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ABSTRACT

Despite prolonged interest in comparing brain size and behavioral proxies of ‘intelligence’ across

taxa, the adaptive and cognitive significance of brain size variation remains elusive. Central to

this problem is the continued focus on hominid cognition as a benchmark, and the assumption

that behavioral complexity has a simple relationship with brain size. Although comparative

studies of brain size have been criticized for not reflecting how evolution actually operates, and

for producing spurious, inconsistent results, the causes of these limitations have received little

discussion. We show how these issues arise from implicit assumptions about what brain size

measures and how it correlates with behavioral and cognitive traits. We explore how

inconsistencies can arise through heterogeneity in evolutionary trajectories and selection

pressures on neuroanatomy or neurophysiology across taxa. We examine how interference from

ecological and life history variables complicates interpretations of brain-behavior correlations,

and point out how this problem is exacerbated by the limitations of brain and cognitive measures.

These considerations, and the diversity of brain morphologies and behavioral capacities, suggest

that comparative brain-behavior research can make greater progress by focusing on specific

neuroanatomical and behavioral traits within relevant ecological and evolutionary contexts. We

suggest that a synergistic combination of the ‘bottom up’ approach of classical neuroethology

and the ‘top down’ approach of comparative biology/psychology within closely related but

behaviorally diverse clades can limit the effects of heterogeneity, interference, and noise. We

argue this shift away from broad-scale analyses of superficial phenotypes will provide deeper,

more robust insights into brain evolution. 
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1)  Motivation

In 1856, unusual bones were unearthed in a German limestone quarry in the Neander valley.

Though later identified as the first Neanderthal specimen, the initial identification of the bones as

a distinct species was highly contested (Madison, 2016). Indeed, the unusual size and features of

the skull led to a range of questions: might the bones be from a pathological human or a new

variety of fossil ape? One of the key novel methods employed to answer these questions was

‘craniometry’: the measurement of morphological features of the skull and their relationships

(Goodrum, 2016; Madison, 2016). Employing these methods, Schaaffhausen (1858) found that

the skull likely housed a large brain, falling within the range of contemporary humans. To many

scientists at the time (though not all), the fossil’s brain size was evidence enough for the human,

or human-like, status of the fossils (cf. Madison, 2016). 

The distinctive brain morphology—and associated behavioral features—of hominins, and

Homo sapiens in particular, continue to fascinate. Indeed, comparisons between human and non-

human brains remain a central investigative target in contemporary comparative research. Such

investigations have expanded the brain measurement tool-kit: in addition to craniometry, metrics

such as brain size relative to body size (e.g., encephalization quotients), absolute brain size, and

neuronal density are now common (Montgomery, 2017). 

One of the central motivations for the continued research into brain measurement is its

potential to reveal links between neuroanatomical structures and cognitive capabilities. Yet, just

as debates about the special status of Neanderthals hinged upon the size of its cranium relative to

humans, contemporary debates on the evolution of brain size and complex behavior have tended

to privilege measures where humans come out on top. This bias has been built into a number of

‘monolithic’ general hypotheses (Barton, 2012) that claim links between measures of brain size

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 2, 2017. ; https://doi.org/10.1101/145334doi: bioRxiv preprint 

https://doi.org/10.1101/145334
http://creativecommons.org/licenses/by/4.0/


and a diverse range of proxy-measures of complex behavior, such as ‘social’ intelligence

(Dunbar & Shultz, 2007a, 2007b), ‘cultural’ intelligence (Tomasello, 1999; van Schaik &

Burkart, 2011; van Schaik, Isler, & Burkart, 2012), ‘general’ intelligence (Burkart, Schubiger, &

van Schaik, 2016; Reader, Hager, & Laland, 2011), and behavioral drive (Navarrete, Reader,

Street, Whalen, & Laland, 2016; Wyles, Kunkel, & Wilson, 1983). In each of these cases, Homo

sapiens emerges as the presumed pinnacle of a trajectory of brain evolution that correlates with

increasing behavioral flexibility, intelligence, or socialization. Yet, both the significance of brain

size and the interpretation of the correlated behaviors as more ‘complex’ or ‘cognitive’ remain

poorly elucidated. 

Here, we build on arguments made by Healy and Rowe (2007), unpack problems

associated with using proxies, bring recent evidence from molecular techniques into the debate,

and develop a framework that incorporates bottom-up and top-down approaches to advance the

field. We argue that a more fruitful approach to linking brain measures and cognition is to de-

emphasize coarse-grained notions of ‘intelligence’ and whole-brain measurements in favor of i)

taxa-specific measurements of brains and ecologically meaningful behaviors, and ii) ‘bottom-up’

extrapolation of intraspecies measures based on phylogenetic context. This means measuring

ecologically relevant features of brains and behaviors directly, rather than using proxies, at the

within-species level. Then comparing closely related species to understand the relationships

between traits, which will inform the even broader taxonomic scaling to make cross-species

generalizations based on these validated correlations. Central to this is a movement away from

Homo sapiens as the measuring stick for evaluating the neuroanatomical features and behavioral

capabilities of other animals.
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Below, we introduce a wide variety of research that examines brains and behavior across

various phyla and discuss how lessons learned from disparate taxa can inform the way we

interpret brain evolution, even among more familiar taxa such as vertebrates. Our aim is to

emphasize the advantages and disadvantages of the different metrics, methods, and assumptions

in this field. We review criticisms leveled against comparative studies of brain size, but go

further by establishing why the recognized limitations arise. By doing so, we show why broad-

stroke narratives struggle to capture the wide diversity of neuroanatomical features and

behavioral capacities in animals. As a result, we argue that a more targeted ‘bottom-up’ approach

that measures brains and behaviors at the intraspecies level to investigate cognitive,

neuroanatomical, and behavioral diversity is needed to fully understand how behavioral

complexity emerges from neural systems, and how well, or poorly, brain size reflects this

variation. 

2)  Limitations of research on brain size and cognition

Interpreting how variation in brain size might be related to variation in cognition involves a set

of assumptions that are frequently made in comparative studies:

• Brain size can be measured with negligible error 

• Investing in a larger brain comes at a cost of investing in other tissues and/or life history
traits

• Scaling relationships between brain size and body size are conserved within and across
species

• Brain regions scale uniformly with total brain size

• Brain size scales with neuron number

• Cognitive abilities are discretely coded in the brain

• Cognitive abilities can be unambiguously ascertained by measuring behavior 
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• Brain size is directly and linearly associated with variation in cognition

• Selection on cognitive abilities and brain measures acts uniformly across species

These assumptions are applied uniformly both across and within species. The validity of these

assumptions has previously been challenged by Snell (1892) and Healy and Rowe (2007), and

we provide additional arguments in this section. First, the use of brain size as a trait makes

implicit assumptions about how brains develop and evolve (see §2.1). Second, when correlating

brain size and a measure of cognition we make assumptions about how selection acts on, or for,

either trait (see §2.2). Finally, measuring cognition inevitably requires making some assumptions

about the nature of behavioral complexity and what we view as a ‘cognitive’ trait (see §2.3). In

each case, the lack of data supporting the validity of these assumptions directly limits our

capacity to make reliable inferences about the link between brain size and cognition.

2.1 Assumptions and limitations of what brain size measures

Brain size may seem an easy neuroanatomical trait to measure, and the ease of obtaining a data

point for a species, using one to a few specimens, renders it a historically useful starting point for

many studies (Healy & Rowe, 2007; Jerison, 1985). However, brain size has also become the end

point for many studies, with the variability of this trait becoming a target for evolutionary

explanation. Large databases are populated by both individual measures and species’ brain size

averages, which are used to examine cross-species correlations between brain size and a number

of other traits. Researchers look to these databases for answers to questions such as What is the

significance of a large brain? What are the costs, and what are the benefits? (e.g., Aiello &

Wheeler, 1995; Armstrong, 1983; Harvey & Bennett, 1983; Isler & van Schaik, 2009; Nyberg,

1971). Cross-species correlations reveal that relative brain size (brain size relative to body size)

is putatively associated with a range of life history and ecological traits. For example, relative
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brain size may correlate positively with longevity (a benefit) and negatively with fecundity (a

cost) in mammals (Allman, McLaughlin, & Hakeem, 1993; Deaner, Barton, & van Schaik, 2003;

González-Lagos, Sol, & Reader, 2010; Isler, 2011; Isler & van Schaik, 2009; Sol, Székely, Liker,

& Lefebvre, 2007). Crucially, however, these correlations are not necessarily independent nor

consistent across taxa; for example, relative brain size and longevity do not significantly

correlate in strepsirrhine primates (lemurs and lorises; Allman et al., 1993). Other analyses

suggest the relationship may be a consequence of developmental costs rather than an adaptive

relationship (Barton & Capellini, 2011). Such inconsistencies in applicability and explanation

raise the question: are we failing to accurately measure and explain brain size and associated

traits? 

Despite Healy and Rowe’s (2007) warning, studies reporting cross-species correlations

between brain size measures and various behavioral and life-history traits continue to

accumulate. This is in spite of recent evidence falsifying many of the assumptions listed in §2

(see Montgomery, 2017 for a review). For example, brain size does not scale linearly with body

size within (Rubinstein, 1936) or across species (e.g., Fitzpatrick et al., 2012; Montgomery et al.,

2013; Montgomery, Capellini, Barton, & Mundy, 2010), brain regions do not scale uniformly

with total brain size across species (§4.1; e.g., Barton & Harvey, 2000; Farris & Schulmeister,

2011; Gonzalez-Voyer, Winberg, & Kolm, 2009), brain size does not uniformly scale with

neuron number across taxa (§4.1; Herculano-Houzel, Catania, Manger, & Kaas, 2015; Olkowicz

et al., 2016), brain size does not necessarily translate into cognitive ability (see §2.3, §3.2, Box

1), and brain size is not consistently related to variables of interest even within species (see §2.2;

e.g., there are sex differences with regard to brain size and its relationship with cognition

[Kotrschal et al., 2013, 2014]; and fitness and longevity [Logan, Kruuk, Stanley, Thompson, &
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Clutton-Brock, 2016]). Therefore, a research program that relies on one or more of these

assumptions is limited in its ability to make reliable inferences about what brain size measures

and what it means when it correlates (or not) with other traits. 

2.2 Does selection act on brain size? 

Attempts to explain variation in brain size often implicitly assume that natural selection acts

directly on brain size. In vertebrates this assumption has been given added traction from models

exploring how brain development may shape patterns of evolution that place greater emphasis on

the conservation of brain architecture. This renders brain size a potent target of selection, in

contrast to selective adaptation of particular brain regions (see §4.2). Artificial selection

experiments further highlight the capacity for selection to directly act on brain size (e.g., Atchley,

1984; Kotrschal et al., 2013). For example, artificial selection for small and large brain size in

guppies (Poecilia reticulata) produced a grade-shift in the scaling relationship between brain and

body size, resulting in ~15% differences in relative brain size between selection lines (Kotrschal

et al., 2013). While the resulting large- and small-brained guppies differed in several traits,

including performance in learning tasks (Kotrschal et al., 2013, 2014) and survival (Kotrschal et

al., 2015), almost all of these correlations between behavioral performance and brain size were

either test context- or sex-dependent (Kotrschal et al., 2013, 2014, 2015; van der Bijl, Thyselius,

Kotrschal, & Kolm, 2015).

These various trade-offs and sex-specific effects suggest the selection landscape in

natural populations may routinely be more complex than under laboratory conditions. Several

recent studies of variation in brain composition among closely related populations or species that

are isolated by habitat reveal heritable divergence in particular brain components rather than
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overall size (Gonda, Herczeg, & Merilä, 2011; Montgomery & Merrill, 2017; Park & Bell,

2010). Indeed, a recent analysis of brain morphology in wild guppies suggests selection may

frequently favor changes in the size of specific brain regions, although in this case a role for

plasticity has not been ruled out (Kotrschal, Deacon, Magurran, & Kolm, 2017). Focusing solely

on overall brain size, as in the artificial selection experiments, might mask the co-occurring

changes within the brain that underlie the observed differences in behavior. Accordingly,

adaptive responses to ecological change may involve alterations in specific components of neural

systems, presumably in response to selection on particular behaviors. This latter distinction is

important. It is unlikely that selection ever acts ‘on’ any neuroanatomical trait because what

selection ‘sees’ is variation in the phenotypes produced by neural systems (i.e., behavior), and

the energetic and physiological costs associated with their production. 

Understanding how brain size relates to selection for behavioral complexity or cognition

is therefore a two-step process. First, we must understand how behavioral variation emerges from

variation in neural systems. Second, we must understand how this variation in neural systems

relates to overall brain size. Currently, our ability to take these steps is limited by a paucity of

well understood examples of behavioral variation in natural populations. However, existing

examples provide some insight into the limitations of total brain size as a unitary trait. Recent

studies of the proximate basis of schooling behavior in fish (Greenwood, Wark, Yoshida, &

Peichel, 2013; Kowalko et al., 2013), and burrowing (Weber, Peterson, & Hoekstra, 2013) and

parental behaviors in Peromyscus mice (Bendesky et al., 2017), suggest outwardly unitary

‘behaviors’ may often be composites of genetically discrete behavioral phenotypes whose

variation is determined by independent neural mechanisms. For example, in a recent study of

parental care in Peromyscus, Bendesky and colleagues (2017) used a quantitative genetics
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approach to map variation in the propensity to care between two species. They revealed a highly

modular genetic architecture, with some loci affecting general care behavior and other loci

affecting specific traits such as nest building, and a high propensity for sex-specific effects.

Variation in specific traits such as nest building in males can be linked with particular brain

regions, in this case, the hypothalamus. 

The role of FOXP2, a transcription factor, in language development and evolution

provides a second informative example. FOXP2 is generally highly conserved across mammals,

but has two human-specific amino acid substitutions which were likely fixed by positive

selection (Enard et al., 2002). Disruption of this gene in humans severely impacts language

acquisition (Lai, Fisher, Hurst, Vargha-Khadem, & Monaco, 2001), suggesting it plays a key role

in vocal learning. Insertion of the human version of the protein into the mouse genome affects

the development of particular cell types in the basal ganglia without gross effects on brain size or

morphology (Enard et al., 2009), yet leads to improved performance on certain learning tasks

and may have a broader role in motor learning (Schreiweis et al., 2014). 

These examples illustrate how variation in behaviors that are considered by many

comparative studies to be correlated with whole brain size may in fact arise from localized

changes in brain development that do not affect total size. This may be the kind of incremental

variation selection plays with over small evolutionary time scales, and it is reasonable to assume

that the accumulation of this kind of change makes a significant contribution to species

differences in total brain size. While there is some evidence that genetic pleiotropy (i.e., genetic

variation in loci that cause phenotypic variation in multiple traits) can drive shifts in multiple

behaviors, in many cases selection may be able to shape specific behavioral traits independently

of other behaviors. Global measures of brain size and cognition both suffer from a lack of
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support for the underlying assumption that the correlated variation in their component parts

stems from a shared proximate basis. 

2.3 Assumptions and limitations about what brains mean for cognition

While ongoing efforts attempt to discover and characterize specific links between particular

behavioral and cognitive traits and brain size, this work exists alongside a highly visible thread

running through the literature that takes brain size itself as a proxy for ‘intelligence’ (e.g.,

Jerison, 1969; Table 1). For example, Jerison (1973, 1985) hypothesized that species showing

behaviors assumed to require increased neural processing required the evolution of a larger brain

relative to their body size to create ‘extra neurons’ for those seemingly complex behaviors. 

Table 1: Examples of cross-species comparisons that link cognition and brain size, and a

description of the caveats about the ability to draw inferences due to the limitations involved in

measuring both traits. 

Study Cognitive 
measure

Brain size 
measure that 
correlates with 
the cognitive 
measure

Caveats

MacLean et al. 
(2014)

Attempts to 
measure ‘self 
control’ in 36 
species of birds 
and mammals, 
using the A-not-B 
test and the 
cylinder test

Absolute and 
relative brain size

It is unclear whether self control 
was measured

See Box 1

Benson-Amram 
et al. (2016)

Problem solving in
39 species of 
carnivores, using a

Relative brain size
Relative brain size
+ regional brain 

Problem solving is an ambiguous 
concept, with success being 
heavily influenced by differences 
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puzzle-box that 
could be opened to
obtain food. 

volume in motivation, neophobia and 
animals’ typical behavioral 
repertoires, amongst other things. 
Additionally, here, the puzzle 
boxes could be opened in 
multiple ways: i.e. by sliding a 
latch on the box open, or rolling 
the box over (which could cause 
the latch to slide open without 
being manipulated). It is unclear 
what success on this task really 
means in terms of underlying 
cognitive ability. 
 
Captive animals in zoos were 
tested, which likely have variable 
rearing histories and experiences 
with enrichment or solving 
problems

Motivation identified as a 
confounding variable

Given the large variation among 
individuals within species on 
cognitive tests (see Table 1), a 
sample size of one to a few 
individuals is not likely to be 
representative of the species 
(mean=4.9)

Deaner et al. 
(2007; 2006)

General cognition 
as indicated by 
successful 
performance of 24 
primate genera on 
many different 
tests: string 
pulling, detouring, 
invisible 
displacement, 
object 
discrimination, 
reversal learning, 
oddity learning, 
sorting, delayed 

Absolute brain 
size

Mean brain and body mass were 
collected per genus rather than 
per species because cognition 
data were only available per 
genus. This scale is likely too 
broad (see §3.2).

Cognitive test data were pooled 
when the same tests had been 
conducted on different species. 
However, inter-lab noise has been
shown to mask any differences or
similarities even among 
individuals of the same species 
(Thornton & Lukas, 2012) 
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response
Did not account for ecological 
differences among genera

Many tasks draw on similar 
sensory-motor capacities, which 
questions whether ‘general 
cognition’ can be inferred

Reader et al. 
(2011)

General cognition 
as indicated by 
successful 
performance of 62 
primate species on
many different 
tests: extractive 
foraging, 
innovation 
frequency per 
species, social 
learning, tactical 
deception, tool use

Ratio of the 
neocortex and the 
rest of brain

Ratio of neocortex
+ striatum and the 
brainstem

Neocortex size

Some of the cognitive measures 
are proxies of the behavior in 
question (see §3.2)

The method of correcting for 
research effort does not account 
for biases in the publication of the
reports on which the data are 
based (see §3.2)

Herculano-
Houzel (2017)

Tasks in Deaner et 
al. (2007) (above 
in this table), and 
cylinder and A not 
B tasks in 
MacLean et al. 
(2014) and 
Kabadayi et al.
(2016)

Number of 
cortical or pallial 
neurons

See row above on Deaner et al. 
(2007) and Box 1

In discussing indicators of ‘cognition’, we first need to know when a behavior is

‘cognitive’ or indicative of ‘complex cognitive abilities’ (sometimes referred to as ‘intelligence’

and often invoking the term ‘behavioral flexibility’ [Mikhalevich, Powell, & Logan, 2017];

Table 2). This is problematic because these terms are not defined well enough to test empirically

or even to properly operationalize, and therefore cannot be measured in a systematic way.

Appeals to ‘neural processing’ likewise suffer from ill definition and an inability for accurate
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quantification in most contexts. Researchers studying animal behavior tend to avoid using the

term ‘intelligence’ due to its anthropocentric connotations, and instead often adopt Shettleworth’s

definition of cognition as “the mechanisms by which animals acquire, process, store, and act on

information from the environment. These include perception, learning, memory, and decision-

making” (Shettleworth, 2010, p. 4). However, this all-encompassing definition still does not

allow us to answer basic questions about the proximate machinery underlying ‘cognitive’ traits:

Is a behavior more ‘cognitively complex’ if it engages more neurons, or certain networks of

neurons, or neurons only in particular brain regions that are responsible for learning and

memory? Or should we think of neural processing in dynamic terms, such as the ‘flexibility’ of

neurons to abandon old connections and form new ones as task demands change? Is behavior

only considered to rely on complex cognition if it is flexible? There are no clear answers to these

questions because data are greatly lacking. 

Indeed, it is nearly impossible to determine which behaviors require increased neural

processing when they are observed in isolation from real-time brain activity. Creative studies

using imaging technology can now measure behavior and brain activity at the same time, but

only in species that can be trained to remain stationary in an fMRI scanner (e.g., dogs: Andics et

al., 2016; pigeons: De Groof et al., 2013; see also Mars et al., 2014). However, without a priori

predictions about which neural measures indicate complex cognition, this will remain a process

o f post hoc explanations and goal-post moving based on anthropocentric biases about which

species should be ‘intelligent’ (see Mikhalevich et al., 2017). 

Burgeoning research in artificial intelligence and machine learning suggests the

correlation between raw computing power (‘brain size’) and ‘intelligence’ is unlikely to be

straightforward. For example, a machine-learning algorithm designed to solve a specific task
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may indeed get a performance boost from a ‘bigger brain’ (i.e., utilizing more hardware, for

example, when playing Go [Silver et al., 2016]). However, algorithmic improvements that create

more efficient ways of forming ‘neuronal’ connections based on input data may account for even

greater performance or speed improvements given fixed hardware. The effective utilization of

hardware resources is itself an active research field within machine learning (e.g., Nair et al.,

2015), hinting that a ‘bigger brain’ does not straightforwardly translate into greater speed or

better performance.

Table 2: Examples of experiments attempting to test cognition. We note that there may be

additional confounds in such studies that are likely to have affected test performance; however,

these cannot be ruled out until explicitly quantified and taken into account in analyses (see also

Macphail, 1982).

Cognitive 
Tests

Attempting to 
test

Assumed cognitive measures might be 
confounded by 

Examples of 
studies that 
investigate or 
review these 
cognitive tests

String 
pulling

Insight
Learning speed
Means-end 
understanding

Responses to perceptual-motor feedback
Motivation to obtain reward
Age
Attention
Rearing effects
Dexterity
Object permanence
Exploration
Neophobia/neophilia
Side biases
Visual acuity
Salience of the stimuli

Jacobs & 
Osvath (2015)

Aesop’s 
Fable tube 
tests

Physical 
cognition
Causal reasoning

Learning speed
Motivation to obtain reward
Object biases

Jelbert et al. 
(2014; 2015), 
Logan et al. 

278

279

280

281

282

283

284

285

286

287

288

289

16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 2, 2017. ; https://doi.org/10.1101/145334doi: bioRxiv preprint 

https://doi.org/10.1101/145334
http://creativecommons.org/licenses/by/4.0/


Responses to perceptual-motor feedback
Salience of the stimuli

(2014), Miller 
et al. (2016) 

Cylinder 
and A not B 
tasks

Self control / 
inhibition

Neophobia/neophilia
Exploration
Dexterity
Perseveration
Salience of the stimuli
Visual acuity/tracking
(see Box 1)

MacLean et al. 
(2014), Jelbert 
et al. (2016)

Puzzle-
boxes

Innovativeness
Problem solving
Creativity

Neophobia/neophilia
Exploration
Dexterity
Motivation to obtain reward
Behavioral repertoire size
Perseveration
Operant conditioning (likelihood of 
repeating actions that led to obtaining 
reward)
Salience of the stimuli
Age
Dominance rank
Sex

Benson-Amram
& Holekamp 
(2012), 
Boogert et al. 
(2008), 
Thornton & 
Samson (2012)

Reversal 
learning

Learning speed
Behavioral 
flexibility

Neophobia/neophilia
Exploration
Perseveration
Learning speed
Motivation to obtain reward
Body condition
Age
Sex
Reproductive hormonal state 
Habituation to captivity
Salience of the stimuli

Boogert et al. 
(2011; 2010),
O’Hara et al. 
(2015)

Trap-tube 
tasks

Tool-use
Physical 
cognition
Causal reasoning

Operant conditioning 
Learning speed
Dexterity
Neophobia
Motivation to obtain the reward 
Motivation to avoid incorrect responses
Inhibitory control
Salience of the stimuli

Seed et al. 
(2006), 
Mulcahy & Call
(2006)
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Theoretical reflection within the field of artificial intelligence has provided alternative

definitions of intelligence that highlight the difficulties faced by cognitive ethologists. For

example, Legg and Hutter (2007) aim to provide a universal definition that could apply to

machine intelligence as well as human and non-human animal intelligence. Informally, their

definition suggests: “Intelligence measures an agent’s ability to achieve goals in a wide range of

environments”. Following Legg and Hutter’s definition (without committing to whether theirs is

definitive) clarifies several difficulties with the current approach to evaluating intelligence in

non-human animals, and subsequently our ability to relate it to brain size. More specifically:

1. Intelligence is goal-dependent. A behavior, no matter how complex, cannot be counted as

intelligent if it does not serve a clear goal. Yet, interpreting goal-orientation in non-

humans is inherently difficult, even under strict experimental conditions.

2. Intelligence is environment-dependent. Problematically, behavioral features often

associated with complex cognition such as innovation, planning and tool use may have

varying degrees of availability or relevance in different environments, which may affect

whether they are displayed or not, irrespective of the organism’s ability to display them.

3. Intelligence of an organism is displayed across a range of environments. The few

experimental setups usually used to quantify ‘intelligence’ in captive animals may

therefore be minimally informative; instead, the ability of an organism to achieve its

goals should be evaluated across the range of environments it is likely to encounter

within its lifetime.

Regardless of the validity of the definition, these three features - goal orientedness, environment

dependency and utility across heterogeneous conditions - highlight the practical limitations of

assessing cognition in animals. The focus on utility further illustrates why selection may favor
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‘simple’ behavioral solutions to a task, or why the expression of simple behavior does not

preclude the ability of an organism to identify and carry out more complex solutions in

alternative contexts. If cognition is something akin to problem-solving capacity, then we should

develop measures that pay careful attention to the range of problems animals face in their

natural environments, rather than transferring proxies of intelligence in humans that are

relevant to the problems humans face in human environments (see Box 2 for an example). 

Nevertheless, many comparative studies do find associations between gross measures of

brain size and broadly descriptive behaviors. In what follows, we focus on two factors that

explain when and why the results of such comparative studies should be treated with caution:

biological heterogeneity, and statistical noise and interference.

3)  Why do these limitations of brain-behavior comparative studies arise? Noise and 

interference

The lack of consistency in results from comparative studies (see Healy & Rowe, 2007 for an

overview) strongly suggests some underlying variability in the relationship between brain size

and complex cognition. In attempting to understand the properties of a particular system, it is

useful to distinguish between noise (exogenous source) and interference (endogenous source;

Currie & Walsh, n.d. in review) as distinct kinds of confounds in brain-behavior correlations.

Noise limits our ability to accurately determine and measure the co-evolving brain structures and

cognitive abilities (this section), while interference results from the endogenous features of

systems interacting with one another (section 4). One major factor shaping limitations of

comparative studies of brain size and cognition is the influence of noise and the numerous

covariates influencing the reliability and power to detect true associations. Noise results from

exogeneous factors that undermine our capacity to extrapolate across data-points. Measurement
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error is an inevitable source of noise in these studies because behavior is noisy (§3.1), the

behaviors observed might not directly reflect single specific cognitive abilities (§3.2), and the

feasibility of obtaining brain measures differs across species, thus limiting comparison (§3.3).

Reducing noise requires different experimental and analytical approaches.

3.1 Measuring behavior is noisy because behavior is noisy 

Animal behavior depends on the integration of internal motivational states and external

environmental cues. Although many behaviors are largely stereotyped, the kinds of behavioral

traits routinely studied in comparative studies of cognition are not. The expression of behaviors

that we might interpret as ‘social cognition’ (such as theory of mind) or ‘physical cognition’

(such as tool use) depend on an individual’s internal state and perception of the external

environment, factors that are not readily assessed. This introduces a degree of stochasticity in an

animal’s behavioral expression and noise in our behavioral measurements.

For example, Japanese macaques (Macaca fuscata) provide a famous case of innovation.

In this case, two novel behaviors involving washing sweet potatoes before eating them and

separating grains from dirt by throwing them in the water, were innovated by a single female

(called Imo) and spread through a wild population via social transmission (cf. Allritz, Tennie, &

Call, 2013; Kawai, 1965). At a population level, the high rate of social transmission may be

impressive, but at an individual level does the innovativeness of Imo suggest some

neuroanatomical variation that supports more complex cognition and increased innovation?

Imo’s brain may be no more innovative than her peers: she may simply have been in the right

place at the right time or more receptive to reward stimuli. Whether inferred behavioral

categories such as innovation reflect population-level variation in cognition is therefore unclear.
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The assumption that innovation and behavioral flexibility reflect similar cognitive processes is

extrapolated from anthropocentric concepts and experiences of innovation, but this clearly

requires empirical validation.

Developments in artificial intelligence and machine learning, especially in the field of

reinforcement learning, suggest one reason to be wary of the possible conclusion that Imo’s

innovative ability is due to neuroanatomical variation at the intraspecies level: high levels of task

performance can be achieved by systems that combine trial-and-error learning with feedback on

their performance in the form of a reward (similar to reward-based associative learning). As

reported by Mnih and colleagues (2015), a system trained from raw pixel inputs and reinforced

using an environment-provided performance metric (game score) was able to achieve human-

level performance in Atari game play by iteratively searching for the patterns that maximize

game score. Silver and colleagues (2016) report another achievement of artificial intelligence,

namely of human-level performance on the game of Go, with gameplay that has been described

as ‘creative’ and ‘innovative’, by the artificial agent first learning to predict expert moves

(supervised learning) and then by improving performance through self-play (reinforcement

learning). These engineering achievements suggest that the combination of chance, feedback,

and repeated iterations (possibly over generations) could yield the same behavioral performance

by artificial intelligence, at least in narrow domains, as organisms associated with having

‘complex cognition’.

3.2 Measuring cognition through behavior is noisy because we use unvalidated proxies

Cognition is unobservable and must be inferred from behavior (Box 1). Many of the 50+ traits

that have been correlated with brain size across species (Healy & Rowe, 2007) are proxy
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measures of the actual trait of interest (e.g., the number of novel foraging innovations at the

species level is a proxy for individual-level behavioral flexibility). This would not be a problem

if proxies were validated by directly testing the link between the trait of interest and its

correlational or causal relationship with its proxy within a population. However, the proxies used

are generally not validated, which contributes noise and uncertainty about what the correlations,

or lack thereof, between these trait-proxies and brain size actually mean. An in-depth discussion

of innovation illustrates why and how unvalidated proxies are an issue for this field. 

The hypothetical link between innovation frequency per species and their relative brain

size was originally proposed by Wyles and colleagues (1983). Lefebvre and colleagues (1997)

operationalized the term innovation to make it measurable and comparable across bird species,

defining it as the number of novel food items eaten and the number of novel foraging techniques

used per species as anecdotally reported in the literature (see also Overington, Morand-Ferron,

Boogert, & Lefebvre, 2009). Innovation is assumed to represent a species’ ability to modify its

behavior in response to a change in its environment, and is therefore a trait-proxy for behavioral

flexibility (e.g., Overington et al., 2009; Reader & Laland, 2002; Sol & Lefebvre, 2000; Sol,

Timmermans, & Lefebvre, 2002). Behavioral flexibility is defined here as modifying behavior in

response to changes in the environment based on learning from previous experience

(Mikhalevich et al., 2017; Swaddle, 2016). Two challenges emerge from this conceptualization:

i) how to measure innovation, and ii) how to validate that innovation frequency per species really

is an accurate reflection of behavioral flexibility.

It is unclear how to calculate innovation frequency per species, or what its biological

significance is to the species in question. For example, Logan (unpublished data) tried to follow

standard methods (from Lefebvre et al., 1997; Overington et al., 2009) to quantify the number of
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innovations in New Caledonian crows (Corvus moneduloides). Innovations were extracted from

anecdotal reports “if authors used terms like ‘opportunistic’, ‘novel’, ‘first description’,

‘unusual’, ‘not noted before’, and ‘no previous mention in the literature’” (Lefebvre et al., 1997,

pp. 550–551). Technical innovations were also extracted from anecdotal reports and defined as

falling into one of these categories: “novel technique, novel technique in an anthropogenic

context, novel parasitic behaviour, novel commensal behaviour, novel mutualistic behaviour,

novel proto-tool behaviour, novel true tool behaviour and novel caching behaviour” (Overington

et al., 2009, p. 1002). Logan found two food-type innovations and 10 technical innovations.

However, it was unclear how distinct each technical innovation was (e.g., three involve

manipulation of Pandanus leaves). It was also unclear whether tools that were used in a similar

way, but made of different materials should count as separate innovations or the same innovation

(e.g., using non-stick materials in a stick-like manner). Finally, and most importantly, it became

clear that these innovations were only novel or unusual to the humans who saw crows

performing these behaviors; these behaviors are commonly performed by New Caledonian crows

across their natural habitat (e.g., Hunt & Gray, 2002) and are certainly not novel to them,

suggesting that innovation frequency databases (e.g., Overington et al., 2009) may contain many

similar cases of species-typical behaviors that had gone unnoticed to the human observer.

Therefore, it is also unclear what innovation frequency per species means to that species, which

further confounds the significance of innovation frequency per species. 

Evidence has only recently become available to test the hypothesis that innovation

frequency per species is a reliable proxy for behavioral flexibility. A small number of

comparative studies have tested individuals from different species that vary in brain size and

innovation frequency (both are species-level measures) on the same test of behavioral flexibility.
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Results showed that innovation frequency per species did not correlate with measures of

behavioral flexibility in individuals (Auersperg, Bayern, Gajdon, Huber, & Kacelnik, 2011;

Bond, Kamil, & Balda, 2007; Ducatez, Clavel, & Lefebvre, 2015; Jelbert et al., 2015; Logan,

2016a, 2016b; Logan, Harvey, Schlinger, & Rensel, 2016; Logan et al., 2014; Manrique, Völter,

& Call, 2013; Reader et al., 2011; Tebbich, Sterelny, & Teschke, 2010) or with species level

estimates of brain size (Cnotka, Güntürkün, Rehkämper, Gray, & Hunt, 2008; Ducatez et al.,

2015; Emery & Clayton, 2004; Isler et al., 2008; Iwaniuk & Nelson, 2003; Pravosudov & de

Kort, 2006) in predictable ways. The absence of consistent associations between intraspecific

measures of behavioral flexibility and species-level measures of innovation and brain size erodes

the logical basis of comparative studies across species. If behavioral flexibility is to be

considered a marker of cognitive ability, it should be measured directly in individuals of each

species rather than using unsupported species-level proxies such as the reported frequency of

innovation. The continued use of innovation frequency is due solely to convenience and data

availability. Although the first comparative studies using this metric provided promising

glimpses into brain evolution, the time has now come to descend to the within-species level to

understand the proximate origins of individual variation in behavioral flexibility. More generally,

despite a lack of validation that they accurately reflect the trait of interest, proxies of behavioral

traits are pervasive in the comparative brain size literature and introduce unknown amounts of

exogenous noise into cross-species analyses. This noise may generate spurious results, masking

‘true’ patterns in the data and impeding their interpretation. 

3.3 Measuring brain size is noisy because it is more difficult than it seems
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If cross-species correlations indicate relationships that are actually present, these associations

should persist within species if we assume a direct relationship between brain size and behavior

in a given task. However, these associations often do not persist at the intraspecies level, which

may be due to extensive measurement errors in quantifying brain size within species, or to the

confounding effects of variation in a brain trait being attributable to multiple functions. Most

work on brain evolution has focused on overall brain size or changes in large regions of the

brain, such as the forebrain and the cerebellum (see review in Healy & Rowe, 2007; see also

Herculano-Houzel, 2012; Reader et al., 2011). However, volumetric measurements are

particularly noisy. We use primate brain data to illustrate the difficulties involved in obtaining,

preserving, and measuring brain volumes.

More is known about brain anatomy in primates than in other orders, yet volumetric

measurements of specific brain regions in this group are only available for a few species, and

some of these measurements are pooled from only a few individuals per species (Reader &

Laland, 2002). This introduces a large amount of noise because a species’ average brain, or brain

region, volume might be biased due to sexual dimorphism or other variables that differ across

individuals (Montgomery & Mundy, 2013). Information on primate brain size is scarce and

primarily comes from captive individuals. Further, access to primate brains is limited to only a

few brain collections (Zilles, Amunts, & Smaers, 2011). 

Additional complications arise in determining whether it is appropriate to correlate

behavioral data from wild individuals with morphological data (e.g., brain size) obtained from

captive individuals. Studies comparing the morphology of wild and captive animals have shown

that rearing conditions may influence body composition (e.g., skull shape, brain size, digestive

tract) after only a few generations (O’regan & Kitchener, 2005). In primates, brain mass is not
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generally affected by captivity (Isler et al., 2008), but body mass is: some species become

heavier, while others become lighter due to inadequate diets (O’regan & Kitchener, 2005). 

Furthermore, although brain size might not be affected by captivity, primate populations

of the same species that were reared under different captive conditions differ in cortical

organization (Bogart, Bennett, Schapiro, Reamer, & Hopkins, 2014). In macaques and humans,

there is evidence that individual differences in social network size correlate with amygdala

volume and areas related to this structure (Bickart, Wright, Dautoff, Dickerson, & Barrett, 2011;

Kanai, Bahrami, Roylance, & Rees, 2011; Sallet et al., 2011). Among individuals of the same

species, brain anatomy changes significantly with age (Hopkins, Cantalupo, & Taglialatela,

2007). Choosing individuals with closely matched histories can reduce noise in brain measures

that are introduced by individual differences in previous experience, but the noise involved in

brain volume measurements is most effectively controlled and minimized by obtaining large

sample sizes per species to acquire more reliable species averages. This problem is particularly

vexing when combining behavioral data sets from observations in the wild with neuroanatomical

data from captive populations.

Data collection methods can also compromise the quality of the data. Many reported

brain weights and brain volumes are actually proxies of these measures, obtained instead by

calculating endocranial volume from skulls, which are much easier data to collect (e.g., Isler et

al., 2008; Iwaniuk & Nelson, 2002). While endocranial volume has been shown to reliably

approximate brain volume across species of primates (Isler et al., 2008) and birds (Iwaniuk &

Nelson, 2002) and within species of birds (Iwaniuk & Nelson, 2002), this might not always be

the case. For example, Ridgway and colleagues (2016) suggest endocranial vascular networks

and other peripheral appendages can account for 8-65% of endocranial volume in cetaceans,
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leading to a consistent overestimation of brain size that is more severe in some species than

others. 

Because brains are valuable tissues, non-invasive methods such as magnetic resonance

imaging (MRI) are preferred for obtaining data on brain anatomy and function. Yet high-

resolution, high-quality MRIs from primate brains are difficult to obtain from live individuals.

Images obtained using in vivo techniques, where the animal is sedated for a short period of time

while scanning their brains, might be more accessible, but image quality and resolution is poorer

than in images obtained post-mortem (K. L. Miller et al., 2011). Post-mortem MRIs can have a

higher resolution and are therefore more suited to calculating volumes. However, even MRIs are

problematic because of other sources of noise that arise from brain extraction methods, including

the post-mortem delay between death and extraction and preservation, and the ‘age’ of the

preserved brain (i.e., how long a brain has been stored for; Grinberg et al., 2008; K. L. Miller et

al., 2011). While post-mortem MRI is the best method available for calculating brain volumes,

brain volume in itself is a noisy measure because of its unclear, and usually untested, relationship

with other variables of interest (see §3.2).

Given that volumetric brain measurements suffer from many additional sources of noise,

it may be more productive to focus instead on non-volumetric features of brain composition

(e.g., neuron density, grey matter as a measure of local connectivity, white matter as a measure of

long-distance connectivity). For example, transcranial magnetic stimulation is increasingly used

in humans to temporarily ‘knock out’ particular brain areas to understand their functionality and

relationship with behavior and cognition (e.g., Zatorre, Chen, & Penhune, 2007). This type of

(non-volumetric) technique allows one to elucidate causal relationships, which generates data of

a much higher quality because it is validated (i.e., not a proxy) and directly connected with the
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behavior under study, which greatly reduces measurement noise. Ideally, multiple methods

should be applied to the same system to determine whether different types of evidence arrive at

the same conclusions regarding brain-behavior relationships.

4)  Why do limitations in brain-behavior comparative studies arise? Evidence of 

interference

Interference occurs when systems consist of multiple interacting parts whose interactions tend to

be complex. A potentially useful way of understanding some critiques of brain size-cognition

comparative studies is to consider the ramifications of heterogeneity within and across species in

terms of their brain architectures and associated traits (e.g., behavior, cognition, life history;

Figure 1). If parts of the brain evolve in concert due to developmental coupling, for instance,

then interference from those components makes it difficult to isolate the evolutionary causes of

changes in brain size, or any of its components, over time. Similarly, if many ecological and life

history traits covary, identifying which factors drive changes in brain size is complicated by

autocorrelation between independent variables. Philosophers distinguish heterogeneity within

and between systems as a useful concept for framing the validity of comparisons (Elliott-Graves,

2016; Matthewson, 2011). Heterogeneity arises as a confounding factor in comparisons among

individuals and/or species when the components of a system (e.g., brain structures) differ (§4.1),

or when similar components exist but differ in scaling relationships or patterns of connectivity

(e.g., neuron density, neural network; §4.2). Treating brain size as a unitary trait assumes either

that the brain is a unitary trait or that any signal from a brain-behavior association is sufficient to

overpower the influence of heterogeneity on either trait. Comparisons of taxonomically diverse

neural systems can identify where similar brain architectures exist and where heterogeneity in

brain composition is masked by comparisons of brain size (§4.3). Interference in the form of
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heterogeneity between systems occurs because of the complex interactions among life-history

and ecological factors that shape the co-evolution of cognitive abilities and particular brain

measures (§4.4).

Figure 1: Effects of noise and heterogeneity on brain-behavior correlations as measures of a

biological trait (on both axes) become increasingly crude. As measurements move away from

direct, quantitative data of primary biological processes both axes become increasingly noisy (as

indicated by the grey halos around each data point). The interaction between signal, noise, and

heterogeneity may result in contrasting correlations between taxonomic groups (indicated by

differently colored lines). When correlations are averaged across these groups the resulting

associations may retain little information.

4.1 Heterogeneity in brain composition within taxonomic groups: brains that appear

similar according to certain measures may actually be different

Broad comparisons across phylogenetically disparate and ancient groups demonstrate how our

understanding of the presumed cognitive benefits of large brains is, at best, simplistic. The brain
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architecture underlying ecologically relevant neural computation will depend on the behavioral

requirements of a task, the evolutionary history of the machinery that selection is building on,

and the strength of potentially opposing selective forces such as energetic, volumetric, and

functional trade-offs and constraints. Even across more closely related species, for example

among mammals, heterogeneity between brain structures introduces noise and variation that can

complicate brain-behavior relationships.

While some authors argue that the major axis of variation in mammalian brains is overall

size (e.g., Clancy, Darlington, & Finlay, 2001; Finlay, Darlington, & Nicastro, 2001), there is

ample evidence for variation in brain structure across species caused by brain region-specific

selection pressures, so called ‘mosaic brain evolution’ (Barton & Harvey, 2000). Accumulating

evidence among major taxonomic groups shows differences in brain composition (e.g., Kaas &

Collins, 2001; Workman, Charvet, Clancy, Darlington, & Finlay, 2013). When a behavior

generated by a specific brain structure is targeted by selection, the effect on total brain size will

depend on the scaling relationship between that brain structure and total brain size. For example,

one general trend across mammalian brain evolution is a correlated expansion of the neocortex

and cerebellum, which occurs independently of total brain size (Barton, 2012; Whiting & Barton,

2003). These structures share extensive physical connections and are functionally interdependent

(Ramnani, 2006), but, while they tend to co-evolve, both have evolved independently in some

evolutionary lineages (Barton & Venditti, 2014; Maseko, Spocter, Haagensen, & Manger, 2012).

Independent selection pressure on individual brain components such as the neocortex and

cerebellum do not have equal effects on overall brain size or measures of encephalization (Figure

2). Neocortex volume scales hyper-allometrically with brain volume (i.e., as brain size increases,

the proportion of neocortex tissue increases), while cerebellum volume, and several other major

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 2, 2017. ; https://doi.org/10.1101/145334doi: bioRxiv preprint 

https://doi.org/10.1101/145334
http://creativecommons.org/licenses/by/4.0/


brain components, scale hypo-allometrically with brain volume (Barton, 2012). As a result,

increases in neocortex volume have a disproportionate effect on brain volume compared with

similar proportionate increases in cerebellum size, largely due to differences in the scaling of

neuron density and white matter in the two structures (Barton & Harvey, 2000; Herculano-

Houzel, Collins, Wong, & Kaas, 2007). Variations in whole brain size, or measures of brain size

relative to body size, such as the encephalization quotient (Jerison, 1973), therefore essentially

correspond to variation in neocortex size and mask variation in other brain components, even

though the latter may be of great functional significance. The power of the comparative analysis

of brain-behavior associations is therefore limited when selection acts on non-cortical structures.

Even in vertebrates, mounting evidence suggests this will often be the case. For example, the

frequency of tool use in primates (Barton, 2012) and the complexity of nest structure in birds (Z.

J. Hall, Street, & Healy, 2013) have been linked with variation in relative cerebellum volume,

and spatial memory in birds has been linked with hippocampal volume (e.g., Krebs et al., 1996). 
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Figure 2: Effects of brain component scaling on the contributions brain regions make to

brain expansion. A) the size of the neocortex and cerebellum, once corrected for the size of the

rest of the brain, co-evolve with a positive scaling relationship. Both residual size of the

neocortex (B) and cerebellum (C), after correcting for the size of the rest of the brain, correlate

with the total brain size corrected for body size indicating both components contribute to

encephalization. However, the scaling relationships differ, such that any increase in absolute
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neocortex volume has a greater influence on residual brain size compared to a similar increase in

absolute cerebellum volume (see also Barton, 2012).

When comparing brain size across species, further heterogeneity is apparent at the level

of the cellular composition of brain structures. Recent data on neuron number in brain regions of

birds and mammals have revealed extensive variation across taxonomic groups (Herculano-

Houzel et al., 2015). For example, primates have significantly higher neuron densities in the

neocortex and cerebellum than other closely related terrestrial mammals, while elephants have

substantially higher neuron densities in the cerebellum than other Afrotheria (e.g., golden moles,

elephants, and sea cows; Herculano-Houzel et al., 2015), and birds pack similar numbers of

neurons as found in primates into volumetrically more restricted brains (Olkowicz et al., 2016).

Because neurons and their synaptic connections are the basic computational units of any neural

system, if variation in brain, or brain region, volume does not consistently reflect variation in

neuron number, then any inference made about the cognitive significance of brain size is largely

invalid. To illustrate this effect, averaging across brain regions, a 1 gram brain that follows

primate neuron number-brain size scaling rules will contain ~26% more neurons than a brain that

follows the glire scaling rules (the clade including rodents; Herculano-Houzel et al., 2015). A 1

gram brain that follows psittacine (parrots) scaling rules will contain ~100% more neurons than a

brain that follows the glire scaling rules, and ~58% more than one that follows the primate

scaling rules (Olkowicz et al., 2016). Comparing brain size across these taxa thus erroneously

assumes that the computational output (based on neuron number) of these hypothetical brains

would be equal. 
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The assumption that brain volume is comparable and meaningful across species is

explicitly made in broad phylogenetic studies of cognitive ability (e.g., MacLean et al., 2014;

Box 1). Variation in brain structure and cellular composition strongly questions this assumption.

The effect of incorporating more fine-grained data, even if they are relatively crude, is apparent

in existing studies. For example, in Benson-Amram and colleagues’ (2016) analysis of how

performance on a puzzle-box test is associated with brain size across 39 species of mammalian

carnivore, the addition of data on volumetric variation in brain structure significantly improved

their predictive model compared to one containing only brain volume. In a recent opinion piece,

Herculano-Houzel (2017) also argued that (cortical) neuron number outperforms total brain size

as a predictor of behavioral performance in self-control tests reported by MacLean and

colleagues (2014). The power of brain size as a causative predictor of cognitive performance is

therefore apparently vulnerable to the addition of only narrowly more fine-grained data. The sole

reasons for the continued focus on brain size as a unitary trait are convenience and data

availability. If we are to progress beyond a superficial understanding of brain-behavior

correlations, this justification must also be set aside now that new forms of more detailed data

are becoming increasingly available on how neuron number and connectivity vary across brain

regions and species. 

4.2 Deep convergence in brain architecture: brains that appear different according to

certain measures may actually be homologous

At the broadest taxonomic scale, brain composition is remarkably diverse. For example,

comparative studies have traditionally focused on linking learning and memory with arachnid

protocerebrums (e.g., Meyer & Idel, 1977; Punzo & Ludwig, 2002), insect mushroom bodies

(e.g., Snell-Rood, Papaj, & Gronenberg, 2009), cephalopod vertical lobes (e.g., Grasso & Basil,
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2009), the vertebrate pallium (e.g., Jarvis et al., 2005), and mammalian neocortices (e.g.,

Pawłowskil, Lowen, & Dunbar, 1998). Despite their independent evolution, some research points

toward commonalities in the molecular and neural systems that function in heterogeneous brain

organizations across animal phyla. A combinatory expression pattern of developmental control

genes suggests the deep origin of key learning and memory centers, including in the complex

sensory centers and cell types of the mushroom bodies of annelids and arthropods, and the

pallium of vertebrates (Tomer, Denes, Tessmar-Raible, & Arendt, 2010). Similarly, Pfenning and

colleagues (2014) proposed that vocal learning in birds and humans has evolved via convergent

modification of brain pathways and molecular mechanisms. Roth (2013, p. 292) proposed that

the centers for learning and memory in insect, octopus, avian, and mammalian brains share a

comparable associative network that “bring[s] the most diverse kinds of input into the same data

format and [integrates] the respective kinds of information.” These broad comparisons suggest

that such brain structures in taxonomically and anatomically diverse animals may share a number

of features, including high neuron density, and similar organizations with hierarchical

connectivity (G. Roth, 2013). Similarly, the vertebrate basal ganglia and insect central complex

have been shown to exhibit a deep homology, sharing similar network organizations,

neuromodulators, and developmental expression machineries (Strausfeld & Hirth, 2013).

Accordingly, divergent structures may have converged on similar architectures and

computational solutions to analogous behavioral challenges (Shigeno, 2017). By simplifying

brain measures by focusing only on size, we may miss out on opportunities to study how

convergences in behavior and complex neural systems can inform how cognition evolves. 

Nevertheless, the heterogeneity identified by these studies may also provide useful

variation that can contribute to our understanding of brain and cognitive evolution. For example,
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if neuronal density can vary independently of volume, why? And how does this impact the

functional properties of the pathways that produce complex behaviors associated with cognitive

prowess?

4.3 Effects of size-efficient selection

Compared with vertebrates, arthropods have tiny brains and vastly fewer neurons in their

nervous systems (Eberhard & Wcislo, 2011), yet many insects and spiders display highly

sophisticated motor behaviors, social organizations, and cognitive abilities (Chittka & Niven,

2009; Box 2). For example, insects and spiders exhibit numerical cognition (Cross & Jackson,

2017; Dacke & Srinivasan, 2008; Rodríguez, Briceño, Briceño-Aguilar, & Höbel, 2015),

planning (Cross & Jackson, 2016; Tarsitano & Jackson, 1997), selective attention (Jackson & Li,

2004) and working memory (Brown & Sayde, 2013; Cross & Jackson, 2014; Zhang, Bock, Si,

Tautz, & Srinivasan, 2005)—all typically studied in vertebrates and considered cognitively

demanding (Chittka & Niven, 2009), illustrating that selection has favored highly efficient

neuronal systems in these taxa.

Although heterogeneity in brain systems limits the scope of comparative studies of brain

size, it also provides an opportunity to understand how selection acts on neural systems, and why

selection favors particular solutions over others. One key factor may be the role of size-efficient

selection and redundancy in nervous systems. Neurons are energetically expensive cells, and

their total cost scales predictably with the size of neural systems (Laughlin, de Ruyter van

Steveninck, & Anderson, 1998). Selection must therefore constantly trade-off behavioral

performance with energetic and computational efficiency. Exploring how these trade-offs are

resolved in real and artificial systems has the capacity to greatly inform why some animals invest
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in larger brains, while others do not (Burns, Foucaud, & Mery, 2010; Chittka & Niven, 2009;

Chittka, Rossiter, Skorupski, & Fernando, 2012; Menzel & Giurfa, 2001). 

While an imperfect analogy, researchers' experience with training artificial neural

networks provides an insight into how efficient neural networks can be constructed. Indeed,

researchers who aim to create an artificial network that serves as a pattern-learning machine have

been largely inspired by the organization of the cerebral cortex in mammals (Mnih et al., 2015).

This comparison between artificial networks and cerebral cortex organization was made more

notable with recent advances in deep convolutional neural networks (an artificial neural network

with a large number of intermediary layers, specialized in identifying patterns in perceptual

inputs) such as the deep-Q network (DQN). Beyond mammals, this layer-like organization can

also be identified in the brains of for example the common octopus and Drosophila, suggesting

that a common functionality of information processing patterns may be represented both in

artificial and biological neural networks (Shigeno, 2017). 

One of the key messages from such research is that training large neural networks is still

difficult (Bengio, Simard, & Frasconi, 1994; Glorot & Bengio, 2010; Pascanu, Mikolov, &

Bengio, 2013). Even when training is successful, it requires a great deal of time and input data,

but more importantly, training too-large a network without the right algorithm often simply fails.

In artificial systems, this happens when feedback from the environment is used by the neural

network to determine certain flexible values of the computational architecture (e.g., connections

between artificial neurons). This problem scales up: greater numbers of flexible values (i.e.,

network parameters, which grow in tandem with ‘brain size’), require greater amounts of input

data and increasingly complex algorithms. Such trade-offs are likely also faced by biological

organisms. Thus, in addition to the energetic costs of larger brains, there are also informational
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costs (i.e., a need for more, better, and/or faster inputs) and computational costs (i.e., efficient

ways to use inputs, which may be architecturally difficult for natural selection to find) that limit

brain size and may channel the response to selection away from simple increases in the total size

of the system or brain.

The hand of size-efficient selection can also be seen in the network architecture of large

brains that display a ‘small-world’ topology (Ahn, Jeong, & Kim, 2006; Chen, Hall, &

Chklovskii, 2006), which minimizes energetically costly long-range connections in favor of

proportionally high local connectivity (Bullmore & Sporns, 2012; Buzsáki, Geisler, Henze, &

Wang, 2004; Watts & Strogatz, 1998). Yet, if network architecture is constrained by energetic

costs, then what does the evidence of variation in cellular scaling between brain components and

across species tell us about how brains evolve? 

Variation in the scaling of neuron number with volume likely reflects differences in cell

size and patterns of connectivity between neurons. The low neuron density in the neocortex in

mammals, compared to that of the cerebellum, reflects the high proportion of the neocortex given

over to white matter that consists of mid- to long-range fibres connecting neurons (Ringo, 1991).

Variation in the pattern of neuronal connections, and integration between brain regions may help

explain variation in cellular scaling. Similar explanations may also apply to scaling differences

across taxa, with the high neuronal density of primates being associated with relatively smaller

volumes of white matter and connectivity (Ventura-Antunes, Mota, & Herculano-Houzel, 2013).

However, these scaling differences could also be driven in part by external influences related to

ecology, body size, and morphology. Body size affects many aspects of an animal’s ecology, diet

and energy consumption, and physiology (LaBarbera, 1986). It should be no surprise that this

may extend to brain composition. For example, the ancestor of extant primates, and most of its
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descendants, occupied arboreal niches (Cartmill, 1972) and had arboreal locomotor strategies

that constrain body size and favor a low center of mass; a strategy that is likely inconsistent with

volumetrically expensive modes of brain expansion. Selection pressures that favored the

evolution of increased neuron number may therefore have been constrained by the physical

demands of occupying an arboreal niche, resulting in changes in neural development that were

associated with increased neuron density. Similar, but stronger, selection regimes may also

explain the extremely high neuron densities in bird brains (Olkowicz et al., 2016). Conversely,

the much lower neuron densities of cetaceans (Eriksen & Pakkenberg, 2007) would be consistent

with brain evolution along a trajectory relatively free of size or locomotor constraints.

The expectation that brain size should be a simple predictor of cognitive performance

ignores the effect of size-related selection pressures (Chittka & Niven, 2009; Chittka et al.,

2012). Size-efficiency is most obvious when considering brain function in small invertebrates,

but mounting evidence suggests that the same principles may apply even among vertebrates

occupying distinct ecological niches that define the range of permissible body sizes and

architectures (Olkowicz et al., 2016). Body size is regularly used as a ‘size-correction factor’ on

the assumption that residual brain size is more cognitively relevant, but variation in body size

itself reflects the presence of wider ecological and physical selection pressures that may render

brain composition and function more divergent than size alone (Fitzpatrick et al., 2012;

Montgomery et al., 2013, 2010). 

4.4 Correlations suffer from interference 

Problems of noise are compounded by interference from the complex relationships between

many behavioral and anatomical traits. This ‘interference’ not only influences our ability to
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determine whether a mechanistic link exists between specific brain measures and a certain

behavior or cognitive ability, but also in determining their functional link and their adaptive

evolutionary history. The comparative study of different species can provide insights into how

differences in behavior link with differences in brains (Harvey & Pagel, 1991), and phylogenetic

comparisons have been the most widely used approach to test hypotheses about adaptation (see

§2.2). However, in addition to relying on unvalidated proxies, adaptive stories are frequently

based on correlations. It is therefore necessary to identify potential interference from unmeasured

variables to gather evidence for causation before we can accept such adaptive accounts as

accurate. 

There are four main ways in which interference limits the potential to interpret whether

correlations represent adaptations. First, any association between differences in brain measures

and behavior might not be direct, but caused by interfering factors. For example, increases in

brain size and group size both appear to occur in species that eat foods with high nutritional

value, therefore the correlation between brain size and group size might be the result of noise

from dietary changes (Clutton-Brock & Harvey, 1980; DeCasien, Williams, & Higham, 2017).

Second, even if population studies indicate that a measure of brain size and a behavior are

directly linked, comparisons across species cannot immediately reveal the causal direction of the

association. For example, an association between increased brain size and decreased risk of

predation might result from large-brained species being better able to avoid predation (Kotrschal

et al., 2015), or from species with low predation pressure having the opportunity to invest

additional resources into brain growth (Walsh, Broyles, Beston, & Munch, 2016). Third, external

factors frequently mediate the expression of any link across taxonomic groups. For example,

switching to a frugivorous diet might lead to selection on olfactory ability in nocturnal species
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and visual abilities in diurnal species, resulting in independent episodes of brain expansion

driven by selection on distinct sensory modalities and brain components (Barton, Purvis &

Harvey, 1995). Fourth, any current link between brain size and behavior might be the product of

co-option, after the initial evolution of that brain aspect, rather than the driving selection pressure

itself. For example, abilities such as object permanence (i.e., the ability to recall the presence of

an out-of-sight object) might have been selected because individuals need to remember the

spatial position and temporal availability of food sources in their home range, but it could

subsequently be used to distinguish social neighbors from strangers (Barton, 1998). Similarly,

selection for improved visual acuity in foraging primates may have later been co-opted to serve

in individual recognition and social cognition (Barton, 1998). Although some attempts have been

made to tease apart these relationships using path analysis (Dunbar & Shultz, 2007b), this

approach still suffers from the effects of co-linearity among variables and does not provide a

mechanistic understanding of causative relationships (Petraitis, Dunham, & Niewiarowski,

1996). Recent advances provide some ways to overcome these limitations in the comparative

approach (see §5.4), but, as previous authors have pointed out (Garland, Bennett, & Rezende,

2005; Gonzalez-Voyer & Hardenberg, 2014; Harvey & Pagel, 1991), interference fundamentally

limits our ability to determine past evolutionary processes based on simple observations of

species alive today.

These effects are likely to be particularly influential in the small data sets that

characterize many comparative analyses of cognition and brain measures, due to the difficulty in

obtaining data. With small data sets, correlations are unlikely to be stable, unless the effect size is

large, or noise and interference are low (Schönbrodt & Perugini, 2013). In the vast majority of

studies, accuracy and sample size are directly traded-off against one another due to logistical and
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cost constraints. While this is inevitable, studies aiming for broad phylogenetic comparisons by

relying on crude proxies of cognition supposedly measurable across very divergent taxonomic

groups may be futile. Any trade-off that reduces accuracy to increase taxonomic breadth risks

relying on invalid measures, resulting in unstable and potentially meaningless correlations.

Comparisons across large, diverse taxonomic groups can be helpful to identify and describe

patterns of variation; however, key insights into the evolutionary history of traits and their

associations will be gained by incorporating detailed population studies (see §5.2). As

neuronanatomical, behavioral, and statistical tools become increasingly comprehensive and

sophisticated, the solutions to these issues will be reachable in the near future.

5)  Beyond brain size

5.1 Matching the right tool with the right question

In the last two sections we emphasized how heterogeneity in brain composition and

behavior/cognition, and the subsequent noise this generates can influence our attempts to

measure the relationships between these variables. We think these issues motivate turning from

coarse-grained, ‘taxon-neutral’ (or hominid-inspired) measures to more local, taxon-specific

studies. This is not to say that heterogeneity on its own undermines existing ‘monolithic’

narratives of brain size and behavioral complexity. Rather, these narratives ignore the complexity

of links between brain morphology, body morphology, and behavior, and often abstract away

from the important ecological and evolutionary drivers of complex behavior that we are trying to

understand. We therefore argue against privileging anthropocentric measures or criteria. Instead,

we urge a recognition of the multi-dimensional and multi-leveled structure of brains, as well as

the disparate and varied ways that brains evolve—in conjunction with bodies, and in response to

specific environments—to produce complex behavior. Understanding how brains evolve in
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response to selection on behavioral complexity or cognition is therefore a two-step process. First,

we must understand how behavioral variation emerges from variation in neural systems. Second,

we must understand how brains change across species and how this might relate to differences in

adaptive regimes. 

Discovering and probing correlations between properties of brains and behavioral

features can be part of a powerful comparative approach, but we should be wary of reification:

mistaking an operationalized target of measurement with a ‘real’ object (Whitehead, 1925).

There is a difference between something being measurable and it being causally meaningful. We,

and others (e.g., Chittka et al., 2012; Healy & Rowe, 2007), have questioned whether coarse-

grained, cross-taxa measurements, such as the encephalization quotient, pick out relations that

are in fact explanatory of the evolutionary and developmental relationships between brain,

cognition, and behavior across lineages. In fact, similar arguments have been made since

scientists first started comparing brain measures across species (Snell, 1892). Instead, we argue

for an increased focus on a ‘bottom-up’ approach that begins with i) measurements of features

that can be validated within particular taxa in ecologically relevant experimental contexts, before

ii) testing the evolutionary variability in the relationships between brains and behavior across

related species. This will help avoid reification by starting with intraspecific, experimentally

verifiable causal connections. The first task involves probing how various taxa respond

behaviorally to their environments and other stimuli and determining whether those properties

correlate with brain measures in revealing ways. These brain measures will frequently be more

fine-grained than brain size, concerning particular neuroanatomical and/or neurophysiological

features. The second task involves the construction and testing of hypotheses about the ancestral

and evolutionary relationships between those taxa, enabling us to expand to broader categories
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and correlations in a careful, piecemeal fashion. We expect the results of these two tasks to relate

in dynamic ways: considerations of evolutionary scenarios are likely to highlight new kinds of

experimental tests and hypotheses in local contexts; and these scenarios will depend crucially on

information about local taxa.

5.2 Bottom-up vs. top-down

The top-down approach uses cross-species correlations between brain measures and a trait of

interest and can be useful for generating hypotheses. However, while these are important for

motivating research into the links between brains and behavior, we argue that specific hypotheses

should then be tested at the within-species level: from the bottom up. The bottom-up approach

involves directly testing behavior and cognition in individuals to determine how they relate to

brain measures in these particular individuals of a particular species (ideally measured at the

same time as behavior/cognition) to build validated, causative correlations (Chittka et al., 2012).

When sufficient data on individuals from a variety of species have accumulated, phylogenetic

meta-analyses can be conducted to test whether consistent patterns emerge and hold within and

across species (see §5.4; Table 3). Correlations within contemporary populations can tell us

whether processes are homologous or analogous across species and show the limits of which

processes are likely to occur.

The contrast between top-down and bottom-up approaches is often presented as a

difference in terms of investigating the ultimate (top-down looking at adaptations and fitness)

versus proximate (bottom-up looking at mechanisms and development) reasons for the evolution

of a trait (Laland, Sterelny, Odling-Smee, Hoppitt, & Uller, 2011; Scott-Phillips, Dickins, &

West, 2011). However, the approach we suggest does not necessarily make this potentially
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problematic distinction (Beatty, 1994; Calcott, 2013; Cauchoix & Chaine, 2016; Laland, Odling-

Smee, Hoppitt, & Uller, 2013). Our main argument for a bottom-up approach is to encourage

researchers to have a clear understanding of what they are investigating rather than to rely on

proxies. Detailed individual-based studies can reveal not only which brain measures are involved

in a particular cognitive ability or behavior, but also provide important insights into the

ecological correlates and fitness consequences of variation in particular brain measures (Table 3).

Further, starting from behaviors in particular species makes ensuring ecological, developmental,

and evolutionary relevance significantly more straightforward: it is a strategy for both avoiding

reification, and for being sensitive to the heterogeneity of both brains and behavior. 

Table 3: Examples of how behavior (directly tested) links with brain measures at the within-

species level. These are the kinds of data that can contribute to the bottom-up approach to

generate hypotheses based on validated data. 

Taxa Description

Black-capped 
chickadee (Poecile 
atricapillus)

Birds in harsher environments (higher latitudes) had larger 
hippocampus volumes with more neurons (T. C. Roth & 
Pravosudov, 2009) and more neurogenesis (Chancellor, Roth, 
LaDage, & Pravosudov, 2011), were more efficient at recovering 
caches (spatial memory) and better at an associative learning task 
than conspecifics from less harsh environments (Pravosudov & 
Clayton, 2002).

Mountain chickadee 
(Poecile gambeli)

Individuals living at higher elevations had better spatial memory and
more hippocampal neurons. Higher elevation environments are 
more challenging because variables such as day length and 
temperature vary more annually than they do at lower elevations 
(Freas, LaDage, Roth II, & Pravosudov, 2012).

Gambel’s white-
crowned sparrow 
(Zonotrichia 
leucophrys gambelii)

Neurogenesis increases in the song control nucleus HVC just prior 
to the breeding season (Larson et al., 2013). The breeding season is 
correlated with a higher song quality than in the non-breeding season
(Meitzen, Thompson, Choi, Perkel, & Brenowitz, 2009; Tramontin & 
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Brenowitz, 2000). After the breeding season, as neurons die in the 
song control center the song structure degrades accordingly (Larson, 
Thatra, Lee, & Brenowitz, 2014).

Wolf spider 
(Hogna carolinensis)

Spiderlings that remain in sibling groups with their mother have 
larger protocerebrums, capture prey more efficiently, and have 
better spatial memory than spiderlings raised in isolation (Punzo & 
Ludwig, 2002). Note: there were no differences in the number of 
neurons between conditions.

Honey bee
(Apis melifera)

Bees with larger total brain sizes (due only to an increase in 
mushroom body calyx size) were better able to learn and remember 
to associate a scent with proboscis extensions (Gronenberg & 
Couvillon, 2010). Mushroom bodies are involved in learning and 
memory. 

Common octopus
(Octopus vulgaris)

Octopus and cuttlefish have the highest brain-to-body mass ratios 
of all invertebrates and the ratios exceed that of most fish and reptiles 
(Packard, 1972). Lesions of the octopus associative centers, vertical 
lobes impair tactile and visual learning and memory (Hochner, 
Shomrat, & Fiorito, 2006).

For example, spatial navigation behavior has been directly linked to the hippocampus

using the bottom-up approach. Supporting evidence comes from intraspecies behavioral studies

in birds with hippocampal lesions, which indicates the causal relationship between location

memory and the hippocampus (Hampton & Shettleworth, 1996; Patel, Clayton, & Krebs, 1997).

Additionally, ecological correlates were found in black-capped chickadees where individuals

living in harsher environments (higher latitudes) were more efficient at recovering caches

(spatial memory) and had larger hippocampal volumes with higher neuron densities and more

neurogenesis than individuals at lower latitudes (Chancellor et al., 2011; Pravosudov & Clayton,

2002; T. C. Roth & Pravosudov, 2009). Further, real-time brain activity has been paired with

navigational behavior in rats; when navigating through a maze, particular neurons (place cells)

fired at particular locations in the hippocampus (Gupta, van der Meer, Touretzky, & Redish,

2010). Later, when the rats were not in the maze, rats mentally ‘ran’ through the maze and even
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invented novel routes as evidenced by the sequences of the firing of their place cells (Gupta et

al., 2010). Place cell research and experimental designs that behaviorally test episodic memory

(e.g., Clayton & Dickinson, 1998) provide evidence for brain-behavior causations from the

bottom-up.

Where functional assays are either unfeasible or unethical, causality can be determined

using a quantitative genetics approach to model how multiple measured traits are related to one

another. Analyzing brain and behavioral data in pedigrees or full-sibling/half-sibling families

allows the estimation of genetic correlations between traits (i.e., demonstrating variation in two

traits that share a common genetic basis). If variation in brain size or composition causatively

produces variation in behavior we should expect strong genetic correlations between these traits.

This approach can be used not only to test brain-behavior relationships (e.g., Kotrschal et al.,

2014), but also to help resolve debates about, for example, the relative roles of domain general

and domain specific cognition (e.g., Pedersen, Plomin, Nesselroade, & McClearn, 1992), and

developmental models of brain evolution (e.g., Hager, Lu, Rosen, & Williams, 2012; Noreikiene

et al., 2015).

5.3 The comparative approach as a tool for generating hypotheses and testing generality

Although we argue for increased emphasis on intraspecific studies to validate causative

relationships, the comparative approach will remain an integral part of investigations of the

evolution of brains and cognitive abilities, though their scope and design might change.

Phylogenetic studies extend and inform detailed intraspecific studies, ideally leading to constant

feedback that can enhance both (Figure 3). Continuously developing comparative approaches

have the potential to reduce noise from small sample sizes, reveal relationships among multiple
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interfering traits, and indicate the directionality of a causal association—though not all at once.

Combining findings from multiple populations can inform mechanistic studies by illustrating the

range of possible solutions that might exist, indicating where natural experiments might have

shaped evolution in similar ways, revealing potential mediators by indicating in which

taxonomic groups established relationships break down, and showing which species to target for

further study. In particular, the systematic combination of effect sizes from population studies in

phylogenetic meta-analyses reduces noise and can test the robustness of an association between

brain measures and behavior while also revealing potential mediators that systematically change

the form of the association in some populations or species (Nakagawa & Santos, 2012). For

example, they might reveal whether the heritability of brain measures might depend on

environmental variability. 

In turn, the historical component of phylogenetic reconstructions extends population-

level studies by revealing whether detected patterns are evolutionarily stable or lineage-specific,

and they can contribute to determining causal or adaptive relationships between traits by

revealing temporal contingencies (Beaulieu, Jhwueng, Boettiger, & O’Meara, 2012; Pagel, 1999;

Pagel & Meade, 2006) in whether a behavior consistently changed prior to or after associated

changes in brain measures. The historical component provided by phylogenetic comparisons is

necessary to determine whether traits not only occur together, but whether they evolved together.

For example, while the enlarged brains (compared to most other reptiles) among birds appear to

be linked to cognitive capacities required for flight (Balanoff, Bever, Rowe, & Norell, 2013),

evolutionary origins of flying behavior are not associated with particular increases in endocranial

volume (Balanoff, Smaers, & Turner, 2016).
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Figure 3: Integrating the top-down and bottom-up approaches.

Our discussion of the power of the comparative approach in elucidating the adaptive

history of traits indicates the inherent limits in fully explaining traits that supposedly make any

species unique. The evolutionary processes themselves are not unique, but the particular

combination of processes at play are. As such, understanding how such processes come together

in a particular instance is problematic due to a lack of evidence required to confirm these

hypotheses (Tucker, 1998). In addition, studies that focus on extraordinary traits in a single

species (such as humans) frequently risk misrepresenting evolutionary processes by fixating on

the endpoint as an optimal solution, whereas evolution typically progresses by responding to

stochastic variation in selection regimes, incrementally adapting to the environment. 
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5.4 Scaling across taxa to integrate evidence

The bottom-up approach we suggest means that scaling across taxa will initially be more difficult

to achieve because studies will have to be designed to take into account the characteristics of the

particular species, as well as its phylogenetic and ecological context. Questions, approaches, and

methods might need time to converge or to be repeated across a relevant sample of different taxa

(Figure 3). However, over an intermediate time frame, the bottom-up approach will be invaluable

for comparing and elucidating brain and cognitive evolution across taxa. Although the bottom-up

approach initially makes scaling look difficult, we think it has two advantages. First, rather than

positing or assuming a coarse-grained, cross-taxa category and applying it across a range of

cases (thus losing ecological relevance and increasing the potential for post-hoc explanations and

reification), the bottom-up approach makes scaling a much more piecemeal, empirically tractable

matter. Second, it more easily allows scaling to take place in an evolutionary context.

Understanding whether the same genes, genetic pathways, neural regions, neural physiology,

and/or neural networks are involved in generating cognitive abilities across taxa will provide us

with an understanding of how evolution has shaped the diversity of brains and the behavior they

produce. In this sense, phenotypic heterogeneity and taxonomic diversity become a tool for

discovery, rather than a source of statistical noise.

It is not straightforward to bring together the disparate evidence involved in shifting from

local experimental contexts to cross-taxa, evolutionary hypotheses. However, a detailed

understanding of the mechanisms underlying brain measures and behavior is crucial to clarify

whether traits are homologous, analogous, or completely independent solutions to ecological

challenges. To give a sense of the possibilities for integration, we sketch three kinds of
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approaches to shifting from local (bottom-up) to general (top-down) scales (from Currie, 2013;

see also Mikhalevich et al., 2017): 

1. Detecting homologous relationships, where the same brain measures and behavior are

related to the same environment across species descended from a recent common

ancestor (Currie, 2012), offers opportunities to combine independent findings into one

mechanistic pathway. In these instances, inheritance and stabilizing selection have

maintained a stable trait, such that findings from one species can be accurately inferred

for another. Such investigations will rely on integrated models that bring together

disparate evidence to support hypotheses about the evolutionary, developmental, and

ecological features of a particular lineage.

2. Determining whether the same behavior occurs in similar environments across distantly

related species can indicate environments most likely relevant for the emergence of the

behavior. A bottom-up approach can reveal whether the observed behavior represents

analogous re-emergence of a behavior within the same adaptative environment (e.g.,

repeated evolution of feathers across dinosaurs; B. K. Hall, 2003; McGhee, 2011). This

approach will rely on parallel models that identify brain-behavior correlations within

related taxa for which the main principles of brain evolution are known to be similar. As

closely related taxa will likely share meaningful brain-behavior correlations, such models

are likely to be well-validated, stable, and causally meaningful.

3. Observing a similar behavior in similar adaptive environments can reveal whether the

behavior represents a convergent solution to the same environment (e.g., feathered wings

for flight versus bat wings) or whether the relationship is more complex (e.g., wings to

escape into the air versus jumping legs; Currie, 2014; Pearce, 2012; Powell, 2007). This
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type of convergent model is similar to the top-down approach; however, convergent

modeling avoids many of the cross-taxa comparison problems by i) being placed in an

explicitly ecological and phylogenetic context, ii) being carried out alongside parallel and

integrated modeling, and iii) avoiding over-interpretation that arises from defining

categories based on superficial similarities because convergent models are inherently

sensitive to the explanatory limits of analogous categories (see Griffiths, 1994 for a

discussion of these limits).

There are a wide variety of different scales at which we may need to infer evolutionary

relationships between brain measures, behavior, and environments across taxa, and the

ecological and evolutionary relevance granted by starting in local contexts is crucial for doing

this. 

Conclusion

We support a two-pronged strategy for understanding cross-taxa relationships between brain size,

brain composition, behavior, and cognition that focuses on ecologically relevant contexts rather

than attempting broad scale comparisons at gross phenotypic levels. The first prong is an

experimental program examining correlations in closely related species; the second prong

involves the piecemeal identification of correlations at broader taxonomic scales. We have

contrasted our approach with one that has become dominant in recent years. The alternative

approach relies on coarse-grained phenotypes and proxy-measures, typically in anthropocentric

contexts, and attempts to apply these to cross-taxa, correlative contexts. We have highlighted a

number of limitations to this approach. First, applying anthropocentric conceptions of brain

correlates with behavior to disparate taxa comes at the crucial cost of ecological and evolutionary

coherence. Second, the heterogeneity of brain composition and behavior makes coarse-grained
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conceptions problematic because cross-taxa comparisons inevitably discount variation that

matters for particular lineages. This variation creates noise in statistical comparisons.

Heterogeneity can also be a source of interference because various interdependencies both

between brain structures (e.g., in development or function) and between multiple behavioral and

ecological traits undermine our capacity to identify selection pressures shaping individual traits

or systems. Third, beginning with ‘general’ measures of intelligence potentially leads to

reification and the establishment of misguided or causally meaningless properties. The top-down

approach has not necessarily been misguided itself: scientific progress is often facilitated by

applying relatively crude measures, highlighting the value of using many investigative

techniques. Indeed, the heterogeneity of these traits have become known to us because the top-

down approach has exposed inconsistencies through cross-species correlations. However, it is

time to take the cognitive, behavioral, and brain features of particular lineages seriously, rather

than demand that they be shoehorned into anthropocentric notions, or judged against some

general metric. In doing so, a more general understanding of the nature of cognition and

behavior, and their relationship with brain measures will be built from the bottom up.
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BOX 1. What can comparative cognitive tests tell us? 

Performance on cognitive tests arguably offers the most direct measure of ‘intelligence’ and can

therefore be seen as an improvement over other behavioral measures – such as innovation rate –

which have been used as proxies for intelligence. However, cognitive abilities can still only be

inferred from test performance, rather than directly measured. Performance on any given test will

depend on a suite of abilities and behaviors (such as motor abilities, perception, attention,

motivation, fear), beyond the cognitive ability in question, which mean that successes or failures

can occur for a range of different reasons across subjects (Rowe & Healy, 2014; A. Seed,

Seddon, Greene, & Call, 2012).

Let’s take the example of MacLean and colleagues’ (2014) collaborative study,

comparing brain size with measures of self-control across species. Here, 36 species of mammals

and birds received two cognitive tasks: the A-not-B task and the cylinder task. In the A-not-B

task a human demonstrator places food in cup A multiple times. Once the subject has retrieved a

reward from cup A three times in a row, they are given a test trial where food is first placed in

cup A, and then visibly moved to cup B. Subjects have to inhibit choosing previously rewarded

cup A to succeed. This is a commonly used developmental task, on which babies under 10

months typically display perseverative reaching errors (Smith, Thelen, Titzer, & McLin, 1999).

However, in addition to ‘self-control’, to pass this task, subjects also need to be capable of

accurately tracking the movement of food by human hands. This is trivial for humans, and may

also be relatively easy for great apes or other primates, given that they are closely related to

humans and also possess hands. However, there is growing evidence that many species struggle

to use this type of information from a human demonstrator (e.g., Erdőhegyi, Topál, Virányi, &

Miklósi, 2007; Shaw, Plotnik, & Clayton, 2013); thus, this task may have systematically
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disadvantaged certain species for reasons unrelated to their self-control (Jelbert et al., 2016).

Crucially, in MacLean and colleagues’ study, although some animals (lemurs, dogs and pigeons)

were explicitly trained to select experimenter-baited containers during pre-training, most other

species were not. All non-primates that were given both tests, and had not been trained to attend

to the demonstrator, performed substantially worse on the A-not-B task than on the cylinder task.

Elephants, given the A-not-B task only, failed every trial. Without knowing whether subjects

possessed one of the key requirements for the A-not-B test, we cannot know whether their poor

test scores actually reflect poor self-control. In a study that directly tested for this effect, New

Caledonian crows that had been explicitly trained to attend to a human demonstrator went on to

pass 67% of A-not-B test trials, while a control group, trained on an unrelated inhibitory control

task, passed only 7% (Jelbert et al., 2016).

 The particular use of the A-not-B task is a clear example of a situation in which

comparing cognitive test scores from different species, and relating them to brain size, is unlikely

to provide us with a meaningful comparison of the cognitive ability in question. Given the range

of factors that can influence test success, the majority of cognitive tests will suffer from

limitations like this to some degree. For example, in MacLean’s cylinder task, one key variable

that would influence performance was the amount of experience different subjects had with

transparent materials. In the cylinder task, subjects first learn to retrieve a reward from the open

end of an opaque cylinder, and are then presented with a transparent cylinder, where the reward

is now visible through the tube. Subjects are considered to have failed the task if they touch or

peck the front of the transparent tube, rather than detouring to the open side. Kabadayi et al.

(2016) highlighted that a number of bird species showed learning effects over the course of 10
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trials in the cylinder task, suggesting that relative unfamiliarity with transparent Perspex might

have contributed towards this behavior.

Other factors that might have influenced performance can also be hypothesized. These

could include morphological differences (i.e., performance in the cylinder task may vary

depending on whether a subject must insert their arm or their head into the tube to obtain the

reward), perceptual differences (i.e., how well can different subjects perceive the transparent

material?), behavioral differences (i.e., does this species typically explore or avoid new objects?)

or motivational differences (i.e., to what extent is the animal motivated to directly obtain the

reward?) or any other task specific variables. Thus, while here we have highlighted some specific

examples, performance on any cognitive test will be influenced by numerous sources of

variation, both across individuals and across species, in addition to the cognitive ability in

question.

To address this, minimizing any unnecessary task demands (such as the use of human

demonstrators) is the first step in designing comparative tests. It is also crucial to level the

playing field from the bottom up, including baseline criteria training to ensure that all subjects

meet specific key requirements, before the test of the desired cognitive ability begins. Focusing

on groups of more closely related species will also help to limit the number of ways in which

subjects’ performance could vary beyond the ability in question. 
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BOX 2. Spider behavior varies according to environmental differences

Traditionally, vertebrates have been used as subjects to help answer probing questions relating to

animal cognition, including studies of working memory, search images, expectancy violation and

insight (e.g., Kamil & Bond, 2006; Köhler, 1924, p. 192; Pepperberg & Kozak, 1986;

Shettleworth, 2010). However, recent research demonstrates that invertebrates, despite having

much smaller brains, perform similarly on cognitive tasks (Jakob, Skow, & Long, 2011; Perry,

Barron, & Chittka, 2017), thereby challenging notions of brain size translating into cognitive

ability.

Jumping spiders (family Salticidae), for example, have been of considerable interest in

the context of cognition, partly because they have large forward-facing principal eyes that play a

major role in high-precision visual discrimination (Harland, Li, & Jackson, 2012), supporting

tasks such as selective attention and planning (Jackson & Cross, 2011). There is still much to be

learned about spider neurobiology (but see Menda, Shamble, Nitzany, Golden, & Hoy, 2014);

however, excellent vision may be part of the solution for how an animal with a minute brain can

perform cognitive tasks in its environment (e.g., Pfeifer & Iida, 2005).

Moreover, spiders are an excellent system for investigating how variation in cognitive

abilities may be associated with ecology. The salticid genus Portia has provided us with many

insights because the species from this genus eat other spiders (Jackson & Wilcox, 1998) and

deploy a variety of strategies to avoid being eaten by their prey (Jackson & Cross, 2011). For

example, when at the edge of another spider’s web, Portia is known to deploy a specialized

strategy of moving its eight legs and two pedipalps across the silk in ways that may mimic the

movements made by a trapped insect (Jackson & Cross, 2013). These web signals are generated

using trial and error (Jackson & Wilcox, 1993); Portia repeats a signal when the resident spider
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starts moving toward Portia across the web, and changes to using a different signal when it does

not succeed at eliciting an approach by the resident spider.

However, differences in the use of this tactic have been observed in different populations

of the same species. In the Philippines, two populations (Los Baños and Sagada) of Portia

orientalis (formerly P. labiata) encounter different spider species as prey. The site at Los Baños

is a low-elevation tropical rainforest where P. orientalis encounters a wider variety of prey

species, including species that are particularly dangerous, such as Scytodes pallidus, a spitting

spider that specializes on salticids as prey (Li, Jackson, & Barrion, 1999). In contrast, the site at

Sagada is a high-elevation pine-forest where P. orientalis encounters a smaller number of prey

species, and does not encounter the particularly dangerous prey species that are present in Los

Baños (Jackson & Carter, 2001; Jackson, Pollard, Li, & Fijn, 2002). For the Los Baños P.

orientalis, a greater reliance on flexible predatory strategies, such as using trial and error when

generating signals in other spiders’ webs, is likely to be of greater importance than for the Sagada

population. Indeed, when at the edge of another spider’s web, the P. orientalis from Los Baños

repeated a signal that elicited movement by the resident spider significantly more often than the

Sagada population, and were also more likely to change a signal when it did not elicit movement

by the resident spider (Jackson & Carter, 2001).

Individuals from the Los Baños population also learned faster when faced with a novel

situation of escaping from an island in a water-filled tray (Jackson, Cross, & Carter, 2006). After

leaving the island, the spider first needed to reach an atoll before it could then reach the edge of

the tray, but the distance was too far for the spider to clear by leaping alone. Instead, the spider

could first reach the atoll by swimming across or, alternatively, it could leap before swimming

the rest of the way. However, before a trial began, the researchers decided at random which of
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these two tactics (leaping or swimming) was the ‘successful’ tactic for reaching the atoll. If the

spider used the successful tactic (e.g., when the successful tactic was leaping and the spider

leaped), the researchers used a plastic scoop to make small waves in the water to help the spider

across to the atoll. The spider then made its next move from the atoll. If, however, the spider

used the ‘unsuccessful’ tactic (e.g., when the successful tactic was swimming and the spider

leapt), the researchers used the plastic scoop to force it back to the island. To successfully reach

the atoll, the spider then needed to switch to using the other tactic on its next attempt from the

island. Similar to when making signals in webs, individuals of the Los Baños population

repeated tactics when successful, and switched tactics when unsuccessful, significantly more

often than the Sagada individuals (Jackson et al., 2006). 

It is currently unknown whether such observed differences in arachnid behavior are

causally related to neural architecture. However, applying the bottom-up approach to the study of

cognition in this taxon will likely contribute substantially to our understanding of how cognition

relates to ecology and neurobiology. As well as showing a wide variety of foraging strategies in

various environments, spiders are relatively easy to study in the field and laboratory, especially

when compared with large vertebrates.
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