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Abstract. Resolving the correct structure and succession of highly similar sequence
stretches is one of the main open problems in genome assembly. For non haploid
genomes this includes determining the sequences of the different haplotypes. For all
but the smallest genomes it also involves separating different repeat instances. In this
paper we discuss methods for resolving such problems in third generation long reads by
classifying alignments between long reads according to whether they represent true or
false read overlaps. The main problem in this context is the high error rate found in such
reads, which greatly exceeds the amount of difference between the similar regions we
want to separate. Our methods can separate read classes stemming from regions with as
little as 1% difference.

1 Scientific Background
Third generation sequencing reads like those produced by Pacific BioSciences (Pac-

BIO) and Oxford Nanopore Technologies (ONT) sequencers are very long in compari-
son with the ones produced by second generation sequencers. The average read length
for PacBIO is often 10k base pairs (bp) and for ONT 7-9kbp have been reported. For
PacBIO more than half of the sequenced bases can be in reads of length 20kbp and
above. This is much longer than the reads produced by second generation sequencers,
which often yield reads as short as 150bp, so third generation sequencers allow a much
better repeat resolution for assembly because more repeats are spanned by single reads.
This increased read length however comes at the price of a much higher average base
error rate (about 13% for PacBIO and even higher for ONT). This poses major algo-
rithmic challenges in the areas of sequence alignment, comparison and signal detection.
Read versus read comparison (see e.g. [1]) operates at a correlation of 70% and less.
This makes it very hard to detect small differences between regions reads were sam-
pled from. Reads stemming from sufficiently similar regions in an underlying genome,
like instances of a repeat or different haplotypes, will often align within the parameters
used, as the difference between the two sources is small in comparison with the read
error rate. Being able to segregate read alignments into classes according to whether or
not an alignment between a read pair designates a real overlap in the underlying genome
to the degree possible is however important for multiple applications like genome as-
sembly and variant detection. In genome assembly for instance the quality of any con-
sensus sequence produced rises and falls with the ability to select the correct reads as
input (cf. [2]). Linking up different haplotypes during the assembly of a non haploid
organism results in patchwork like output, in particular an assembly process yielding
output contigs which are in this way not contained in the genome to be reconstructed.
Haplotype assembly designates the problem of separating reads into haplotype classes
by first mapping them to a given reference sequence and then splitting the reads into
groups using the information obtained. Several papers have presented methods for hap-
lotype assembly (or read phasing) in the diploid setting (cf. [3, 4, 5, 6, 7, 8]). Canu
(see [9]) performs repeat separation using a sequence of error correction, residual error
estimation and classification of the error corrected reads. The authors report being able
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to separate repeat instances with 3% difference and above.

2 Materials and Methods
In this paper we discuss methods for repeat and haplotype separation in long reads.

We consider the setting of de novo assembly, in particular we do not presume or require
the existence of a reference sequence or known variation sites. Instead of read to refer-
ence alignments we use read to read consensus alignments, i.e. we align reads to error
corrected reads. In addition we do not limit our attention to a scenario requiring there
to be at most two versions of a sequence, like it is the case for the haplotype assembly
of diploid genomes.

We consider two basic principles for splitting a set of reads. The first one is based
on the trivial observation that reads in the same class should agree on most positions,
particularly including those for which a very rough analysis shows a potential for dis-
agreement in the read set. As the reads we consider are not error free we cannot expect
the reads inside one class to agree on all positions. This approach has it’s merits when
the number of versions a sequence appears in is low but as we will see below, it becomes
unsuitable as the number of versions grows. The second principle is based on observing
sets of reads (more or less) consistently disagreeing on certain positions. This scales to
higher version numbers but is computationally much more expensive.

2.1 Preliminaries
LetG = {S1, S2, . . . , Sk} denote a genome containing sequences Si for i = 1, . . . , k,

i.e. strings over the alphabet Σ = {A,C,G, T}. Further let R = {R1, R2, . . . Rr}
be a set of reads sampled from G (randomly of the forward and reverse complement
strand) such that the strings in R have length L on average and the error rate (errors
per length on G) between the reads and the intervals on G they were drawn from is
pe on average. For PacBIO the length distribution in R would follow a log normal
distribution with average length 10kb and pe would be in the order of 0.13. We denote
a local alignment between sequences Ui and Uj by a tuple (i, j, ib, ie, jb, je, c) where
ib and ie mark the start and end of the alignment on Ui, jb and je the start and end on
Uj and c is a Boolean value marking whether Uj or the reverse complement of Uj was
used (c = true for reverse complement). In practice long reads often contain stretches of
very low quality, so even for two reads sharing a true overlap we find a sequence of local
alignments instead of a single suffix/prefix or containment type alignment. Our methods
can easily be generalised to this case, however for the sake of simplicity of exposition
we assume that alignments between reads are contiguous below. Let A denote the set
of all (local) alignments between pairs of reads in R s.t. the correlation between the two
reads inside the alignment is at least 1 − 2pe and the alignment covers at least ` bases
on both reads involved for some length `. In practice we commonly use ` = 1k for
third generation long reads. For a given read Rk we call the subset of A s.t. the first
component of the tuples is k the alignment pile for Rk. If G represents a non haploid
genome or contains sufficiently long repeating regions then not all the alignments in
A may refer to true read overlaps on G. We can use an alignment pile of a read or a
subset thereof (for instance by choosing the top k best aligning other reads for some k)
to compute a preliminary consensus or error corrected version of the read, e.g. using the
algorithm proposed in [2]. We denote a preliminary consensus obtained for a read Ri

in this way by R̂i. The alignment pile for Ri can be transformed into an alignment pile
for R̂i by aligning the reads in the pile for Ri to R̂i while taking the positions of the
original alignments on Ri into account and transforming those to positions on R̂i using
an alignment of Ri and R̂i. In addition to the original alignments in the pile of Ri we
also insert an alignment between R̂i and Ri into the pile of R̂i. An alignment pile for
some R̂k can be transformed into a matrix where the columns represent positions on or
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(100,0) (101,0) (102,-1) (102,0)
A C A T
A C
A T A T

C − G

Table 1: Excerpt from a matrix given by an alignment pile

before the bases of R̂k (before for base insertions into R̂k) and the rows are the reads in
the alignment pile for R̂k. An alignment (k, j, kb, ke, jb, je, c) between R̂k and a read j
is active from base kb to ke on k. The cells of a matrix row corresponding to read Rj

are set as follows. Columns the respective alignment is inactive on remain empty. In
the active region of the alignment a cell is filled with the base from Rj if the alignment
features a match, mismatch or insertion operation for the respective position and a dash
(−) otherwise. As a convention we always have the alignment between R̂k and Rk as
the first row of the matrix. Table 1 shows an example. The excerpt shows positions 100
to 102 on the read. Some bases have been inserted before position 102, which is marked
by the position identifier (102,−1). The alignment corresponding to the second row
ends at position 101, the one for the last row starts at position 101.

2.2 Agreement Based Splitting
Let d denote the average sequencing depth of the read set R. We assume the arrival

rate of reads on the genome follows a Poisson distribution with mean d, i.e. we have a
probability of Pd(i) = di

i!
e−d to see a depth of i at a given position. The probability to

see d′ correctly sequenced bases for any position is thus

Pc(d
′) =

∞∑
i=d′

Pd(i)

(
i

d′

)
(1− pe)d

′
pi−d

′

e (1)

We want to detect variation sites inside a given read Ri. One very simple way to do
this is to scan the matrix constructed for R̂i for columns in which more than one symbol
appears with a frequency above a given threshold. Assuming the alignments used to con-
struct the matrix are suitable we would see such a variation with probability

∑∞
j=d′ Pc(j)

if we chose a threshold of d′. For d = 20 and pe = 0.15 we obtain d′ = 8 if we ask
the probability to be at least 99%, i.e. we are 99% sure not to miss a relevant site if we
look for columns containing at least two symbols with 8 or more instances. There is
however the chance of calling variation sites because of unsuitable alignments in the
pile for R̂i or a sufficiently high number of wrongly sequenced bases (this is a problem
especially in the presence of a high number of sequence versions as this increases the
total number of reads involved in the pile). Consider a given position q in the genome
G and two reads Ri and Rj covering this position. Then we have a probability of
(1 − pe)2 for having the base at position q sequenced correctly in both Ri and Rj . Let
Aij = (i, j, ib, ie, jb, je, c) denote an alignment between read Ri and Rj and assume
we called n variants on Ri inside the index interval [ib, ie]. If Ri and Rj overlap as
designated by Aij in the underlying genome, then we have a probability of

Ps(j) =
n∑

j′=j

(
n

j′

)
(1− pe)2j′(1− (1− pe)2)n−j

′
(2)

to see Ri and Rj agree on at least j of the n disagreement points in the matrix for
the alignment pile of R̂i. If there are two underlying versions, e.g. a repeat with two
copies or haplotypes in a diploid genome, then we would expect to see reads coming
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from different versions disagree on most of the variant locations. In this case we have
a strong signal for separating the two versions. It becomes weaker in the presence of
more versions when some of the versions agree with others in a large fraction of the
variant locations. In this case we cannot reliably tell the difference between two reads
stemming from different versions with a relatively low number of sequencing errors and
two reads stemming from the same version but agreeing on a lower number of variant
locations due to a higher number of sequencing errors. For experiments we choose the
number m of disagreement points two reads need to agree on so we consider them as
from the same class as the smallest number s.t. Ps(m) ≥ 0.995.

2.3 Disagreement Based Splitting
One of the main problems with agreement based splitting is suboptimal performance

when reads from different classes agree on a large number of the detected variant loca-
tions. Splitting based on the differences between genomic regions does not suffer from
this effect. Every attempt via directly comparing two long reads is however bound to
fail as the high sequencing error rate drowns any slight difference between the two un-
derlying real sequences. At a single base error rate of pe = 15% the probability to see
a correct pair of corresponding bases in two reads is (1 − pe)2 = 72.25%, i.e. 27.75%
of the pairs are wrong and most of these wrong pairs lead to a false disagreement be-
tween reads which should agree. When we compare bases for discovering disagree-
ments between reads, we need to make reasonably sure that the bases compared are
correct representations of their class for a given position. Consider some position on
k reads stemming from the same class. Then we have a probability of 1 − pke to see
the correct base in at least one of these k reads. For k = 2 and pe = 0.15 we have a
probability of 97.75%, still a probability of more than 2% for all the bases to be wrong,
for k = 3 we reach 99.6625%. In consequence, if three reads from the same class agree
on a base, then this is most likely a correctly reported base. We use this observation
by instead of comparing single read bases to single read bases comparing three tuples
of bases to three tuples of bases. Given a read Rj we first build the matrix correspond-
ing to the alignment pile of R̂j . We then scan the matrix column for column. In each
column c we extract all 6 tuples (r1, r2, r3, r4, r5, r6) s.t. ri for 1, 2, . . . , 6 are row iden-
tifiers marking non empty cells in column c, the cells for row r1, r2 and r3 all contain
the same symbol a, the cells for row r4, r5 and r6 all contain the same symbol b, a 6= b,
1 = r1 < r2 < r3 and r4 < r5 < r6. Remember row 1 in the matrix refers to the align-
ment between R̂j andRj . There areO(

(
q
2

)(
q
3

)
) = O(q5) distinct such tuples in the worst

case if q is the maximum number of active alignments in any column of the matrix. For
each distinct tuple T we count the number Y (T ) of times it appears summed up over all
columns. The support Z(T ) of a tuple T is the intersection of the active intervals of the
alignments it is based on. If we want to split read sets down to a difference rate of δ,
then we expect ∆ = δ|Z(T )| differences to exist inside Z(T ). Assuming suitable align-
ments comprising R̂j’s matrix, the probability to see each single of these differences is
p6 = (1− pe)6 which is about 37.7% for pe = 15%. The probability to see at least m of
these differences is η(i) =

∑∆
i=m

(
∆
i

)
pi6(1−p6)∆−i. We choose the smallest i s.t. η(i) is

at least 99.5% as a threshold. For each i we count the number H(i) of tuples satisfying
their threshold in which i appears as r4, r5 or r6. Given Pd (Poisson distribution) as
defined above we can determine a depth threshold dt which is reached for most bases
on the genome. Using the average sequence depth we can also estimate the likelihood
of having a certain number v of sequence variants in the pile observed. Reads i with a
count H(i) close to or exceeding ht =

(
dt
2

)(
(v−1)dt

2

)
(we have fixed r1 to 1 and one of

r4, r5 or r6 to r) are most likely not in the same class at Rj . Reads i in the same class as
Rj should have a H(i) equal or close to zero.
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Agreement based Disagreement based
copies Precision Recall F1 score Precision Recall F1 score
1 1 0.910 0.952 1 1 1
2 0.986 0.820 0.896 0.998 1 0.999
3 0.908 0.862 0.885 0.999 1 1
4 0.567 0.862 0.717 0.999 1 0.999
5 0.225 0.998 0.367 0.998 1 0.999
6 0.139 1 0.243 0.998 1 0.999
7 0.120 1 0.214 0.997 1 0.998
8 0.107 1 0.193 0.996 1 0.998

Table 2: Performance of splitting on 190kbp stretch of E. coli with 1 − 8 copies added at 1% difference
to original

3 Results
We have implemented both splitting methods. They are freely available as the pro-

grams split agr and split dis in the daccord package (see https://github.com/
gt1/daccord). The daccord program (see [2]) in this package was also used to com-
pute preliminary consensus sequences for the splitting. Read versus read alignments
were computed using DALIGNER (cf. [1]). We performed two types of performance
tests, both of which are based on simulated reads to ensure we can properly check
whether and to what degree splittings computed are accurate.

In the first test we took a 190kb piece of the E. coli genome, duplicated it k times
for k = 1, 2, . . . 8 and spiked in 1% difference between the duplicated versions and the
original. The differences are single bp insertions, deletions and substitutions with equal
probability. We generated reads of average length 15kbp with an error rate of 15% to
evenly cover the sequences at depth d = 20. For the splitting we only considered read
overlaps of 5kbp and more to reduce noise in the underlying statistics. Table 2 shows the
performance of agreement and disagreement based splitting in this scenario. We provide
precision (which fraction of the alignments kept is true), recall (which fraction of the
true alignments is kept) and F1 (harmonic mean of precision and recall) score measures
to quantify the performance of the read classification methods. All scores given are
rounded to 3 significant decimals. While agreement based splitting has good precision
for one and two modified copies, the performance quickly drops up to the point where
essentially most wrong alignments are kept. The disagreement based splitting works
close to perfectly in this setting. For computing the threshold ht we have provided the
correct value for the number of variants v to the program, as it does not yet support
estimating it from the input data. The δ parameter was set to 1%.

As the first test is highly synthetic, we have chosen a somewhat more realistic sce-
nario for the second one. We have extracted regions containing the genes FCGR1(A
|B|CP), FCGR2(A|B|C) and FCGR3(A|B) plus 100kbp to the left and right of these
regions from chromosome 1 of the human reference genome (GRCh38). These regions
are highly repetitive with repeating stretches of length up to 46kbp with a difference of
merely 1% and one repeat of length 26kbp with 0.4% difference between the copies. We
generated reads and alignments using the same parameters as for the other test. Table 3
shows the performance of the splitting approaches we measured. While the region con-
sidered is repetitive in it’s entirety, we do not have many cases of stretches appearing
more than twice in total, i.e. most repeats have only two instances. As this is the setting
in which agreement based splitting mostly works, we see a decent performance for this
method as reflected in the table. For the disagreement based splitting we provide two
lines, one for the default value of ht = 441 which is computed as described above, the
other one for ht = 7, the setting which maximises the F1 score in this scenario. As
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Agreement based Disagreement based
Precision Recall F1 score ht Precision Recall F1 score
0.953 0.934 0.943 441 0.899 1 0.947

7 0.937 0.989 0.963

Table 3: Performance of splitting on FCGR regions of human chromosome 1

above we used δ = 1%. The recall value is good for both choices of ht. We lose hardly
any true alignments. The precision value for the default ht of 441 is worse than the one
of the agreement based method. A closer look reveals that the average difference be-
tween the true sequences we fail to separate (which lead to the false positive alignments
we keep) is 0.467% which is way below our setting for δ, so the failure in separation
is not surprising. Just reducing the parameter δ below 1% however does not markedly
improve the splitting, as this also greatly increases noise (disagreement tuples observed
although they are not real). The solution to this may be to require longer (> 5kbp)
overlaps between reads. As for PacBIO 50% of the sequenced bases is found in reads
longer than 20kbp, this may be feasible. When we reduce ht, then we are able to rule
out more false positives, as there are some tuples for which most of the disagreements
are observed and not just the small fraction we assume as a lower bound in our statistical
considerations. This however also reduces the recall.

4 Conclusion
We have shown that repeat and haplotype separation in long reads with current read

length and error rates is possible down to a difference of 1% and possibly less. This
improves on the current state of the art of 3% set by Canu. The methods proposed
also work if there are more than two underlying sequence versions. We hope these new
insights can help to significantly improve the assembly of repetitive regions in genomes.

Acknowledgments
We thank Gene Myers for interesting algorithmical discussions related to this paper.

References
[1] G. Myers. ”Efficient Local Alignment Discovery amongst Noisy Long Reads”. Proceedings WABI,

2014, LNCS, vol.8701, pp. 52–67.
[2] G. Tischler and E. W. Myers. ”Non Hybrid Long Read Consensus Using Local De Bruijn Graph

Assembly”. bioRxiv, 2017, https://doi.org/10.1101/106252.
[3] M. Martin et al. ”WhatsHap: fast and accurate read-based phasing”. bioRxiv, 2016, https://

doi.org/10.1101/085050.
[4] V. Bansal, A. L. Halpern, N. Axelrod and Vineet Bafna. ”An MCMC algorithm for haplotype as-

sembly from whole-genome sequencing data”. Genome Research, vol.18, pp. 1336–1346, 2008.
[5] V. Bansal and V. Bafna. ”HapCUT: an efficient and accurate algorithm for the haplotype assembly

problem”. Bioinformatics, vol.24, pp. i153–i159, 2008.
[6] S. Mazrouee and W. Wang. ”FastHap: fast and accurate single individual haplotype reconstruction

using fuzzy conflict graphs”. Bioinformatics, vol.30, pp. i371–i378, 2014.
[7] F. Deng, W. Cui and L. Wang. ”A highly accurate heuristic algorithm for the haplotype assembly

problem”. BMC Genomics, vol.14S2, 2013.
[8] Chen-Shan Chin et al. ”Phased diploid genome assembly with single-molecule real-time sequenc-

ing”. Nature Methods, vol.13, pp. 1050–1054, 2016.
[9] S. Koren et al. ”Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and

repeat separation”. Genome Research, vol.27, pp. 722–736, 2017.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 2, 2017. ; https://doi.org/10.1101/145474doi: bioRxiv preprint 

https://doi.org/10.1101/145474

