecture	of	Gene	Expression	(CAGE)27	data	set	using	the	nested	BayesS	method.	The	CAGE	524	

data	comprised	of	measurements	from	36,778	gene	expression	probes	in	peripheral	blood,	with	525	
a	subset	of	1,748	unrelated	 (genomic	relatedness	>	0.05)	European	 individuals	 from	the	 total	526	
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2,765	 individuals	 used	 for	 this	 analysis.	 Full	 details	 of	 the	 cohorts	 contributing	 to	 CAGE,	 and	527	

their	sample	preparation,	normalization	and	genotype	imputation	are	outlined	in	Lloyd-Jones	et	528	
al.27.	 Briefly,	 the	 quantification	 of	 gene	 expression	 for	 each	 cohort	 was	 performed	 using	 the	529	

Illumina	Whole-Genome	Expression	BeadChips.	The	gene	expression	levels	in	each	cohort	were	530	
initially	 normalized,	 followed	 by	 a	 quantile	 adjustment	 to	 standardize	 the	 distribution	 of	531	

expression	levels	across	samples.	We	corrected	for	age,	gender,	cell	counts	and	batch	effects	as	532	

well	 as	 hidden	 heterogeneous	 sources	 of	 variability.	 The	 rank-based	 inverse-normal	533	
transformation	 was	 used	 to	 normalize	 the	 measurements	 for	 each	 probed	 to	 be	 normally-534	

distributed	with	mean	0	and	variance	1.	Probes	measuring	expression	levels	of	genes	located	on	535	
chromosomes	X	and	Y	were	 removed	 from	 the	analysis.	The	 initial	CAGE	dataset	 consisted	of	536	

seven	unique	 cohorts	 that	were	 genotyped	on	different	 SNP	arrays.	 Therefore,	 genotype	data	537	

were	imputed	to	the	1000	Genomes	Phase	1	Version	3	reference	panel79,	resulting	in	7,763,174	538	
SNPs	passing	quality	control	of	which	1,066,738	SNPs	overlapped	with	HapMap3	and	were	used	539	

for	analysis.	540	
	541	

Forward	 simulation	 for	 different	 types	 of	 natural	 selection.	We	 ran	 forward	 simulations	542	

using	SLiM80	to	confirm	that	the	relationship	between	effect	size	and	MAF	is	subject	to	different	543	
types	of	natural	 selection.	We	simulated	a	10-Mb	region	where	new	mutations	occurred	with	544	

probability	of	0.95	to	be	neutral	and	of	0.05	to	be	a	causal	variant	with	an	effect	sampled	from	a	545	

standard	normal	distribution.	The	mutation	rate	was	set	 to	be	1.65×10I�81.	The	phenotype	of	546	

an	individual	was	simulated	based	on	the	genotypic	values	at	all	segregating	causal	variants	in	547	

the	current	generation	with	a	heritability	of	0.1.	We	simulated	the	evolution	of	a	population	of	548	
1,000	 individuals	 over	 10,000	 generations	 (this	 is	 equivalent	 to	 100,000	 generations	 in	 a	549	

population	 of	 10,000	 individuals82).	 The	 first	 5,000	 generations	 were	 used	 a	 burn-in	 period,	550	
where	the	phenotype	did	not	affect	fitness	and	all	variants	(including	the	causal	variants)	were	551	

under	 neutral	 variation.	 From	generation	 5,001,	we	 related	 the	 standardized	 phenotype	with	552	

mean	zero	and	variance	one	to	fitness	through	a	hypothetical	function	that	represents	different	553	
types	of	 selection	 (Fig.	7,	 top	 row).	For	directional	 selection,	 the	phenotype	was	positively	or	554	

negatively	 correlated	 to	 fitness	 through	 a	 simple	 linear	 function.	 For	 stabilizing	 selection,	we	555	
used	a	normal	curve	to	model	that	fitness	achieved	optimum	at	intermediate	phenotype	value.	556	

For	disruptive	selection,	a	reversed	normal	curve	was	used	to	model	that	the	phenotypes	at	the	557	

two	tails	produced	highest	fitness.	In	the	last	generation	of	selection,	we	investigated	the	joint	558	
distribution	of	effects	and	frequencies	of	the	derived	alleles,	the	joint	distribution	of	effects	and	559	

frequencies	 of	 the	 coded	 alleles	 (arbitrarily	 chosen	 as	 in	 reality	 where	 derived	 alleles	 are	560	
unknown),	and	the	relationship	between	the	variance	of	 the	coded-allele	effects	and	MAF.	We	561	

collected	results	from	200	simulation	replicates.	562	
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Figures	771	

Figure	1:	Estimation	of	the	genetic	architecture	parameters,	e.g.	S,	heritability	and	polygenicity,	for	a	772	

simulated	trait	using	the	ARIC	data.	Results	are	the	mean	estimates	with	s.e.m.	(cap)	over	100	773	

simulation	replicates	for	a	spectrum	of	S	parameter	values.	Colour	indicates	the	results	of	BayesS	774	

with	both	causal	variants	and	SNP	markers	(red)	or	with	SNP	markers	only	(blue).	The	heritability	at	775	

the	1,000	randomly	selected	causal	variants	was	0.5.	The	number	of	nonzero	effects	is	the	number	776	

of	SNPs	with	nonzero	effects	averaged	over	MCMC	iterations.	777	

	778	

	779	
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Figure	2:	Posterior	distributions	of	the	genetic	architecture	parameters	for	height	versus	BMI	using	781	

data	 from	 UKB.	 S	 measures	 the	 relationship	 between	 SNP	 effect	 size	 and	 MAF.	 Polygenicity	 is	782	

defined	as	the	proportion	of	SNPs	with	nonzero	effects.	783	
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Figure	 3:	 Posterior	 modes	 with	 credible	 intervals	 for	 the	 genetic	 architecture	 parameters	 using	786	

BayesS.	Results	are	for	the	28	UKB	complex	traits	that	had	passed	convergence	tests	on	the	MCMC	787	

chain.	The	bold	 line	 represents	95%	credible	 interval	 (highest	posterior	density,	HPD)	and	 the	 thin	788	

line	represents	90%	credible	 interval.	Sample	size	N	 for	each	trait	 is	shown	by	the	colour	gradient.	789	

Polygenicity	is	defined	as	the	proportion	of	genome-wide	SNPs	with	nonzero	effects	on	the	trait.	790	
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Figure	4:	Cumulative	genetic	variance	explained	by	SNPs	with	MAF	smaller	than	a	threshold	on	the	x-793	

axis.	 The	 lines	 are	 the	 posterior	 means	 for	 the	 23	 UKB	 complex	 traits	 from	 UKB	 for	 which	 the	794	

estimates	of	S	were	 significantly	 different	 from	 zero.	 Shadow	 shows	 the	posterior	 standard	 error.	795	

The	inner	graph	shows	the	relationship	between	the	area	under	the	curve	(AUC)	of	the	cumulative	796	

genetic	variance	and	negative	𝑆	(bar	shows	s.e.)	across	traits.		797	

	798	

	 	799	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 3, 2017. ; https://doi.org/10.1101/145755doi: bioRxiv preprint 

https://doi.org/10.1101/145755
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure	 5:	 Genome-wide	 evidence	 of	 selection	 from	 the	 p-values	 to	 test	 against	 S	 =	 0	 and	 the	800	

posterior	 probability	 of	 S	 <	 0	 or	 S	 >	 0	 for	 21,303	 probes	 in	 the	 CAGE	 data	 after	QC.	 The	 red	 line	801	

shows	the	significant	threshold	of	0.05	after	Bonferroni	correction	(p-value	=	2.3×10IL)	or	0.95	for	802	

the	posterior	probabilities.	803	
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Figure	 6:	 Estimation	 of	 the	 genetic	 architecture	 parameters	 for	 30	 genes	 (corresponding	 to	 32	806	

probes)	 with	 significant	𝑆	(p-value	 <	 0.05/21,303)	 in	 the	 analysis	 of	 CAGE	 data.	 Results	 are	 the	807	

posterior	 modes	 with	 credible	 intervals	 obtained	 from	 the	 nested	 BayesS	 model.	 The	 bold	 line	808	

represents	95%	credible	 interval	 (highest	posterior	density,	HPD)	and	the	 thin	 line	 represents	90%	809	

credible	interval.	Polygenicity	is	defined	as	the	proportion	of	200-Kb	windows	with	nonzero	effects	810	

in	the	genome.	The	light	colour	shows	the	results	of	the	second	probe	tagging	one	gene.	811	
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Figure	7:	Forward	simulations	with	different	 types	of	 selection.	A	quantitative	 trait	was	generated	815	

based	on	a	simulated	chromosome	segment	of	10Mb	(5%	causal	and	95%	neutral	mutations	in	each	816	

generation).	 The	 trait	 heritability	 was	 0.1.	 The	 top	 row	 shows	 the	 functions	 used	 to	 relate	 the	817	

phenotype	 (normally	 distributed)	 to	 fitness	 in	 different	 modes	 of	 selection:	 neutral	 variation,	818	

directional	 selection	 with	 the	 phenotype	 positively	 (+)	 or	 negatively	 (-)	 correlated	 to	 fitness,	819	

stabilizing	selection	and	disruptive	selection.	The	2rd	row	shows	the	joint	distributions	of	the	coded	820	

allele	effects	and	frequencies,	where	the	coded	allele	at	each	causal	variant	was	chosen	at	random	821	

from	the	derived	and	ancestral	alleles,	and	the	red	line	shows	the	means	of	coded	allele	effects	 in	822	

allele	frequency	intervals	of	0.05.	The	bottom	row	shows	the	relationships	between	the	variance	of	823	

coded	allele	effects	and	MAF.	Results	were	collected	from	200	replicates	of	simulation.	824	
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