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Nuclear	pore	complexes	(NPCs)	span	the	nuclear	envelope	and	mediate	bidirectional	transport	
between	 nucleus	 and	 cytoplasm.	 Macromolecules	 (>40	 kDa)	 require	 transport	 receptors	 to	
transit	 the	NPC	efficiently,	whereas	 smaller	molecules	diffuse	 through	 the	NPC	passively1.	As	
such,	 NPCs	 play	 an	 essential	 role	 in	 maintaining	 cellular	 homeostasis	 and	 preventing	 viral	
replication.	While	 the	 scaffold-structure	 and	 composition	 of	 the	 NPC	 have	 been	 resolved	 in	
great	 detail2,	 the	mechanism	by	which	 the	 semi-permeable	 barrier	 at	 the	 center	 of	 the	NPC	
regulates	 selective	 transport	 is	 unknown.	 Aiming	 to	 elucidate	 this	 mechanism,	 Ma,	 J.,	
Goryaynov,	 A.,	 and	 Yang,	 W.	 (NSMB	 2016;23,	 239-247)	 set	 out	 to	 investigate	 spatial	 cargo	
distribution	 within	 the	 nuclear	 pore	 complex	 in	 their	 manuscript	 ‘Super-resolution	 3D	
tomography	of	interactions	and	competition	in	the	nuclear	pore	complex’	using	so-called	SPEED	
(single-point	edge-excitation	subdiffraction)	microscopy3-7.		
	
SPEED	microscopy	 features	 innovations	 in	optical	microscopy	as	well	 as	data	processing,	 and	
has	 been	 the	 topic	 of	 several	 review	 articles	 8-12.	 The	 potential	 of	 SPEED	 to	 obtain	 pseudo-
tomographic	 data	 prompted	 us	 to	 systematically	 analyze	 the	 technical	 aspects	 of	 the	 data	
processing	 method.	 Through	 a	 series	 of	 simulations,	 we	 examined	 the	 data	 requirements	
(precision,	 size	 of	 dataset,	 symmetry	 constraints,	 etc.)	 and	 the	 limits	 to	which	 reconstructed	
transport	densities	can	be	interpreted	with	confidence	(see	Supplement).	
	
The	SPEED	 process	uses	 two-dimensional	 (2D)	 single-molecule	 localizations	obtained	by	high-
speed	 fluorescence	microscopy	 to	 reconstruct	 a	 three-dimensional	 (3D)	 density	 distribution.	
This	back-projection	transformation	assumes	that	the	transported	particles	are	distributed	in	a	
cylindrically	symmetrical	manner,	requiring	just	a	single	‘perspective’	to	reconstruct	the	spatial	
distribution.	 The	 symmetry	 constraint	 has	 two	 important	 implications:	 (1)	 if	 the	 underlying	
transport	 distribution	 is	 not	 fully	 cylindrically	 symmetric,	 then	 the	 reconstructed	 3D	 density	
does	not	correspond	to	the	actual	3D	density;	and	(2)	if	the	2D	localization	data	used	to	obtain	
the	3D	density	does	not	reflect	the	underlying	cylindrical	symmetry	(i.e.	due	to	under-sampling	
or	 imprecision),	 then	 the	accuracy	of	 the	 reconstructed	3D	density	will	diminish.	As	 such,	3D	
SPEED	does	not	meet	the	definition	of	tomography	and	is	not	guaranteed	to	provide	accurate	
or	even	unique	reconstructions.	
	
We	 simulated	 idealized	 localization	 datasets	with	 known	 underlying	 distributions,	 performed	
the	SPEED	transformation,	and	then	compared	reconstructed	distributions	to	the	ground	truth	
input	distributions	(Fig.	1a-f).	The	resulting	comparisons	(Fig.	1g-i)	revealed	that	the	quality	of	
reconstruction	 depends	 strongly	 on	 the	 size	 of	 the	 dataset	 and	 the	 overall	 precision	 of	 the	
transport	particle	localization:	average	success	rates	upwards	of	75%	typically	require	at	least	a	
few	 hundred	 localizations	 and	 a	 localization	 precision	 below	 5nm	 for	 the	 distributions	 we	
simulated.	 Registration	 precision	 –	 chromatically	 and	 between	 separate	 data	 sets	 –	 	 the	
precision	 of	 detection	 of	 NPC	 rotation,	 and	 the	 degree	 of	 symmetry	 of	 the	 transport	
distribution	 also	 critically	 affected	 the	 quality	 of	 the	 reconstruction	 (see	 Supplement).	 Our	
results	 indicate	 that,	 under	 the	 reported	 experimental	 conditions	 (~100	 localizations	 and	 10-
13nm	 localization	precision)	 4-8,13,14,	 the	SPEED	 technique	 cannot	 reliably	distinguish	between	
uniform,	 central,	 peripheral,	 and	 bimodal	 transport	 in	 the	 central	 channel	 of	 the	 NPC,	 as	
claimed7.	 Increasing	 the	size	of	a	dataset	and	 improving	 localization	precision	would	 improve	
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the	reliability	of	SPEED,	but	to	do	so	would	require	precision	enhancements	that	are	currently	
out	of	reach	in	highly	time-resolved	live-cell	optical	microscopy.		

	
	
Figure	 1.	 The	 performance	 of	 SPEED	 depends	 on	 the	 dataset	 size	 (number	 of	 localizations)	 and	 overall	
precision.	SPEED	was	used	 to	 reconstruct	 radial	 cargo	distribution	 in	 the	 central	 channel	 of	 the	NPC	using	
idealized,	simulated	data.	(a)	Dimensions	of	the	NPC	central	channel.	(b)	The	central	channel	accommodates	
transport	of	molecules	 through	 its	 center	or	periphery.	 (c-f)	 To	quantify	 the	ability	of	SPEED	 to	distinguish	
between	central,	peripheral,	bimodal,	or	uniform	distribution,	a	simulated	dataset	of	transport	localizations	
was	 generated	 for	 each	 distribution	 pattern	 (step	 1;	 shown	 in	 color	 in	 c).	 Simulated	 measurement	
imprecision	was	added	(step	2),	and	then	the	 localizations	were	projected	to	2D	(step	3;	grey	dots	 in	c),	 to	
mimic	data	acquired	by	microscopy.	The	projected	density	profiles	were	extracted	in	d	and	e	(note	the	effect	
of	 the	 simulated	measurement	 imprecision	 in	 e	 compared	 to	 d).	 The	 back-projection	 transformation	 was	
subsequently	applied	(step	4)	to	the	projected	density	profile	in	e	to	reconstruct	a	radial	density	profile	in	f,	
which	was	then	fitted	to	a	radial	distribution	(step	5)	and	compared	to	the	four	model	distributions	(step	6).	
The	most	 significant	 fit	 was	 compared	 to	 the	 input	 distribution	 of	 the	 simulated	 dataset,	 revealing	 either	
successful	identification	or	failure.	(g-i,	bottom	charts)	Success	rates	(%	correctly	identified)	of	100	different	
simulations	for	each	combination	of	distribution	type	(central,	peripheral,	bimodal	and	uniform),	dataset	size	
(102,	103,	and	104	localizations)	and	precision	(σ	=	2,	4,	6,	10	nm).	(g-i,	top	charts)	Identities	of	the	incorrectly	
designated	reconstructions	(opaque	colors)	assigned	by	the	SPEED	data	processing	algorithm	for	each	dataset	
size	at	precision	σ	=	10	nm	reveal	 that	 reconstructions	mainly	 fail	due	 to	under-sampling	 in	 small	datasets	
and	due	to	blurring	(imprecision)	in	large	datasets.	
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Abstract	
Imaging single molecules in living cells and reconstituted cell systems has resulted in a new 
understanding of the dynamics of nuclear pore complex functions over the last decade. It does, 
however, fall short on providing insights into the functional relationships between the pore and 
nucleocytoplasmic cargo in three-dimensional space. This limited ability is the result of 
insufficient resolution of optical microscopes along the optical axis and limited fluorescent signal 
due to the short timescales involved in nuclear transport (fractions of a second). To bypass 
current technological limitations, it was suggested that highly time-resolved 2D single molecule 
data could be interpreted as projected cargo locations and could subsequently be transformed 
into a spatial cargo distribution by assuming cylindrical symmetry 1. Such cargo distributions 
would provide valuable insights into the NPC-mediated transport in cells. This method, termed 
3D-SPEED, has attracted large interest inside and beyond the nuclear pore field, but has also 
been sharply critiqued for a lack of critical evaluation. Here we present such an evaluation, 
testing the robustness, reconstruction quality and model-dependency. 

Introduction	
The 3D-SPEED method as described by Yang et al. proposes a number of conceptual and 
experimental innovations, ranging from the image acquisition to data-processing and subsequent 
interpretation1. The technique led to a number of high impact primary publications 1-5 as well as 
numerous reviews, e.g. 6-9.  Although a number of challenges have been pointed out pertaining to 
the acquisition side of the proposed microscopy technique (see discussion), our analysis focuses 
on the reconstruction of radial transport distributions for particles traversing the NPC using 
projected cargo positions obtained from idealized 3D-SPEED microscopy data. If we embrace 
the assumption that the spatial distributions of NPC cargo are cylindrically symmetrical around 
the central axis of the pore, these distributions should appear the same when looking from the 
side (z-direction in Figure S1a) - regardless of the perspective rotation relative to the NPC axis. 
Consequently, this assumption would allow an inverse projection transformation to translate a 
projected cargo distribution ((x,y)-plane in Figure S1a) to a more useful radial cargo distribution 
(in cylindrical coordinates – see Figure S1ef). While the proposed reconstruction process is 
mathematically straight-forward (see subsequent chapter for an analysis), practical use of this 
method demands a number of considerations. 
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Figure S1. Reconstruction of radial NPC-cargo distribution from projected single molecule localizations. In two separate 
color channels, a projection of the fluorescently labelled nucleoporins (open circles) and cargo particles (closed circles, pink 
indicates 3D positions; red indicates projected 2D positions recorded on camera) are imaged using time-lapse fluorescence 
microscopy (a). Transport tracks from multiple measurements are combined through registration using the centroid of the 
nuclear pore labels (b; blue dashed line) to increase the number of cargo localization in the dataset (c). The dataset can be split 
into multiple segments along the transport axis to study how cargo densities are region-dependent (three segments are shown 
here in purple, green and orange). For each segment, a projected cargo distribution is obtained by binning along the x-axis (d). 
If axial symmetry is assumed, the profiles in both directions along the y-axis can be combined to obtain a profile |y|. By 
performing an inverse-projection transformation that assumes cylindrical symmetry, a radial distribution of the cargo particles 
can be calculated for each segment (e). A three-dimensional visualization of such a cargo distribution is shown in (f), where the 
color intensity depicts the reconstructed average cargo density in each segment of the central channel.  

Detailed	results	and	discussion	
The proposed reconstruction method has certain implications that need to be considered when 
interpreting the results. Firstly, a finite set of points cannot exhibit complete cylindrical 
symmetry, which necessitates the use of particle densities rather than spatial coordinates for 
reconstruction (see methods). This begs the question of how many cargo localizations are 
required to produce projected cargo densities that accurately reflect the underlying distribution. 
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We investigate this question using simulated datasets of varying sizes (Figure S2). Since these 
simulated datasets assume an idealized measurement system (e.g. zero localization imprecision, 
infinitely accurate registration, zero drift) it allows the requirements on the part of the dataset 
size to be evaluated independently of other experimental factors. One of the most striking 
observations was the occurrence of negative probabilities in the reconstructed distributions 
(Figure S2c).  
 
 

 
 
Figure S2. Accurate reconstruction of the radial cargo distribution requires a sufficient number of cargo localizations. Three 
3D cargo localization datasets with 100 (left), 1000 (center) and 10000 (right) cargo particles were simulated (a; colored dots) 
with the same underlying radial distribution. Orthogonal projections (a; grey dots) were obtained by removing the z-coordinate, 
after which projected localization distributions were binned along the y-axis and mirror-summed assuming the central axis of the 
NPC was known (r=0; i.e. no centroid extraction was performed) (b). After applying the inverse-projection transformation, 
reconstructed radial cargo distributions (c; orange bars) are compared to the ground-truth distribution (c; grey bars) to yield 
residual plots (c; insets). For small datasets (left), artefactual negative probabilities are frequently found in the reconstructed 
distribution (green outlines); these values are set to zero (affecting some of the residual values as indicated by the green dots), 
after which the distributions are normalized for comparison. The SAR values in the insets (mean±SD) represent the sum of 
absolute valued residuals for 15 independent simulations and serve as an error-measure to compare reconstruction quality. 
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Since these negative probabilities largely disappear as the size of the dataset (number of particle 
localizations) increases, we conclude that these are artifacts arising from the fact that a limited 
number of cargo localizations cannot represent a cylindrically symmetrical distribution. After 
excluding negative probabilities by setting them to zero and normalizing the resulting 
distribution, we calculate the sum of the absolute-valued residuals (SAR), which serves as an 
error-measure for the mismatch between the ground-truth and the reconstructed transport 
distribution (see methods section). By repeating this process for independently simulated cargo 
localization datasets, the average reconstruction quality, as well as its variability, can be 
quantified using the average SAR value and its standard deviation, respectively. Simulating a 
range of dataset sizes (Figure S3a) quantitatively reveals a trend shown in Figure S2c: 
reconstruction quality critically depends on the dataset size. While smoothing the data before 
transformation can improve the reconstruction (Figure S3b), its effect is limited and 
distribution-dependent (data not shown). The shape of the distribution also affects the 
reconstruction quality: as we expected considering the symmetry condition, narrow distributions 
require fewer data points to be reconstructed accurately (Figure S3c). 
 

 
 
Figure S3. Reconstruction quality depends on dataset size, the amount of smoothing and the shape of the cargo distribution. 
An increasing number of cargo localizations results in a smaller and more consistent residual sum (a, lower chart) and hence a 
better reconstruction of the radial cargo density as indicated by a decreasing sum of the absolute residuals (SAR-value). Three 
representative simulated datasets are shown (a, top panels) along with their projected density profiles (grey vertical histograms) 
and reconstructed as well as ground truth radial density profiles (orange and gray histograms, respectively). As the number of 
cargo localizations in the dataset increases, the reconstruction transformation becomes more accurate, resulting in a 
convergence of the reconstruction error - with and without absolute negative densities. The SAR-values can also be reduced by 
smoothing the projected density profiles before reconstruction, often resulting in more accurate reconstructions – primarily for 
small datasets (b, lower graph; representative examples for different conditions shown in top panels). The shape of the radial 
cargo distribution also influences the quality of reconstruction: Gaussian cargo distributions that peak around the center of the 
channel are constructed with greater likeness than those that peak closer to the periphery and are less dependent on the number 
of cargo localizations (c, lower graph; three representative simulated reconstructions are shown in the top panels). Each 
condition in the lower three charts represents 15 independently generated datasets. This simulation assumed infinite precision 
(σtot = 0), perfectly aligned NPCs (orthogonal projections) and zero experimental errors.  

Secondly, in order to obtain sufficient data-points to render the reconstruction of the radial cargo 
distribution possible, Yang et al. outline a procedure to combine cargo localizations from 
multiple NPCs through a data-registration (summarized in Figure S1b-c). The registration 
process uses the centroid of the NPC marker signal to try to maximize overlap ( 
Figure S4a-c); the reconstruction quality that can be achieved therefore depends on the number 
of labelled nucleoporins and their distribution within the NPC to estimate the central axis. While 
this was paid little attention to in the original work, our simulations indicate that even with a 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 2, 2017. ; https://doi.org/10.1101/145110doi: bioRxiv preprint 

https://doi.org/10.1101/145110


	 6	

large number of labeled nucleoporins (> 10 per NPC) a registration precision of only roughly 5 
nm is achieved (Figure S4d-e). This is troublesome, since our analysis shows that registration 
inaccuracies as small as <3nm nanometers can already produce misleading reconstruction results 
(Figure S4f). The problem is further aggravated by the relative rotation that different NPCs may 
have with respect to one another: although the authors claim the ability to detect in-plane NPC 
rotation as small as 1.4 degrees 1-5, we could not reliably detect in-plane NPC rotations smaller 
than 20 degrees for idealized, noise-free data (Figure S5b). The inability to detect in-plane 
rotations of a few degrees can result in high reconstruction errors as indicated by our simulations 
(Figure S5c). Precise detection of the NPC orientation is critical to the establishment of 3D-
SPEED data as ‘pseudo’-tomographic method, because the major requirement of a model-based 
3D-reconstruction using single 2D-perspective, is that the orientation is known.  
 

 
 
Figure S4. Precise registration is required for accurate cargo density reconstruction. The number and distribution of 
fluorescent tags in NPCs affect the pore registration precision. Fluorescent tags at C-terminus of labelled Pom121 (a, grey 
circles) can be detected as super-imposed diffraction-limited spots and subsequently used to determine the axis of the central 
channel (b,c) through either centroid extraction or Gaussian fitting. The availability of a limited number of labelled nucleoporins 
can result in an inaccurately estimated central axis (orange dotted line) and subsequent registration errors, causing the apparent 
cargo tracks (orange circles) to be shifted with respect to the actual cargo tracks (red circles). By simulating the registration 
error for 500 NPCs per condition (d), the average registration precision can be determined (e; x-registration solid, y-registration 
dashed). The distribution of the labelled nucleoporins inside the central channel has a slight effect on the axial localization 
precision, whereas the number of labelled nucleoporins has a bigger impact on both the axial and the longitudinal registration 
precision (e). When performing reconstructions on registered simulated datasets as described in Figure S2, we find that 
registration inaccuracies as low as a few nanometers can results in poor reconstruction qualities as measured using the sum of 
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absolute-valued residuals (f, bottom chart). As becomes apparent in the highlighted examples (f, top panels), shifts due to 
registration inaccuracies can be clearly noted. Colors in (f) represents the simulated registration precision sreg; each condition 
in the box-whisker was repeated for 15 independently simulated datasets, each containing 103 cargo localizations.  

 

 
 
Figure S5. Small deviations in projection angle can greatly reduce reconstruction quality of the radial cargo density when 
undetected. The orientation of the NPC with respect to the observed projection can be defined as a rotation (c, j, y) around the 
x, y and z-axis, respectively (a). The rotation-estimation method presented by Yang et al. (based on determining the fraction of 
the widths of two fitted Gaussians, (b, bottom)) as well as our improved method (using principle component analysis of a fitted 
2D Gaussian, (b, top)) are unable to reliably detect angles in the single-degree regime (b; 95% predication intervals shown). By 
performing radial density reconstructions on simulated datasets under rotation, it becomes evident that an undetected rotation of 
even a few degrees can severely reduce the reconstruction quality of the radial cargo distribution profile as measured using the 
sum of the absolute residuals (SAR-value; c, bottom graph). As expected, in-plane rotation (y) is the only rotational direction to 
affect reconstruction quality, as rotational symmetry around the pore axis (x) is assumed and only a single longitudinal zone was 
considered for the purpose of this simulation. The box-whisker plot in (c) is the result of 15 independently simulated datasets per 
condition; the top panels show the apparent orientation of the cargo detections (colored dots) and the resulting projection 
profiles (bar charts) for five representative simulations under different angles of NPC rotation. 

Thirdly, the overall localization precision of cargo affects the reconstruction quality of the 
rotational distribution. Localization precision is a measure for the degree of certainty that can be 
reached when extracting the projected positions of single-molecule cargo signals from the image 
data and is influenced by a large number of factors including the localization precision, 
registration precision (between color channels as well as combined NPC measurements) and the 
fluorescent labelling strategy (fluorophore size, linker length etc.).  
 
The current literature on 3D SPEED is unclear in terms of achieved localization precision as 
discussed by 10. A systematic study of the correlation between image acquisition speed and 
localization precision finds that for frame rates faster than 1 ms (typically 0.4 ms for 3D 
SPEED), the localization precision is limited to > 10	nm  11,12. Here we investigate the 
reconstruction quality using simulated cargo localization datasets with different localization 
precisions (Figure S6). Using an error-free (i.e. 0 nm overall precision), sufficiently large 
(thousands of localizations) dataset, an informative and reliable reconstruction can be obtained 
(Figure S6a). For localization precisions as reported 1-6, the resulting reconstructions are neither 
accurate nor reconstruct informative radial cargo densities (Figure S6c). In fact, overall 
precision values of just a couple of nanometers generally result in SAR values on the order of 
unity or larger (Figure S6b), meaning that the sum of the residuals (total error) exceeds the sum 
of the signal. As these simulations – even those that include simulated localization imprecision - 
reflect an idealized measurement system, we cannot explain how this method could produce 
informative results under the reported experimental conditions. 
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Figure S6. Dataset size and overall precision determine the quality of radial cargo density reconstructions. Assuming a 
perfectly positioned pore (i.e. perfect alignment with the pixel grid), the number of cargo localizations and the overall 
localization precision (a function of single molecule localization precision, measurement registration precision, drift etc.) 
determine reconstruction quality of the radial cargo distribution. While a reconstructed radial cargo distribution obtained under 
ideal conditions (top-left corner) can be informative (a), the reported experimental parameters (top-right corner) are not 
sufficient to obtain a truthful density reconstruction (c). Looking into the parameter-space between these regimes, various 
borderline-informative combinations of dataset size n and overall precision stot can be identified (b, top 3 panels) and quantified 
using the sum of absolute residual values for 15 independent simulations (b, bottom graph). The visualizations in the bottom 
panels of (a) and (c) show data-points randomly generated using the reconstructed radial cargo distributions and feature the 
same number of particles as the initial datasets (small top panels; rainbow colored). Bar-charts in the five reconstruction panels 
are presented as in Figure S2; SAR-value insets represent mean±SD for 15 independent simulations. 

 
Fourthly, model-assumptions such as cylindrical symmetry can lead to misleading reconstructed 
cargo distributions if they are not fully met. The 3D SPEED method does not predict a particular 
3D-structure but rather projects data onto a solution space that is limited to cylindrically 
symmetrical solutions. While it is possible that cargo particles occupy the nuclear pore in 
cylindrically symmetrical distributions, this is by no means the only possibility. If nuclear the 
fibrils would homogenously occupy the central channel and no other interactions would exist, the 
resulting homogeneity could result in cylindrical symmetry of the cargo distribution. However, 
an eight-fold symmetry of the NPC is generally accepted 13-15. If transporters would follow this 
symmetry, the transport distribution would exhibit an eight-fold point-symmetry that approaches 
cylindrical symmetry, but only to a limited extent. Notably, both dynamical and inhomogeneous 
FG meshwork as well as different point-symmetries (i.e. numbers of spokes) have been reported 
16-20. Another potential source of cylindrical symmetry was suggested in the form of super-
imposed datasets of NPCs that freely rotate around the transport axis, which would average out 
asymmetries. While possible in theory, free rotation of NPCs has not been demonstrated and this 
workaround would require accurate superposition of a large number of measurements. 
To assess the potential implications of studying non-symmetrical cargo distributions using this 
method, we performed reconstructions on simulated NPC cargo localization datasets that exhibit 
varying amounts of cylindrical symmetry (Figure S7). Our simulations show that for symmetry 
violations - even at the level of preferred travel of cargo along 6-12 ‘spokes’ - the reconstructed 
cargo distributions can be both inaccurate and misleading to a degree that depends strongly on 
the imaging perspective (i.e. the relative rotation of the NPC – see Figure S5b).  
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Figure S7. The assumption of cylindrically symmetrical cargo distributions can yield result in misleading reconstructions. If 
one is to reconstruct the radial cargo density from localizations in a single projection, the underlying distribution needs to be 
cylindrically symmetric. By simulating cargo localizations with varying degrees of cylindrical symmetry, significant sensitivity is 
found for strong violation of the symmetry assumption (low number of spokes) as measured by the sum of absolute-valued 
residuals (SAR-value) (a; bottom-left chart). Representative examples of the simulated cargo localizations (top panels, colored 
dots), the corresponding binned projections (top panels, grey histograms) and the resulting reconstructions (right panels, orange 
bars) show how applying the reconstruction process to asymmetric distributions can produce misleading solutions. A similar 
conclusion can be drawn when varying the angle of projection in case of an asymmetrical cargo distribution (b; rotation c 
around the central axis of the pore is denoted as the fraction of a single period for an eight-fold symmetry). Each condition was 
repeated 15 times using independently simulated datasets of 104 cargo localizations each; no errors or inaccuracies were 
simulated. 

 
In summary, we have shown that the 3D SPEED method would work for sufficiently 
symmetrical distributions, given that the dataset is large enough (thousands of localizations) and 
of sufficient overall precision is achieved (a few nanometers at most – see Figure S6b). Starting 
with the assumption of perfect data onto which we introduce known, small errors, we show that 
it is highly unlikely that any 3D-SPEED data as recorded under reported conditions would be 
able to produce accurate cargo distribution reconstructions. To come to this conclusion, we 
ignored practical challenges that have been disputed in the past, such as the questionable ability 
to image a single NPCs 5,21, or the presence of chromatic aberrations 2,3,5,21. Furthermore, the use 
of a tilted illumination is likely to result in PSF deformations, which would need to be accounted 
for in order to reach an acceptable localization precision and eliminate any biases. Similarly, it 
has been shown that heavy spatial under-sampling of the fluorescent signals on the camera, as is 
the case in the experimental data published, can result in a localization bias of tens to hundreds 
of nanometers 22. Additionally, it should be noted that we considered the NPC as a single 
longitudinal segment throughout our evaluation. Yang and colleagues have repeatedly split the 
cargo localization dataset into multiple segments and performed individual reconstructions on 
each of them (illustrated in Figure S1c-f). If done judiciously, differences cargo distributions 
could be examined at different spatial steps of the transport process, increasing the amount of 
information that can be obtained from a single dataset. While theoretically possible, such 
treatment would strongly increase the number of data points required for reconstruction and 
would place even more stringent requirements on the rotation detection and registration precision 
– none of which are currently met. Another consideration here pertains to the sampling of such 
multiple distributions: transport molecules tend to spend more time at the NPC in some states 
than others (e.g. docking vs translocation), affecting spatial sampling accordingly 23. The use of  
probability-based detection methods - rather than the 2D-Gaussian fitting used here - would 
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increase the detection efficiency and help increase confidence in the quality of the dataset by 
allowing control of the false-positive rate11,12. As a final remark, we note that a spatial mapping 
of 2D image data is not a tomography method as suggested by the creators of 3D-SPEED4- 
neither by definition, nor by resolvable data content. The proposed method does not extract 3D 
information; it merely facilitates a coordinate transformation based on model assumptions.  
	

Mathematical	description	of	the	model-based	reconstruction	
 
This chapter provides a mathematical description of the proposed model-based reconstruction 
that uses projected transport localizations in order to reconstruct the radial distribution of 
molecules within the central channel of the nuclear pore complex (NPC). 
 
The	Reconstruction	Equation		
 
We adopt the model proposed in the original 2010 publication1 which assumes that a NPC 
exhibits a circular cross section and can be modeled as a cylinder with the local coordinates 
defined as shown in Figure S8a. To define the equation for reconstructing the 3D density 
distribution, we assume that the underlying probability density is a function of the radial position 
within the pore and independent of angle with respect to the axis of the central channel and 
constant along the length of the pore segment (cylindrical symmetry). Then we embed the NPC 
into a rectangular box (Figure S8b). In the XY-plane, the projection image can be divided into N 
parallel sections along the X-axis. The α-th section is denoted by 𝑆. and has length |𝑆.|. Each 
segment 𝑆.  can now be partitioned in two ways: using rectangular or circular partitions (I-
partition and R-partition in short (Figure S8b)). For the fixed section	𝑆., the rectangular region 
is divided into M parallel strips 𝐼0, 𝐼2, … 𝐼450  with boundaries 𝑎7, 𝑎0, … 𝑎450  and 𝑎7 < 𝑎0 <
⋯ < 𝑎450  while the cross section is divided by annuli 𝑅0, 𝑅2, …𝑅4  with radii 
𝑟0, 𝑟2, … 𝑟4 	where 𝑟0 < 𝑟2 < ⋯ < 𝑟4 = 𝑅 , 𝑅  is the radius of the NPC cylinder and  𝑅450 

denotes the region outside the NPC cylinder. The intersection region of the strip 𝐼=  and the 
annulus 𝑅> is denoted by 𝐴=> (Figure S9a). For each section	𝑆., 𝑤A and 𝑓C are defined to be the 
number of data points in 𝐼A and the density of data points in the annulus	𝑅C, respectively. 𝑓C	is 
hence assumed to be constant in the annulus 𝑅C for 𝑚 = 1,… ,𝑀 and 𝑅450. 
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Figure S8. Setup of the geometry of NPC, projection plane and partitions. (a) Schematic diagram of the 3D cylindrical NPC, 
2D projection plane and Cartesian coordinate system. The NPC is modeled as a cylinder with circular cross section. The red 
dots represent cargo localizations in 3D and in 2D projection along Z-axis during cargos transport through the NPC. (b) The 
partition of NPC. Left: The cylindrical NPC is embedded into a rectangular box where d is the length of the box along Z-axis and 
R is the radius of the NPC. Along X-axis the box is divided by N sections, denoted by S1,…,SN. Right: For each section, say Sα, 
the box is partitioned along Y-axis, called I-partition and the contained NPC cylinder is divided by annuli, named R-partition. 
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Figure S9. I- and R-Partitions and associated areas. (a) General partitions: the rectangular cross section of NPC box is divided 
into M+1 parallel strips 𝐼0, 𝐼2, … 𝐼450  with boundaries 𝑎7, 𝑎0, … 𝑎450  while the circular cross section of the NPC cylinder is 
divided by annuli 𝑅0, 𝑅2, … 𝑅4 . The region outside the NPC cylinder is denoted by 𝑅450. 𝐴=> is defined as the intersection 
region of the strip 𝐼= and the annulus 𝑅>. (b) Symmetric partition: The partition is symmetric with respect to the central line 𝑎7. 
The superscripts L and R denote the quantities on the left and right sides.  (c) Circular Segment: The area of the shaded circular 

segment is denoted by S(r,a) and  computed by 𝑟2(𝑐𝑜𝑠I0 J
K
− J

K
1 − J

K

2
	) . The area of each 𝐴=> can be computed by the 

alternative sum of S(r,a) for some r and a. (d) Area of Akl and first-order approximations: The exact area of the region Akl 
bounded by two lines ak and ak-1 and two circles with radius rl and rl-1 can be computed by ½(	𝑆 𝑟M, 𝑎A − 𝑆 𝑟M, 𝑎AI0 −
𝑆 𝑟MI0, 𝑎A + 𝑆 𝑟MI0, 𝑎AI0 ). The rectangles marked by green and red dash lines are first-order approximations of Akl and the 
areas are computed by 

 𝐷P∆𝑟 = (∆𝑟)2 𝑙2 − 𝑘 − 1 2 − 𝑙 − 1 2 − 𝑘 − 1 2 	and 𝐷4∆𝑟 = ∆𝑟 2 𝑙2 − 𝑘 − 0
2

2
− 𝑙 − 1 2 − 𝑘 − 0

2

2
, 

respectively. 

 
By using the relation that the number of data points in a space is equal to the product of the 
density of data points and the volume of the space, we may obtain the following matrix equation 
for the section	𝑆. 1,  

 𝑤 T = |𝑆.|𝐴𝑓 P ,	 (S1) 
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where 𝑤 T = (𝑤0, 𝑤2, …𝑤450), 𝑓 P = (𝑓0, 𝑓2, … 𝑓450), and the entry of the matrix 𝐴 is given 
by the area of 𝐴=> which encodes the information of the partitions. Thus, we call 𝐴 the partition 
matrix. To solve the Eq. (S1), it is required that matrix 𝐴	be invertible. The invertibility of the 
matrix 𝐴	is determined by the partitions. In what follows, we omit the factor |𝑆.| to simplify the 
notations and consider a special kind of partitions, symmetric partitions (Figure S9b), which are 
slightly more general than the equipartition used in the original work1 and can be shown to 
produce invertible partition matrices.  
 
In a symmetric partition, it is required that the all strips are symmetric with respect to the central 
line 𝑎7  which passes through the center of the circular cross section (Figure S9b). This 
symmetry implies that |𝐼AU| = |𝐼AP|,  and 𝐴AMU = 𝐴AMP , for all 𝑘, 𝑙 = 1,2, . . . , 𝑀 + 1  where the 
notation |𝐼| denotes the width of the strip	𝐼 . However, in practice the set of data points may not 
develop exactly radial symmetry (or any symmetry) and then 𝑤AU in 𝐼AU and	𝑤AP in 𝐼APare generally 
not equal. To mitigate this inconsistency, we may sum 𝑤AU and 𝑤AP together and let 𝐴AM = 𝐴AMU +
𝐴AMP  for all k and l. By doing this, we may write 

 𝑤(|T|) = 𝑤 U + 𝑤 P = 𝐴𝑓(P) 
	

(S2) 

Where 𝑤 U = (𝑤0U, 𝑤2U, …𝑤450U ) , 	𝑤 P = (𝑤0P, 𝑤2P, …𝑤450P ) and 𝑓(P) = 0
2
	𝑓U +	𝑓P  is the 

average density vector of the left and right density vectors. In addition, we impose the constraint 
𝑟A ≤ 𝑎A < 𝑟A50, ∀	𝑘 on the partitions. With this constraint, the partition matrix becomes an upper 
triangular matrix as follows:  

 
 

𝐴 =
𝐴00 ⋯ 𝐴0(450)
⋮ ⋱ ⋮
0 … 𝐴(450)(450)

 

	

(S3) 

where by abuse of notation, we denote the entry of the partition matrix 𝐴=>  the area of the 
intersection region	𝐴=>. This upper triangular matrix is invertible. The equipartition used in [1] is 
a special case of the symmetric partition, namely, 𝑟A = 𝑎A =

AP
4
, ∀	𝑘.  

With given I- and R-partition, we may calculate the area of 𝐴=>. It is useful to define 𝑆 𝑟, 𝑎  be 
the area of the shaded circular segment as shown in Figure S9c and compute 

 
𝑆 𝑟, 𝑎 = 	𝑟2(cosI0

𝑎
𝑟
−

𝑎
𝑟

1 −
𝑎
𝑟

2
	), 𝑟 > 𝑎

0																																																												,								𝑟 ≤ 𝑎

	

	

(S4) 

The area of 𝐴=>  can be expressed by the alternating sum of the area of appropriate circular 
segments. In fact, the entry of the partition matrix 𝐴 is given by 
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𝐴=> =
2(𝑆 𝑟>, 𝑎=I0 − 𝑆 𝑟>, 𝑎= − 𝑆 𝑟>I0, 𝑎=I0 + 𝑆 𝑟>I0, 𝑎= ),			𝑖 ≤ 𝑀, 𝑗 ≤ 𝑀	
2(𝑑 𝑎= − 𝑎=I0 − 𝑆 𝑟4, 𝑎=I0 + 𝑆 𝑟4, 𝑎= ),																		𝑖 ≤ 𝑀, 𝑗 = 𝑀 + 1
2𝑑 𝑎450 − 𝑎4 ,																																																																								𝑖 = 𝑗 = 𝑀 + 1

	
  (S5) 

The area formula in Eq. (S5) is slightly different from that used in the original work1. In fact, the 
expression in Eq. (S5) is the exact area of 	𝐴=>  while the area formula used in the original 
publication1 is a first order approximation of the Eq. (S5). To see that, let us consider the 
following first order approximation by Taylor expansion in a small parameter	𝜖, 

𝑆 𝑟, 𝑎 + 𝜖 = 𝑆 𝑟, 𝑎 + 𝜖 |cd7 +
𝜕𝑆 𝑟, 𝑎 + 𝜖

𝜕𝑎
|cd7 ∙ 𝜖 + 𝑂 𝜖2 	

= 𝑆 𝑟, 𝑎 − 2𝑟𝜖 1 −
𝑎
𝑟

2
+ 𝑂 𝜖2 	

	
	

(S6) 

                Let 𝜖 = ∆𝑟 = P
4
, 𝑟 = 𝑟M = 𝑙∆𝑟, 𝑎 = 𝑎A = 𝑘∆𝑟, and 𝑎C50 = 𝑎C + ∆𝑟, we obtain 

𝑆 𝑟M, 𝑎C − 𝑆 𝑟M, 𝑎C50 = 2 ∆𝑟 2 𝑙2 − 𝑚2	
	

(S7) 

Therefore, 

𝐴AM =
4 ∆𝑟 2 𝑙2 − 𝑘 − 1 2 − 𝑙 − 1 2 − 𝑘 − 1 2 ,			𝑘 ≤ 𝑀, 𝑙 ≤ 𝑀	

4 ∆𝑟 𝑑 − ∆𝑟 𝑀 2 − 𝑘 − 1 2 ,																								𝑘 ≤ 𝑀, 𝑙 = 𝑀 + 1

4∆𝑟𝑑,																																																																																				𝑘 = 𝑙 = 𝑀 + 1

	

(S8) 

where 𝑑 is defined as the same as 𝑑 in the original work 1 and 𝑑 = 2𝑑 has been used. The factor 
4 comes from the fact that in the original work the area formula is applied to one quarter of the 
cross section while we consider the full cross section.   
There are several options for the first order approximations of the Eq. (S5) (Figure S9d). The 
Eq. (S8) describes the area of 4𝐷P∆𝑟 in Figure S9d and the area formula used in the original 
work1 is given by 

 

𝐴AM = 4𝐷4∆𝑟 = 4 ∆𝑟 2 𝑙2 − 𝑘 −
1
2

2
− 𝑙 − 1 2 − 𝑘 −

1
2

2
	

	

(S9) 

Alternatively, 4𝐷U∆𝑟  and 2 𝐷P + 𝐷U ∆𝑟  can be options to approximate the area of 𝐴AM . The 
accuracy of these approximations depends on the number of the partitions	𝑀. The lager 𝑀 is, the 
better the approximation. 
 
Deformation	of	Partitions	and	the	Space	of	Solutions	
By inspecting the Eq. (S1), 𝑤(T) is complete determined by I-partition. When the I-partition is 
deformed through changing the position of boundaries	 𝑎0, 𝑎2, . . 𝑎450 , 𝑤(T) and the entry of the 
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partition matrix	𝐴 are changed as wells as the density vector 𝑓(P). In general, three terms in the 
Eq. (S1) are varied simultaneously by this I-deformation. There is another way to deform the 
partition while keeping 𝑤(T) untouched, which makes it easier to investigate the structure of the 
space of solutions.  That is the R-deformation, namely deforming the R-partition by varying the 
radius of annuli. Here we illustrate the main idea by using a simple example, which can be 
generalized for more complex configurations. Let us consider a 2-partiton reconstruction 
equation where 𝐴 is a 2x2 matrix, and the Eq. (S1) takes the form 
 

𝑤0
𝑤2 = 𝐴00 𝐴02

𝐴20 𝐴22
𝑓0
𝑓2

 (S10) 

Before applying R-deformations, we fix an I-partition and then 𝐷0:= 𝐴00 + 𝐴02  and 𝐷2 ≔
𝐴20 + 𝐴22  are fixed where 𝐷0 and 𝐷2  are the area of the strips 𝐼0 and 𝐼2  in the I-partition, 
respectively. When the R-partition is deformed, the coefficients 𝐴00, 	𝐴02, 𝐴20 and	𝐴22 are varied 
but subject to the constraints 	𝐴00 + 𝐴02 = 𝐷0  and 𝐴20 + 𝐴22 = 𝐷2 . Geometrically, this 
deformation changes the slope of the lines 𝐴00𝑓0 + 𝐴02𝑓2 = 𝑤0  and 𝐴20𝑓0 + 𝐴22𝑓2 = 𝑤2 . As 
looking into the Eq. (S10) carefully, we notice that this deformation has two fixed points, 
𝑓0, 𝑓2 = kl

ml
, kl
ml

	and 𝑓0, 𝑓2 = kn
mn
, kn
mn

, and that the R-deformation in this case rotates the 
lines around their respective fixed points. Notice that the positions of fixed points are determined 
by the I-deformation. The space of the solutions is then the intersection of the deformation region 
of the lines (Figure S10) where we introduce two deformation parameters 𝑡 and 𝑠 defined by 𝑡 =
𝐴00 and 𝑠 = 𝐴20, respectively. In general, for a 2x2 matrix 𝐴, the space of the positive solutions 
forms a polygon (Figure S10). When 𝐴 is an upper triangular matrix, the solution space reduces 
to a one-dimensional segment. For higher rank cases, the solution spaces should form 
polyhedrons.  From Figure S10, we can see that typically the positive solutions of the Eq. (S1) 
with given 𝑤 T are not isolated points in the 𝑓0𝑓2-plane; instead they form a space with nonzero 
dimensions. More importantly, these solutions are mathematically valid reconstructed densities, 
unless more principles or selection rules are imposed. That is to say, the reconstructed densities 
𝑓 P are not unique but infinite. Besides, it also can be seen from Figure S10 that there are two 
disconnected branches of solution space: in each branch the negative solutions are much more 
ample than positive ones and these two sets of solutions are connected. With the connectedness, 
positive solutions can be found by continuously deforming the R-partition along an appropriate 
line, such as 𝐿0 or 𝐿2 whenever a negative solution is solved in the initial partitions. 
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Figure S10. The solution space of 2-partition reconstruction equation and R-deformation. The 2-partition reconstruction 
equation is a system of two linear equations. To demonstrate the R-deformation, parameters s and t are introduced while I-
partition are fixed, since D1 and D2 are constants. The intersection of two red dash lines and of two blue dash lines determine 
two fixed points of the R-deformation parameterized by s and t. When the parameter s (t) varies, the red (blue) solid line is 
deformed by rotating red (blue) solid line with respect to the fixed point as indicated by the red (blue) arrow. The solution space 
is determined by the overlap of s- and t-deformations. In particular, the yellow and orange regions indicate the solution space of 
positive (f1, f2>0) and negative solutions (f1 or f2<0), respectively. A negative solution in the orange region (for example, the 
point in the intersection of green dash lines L1 and L2) can be deformed into a position solution in the yellow region by rotating 
L1 or L2 with respect to the individual fixed points.   

 
Transformation	of	the	Normalized	Distributions	𝑷(|𝒚|)	and	𝑷(𝒓)	
 
With the Eq. (S1), we can drive the associated equation relating normalized distributions 𝑃(|𝑦|) 
and 𝑃(𝑟) defined on the Y-axis and radial direction, respectively. Let us define the normalized 

distribution on the Y-axis by 𝑃(|𝑦|) = k |s|

t
 where  𝑁  is the total number of the cargo 

localizations. Then 
 

𝑃 |𝑦| = 𝐴

1
𝐶0

… 0

⋮ ⋱ ⋮

0 …
1

𝐶450

𝑝 𝑟 	

 

(S11) 
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where	𝐶A	is the area of 𝑅A. Therefore,  
𝑃 |𝑦| = 𝑇𝑃 𝑟  (S12) 

 where 

𝑇 =

1 …
𝐴0(450)
𝐶450

⋮ ⋱ ⋮

0 …
𝐴(450)(450)

𝐶450

 

 

(S13) 

By the relation, 𝐴AM	450
Ad0 = 𝐶M, ∀	𝑙, we found that summing up all components in each column 

vector of the matrix 𝑇	is equal to one. This matrix 𝑇 can be treated as a probability matrix and is 
determined completely by the partitions. From the Eq. (S12), we can see that the normalized 
distribution𝑃(|𝑦|) on the Y-axis is not the same as the normalized distribution 𝑃(𝑟)	on the radial 
direction. Instead they are related by the probability matrix 	𝑇  which can be varied by 
deformations. In particular, 𝐴 and	𝑃(𝑟) on the right-hand side of the Eq. (S12) can be deformed 
while 𝑃(|𝑦|) remains invariant under the R-deformation. This makes sense, since the 2D image 
data is a physical quantity, which can be measured and thus be regarded as the average of the 
density profiles on the radial direction. This conclusion also indicates that the normalized 
reconstructed distribution 𝑃(𝑟)	 is not unique for given 2D image data. This is the same 
conclusion arrived at through the study of the space of solutions in the previous section. 
 
In conclusion, we have demonstrated that back-projection transformation in 3D SPEED produces 
non-unique reconstructions that require careful conditioning to produce meaningful, positive and 
artefact-free distributions. Even if performed in a mathematically sound way, there are numerous 
error-contributing factors such as undersampling and localization imprecision that make truthful 
reconstructions using 3D SPEED challenging, if not impossible under state-of-the-art 
measurement conditions. 
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Simulation	Methods	
 
Simulations were performed using Wolfram Mathematica 10 and 11. The annotated source code 
notebooks will be made available upon request.  
 
The simulations can be divided into two main groups: those looking at reconstructed densities 
and those looking at reconstructed distributions of transported particles. While the former was 
used to allow direct comparison with published work (see Figure 1), the latter is more suitable 
for benchmarking and optimization as it can be readily compared to the input distribution of the 
simulation (all supplemental figures). The simulation implementations are quite similar for both 
approaches, but there are some differences in the simulation parameters and data interpretation 
which are outlined in the final sections of this chapter. 
	
Radial	cargo	density	and	distribution	reconstruction	
 
To investigate the ability to reconstruct the discrete ground truth radial cargo distribution Pr[r], 
we simulate n cargo localizations (r, q, x)n within the central channel as constrained by the 
simulated central channel volume (i.e. 0 £ r < R, 0 £ q < 2p and -lpore/2 £ x £ lpore/2) using  radial 
Probability Density Function (PDF) pr(r), angular distribution function pq(q) (rotation around the 
central channel axis) and longitudinal distribution function px(x) (along the pore length). The 
PDFs used for the reconstruction results in each figure are listed in Table 1. The discrete ground 
truth radial cargo distribution is defined as 
 

	

𝑃[𝑟]= =
𝑝𝒓 𝑟 𝑑𝑟

K{

K{|l
,														𝑖 = 1,… ,𝑀
			

0,																																																																				𝑖 = 𝑀 + 1			

 

	

 
(S14) 

with  

𝑟= = 𝑖
𝑅
𝑀 ,	

𝑟=I0 = (𝑖 − 1)
𝑅
𝑀 

 
Cylindrical coordinates (r, q, x)n are then transformed to Cartesian coordinates (x, y, z)n and 
subsequently subjected to a rotation transformation to simulate rotation of the entire NPC by 
(c,f,y) degrees around each Cartesian axis (X,Y,Z). To simulate localization imprecision, an 
offset is applied to each coordinate on a point-by-point basis to yield (x’, y’, z’)n using a normal 
distribution with width sx =sy =sz =stot. The overall localization precision stot is varied between 
simulations and models the combined impact of localization imprecision (i.e. the precision in 
super-resolving the particle location through fitting), color registration, drift and other factors. 
The overall localization imprecision is modelled isotopically as the imaging method used in 3D-
SPEED microscopy is not fully characterized in each direction; the simulated cargo localizations 
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therefore likely represent a better localization precision than would be obtained through 3D-
SPEED measurements. 
 
The cargo localizations (x’, y’, z’)n are projected onto the a single object plane disregarding their 
individual z-positions, assuming their limited range in z-coordinates (∆zmax » 2(R + 2stot) » 
90nm) are negligible compared to the depth-of-focus (DOF=l×/NA2 + n×dpix/(M×NA) » 653nm, 
with l the wavelength, NA the numerical aperture, n the refractive index, dpix the pixel size and 
M the magnification). The projected cargo localizations (x’, y’)n are binned into 2(M+1) equally 
sized bins to yield the measured projected cargo profile Py’[y] with y Î [-(1+1/M)R,…, -R/M, 
R/M,…, (1+1/M)R ]. Assuming cylindrical symmetry, the two halves (y<0 and y>0) may be 
mirror-summed to yield P|y|’[y] with y Î [R/M, 2R/M ,…, (1+1/M)R ]. Gaussian smoothing of 
width ss is applied to P|y|’[y] to yield P|y|”[y] in order to reduce the occurrence of artifacts after 
the Inverse Projection Transformation (IPT). The IPT is achieved by a matrix multiplication 
using the inverse of partition matrix 𝐴. 
 
For the general case, 
 

𝐴=>
(}) =

2(𝑆 𝑟>, 𝑎=I0 − 𝑆 𝑟>, 𝑎= − 𝑆 𝑟>I0, 𝑎=I0 + 𝑆 𝑟>I0, 𝑎= ),			𝑖 ≤ 𝑀, 𝑗 ≤ 𝑀	
2(𝑑 𝑎= − 𝑎=I0 − 𝑆 𝑟4, 𝑎=I0 + 𝑆 𝑟4, 𝑎= ),																		𝑖 ≤ 𝑀, 𝑗 = 𝑀 + 1
2𝑑 𝑎450 − 𝑎4 ,																																																																								𝑖 = 𝑗 = 𝑀 + 1

,	
  (S15) 

 
where 

 
𝑆 𝑟, 𝑎 = 	𝑟2(cosI0

𝑎
𝑟
−

𝑎
𝑟

1 −
𝑎
𝑟

2
	), 𝑟 > 𝑎

0																																																												,								𝑟 ≤ 𝑎

	

	

(S16) 

 
For equipartition cases, the matrix is reduced to 
 

𝐴=>
(~) =

2(𝑆 𝑗, 𝑖 − 1 − 𝑆 𝑗, 𝑖 − 𝑆 𝑗 − 1, 𝑖 − 1 + 𝑆 𝑗 − 1, 𝑖 ),			𝑖 ≤ 𝑀, 𝑗 ≤ 𝑀	
2(𝑑∆𝑟 − 𝑆 𝑀, 𝑖 − 1 + 𝑆 𝑀, 𝑖 ),																																				𝑖 ≤ 𝑀, 𝑗 = 𝑀 + 1
2∆𝑟𝑑,																																																																																											𝑖 = 𝑗 = 𝑀 + 1

,	
  (S17) 

where 
 

 
𝑆 𝑝, 𝑞 = 	(𝑝∆𝑟)2(cosI0

𝑞
𝑝
−

𝑞
𝑝

1 −
𝑞
𝑝

2
	), 𝑝 > 𝑞

0																																																																					,								𝑝 ≤ 𝑞

	

	

(S18) 

 
p and q are positive integers and the first order approximation used in the original work 1  
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𝐴=>
(���) =

4 ∆𝑟 2 𝑙2 − 𝑘 −
1
2

2
− 𝑙 − 1 2 − 𝑘 −

1
2

2
,			𝑘 ≤ 𝑀, 𝑙 ≤ 𝑀	

4 ∆𝑟
𝑑
2
− ∆𝑟 𝑀 2 − 𝑘 −

1
2

2
,																									𝑘 ≤ 𝑀, 𝑙 = 𝑀 + 1

2∆𝑟𝑑,																																																																																							𝑘 = 𝑙 = 𝑀 + 1

	

(S19) 

Note that ∆r = �
�

 for all matrices used in simulation.  

Although a range of the matrices defined above was tried for reconstruction, all results shown in 
this publication were obtained using 𝐴=>

(���) to ease comparison with published results. The 
inverted partition matrix was used to transform the smoothened projected cargo profile P|y|”[y] to 
the reconstructed radial cargo density Dr’[r] using (S1); i.e.  
 

𝐷K�[𝑟] = 𝐴I0𝑃|�|�� [𝑟]	
	

(S20) 

with r Î [R/M, 2R/M ,…, (1+1/M)R ]. By multiplying each element of Dr’[r] by its 
corresponding annular surface area and normalizing the result, the reconstructed normalized 
radial cargo distribution profile Pr’[r] is obtained. The comparison of the input and reconstructed 
distributions rather than densities allows for a more straightforward interpretation of any 
discrepancies, as the number of localizations available per bin (rather than per volume) tends to 
have an effect on the reconstruction quality. The radial transport density, however, is potentially 
more useful to derive biological insights from the results; for that reason (and to facilitate 
comparison with published work), the simulations in Figure 1 use radial transport densities for 
fitting, whereas all figures contained in the supplement present radial transport distributions. 

Calculating	the	reconstruction	error	(SAR-value)	
 
Despite the damping effect of smoothening the projected cargo distribution, varying degrees of 
artefactual negative values would result from the IPT – especially for small n. To quantify the 
truthfulness of the reconstruction independent of these artefactual densities, Pr’[r]i=0 was 
substituted for negative values (Pr’[r]i < 0) in the reconstruction, after which Pr’[r] was 
normalized again. The reconstruction error was subsequently calculated as the Sum of the 
Absolute-valued Residuals (SAR) between the discrete, normalized ground-truth radial 
distribution Pr[r] and the discrete, normalized reconstructed radial distribution Pr’[r]; i.e.  
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𝑆𝐴𝑅 = 	𝑃K� 𝑟 − 𝑃K 𝑟 	
450

=d0

	

 
(S21) 

and as Pr’[r] and Pr[r] are both normalized, SAR is bound by 0 £ SAR £ 2. 
 
Apart from disrupting factors arising from pore rotation and those discounted in stot, no sources 
of error (e.g. false-positive detections, noise, localization biases due to aberrations, drift) were 
simulated for; the results of these simulations are therefore likely to be over-optimistic and 
should be interpreted as best-case scenario outcomes for the given parameters. 
	
Distribution-based-comparison	simulations	(suppl.	Figures)	
 
The simulation results in the supplementary figures used reconstructed particle distributions 
rather than densities (such as in Figure 1) to better facilitate quantitative evaluation of the 
reconstruction performance by means of the SAR-value. As the quality of the reconstruction 
tends to vary between randomly generated datasets (especially if a low number of cargo 
detections is available), all simulations were repeated 15 times per condition with new, randomly 
generated data to characterize the range of SAR-values resulting from a particular set of 
parameters. In cases where the distribution is not visualized using a scatter-plot or box-whisker 
diagram, the mean SAR value (± standard deviation) is shown. 
 
Reconstructions	using	localizations	from	multiple	NPC	measurements	
 
With the exception of Figure S4f, all cargo detections were assumed to either be obtained from a 
single nuclear-pore measurement or perfectly registered (sreg = 0nm) between measurements of 
identically oriented NPCs (f1=f2; c1=c2; y1=y2). For the multi-pore simulation in  
Figure S4f, npores datasets of n/npores localizations were simulated (f=c=y=0) and combined 
after applying a normally distributed offset of width sx =sy =sz =sreg to each individual dataset. 
The combined datasets were subsequently processed using the same method as described in the 
previous section. 
 
Multi-pore	registration	precision	
 
To determine the bias and precision with which the pore center is estimated (which determines 
the registration precision), we performed a number of simulations that explore a centroid-based 
method as well as 1D and 2D Gaussian fits. The properties of the simulated imaging system were 
taken from 3D-SPEED publications 1-5,21,24 and include a 100x, 1.4NA objective and a camera 
with 24µm pixels. The simulated wavelength corresponds to the GFP emission peak (l=509nm). 
Simulated pores were assumed to be perfectly aligned with respect to the projected image plane 
and the pixel grid (f=c=y=0) and the simulated imaging system was assumed to be diffraction 
limited and noise-free. 
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A varying number of pore label positions was simulated according to three different radial 
probability density functions in the same manner as described for transport distribution 
reconstruction measurements. The projected label positions were then used to generate 
diffraction limited spots as modelled by a Gaussian of width sPSF = 0.21×l×Mob/NAob = 7.6µm as 
described in 25, hence assuming they are all in focus simultaneously. The superimposed 
diffraction limited spots are subsequently sampled on a 24µm pixel grid and normalized in 
intensity. Since the pixel-size under-samples the diffraction-limited PSF, the position of the 
diffraction-limited signal relative to the center of the pixel is expected to affect the accuracy of 
the center-detection 22; we therefore added a uniformly distributed random offset in both spatial 
coordinates to each simulated NPC in order to sample all possible sampling-biases. The 
simulated image of the NPC labels was subsequently either subjected to centroid extraction or 
used for 1D Gaussian fitting in either direction along the pixel grid. For each condition, 500 
labelled NPCs were simulated. The registration error was calculated as the distance between the 
estimated and the ground truth positional coordinate of the pores in each direction and was found 
to be of zero-mean (unbiased) and roughly normally distributed. The standard deviation of the 
registration error sreg was subsequently used for comparison. 
 
Pore	rotation	detection	
 
The images used to determine the limitations of nuclear pore rotation detection were simulated 
the same way as described for the registration-error simulations, with the addition of a rotational 
transformation of the NPC labels along a single axis before projection. Rotation detection was 
either implemented by calculating the fraction of widths of fitted Gaussian functions in each 
spatial direction or by calculating the fraction of the length components of the principle axis 
found after fitting a 2D Gaussian function to the NPC signal. Cut-off values for angle-detection 
were based on a 95% confidence interval. 
 
Simulation	parameters	for	reconstructed	radial	transport	distributions	
 
Unless otherwise stated, the cargo distributions were constrained to a cylindrical central channel 
with radius R = 25nm and lpore =120nm in length. Equidistant binning of both the Cartesian 
projection axis Y and the radial axis r was used for M +1 bins of width R/M. Although different 
bin widths were simulated, all reconstructions make use of M=16 bins. For the sake of 
simplicity, sectioning along the length of the pore (x-axis) as shown in Figure S1c-f was not 
simulated, hence the simulations reflect a single section of length l. The parameters used in each 
simulation as well as those that were varied are summarized in the Table 1, as are the radial and 
angular cargo distributions used to generate the localization data.   
  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 2, 2017. ; https://doi.org/10.1101/145110doi: bioRxiv preprint 

https://doi.org/10.1101/145110


	 23	

 
simulated parameter figure containing simulated data 

sym.	 description S2 S3a S3b S3c S6a S6b S6c S4f S5c S7a S7b 
M	 number of bins 16 

n	 total number of 
localizations varied 10^4 varied 10^4 

𝜎tot	 overall localization 
precision - 0nm varied 11nm 0nm 

nNPCs	 number of NPC 
measurements 1 varied 1 

𝜎reg	 NPC measurement 
registration precision - varied - 

𝜎s	 Gaussian smoothing 
width - varied optimal value for N (see S1b) 

𝜑	 rotation around 
membrane fixture 0 0* 0** 

var; 
[v] 

0 0 

𝜒	 rotation around 
cylindrical axis 0 0* 0** 0 varied 

𝜓	 rotation in projection 
plane 0 0* 0** 0 0 

p(r)	 radial cargo 
distribution function 

[i] var; 
[iv] [i] 

p(𝜃)	 angular cargo 
distribution function 

[ii] varied; 
[vi] 

p(x)	 longitudinal 
distribution function [iii] 

* Although the reported rotation is claimed to be within 1.7 degrees, perfect alignment was assumed to ease comparison 
between the scenarios 

** While undetected NPC rotation is expected to negatively affect reconstruction performance after registration, these 
effects were not simulated here. 

i Gaussian distribution; µ=20nm, 𝜎=1nm  
ii Uniform distribution [0, 2𝜋) 

iii Uniform distribution [-l/2 , l/2] 
iv Gaussian distribution; 𝜎=1nm; µ∈{0, R/4, R/2, 3R/4} 
v Uniform distribution [0, 𝜉max] with 𝜉∈{𝜑,𝜒,𝜓} 

vi Multi-Gaussian distribution; µ∈{0, 2𝜋/𝜁, …, 2𝜋(𝜁-1)/𝜁}, 𝜎=1/𝜁 with 𝜁 the number of spokes 
  

Table 1 Simulation parameters for distribution-based simulations. 

 
Density-based	comparison	simulations	(Figure	1)	
 
From a biological perspective, the spatial fluctuation of particle densities within a given volume 
is more informative than their distribution. As a matter of fact, the numerical error of any given 
reconstructed transport distribution may not be a priority if the mere purpose of such a 
reconstruction is to distinguish between limiting cases - such as peripheral or central transport, 
for instance. To investigate whether 3D-SPEED would be capable of reliably making such 
distinctions, we simulated localization datasets as described in the previous sections according to 
one of four limit-case distributions: central, peripheral, bimodal and uniform (see Table 2). In 
generating these datasets, effects of localization imprecision were introduced as described above; 
other compromising effects (e.g. rotation, registration, drift) were not included. The simulated 
localization datasets (100 replicates per condition) were subsequently transformed using the IPT, 
after which the resulting reconstructed radial transport density profiles were subjected to a fitting 
routine to determine the most likely underlying transport profile. 
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Simulation	parameters	for	reconstructed	radial	transport	densities	
 
The simulation parameters were chosen to best reflect the most critical region of interest – the 
central channel segment of the NPC – using the dimensions as described in the original work1. 
All simulated cargo distributions were constrained to a cylindrical volume with radius R = 50 nm 
and lcentralChannel = 50 nm in length. Equidistant binning of both the Cartesian projection axis Y 
and the radial axis r was used for M+1 bins of width R/M with M=10 bins. Each simulated 
condition consisted of a combination of one of four cylindrically symmetrical radial transport 
distributions (see Table 2), a dataset size (100, 1000 or 10000 localizations) and a simulated 
localization precision 𝜎 (2, 4, 6 or 10nm – simulated as described before); 100 independently 
simulated datasets were used for reconstruction and fitting per condition. Effects of data 
registration, pore rotation, drift and other perturbing factors were not modelled; the simulated 
datasets therefore constitute a best-case scenario for the given experimental conditions. 
 
 Constituent distributions 
Distribution name Description Fraction of localizations 
Central Gaussian: µr =0; 𝜎=1.5nm 100% 
Peripheral Gaussian: µr =23nm; 𝜎=1.5nm 100% 
Bimodal Gaussian: µr,1 =0; 𝜎1=1.5nm 

Gaussian: µr,2 =23nm; 𝜎1=1.5nm 
10% 
90% 

Uniform Uniform density (P(r)~r) over 0 ≤ r ≤ R=50nm 100% 
 
Table 2 Distributions used for localization dataset generation in density-based simulations. 

 
Fitting	routine	used	to	identify	transport	density	type	
The reconstructed transport density profile is checked for any artefactual negative densities; if 
present, these are excluded from the fitting procedure (including these values or substituting 
them with zero before fitting resulted in lower success rates). Subsequently, a Gaussian 
smoothing is applied to the reconstructed density profile, the width of which was optimized for 
each dataset size (small datasets required more smoothing to obtain optimal results). The 
reconstructed density profile is then mirrored and joined to yield a symmetrical reconstructed 
density profile that allows central distributions to be readily fitted. A single Gaussian fit is 
performed, using the center radius of the bin with the highest reconstructed density value as the 
initial guess for the mean value µ1. If the fit residuals contain a peak value that exceeds the mean 
density value of the original distribution, a double Gaussian fit is performed, using the center 
radius of the bin with the highest residual value as the initial guess for the other mean value, µ2. 
The range for the fitting parameters was restricted to –R < µ1 < R, –R < µ2 < R, 1 ≤ 𝜎1 ≤ R/2, 1 ≤ 
𝜎2 ≤ R/2. Symmetric Gaussians were used for non-central fits (i.e. in cases where µfit > 𝜎fit). If 
successful, the double Gaussian fit is compared to the single Gaussian fit using the following 
criteria: 
 

1. The amplitude-ratio cannot be bigger than 1:5; 
2. The sum of the squares of the residuals (SSR) of the double Gaussian fit needs to be 

smaller than that of the single Gaussian fit; 
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3. The double-Gaussian fit needs to be more significant than the single-Gaussian fit as 
measured by the following measures: 

a. Adjusted R-squared value 
b. Bayesian Information Criterion 

If all three criteria are met, the SSR of the double Gaussian fit is compared to the SSR of a 
uniform distribution (constant radial density). If any of the above criteria is not met, the SSR of 
the single Gaussian fit is compared to the SSR of a uniform distribution. If the uniform 
distribution is a better fit (i.e. has the lowest SSR), the reconstructed cargo density is designated 
as coming from a uniform distribution; otherwise, the Gaussian fit is evaluated as follows: 
 

• If the fit has a central peak, but no peripheral peak, it is designated as coming from a 
central distribution; 

• If the fit has a peripheral peak, but no central peak, it is designated as coming from a 
peripheral distribution; 

• If the fit has a central peak and a peripheral peak, it is designated as coming from a 
bimodal distribution. 

For the purpose of distribution designation, a central peak is defined by µfit < 𝜎fit, whereas a 
peripheral peak needs to satisfy µfit > µr,2/2 (see Table 2). Only the peak(s) of the most 
significant Gaussian fit (single or double Gaussian, as defined by the three criteria listed earlier) 
are considered. All parameters for fitting (Gaussian width range, initial values), pre-fit 
processing (amount of smoothing, in- or exclusion of negative density values) and designation 
(amplitude-ratio, central/peripheral cut-off) have been optimized to maximize the success rate for 
identification of the ground truth distribution. Given that these distributions are not known a-
priori for real datasets, the calibration of this fitting procedure represents a best-case scenario for 
the identifications of these types of distributions in actual datasets. 
 

Supplementary	References	
 

Uncategorized References 
1. Ma, J. & Yang, W. Three-dimensional distribution of transient interactions in the nuclear 

pore complex obtained from single-molecule snapshots. Proc Natl Acad Sci U S A 107, 
7305-10 (2010). 

2. Goryaynov, A. & Yang, W. Role of molecular charge in nucleocytoplasmic transport. 
PLoS One 9, e88792 (2014). 

3. Ma, J., Goryaynov, A., Sarma, A. & Yang, W. Self-regulated viscous channel in the 
nuclear pore complex. Proc Natl Acad Sci U S A 109, 7326-31 (2012). 

4. Ma, J., Goryaynov, A. & Yang, W. Super-resolution 3D tomography of interactions and 
competition in the nuclear pore complex. Nat Struct Mol Biol 23, 239-47 (2016). 

5. Ma, J. et al. High-resolution three-dimensional mapping of mRNA export through the 
nuclear pore. Nat Commun 4, 2414 (2013). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 2, 2017. ; https://doi.org/10.1101/145110doi: bioRxiv preprint 

https://doi.org/10.1101/145110


	 26	

6. Goryaynov, A., Ma, J. & Yang, W. Single-molecule studies of nucleocytoplasmic 
transport: from one dimension to three dimensions. Integr Biol (Camb) 4, 10-21 (2012). 

7. Kelich, J.M. & Yang, W. High-resolution imaging reveals new features of nuclear export 
of mRNA through the nuclear pore complexes. Int J Mol Sci 15, 14492-504 (2014). 

8. Schnell, S.J., Ma, J. & Yang, W. Three-Dimensional Mapping of mRNA Export through 
the Nuclear Pore Complex. Genes (Basel) 5, 1032-49 (2014). 

9. Yang, W. Distinct, but not completely separate spatial transport routes in the nuclear pore 
complex. Nucleus 4, 166-75 (2013). 

10. Musser, S.M. & Grunwald, D. Deciphering the Structure and Function of Nuclear Pores 
Using Single-Molecule Fluorescence Approaches. J Mol Biol 428, 2091-119 (2016). 

11. Lin, Y. et al. Quantifying and optimizing single-molecule switching nanoscopy at high 
speeds. PLoS One 10, e0128135 (2015). 

12. Smith, C.S., Stallinga, S., Lidke, K.A., Rieger, B. & Grunwald, D. Probability-based 
particle detection that enables threshold-free and robust in vivo single-molecule tracking. 
Mol Biol Cell 26, 4057-62 (2015). 

13. Beck, M., Lucic, V., Forster, F., Baumeister, W. & Medalia, O. Snapshots of nuclear pore 
complexes in action captured by cryo-electron tomography. Nature 449, 611-5 (2007). 

14. Cronshaw, J.M., Krutchinsky, A.N., Zhang, W., Chait, B.T. & Matunis, M.J. Proteomic 
analysis of the mammalian nuclear pore complex. J Cell Biol 158, 915-27 (2002). 

15. Jarnik, M. & Aebi, U. Toward a more complete 3-D structure of the nuclear pore 
complex. J Struct Biol 107, 291-308 (1991). 

16. Eibauer, M. et al. Structure and gating of the nuclear pore complex. Nat Commun 6, 7532 
(2015). 

17. Knockenhauer, K.E. & Schwartz, T.U. The Nuclear Pore Complex as a Flexible and 
Dynamic Gate. Cell 164, 1162-71 (2016). 

18. Loschberger, A., Franke, C., Krohne, G., van de Linde, S. & Sauer, M. Correlative super-
resolution fluorescence and electron microscopy of the nuclear pore complex with 
molecular resolution. J Cell Sci 127, 4351-5 (2014). 

19. Petri, M., Frey, S., Menzel, A., Gorlich, D. & Techert, S. Structural characterization of 
nanoscale meshworks within a nucleoporin FG hydrogel. Biomacromolecules 13, 1882-9 
(2012). 

20. Timney, B.L. et al. Simple rules for passive diffusion through the nuclear pore complex. 
J Cell Biol 215, 57-76 (2016). 

21. Kelich, J.M. et al. Super-resolution imaging of nuclear import of adeno-associated virus 
in live cells. Mol Ther Methods Clin Dev 2, 15047 (2015). 

22. Chao, J., Ram, S., Lee, T., Ward, E.S. & Ober, R.J. Investigation of the numerics of point 
spread function integration in single molecule localization. Opt Express 23, 16866-83 
(2015). 

23. Smith, C. et al. In vivo single-particle imaging of nuclear mRNA export in budding yeast 
demonstrates an essential role for Mex67p. J Cell Biol 211, 1121-30 (2015). 

24. Ma, J., Kelich, J.M. & Yang, W. SPEED Microscopy and Its Application in 
Nucleocytoplasmic Transport. Methods Mol Biol 1411, 503-18 (2016). 

25. Zhang, B., Zerubia, J. & Olivo-Marin, J.C. Gaussian approximations of fluorescence 
microscope point-spread function models. Appl Opt 46, 1819-29 (2007). 

	
	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 2, 2017. ; https://doi.org/10.1101/145110doi: bioRxiv preprint 

https://doi.org/10.1101/145110

	OnePageArticle
	Supplement

