
 1 

pals-22, a member of an expanded C. elegans gene family, 
controls silencing of repetitive DNA  

 

Eduardo Leyva-Díaz1*, Nikolaos Stefanakis1,2, Inés Carrera1,3 , Lori Glenwinkel1 

Guoqiang Wang4, Monica Driscoll4, and Oliver Hobert1* 

 

1 Department of Biological Sciences, Department of Biochemistry and Molecular 

Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY, USA 

2 Present address: Laboratory of Developmental Genetics, The Rockefeller University, 

New York, NY, USA 

3 Present address: Worm Biology Laboratory, Institut Pasteur de Montevideo, 

Montevideo, Uruguay 

4 Department of Molecular Biology and Biochemistry, Rutgers, The State University of 

New Jersey, Piscataway, NJ, USA 

* Correspondence: eld2154@columbia.edu and or38@columbia.edu  

 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 2, 2017. ; https://doi.org/10.1101/145094doi: bioRxiv preprint 

https://doi.org/10.1101/145094
http://creativecommons.org/licenses/by/4.0/


 2 

ABSTRACT 

Repetitive DNA sequences are subject to gene silencing in various animal 

species. Under specific circumstances repetitive DNA sequences can escape such 

silencing. For example, when exogenously added, extrachromosomal DNA sequences 

that are stably inherited in multicopy repetitive arrays in the nematode C. elegans are 

frequently silenced in the germline, whereas such silencing often does not occur in the 

soma. This indicates that somatic cells might utilize factors that prevent repetitive DNA 

silencing. Indeed, such “anti-silencing” factors have been revealed through genetic 

screens that identified mutant loci in which repetitive transgenic arrays are aberrantly 

silenced in the soma. We describe here a novel locus, pals-22 (for protein containing 

ALS2CR12 domain), required to prevent silencing of repetitive transgenes in neurons 

and other somatic tissue types. pals-22 deficiency also severely impacts animal vigor 

and confers phenotypes reminiscent of accelerated aging. We find that pals-22 is a 

member of a large family of divergent genes (39 members), defined by the presence of 

an ALS2CR12 domain. While gene family members are highly divergent, they show 

striking patterns of genomic clustering. The family expansion appears C. elegans-

specific and has not occurred to the same extent in other nematode species. Previous 

transcriptome analysis has revealed that most of the pals genes are induced under 

stress conditions or upon infection by intracellular parasites. The transgene silencing 

phenotype observed upon loss of cytoplasmically localized PALS-22 protein depends 

on the biogenesis of small RNAs, since silencing is abolished in the RNAi defective 

mutant rde-4, suggesting that pals-22 might regulate RNAi dependent silencing in the 

cytoplasm of neurons and other tissues. We speculate that the pals gene family may be 

part of a species-specific cellular defense mechanism. 
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INTRODUCTION 

Over half the human genome consists of repetitive DNA elements (LANDER et al. 

2001; DE KONING et al. 2011). The view of the role of repetitive DNA has evolved in the 

last decades from considering it as “junk DNA” to the recognition of repetitive DNA as 

essential for genome function (DOOLITTLE AND SAPIENZA 1980; ORGEL AND CRICK 1980; 

LYNCH AND CONERY 2003; SHAPIRO AND VON STERNBERG 2005). The main constituents of 

these repetitive DNA elements are retrotransposons, a large family of transposable 

elements capable of copying themselves and reinserting into the host genome 

(KAZAZIAN 2004; GOODIER AND KAZAZIAN 2008; CORDAUX AND BATZER 2009). 

Retrotransposons and other elements with the ability to copy themselves pose a threat 

to genome integrity due to the potential deleterious effects of landing in coding or 

regulatory regions (FRIEDLI AND TRONO 2015). The activation of proto-oncogenes in 

some leukemias represent an example of such harmful consequences (HACEIN-BEY-

ABINA et al. 2003). However, repetitive DNA elements have also been found to play 

beneficial roles in a number of processes, ranging from the regulation of gene 

expression to interaction with nuclear structures for genome packaging, to DNA repair 

and restructuring (SHAPIRO AND VON STERNBERG 2005; GOKE AND NG 2016). Moreover, 

retrotransposons are a source of regulatory elements and alternative gene isoforms. 

Hence, transposable elements have been postulated as a powerful genetic force 

involved in the evolution of organismal complexity (KAZAZIAN 2004; FRIEDLI AND TRONO 

2015).  

To balance the deleterious and beneficial features of repetitive sequences, 

organisms have evolved ways to finely tune the regulation of repetitive DNA elements 

(SCHLESINGER AND GOFF 2015; CHUONG et al. 2017). For example, endogenous silencing 

mechanisms have evolved to prevent genome damage by the spread of mobile 

repetitive DNA elements. Silencing is achieved by DNA binding proteins, histone 

modifications and DNA methylation, both of which can be directed by sequence-specific 

repressive transcription factors and by small RNAs. For example, retrotransposons are 

extensively recognized by the Krueppel-associated box-zinc finger (KRAB-ZFP) 

proteins (ROWE et al. 2010; QUENNEVILLE et al. 2012; JACOBS et al. 2014), which form a 

large family of repressive transcription factors. These transcription factors are among 
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the fastest evolving group of genes in the human genome and their diversity facilitates 

their ability to recognize a large number of retrotransposons (NOWICK et al. 2010). 

Sequence-specific binding to retrotransposons by KRAB-ZFP factors triggers a cascade 

leading to chromatin-based silencing mechanisms (WOLF AND GOFF 2009). 

RNAs of retrotransposons that escape transcriptional silencing are targeted and 

destroyed by the small RNA pathways in the cytoplasm (TOTH et al. 2016). RNA-based 

mechanisms represent the most ancient defense against the genomic spread of 

repetitive DNA elements (FRIEDLI AND TRONO 2015). These mechanisms comprise the 

action of small RNA molecules, including small interfering RNAs (siRNAs), PIWI-

interacting RNAs (piRNAs) and microRNAs (miRNAs), which guide repressor protein 

complexes to particular targets in a sequence-specific manner. In addition to intervening 

at the post-transcriptional level, small RNAs can also intervene at the transcriptional 

level by directing deposition of repressive histone marks and DNA methylation to copies 

of retrotransposons and other elements (LE THOMAS et al. 2013). piRNAs and siRNAs 

can be produced from repetitive DNA elements, which they silence in return (LAW AND 

JACOBSEN 2010). Thus, in many organisms, repetitive DNA serves as a trigger for gene 

silencing.  

Repetitive DNA elements are not only abundant in vertebrate genomes. 

Repetitive DNA elements also abound in model organisms with comparatively smaller 

genome sizes: repetitive DNA accounts for 34-57% of the total genome in Drosophila 

melanogaster (CELNIKER et al. 2002), and at least 17% of the Caenorhabditis elegans 

genome (STEIN et al. 2003). Repetitive DNA elements can also be generated 

experimentally. DNA transformation techniques in C. elegans produce repetitive extra-

chromosomal DNA arrays (“simple” arrays)(MELLO et al. 1991). Several studies have 

shown that expression of transgenes organized in these repetitive arrays is silenced 

both in somatic cells and in the germline through heterochromatin formation, involving 

several chromatin factors (reviewed in (CUI AND HAN 2007)). Somatic, and especially, 

germline transgene expression can be improved when the transgenic DNAs are 

cotransformed with an excess of carrier DNA, producing a less repetitive, more 

“complex” array (KELLY et al. 1997).  
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Importantly, gene expression from repetitive genomic regions can still be 

observed, suggesting there are mechanisms that can modulate silencing effects (TSENG 

et al. 2007). Multiple forward genetic screens in C. elegans have indeed identified 

factors that act to counter silencing of genes contained in repetitive sequences, based 

on screens for mutations that alter the activity of transgenes present in tandemly 

repeated arrays. (HSIEH et al. 1999; GRISHOK et al. 2005; TSENG et al. 2007; FISCHER et 

al. 2013). In a classic study, mutations in tam-1 (a RING finger/B-box factor) were found 

to reduce the expression of transgenes organized in simple but not complex repetitive 

arrays (HSIEH et al. 1999). Therefore, tam-1 is an “anti-silencing factor” that attenuates 

the context-dependent silencing mechanism affecting multi-copy tandem-array 

transgenes in C. elegans. A subsequent study identified mutations in another gene 

important for expression of repetitive sequences, lex-1, which genetically interacts with 

tam-1 (TSENG et al. 2007). LEX-1 encodes a protein containing an ATPase domain and 

a bromodomain, both of which suggest that LEX-1 associates with acetylated histones 

and modulates chromatin structure. Hence, TAM-1 and LEX-1 are anti-silencing factors 

that function together to influence chromatin structure and to promote expression from 

repetitive sequences. Further studies found that tandem-array transgenes become 

silenced in most mutants that cause enhanced exogenous RNAi (SIMMER et al. 2002; 

KENNEDY et al. 2004; FISCHER et al. 2013). Examples of gene inactivations known to 

cause increased transgene silencing and enhanced RNAi include the retinoblastoma-

like gene lin-35 (HSIEH et al. 1999; WANG et al. 2005; LEHNER et al. 2006), the RNA-

dependent RNA polymerase rrf-3 (SIMMER et al. 2002), and the helicase gene eri-6/7 

(FISCHER et al. 2008). Silencing of repetitive DNA elements (multi-copy transgenes) 

depends on a complex interaction between different small RNA pathways (FISCHER et 

al. 2013). 

Here, we identify a novel locus, pals-22, whose loss confers a transgene 

silencing phenotype. pals-22 mutants display context-dependent array silencing, 

affecting the expression of highly repetitive transgenes but not single copy reporters. 

Animals lacking pals-22 show locomotory defects and premature aging. pals-22 is a 

member of a large family of divergent genes defined by the presence of an ALS2CR12 

domain. The ALS2CR12 domain protein family is specifically expanded in C. elegans, 
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and pals gene family members are clustered in the genome. We found that transgene 

silencing on pals-22 mutants depends on the RNAi pathway, indicating that pals-22 

might act as regulator of small RNA-dependent gene silencing. 
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MATERIALS AND METHODS 
 
Mutant strains. Strains were maintained by standard methods (BRENNER 1974). The C. 

elegans mutant alleles used in this study were: pals-22(ot723), pals-22(ot810), pals-

22(ot811), rde-4(ne301) (TABARA et al. 1999) and tam-1(cc567) (HSIEH et al. 1999). 
 

Reporter and transgenic strains. The C. elegans transgenic strains used in this study 

were otIs381[ric-19prom6::NLS::gfp], otIs380[ric-19prom6::NLS::gfp], ccIs4251[myo-

3prom::gfp], otIs251[cat-2prom::gfp], otIs355[rab-3prom1::NLS::rfp], otIs447[unc-

3prom::mChOpti], otEx6944 [ric-4prom26::NLS::yfp], otIs620[unc-11prom8::NLS::gfp], 

otIs353[ric-4fosmid::SL2::NLS-YFP-H2B], otIs534[cho-1fosmid::SL2::NLS-YFP-H2B], 

otTi32[lin-4prom::yfp], ieSi60[myo-2prom::TIR1::mRuby], otEx7036[pals-22prom::gfp], 

otEx7037 [pals-22::gfp]. pals-22 GFP reporters were generated using a PCR fusion 

approach (HOBERT 2002). Genomic fragments were fused to the GFP coding sequence, 

which was followed by the unc-54 3′ UTR. See Table 1 for transgenic strain names and 

microinjection details. 

 

Forward genetic screens. Standard ethyl methanesulfonate (EMS) mutagenesis was 

performed on the fluorescent transgenic reporter strain: otIs381[ric-19prom6::NLS::gfp] 

and ~60,000 haploid genomes were screened for expression defects with an automated 

screening procedure (DOITSIDOU et al. 2008) using the Union Biometrica COPAS FP-

250 system. To identify the causal genes of the mutants obtained, we performed 

Hawaiian single nucleotide polymorphism (SNP) mapping and whole-genome 

sequencing (DOITSIDOU et al. 2010) followed by data analysis using the CloudMap 

pipeline (MINEVICH et al. 2012). The following mutant alleles were identified: pals-

22(ot810) and pals-22(ot811). The mutant allele pals-22(ot723) was identified in an 

independent manual clonal screen for changes in reporter expression in neurons of 

otIs381[ric-19prom6::NLS::gfp] after EMS mutagenesis. 
 

Microscopy. Worms were anesthetized using 100 mM sodium azide (NaN3) and 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 2, 2017. ; https://doi.org/10.1101/145094doi: bioRxiv preprint 

https://doi.org/10.1101/145094
http://creativecommons.org/licenses/by/4.0/


 8 

mounted on 5% agarose pads on glass slides. All images (except Figure 3, B-C, and 

Figure S1C) were acquired as Z-stacks of ~1 µm-thick slices with the Micro-Manager 

software (EDELSTEIN et al. 2010) using the Zeiss Axio Imager.Z1 automated 

fluorescence microscope. Images were reconstructed via maximum intensity Z-

projection of 2-10 µm Z-stacks using the ImageJ software (SCHNEIDER et al. 2012). 

Images shown in Figure 3, B-C, and Figure S1C were acquired using a Zeiss confocal 

microscope (LSM880). Several z-stack images (each ~ 0.4 µm thick) were acquired with 

the ZEN software. Representative images are shown following orthogonal projection of 

2-10 µm z-stacks. 

 

Single molecule FISH. smFISH was done as previously described (JI AND VAN 

OUDENAARDEN 2012). Samples were incubated overnight at 37°C during the 

hybridization step. The ric-19 and gfp probes were designed using the Stellaris RNA 

FISH probe designer and was obtained conjugated to Quasar 670 from Biosearch 

Technologies.  

 

Fluorescence quantification. Synchronized day 1 adult worms were grown on NGM 

plates seeded with OP50 and incubated at 20°C. The COPAS FP-250 system (Union 

Biometrica) was used to measure the fluorescence of 200-1000 worms for each strain. 

 

Bioinformatic analysis. The ALS2CR12 domain phylogenetic tree was generated 

using MrBayes (HUELSENBECK AND RONQUIST 2001; RONQUIST AND HUELSENBECK 2003), 

lset nst=6 rates=invgamma, ngen increased until the standard deviation of split 

frequencies < 0.05. Input protein coding sequences for ALS2CR12 domain and PALS 

family orthologous proteins were aligned with M-Coffee (WALLACE et al. 2006). The 

MrBayes tree figure was rendered with FigTree 

(http://tree.bio.ed.ac.uk/software/figtree/). 

 

RNAi by feeding. RNAi was performed as previously described with minor adaptations 

(KAMATH AND AHRINGER 2003). L4-stage hermaphrodite worms were placed onto NGM 
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plates containing seeded bacteria expressing dsRNA for each assayed gene. After 24 h 

at 20ºC, adults were removed. After a further 36-40 h at 20°C, phenotypes were scored 

blindly. 

 

Computer swim analysis. The swimming assay was performed using the CeleST 

program as previously described (RESTIF et al. 2014). In brief, we transferred five (day-

1) adult hermaphrodites into 50 µl M9 buffer located in a 10 mm staggered ring on a 

glass slide. A 30 second dark-field video (18 frames per second) was immediately 

recorded via StreamPix 7. Multiple features of the swim behavior were then analyzed 

using CeleST (RESTIF et al. 2014). Graphpad Prism 6 was used for data plotting and 

statistics. 
 

Crawling assay. We washed ~30 day-1 adult hermaphrodites into M9 buffer 

(containing 0.2% BSA to prevent worms sticking to plastic tips) via low speed 

centrifuging. We transferred these worms (in 20 µl volume) to a NGM agar plate (60 

mm). After the liquid was completely dried and most animals were separated from each 

other, we started a 30 second video recording (20 frames per second). The video was 

processed on ImageJ and analyzed via wrMTrck plugin (NUSSBAUM-KRAMMER et al. 

2015). The crawling paths were generated in ImageJ and enhanced with Photoshop.  
 

Age pigment assay. Age pigments of day-5 adult hermaphrodite (GERSTBREIN et al. 

2005) were captured via Zeiss LSM510 Meta Confocal Laser Scanning Microscope 

(excitation: Water cooled Argon laser at 364nm; emission: 380nm–420nm). The auto-

fluorescence intensity was quantified in ImageJ. 
 

Lifespan. Synchronized worms were picked at the L4 stage, and fed with OP50-1 

bacteria on a 35mm NGM agar plate (12 worms per plate, ~100 animals initiating each 

trial). Before the end of reproductive phase, animals were transferred into a new plate 

every two days to keep adults separated from progeny. Immobile animals without any 

response to touch were counted as dead; bagged worms were also counted as deaths; 
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animals crawling off the NGM agar were counted as lost and were excluded from 

analysis. 
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RESULTS 

 

pals-22 mutants show a transgene silencing phenotype 

Based on our long-standing interest in studying the regulation of pan-neuronal 

gene expression (STEFANAKIS et al. 2015), we sought to use genetic mutant screens to 

isolate factors that control the expression of pan-neuronally expressed reporter 

transgenes. One screen that we undertook used a regulatory element from the pan-

neuronally expressed ric-19 locus, fused to gfp (otIs381[ric-

19prom6::NLS::gfp])(STEFANAKIS et al. 2015). We identified three independent mutant 

alleles, ot723, ot810 and ot811, in which expression of ric-19prom6::NLS::gfp was 

reduced throughout the nervous system in all animals examined (Fig. 1A, B). Using our 

previously described whole-genome sequencing and mapping pipeline (DOITSIDOU et al. 

2010; MINEVICH et al. 2012), we found that all three mutations affect the same locus, 

C29F9.1 (Fig. 2A, B), which we named pals-22 for reasons that we explain further 

below. The ric-19prom6::NLS::gfp expression defect of pals-22(ot811) can be rescued by 

a fosmid (WRM0616DC09) encompassing the pals-22 locus plus neighboring genes as 

well as a genomic fragment that only contains the pals-22 locus (791 bp upstream of the 

start codon to the stop codon and its 3’UTR)(Fig. 2C). Both ot810 and ot811 alleles 

carry early nonsense mutations and are therefore predicted to be null alleles (Fig. 2B). 

pals-22 mutants display reduced GFP expression of two separate ric-

19prom6::NLS::gfp integrated reporter transgenes (Table 2). However, single molecule 

fluorescence in situ hybridization (smFISH) against endogenous ric-19 transcripts failed 

to detect effects on the endogenous ric-19 expression (Fig. 1C). Since the two ric-19 

reporter transgenes that are affected by pals-22 are repetitive, “simple” arrays, we 

considered the possibility that pals-22 may encode a transgene silencing activity. To 

test this notion, we examined the expression of a wide range of reporter transgenes in 

pals-22-deficient mutants (summarized in Table 2). Six additional simple arrays with 

widely different cellular specificities of expression (pan-neuronal, dopaminergic neurons, 

ventral cord motorneurons, muscle) are also silenced in pals-22 mutants (Table 2, Fig. 
3). Two of these arrays, myo-3::gfp (ccIs4251), and cat-2::gfp (otIs251) were previously 
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shown to be silenced by loss of tam-1, a “classic” transgene silencer mutation (HSIEH et 

al. 1999)(M. D. and O. H. unpublished data)(Fig. 3). We quantified the magnitude of the 

pals-22(ot811) effect on expression of simple array reporters by acquiring fluorescence 

intensity information from a synchronized worm population of worms using a COPAS 

FP-250 system (Union Biometrica; “worm sorter”). At the L4 larval stage, we observed a 

76% reduction in green fluorescence intensity for ric-19prom6::NLS::gfp, 66% reduction 

for myo-3::gfp, 32% reduction for cat-2::gfp and 42% reduction in red fluorescence 

intensity for rab-3prom1::NLS::rfp (Fig. 1B; Fig. 3B, D, E). 

We also analyzed the expression of complex array (tandemly repeated 

transgenes with a less repetitive structure) and single copy reporter transgenes in pals-

22 mutants (summarized in Table 2). One complex array transgene was silenced (unc-

11p8::gfp, Table 2) but others were not (ric-4fosmid::yfp and cho-1fosmid::yfp, Table 2, Fig. 
S1A). Perhaps the much smaller reporter fragment unc-11p8::gfp generated more 

repetitive structures even in the context of “complex” arrays than the larger fosmid-

based reporters. Importantly, single copy insertions or endogenously tagged genes are 

not affected by mutations in pals-22 (Fig. S1B, C). 

Similar to previously characterized transgene silencing mutants, such as tam-1 

(HSIEH et al. 1999), the reduction of reporter expression is temperature sensitive. 

However, the direction of the sensitivity is inverted as compared to the tam-1 case: the 

decrease in ric-19prom6::NLS::gfp expression is most pronounced at 15ºC, while the 

effect is milder at 25ºC (data not shown). We also found stage dependent variability: the 

decrease in transgene reporter expression is stronger as the animals develop, from mild 

differences in expression in early stages of development to more obvious defects at 

later stages (Fig. S2).  

 

PALS-22 is a broadly expressed, cytoplasmic protein 

To analyze the expression pattern of pals-22 we fused the entire locus to gfp 

(including 791 bp of 5’ sequences and all exons and introns; Fig. 4A). This reporter 

construct fully rescues the transgene silencing phenotype of pals-22(ot811) mutants 

(Fig. 4D). Expression is observed widely across different tissues: nervous system (pan-
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neuronal expression), body wall and pharyngeal muscle, gut, seam cells, as well as the 

male tail (Fig. 4B, C). A similar expression pattern is observed with a transcriptional 

reporter (791 bp of its upstream region fused to GFP; Fig. 4C). The rescuing, 

translational reporter transgene revealed a strong, if not exclusive enrichment in the 

cytoplasm and appears to be excluded from the nucleus in most tissues (Fig. 4B). 

However, we cannot exclude the possibility that the nucleus contains low amount of 

functional PALS-22 protein.  

 

pals-22 is a member of an unusual C. elegans gene family 

The molecular analysis of the PALS-22 protein sequence revealed its 

membership in an unusual gene family. The only recognizable feature of PALS-22 is a 

domain termed ALS2CR12 by the InterPro (https://www.ebi.ac.uk/interpro/) (FINN et al. 

2017) and Panther (http://www.pantherdb.org/)(MI et al. 2013; MI et al. 2017) databases 

(hence the name “PALS” for “protein containing ALS2CR12 domain”). This domain was 

first found in a human gene that constituted a potential disease locus for amyotrophic 

lateral sclerosis 2 (HADANO et al. 2001). No biochemical or cellular function has yet been 

assigned to the human ALS2C12 protein or any of its homologs in other organisms. 

Both InterPro and Panther databases group PALS-22 within a family of 

ALS2CR12 domain containing proteins from different species ranging from nematodes 

to vertebrates (Fig. 5A). While there is only one ALS2CR12 domain containing protein 

in vertebrates such as mouse or human, the number of proteins containing this domain 

is strikingly expanded to a total of 39 distinct proteins in C. elegans (Fig. 5A; Table 3). 

Drosophila seems to be completely devoid of ALS2CR12 domain-containing proteins. 

  The 39 C. elegans PALS proteins are very divergent from one another, as 

reflected in Table 3 with similarity scores of PALS-22 compared to other PALS proteins. 

Besides poor paralogy, there is also poor orthology. For example, BLAST searches with 

PALS-22 picks up no sequence ortholog in C. briggsae, and the best homolog from 

another species (C. brenneri, CBN22612) is less similar to PALS-22 than some of the 

C. elegans PALS-22 paralogs. The divergence of C. elegans pals genes is also 

illustrated by the genome sequence of wild isolates of C. elegans in which many pals 
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genes display an above-average accumulation of polymorphisms (VOLKERS et al. 

2013)(Table 3). 

The expansion of C. elegans ALS2CR12 domain-containing proteins appears to 

be nematode species-specific, as C. briggsae only contains 8 predicted proteins with an 

ALS2CR12 domain; other nematodes also contain significantly less ALS2CR12 domain 

proteins (Fig. 5A). Such C. elegans-specific gene expansion is highly unusual, as 

shown in Fig. 5B. Among 3874 Panther protein domains analyzed, 2759 (71.2%) are 

present in the same number of genes in both C. elegans and C. briggsae, 128 (3.3%) 

domains are present only in C. elegans, while 74 (1.9%) are present only in C. briggsae. 

Most of the remaining domains are only slightly enriched in one species or the other. 

Just 10 domains (0.3%) are enriched five times or more in C. elegans versus C. 

briggsae (Fig. 5B). Most of these domain families contain uncharacterized genes, even 

though many of them contain human and vertebrate orthologs. Among them, the 

ALS2CR12 domain has not only a noteworthy enrichment, but it also constitutes the 

family with the largest absolute number of genes (Fig. 5B). 

As perhaps expected from a species-specific expansion, the ALS2CR12 domain-

encoding pals genes are genomically clustered (Fig. 6). 14 genes are clustered in 

chromosome I (position I: 17.22 cM); while three clusters with 7 genes (III: -21.90 cM), 4 

genes (III: -26.98 cM) and 3 genes (III: -3.18 cM) are present in chromosome III; lastly 4 

genes are clustered in chromosome V (V: 4.22) (Fig. 6; Table 3). Taking into account 

the C. elegans-specific family expansion it is not surprising to find a total lack of 

conservation in the regions encompassing most of the pals clusters (Fig. 6). Only one 

cluster on chromosome V shows some degree of conservation among other nematode 

species. Genes surrounding these regions are conserved, suggesting recent gene 

duplications in the non-conserved areas. The low conservation region in cluster III: -

21.90 cM, contains many additional, non-conserved genes that are largely expanded in 

a nematode-specific manner, namely the previously analyzed fbxa genes (THOMAS 

2006). 

Local gene duplications seem a plausible mechanism for the origin of the 

expanded C. elegans pals gene family. Consequently, we reasoned that pals genes 
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within the same cluster should be more similar among each other than to other pals. In 

order to explore this possibility, we built a phylogenetic tree to visualize the phylogenetic 

relationships between pals genes (Fig. 5C). We included all C. elegans pals genes plus 

orthologs from C. briggsae, C. remanei, C. brenneri, mouse and human (based on 

presence of InterPro IPR026674). As expected, pals genes within the same cluster 

have a closer phylogenetic relationship, suggesting a shared origin. 

According to modENCODE expression data (Celniker et al. 2009), most of the 

genes within each cluster are expressed in the same stage (e.g. all genes clustered in 

chromosome I are only found in L4 males), suggesting related functions (Table 3). 

Perhaps most intriguingly, though, the majority of pals genes become upregulated upon 

exposure to specific pathogens, specifically the exposure to intracellular fungal 

pathogen (microsporidia) or by viral infection (BAKOWSKI et al. 2014; CHEN et al. 2017). 

Induction of pals gene expression is also observed upon various other environmental 

insults (exposure to toxic compounds)(CUI et al. 2007)(summarized in Table 3). Several 

fbxa genes present in the low conservation region in cluster III: -21.90 cM, also become 

upregulated upon exposure to microsporidia or by viral infection (BAKOWSKI et al. 2014; 

CHEN et al. 2017). 

 

Somatic transgene silencing in pals-22 mutants requires rde-4-dependent small 
RNAs 

We examined whether two pals-22 paralogs, pals-19 and pals-25 may also be 

involved in transgene silencing. Both genes show significant sequence similarity to pals-

22 (Table 3) and one (pals-25) is directly adjacent to pals-22 (Fig.6). We tested whether 

two nonsense alleles generated by the Million Mutant project, pals-19(gk16606) and 

pals-25(gk891046) (THOMPSON et al. 2013) silence the ric-19prom6::NLS::gfp and myo-

3::gfp multi-copy transgenes. Neither array shows obvious changes in expression in 

pals-19 or pals-25 mutant backgrounds (data not shown). 

To further pursue the role of pals-22 in transgene silencing we considered 

previous reports on transgene silencer mutations. Several genes with transgene 

silencing effects are known to be involved in modifying chromatin (CUI AND HAN 2007). 
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However, the cytoplasmic localization of PALS-22 described above argues against a 

direct role in controlling chromatin architecture (although, a function in the nucleus can 

not be ruled out). Nevertheless, we do find that pals-22 affects transgene silencing on 

the transcriptional level. smFISH against gfp mRNA shows that silenced gfp transgenic 

arrays display a significantly reduced number of transcripts in pals-22 mutants (Fig. 
7A). We therefore considered the possibility that the transcriptional effects of a 

cytoplasmic protein on transcription may be controlled by intermediary factors. Small 

interfering RNAs are known to affect gene expression on the transcriptional level 

(ZAMORE et al. 2000; ELBASHIR et al. 2001) and through a genetic epistasis test, we 

asked whether pals-22 requires small RNAs for its function. To this end, we turned to 

rde-4 mutant animals. The dsRNA-binding protein RDE-4 initiates gene silencing by 

recruiting an endonuclease to process long dsRNA into short dsRNA and is involved in 

exogenous as well as endogenous RNAi pathways (TABARA et al. 2002; PARKER et al. 

2006; GENT et al. 2010; VASALE et al. 2010). We find that loss of rde-4 completely 

suppresses the pals-22 mutant phenotype (Fig. 7B, C). This result demonstrates that 

the gene silencing mediated by pals-22 deficiency requires the production of small 

dsRNAs. 

Transgene silencing phenotypes have been observed in mutants that affect 

multiple distinct small RNA pathways, and exogenous RNAi responses are often 

enhanced in these mutants (SIMMER et al. 2002; LEHNER et al. 2006; FISCHER et al. 

2013). Thus, we tested whether pals-22(ot811) shows an enhanced exogenous RNAi 

response. Using rrf-3(pk1426) as a positive control (SIMMER et al. 2002), we detect 

enhanced dpy-13 or cel-1 RNAi phenotypes in pals-22(ot811) (dsRNA delivered by 

feeding; Fig. 7D). We conclude that pals-22 physiological function might be related to 

the regulation of RNAi-dependent silencing in the cytoplasm, via a mechanism critical to 

its action as an anti-silencing factor. 

 

Locomotory and aging defects of pals-22 mutant animals 

The loss of pals-22 has striking physiological consequences. Since casual 

observation of pals-22 mutants indicates defects in locomotion, we quantified these 
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defects, by measured swimming behavior (RESTIF et al. 2014) and crawling activity, 

comparing wild-type, pals-22(ot810), pals-22(ot811) and pals-22(ot811) carrying a wild-

type copy of pals-22 on an extrachromosomal array (Fig. 8). Day 1 adult pals-22 

mutants show a poor performance in swimming assays as evaluated by multiple 

parameters, including low wave initiation rate (akin to thrash speed), travel speed 

(distance moved over time), brush stroke area (area covered in unit time) and activity 

index (Fig. 8A). On agar plates animals also were clearly impaired, displaying 

significantly decreased traveling speed (Fig. 8B). All locomotory defects were rescued 

by the pals-22(+) extrachromosomal array. 

Apart from the locomotory defects, we also noted abnormal survival of pals-22 

mutants. Using standard lifespan assays, we observed premature death of pals-22 

mutants, commending at about day 10 of adulthood (Fig. 8C). We also find that 5 day 

old adult animals display a signature change in aging, namely increased age pigment in 

the gut of adult worms (Fig. 8D). In light of these premature aging phenotypes, we 

surmise that the locomotory defects described above may also be an indication of 

premature aging. 
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DISCUSSION 

 Together with a parallel study by Reddy and colleagues (REDDY et al. 2017), our 

study provides the first functional characterization of the large, unusual family of pals 

genes in C. elegans. In the context of whole animal transcriptome profiling under 

different conditions, expression of members of the pals gene family has previously been 

shown to be induced upon various forms of cellular insults, ranging from exposure to 

intracellular fungal infections, to viral infection and to toxic compound exposure (CUI et 

al. 2007; BAKOWSKI et al. 2014; CHEN et al. 2017). We define here a function for one of 

the family members, pals-22 in controlling the silencing of repetitive DNA sequences. 

Even though the biochemical function of PALS proteins is presently unclear, the 

upregulation of many pals genes under conditions of cellular stress suggest that this 

gene family may be part of a host defense mechanism that protects animals/cells from 

specific insults. The C. elegans-specific expansion of pals genes may relate to their 

potential function in fending off species-specific stressors and/or encounters with 

species-specific pathogens. Consistent with the species-specificity of pals gene 

function, it has been noted that distinct wild isolates of C. elegans display an above-

average accumulation of polymorphisms in most pals genes (VOLKERS et al. 2013). 

 The mutant phenotype of pals-22 as a transgene silencer, as well the 

dependence of this phenotype on small RNA production, indicates that PALS-22 may 

control gene expression via small RNA molecules. A role of PALS-22 in controlling gene 

expression is also illustrated in a parallel study in which pals-22 has been found to be 

required for the proper regulation of a battery of stress- and microspiridial infection-

induced genes, including many of the pals genes themselves (REDDY et al. 2017). While 

the function of pals-22 in the RNAi process is not clear, there are numerous examples 

of mutants in which somatic transgene silencing is induced as a result of an increase in 

RNAi sensitivity, including rrf-3, eri-1, lin-35 and others (SIMMER et al. 2002; KENNEDY et 

al. 2004; KIM et al. 2005; WANG et al. 2005; LEHNER et al. 2006; FISCHER et al. 2008; 

FISCHER et al. 2011; FISCHER et al. 2013). Since the expression levels per copy of 

repetitive tandem arrays are much lower than for endogenous genes, transgene 

targeting siRNAs appear to be already abundant in wild-type transgenic strains, 

indicating a background level of transgene silencing in wild-type worms (MELLO AND FIRE 
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1995). These transgene-targeted siRNAs may be reduced in a mutant displaying 

enhanced transgene silencing (such as pals-22), perhaps because of a shift in the 

balance between the loading of transgene siRNAs into a silencing Argonaute (e.g. 

NRDE3) versus an anti-silencing Argonaute (e.g. CSR-1) (SHIRAYAMA et al. 2012; 

FISCHER et al. 2013).  

The precise biochemical function of any PALS protein remains obscure. The only 

notable sequence relationship that we could find points to potential biochemical function 

of the PALS proteins in proteostasis. One of the LGIII clusters of pals genes (III: -21.90 

cM) contains also a large number of fbxa genes, another vastly C. elegans-specific 

expanded gene family (THOMAS 2006)(Fig.. fbxa genes code for F-box proteins that are 

involved in protein degradation (THOMAS 2006). One of the FBXA proteins in the LGIII 

cluster, FBXA-138, displays sequence similarities to a number of distinct PALS proteins 

within and outside the LGIII pals cluster, including PALS-22, PALS-23, PALS-32, PALS-

25 and PALS-1. Even though PALS proteins are not predicted to contain a canonical F-

box, it is conceivable that their distant sequence relationship to F box proteins may 

suggest a role of PALS proteins in protein degradation. How, in the case of PALS-22, 

such a function may relate to the control of gene expression via small RNA molecules is 

not clear. 

Although it is difficult to unambiguously distinguish accelerated aging from 

general sickness, young adult pals-22 mutants clearly exhibit multiple features of aged 

animals—impaired mobility, elevated age pigments/lipofuscin, and shortened lifespan. 

Increased expression of repetitive sequences has been documented in aging C. 

elegans, Drosophila, and humans, and has been suggested to contribute to genomic 

instability and cell dysfunction (SEDIVY et al. 2013); the physiological effect of decreases 

in the expression of repetitive sequences has not been explored. However, we note that 

other transgene silencing mutants (which are also RNAi hypersensitive), like rrf-3 and 

eri-1, do not display an aging defect (ZHANG et al. 2009; REN et al. 2012). pals-22 may 

therefore be involved in novel aspects of small RNA-dependent gene silencing that may 

control the expression of genes involved in animal physiology.  
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FIGURE LEGENDS 

 

Fig. 1: Loss of pan-neuronal reporter gene expression in pals-22 mutants.  
(A) The ric-19prom6::NLS::gfp transcriptional reporter is brightly expressed in all neurons 

in wild-type N2 worms, with a nuclear localization. In pals-22(ot723), pals-22(ot810) and 

pals-22(ot811) mutants, expression is reduced throughout all the nervous system. All 

images correspond to L4 worms. Scale bar represents 50 µm 

(B) Fluorescence profiles of a representative individual day 1 adult worm expressing ric-

19prom6::NLS::gfp in wild-type (black line) or pals-22(ot811) mutant background (red line) 

obtained with a COPAS FP-250 system. Time of flight indicates worm length, with lower 

values corresponding to the head of the worms. a.u., arbitrary units. Inset bar graph 

displays quantification of total fluorescence intensity averaged over 500 animals 

analyzed by COPAS. The data are presented as mean + SEM. Unpaired t-tests were 

performed for pals-22(ot811) compared to WT; ***p < 0.001. 

(C) Wild-type (left), pals-22(ot810) (middle) and pals-22(ot811) (right) images of the 

anterior part of L3 worms showing equal ric-19 mRNA levels in control and mutant 

worms as assessed by single molecule fluorescence in situ hybridization. Individual 

transcripts shown as purple dots in top and as black dots in bottom panels. GFP 

expression of the reporter transgene is shown in green. At least 20 animals examined 

for each genotype displayed indistinguishable staining. Scale bar 10 µm.  

 

Fig. 2: pals-22 codes for a protein with an ALS2CR12 domain. 
(A) Hawaiian single nucleotide polymorphism (SNP) mapping plots obtained from 

whole-genome sequencing of the following mutant alleles: pals-22(ot810) (top row), 

pals-22(ot811) (middle row), and pals-22(ot723) (bottom row). 

(B) Schematic of pals-22 gene locus depicting its ALS2CR12 domain and mutant allele 

annotation. 

(C) pals-22 rescue data. %WT = % percent animals that express the ric-19 reporter 

strongly (as in wild-type animals). %MUT = % percent animals that express the ric-19 

reporter more weakly than wild-type.1 otIs381 = ric-19prom6::NLS::gfp. 2 WRM0616DC09 

fosmid. 
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Fig. 3: pals-22 mutants show silencing of several multicopy arrays. 
(A) The myo-3prom::gfp transcriptional reporter is brightly expressed in all body muscles 

in wild-type N2 worms, with a combination of mitochondrial and nuclear localization. In 

pals-22(ot810), pals-22(ot811) and tam-1(cc567) mutants a generalized reduction in 

GFP fluorescence is observed. All images correspond to L4 worms. Scale bar 

represents 50 µm. 

(B) Fluorescence profile of a representative individual day 1 adult worm expressing 

myo-3prom::gfp in wild-type (black line) or pals-22(ot811) mutant background (red line) 

obtained with a COPAS FP-250 system. Time of flight indicates worm length, with lower 

values corresponding to the head of the worms. a.u., arbitrary units. Inset bar graph 

displays quantification of total fluorescence intensity averaged over 1000 animals 

analyzed by COPAS. The data are presented as mean + SEM. Unpaired t-tests were 

performed for pals-22(ot811) compared to WT; ***p < 0.001. 

(C) GFP images showing silencing of cat-2prom::gfp expression in the head of pals-

22(ot811) mutants (right) compared to wild-type L4 worms (left). The cat-2prom::gfp 

transcriptional reporter is expressed in all dopamine neurons, CEPD, CEPV and ADE in 

the head, and PDE in the posterior mid-body (top right insets). Scale bar represents 10 

µm. 

(D) Fluorescence profile of a representative individual day 1 adult worms expressing 

cat-2prom::gfp in wild-type (black line) or pals-22(ot811) mutant background (red line) 

obtained with a COPAS FP-250 system. Time of flight indicates worm length, with lower 

values corresponding to the head of the worms. a.u., arbitrary units. Inset bar graph 

displays quantification of total fluorescence intensity averaged over 1000 animals 

analyzed by COPAS. The data are presented as mean + SEM. Unpaired t-tests were 

performed for pals-22(ot811) compared to WT; ***p < 0.001. 

(E) RFP images showing silencing of rab-3prom1::rfp expression in the head of pals-

22(ot811) mutants (right) compared to wild-type L4 worms (left).  

(F) Fluorescence profile of a representative individual day 1 adult worms expressing 

rab-3prom1::rfp in wild-type (black line) or pals-22(ot811) mutant background (red line) 
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obtained with a COPAS FP-250 system. Time of flight indicates worm length, with lower 

values corresponding to the head of the worms. a.u., arbitrary units. Inset bar graph 

displays quantification of total fluorescence intensity averaged over 1000 animals 

analyzed by COPAS. The data are presented as mean + SEM. Unpaired t-tests were 

performed for pals-22(ot811) compared to WT; ***p < 0.001. 

 

Fig. 4: PALS-22 is a broadly expressed, cytoplasmic protein. 
(A) Schematic of pals-22 transcriptional and translational GFP reporters. The gfp 

reporter is followed by the 3’UTR from the unc-54 gene. 

(B) Expression of the pals-22::gfp translational reporter (otEx7037) is shown in green in 

the head (left) in a representative hermaphrodite L4 worm. High magnification images in 

black and white for the head (middle) and tail (right) show PALS-22 cytoplasmic 

localization. Nuclear pan-neuronal rab-3prom1::rfp expression is shown in red on the 

background. Two distinct extrachromosomal arrays show the same pattern. 

(C) Expression of the pals-22prom::gfp transcriptional reporter (otEx7036) is shown in 

green in the head (left panel), mid-body (second panel), and tail (third panel) in a 

representative hermaphrodite L4 worm; and in the male tail (right panel). Nuclear pan-

neuronal rab-3prom1::rfp expression is shown in red on the background. Three distinct 

extrachromosomal arrays show the same pattern. 

(D) PALS-22::GFP (right) rescues the expression of unc-3prom::mChOpti in pals-

22(ot811) mutants (left). At least 50 animals examined for each genotype. 

Scale bars represent 20 µm (B and C), 5 µm (B, high magnification images) and 50 µm 

(D). 

 

Fig. 5: Sequence and genomic analysis of pals gene family in C. elegans and 
other species. 
(A) Number of genes containing the ALS2CR12 domain in their protein product as 

predicted by InterPro (IPR026674) and/or Panther (PTHR21707).  

(B) Graph representing the C. elegans to C. briggsae domain frequency for domains 

enriched in C. elegans (blue), C. briggsae to C. elegans ratio for domains enriched in C. 

briggsae (orange), or white for Panther protein domains predicted in the same number 
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of genes in both species. Boxes indicate the gene counts for highly enriched domains in 

C. elegans. The number of Panther domain hits for the C. elegans and C. briggsae 

genome were obtained from WormBase.  

(C) Phylogram of ALS2CR12 domain containing genes, including C. elegans paralogs 

and orthologs from C. briggsae, C. remanei, C. brenneri, human and mouse. Node 

values indicate posterior probabilities for each split as percent. The scale bar indicates 

average branch length measured in expected substitutions per site. 

 
Fig. 6: C. elegans pals genes are clustered and these clusters are poorly 
conserved. 
Schematics of different C. elegans genomic regions adapted from the UCSC Genome 

Browser (https://genome.ucsc.edu/). For each panel is represented, from top to bottom: 

C. elegans genome assembly (RefSeq genes) and conservation of 26 distinct nematode 

species (Basewise Conservation by PhyloP track). One isoform per gene is shown. pals 

genes are indicated in red, fbxa genes in blue. The following regions are shown: 

Chromosome I, cluster at position 17.22 cM, chrI: 13,099,564-13,160,497 bp. 

Chromosome III, cluster at position -21.90 cM, chrIII: 1,215,665-1,423,550 bp. 

Chromosome III, cluster at position -26.98 cM, chrIII: 89,907-159,962 bp. 

Chromosome III, cluster at position -3.18 cM, chrIII: 4,368,479-4,405,090 bp. 

Chromosome V, cluster at position 4.22 cM, chrV: 12,427,096-12,462,015 bp. 

 

Fig. 7: Somatic transgene silencing in pals-22 depends on the RNAi pathway.  
(A) Wild-type (left), pals-22(ot810) (middle) and pals-22(ot811) (right) images of the 

anterior part of L3 worms showing reduced gfp mRNA levels in mutants compared to 

control wild-type worms as assessed by single molecule fluorescence in situ 

hybridization. Individual transcripts shown as purple dots in top and as black dots in 

bottom panels. GFP expression is shown in green, DAPI staining is shown in blue. At 

least 20 animals examined for each genotype. 

(B) Silencing of ric-19prom6::NLS::gfp in pals-22(ot811) (top) is suppressed in pals-

22(ot811);rde-4(ne301) double mutants (bottom). 
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(C) Quantification of the data represented in (B). The data are presented as mean + 

SEM. Unpaired t-test, ***p < 0.001; n ≥ 300-1000 for all genotypes. 

(D) Animals of the indicated genotype were grown on bacteria expressing dpy-13 or cel-

1 dsRNA (feeding RNAi). For dpy-13 (top), progeny were scored for the percentage of 

animals having a dumpy body shape (Dpy). For cel-1 (bottom), the percentage of their 

progeny arresting at the L2 larval stage was determined. Wild-type otIs381[ric-

19prom6::NLS::gfp] and rrf-3(pk1426) mutants were used as negative and positive 

controls. The data are presented as mean + SEM among the data collected from at 

least four independent experiments. Unpaired t-tests were performed for pals-22(ot811) 

and rrf-3(pk1426) compared to WT; ***p < 0.001, **p < 0.01, *p < 0.05. 

Scale bars represent 10 µm (A) and 50 µm (B). 

 
Fig. 8: pals-22 mutants show defective locomotion and early onset of aging traits. 
(A) Day-1 adult pals-22 mutants exhibit defective swimming features, including 

decreased wave initiation rate, travel speed, brush stroke and activity index. pals-

22(PCR_R) is the pals-22(ot811) mutant carrying a wild-type copy of pals-22 on an 

extrachromosomal array amplified by PCR. Data shown are mean ± SEM of each 

parameters, n = 30-35 (number indicated in each bar) from two independent 

experiments, **** p < 0.0001 (one-way ANOVA) compared to related control. 

(B) pals-22 mutants crawl slowly on agar plates. The left panel shows the crawling path 

of each animal in 30 seconds. The right panel shows the mean ± SEM of average 

crawling speed (millimeters per second, mm/s) for day-1 adults from two independent 

experiments, n = ~55 worms for each genotype, **** p < 0.0001 (one-way ANOVA) 

compared to related control. 

(C) pals-22 mutants have shorter lifespans compared to wild type or pals-22(PCR_R). 

Survival study was initiated with 96 worms (for each genotype) at L4 stage (day-0). Data 

shown is one represented trial of lifespan; two additional independent trials also show 

similar changes of lifespan in pals-22 mutants, p < 0.0001 (Log-rank test), comparing 

the wild type to mutants, or comparing pals-22(PCR_R) against pals-22(ot811). 

(D) pals-22 mutants exhibit early accumulation of age pigment. The left panel shows 

representative pictures of age pigment (excitation: 364nm; emission: 380-420nm). The 
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right panel shows the mean ± SEM of age pigment auto-fluorescence intensity of day-5 

adults, n = 10 worms from each genotype, ns (not significant) or ** p < 0.01 (one-way 

ANOVA) compared to related control. 
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Table 1: Transgenic strains used in this study. 
 

Strain 
name 

Transgene 
name Transgene 

Microinjection conditions for transgenesis 

Notes Reference Injection 
conc. 

(ng/µL) 
Co-injection 

marker * 

Marker 
conc. 

(ng/µL) 
Array 
format 

OH11062 otIs381 ric-19prom6::NLS::gfp 50 elt-2prom::DsRed2 50 Simple Promoter coordinates (–1, –147). 
Integrated in chromosome V. 1 

OH11061 otIs380 ric-19prom6::NLS::gfp 50 elt-2prom::DsRed2 50 Simple Promoter coordinates (–1, –147). 
Integrated in chromosome V. 1 

PD4251 ccIs4251 myo-3prom::gfp    Simple  2 
OH8908 otIs251 cat-2prom::gfp 100 rgef-1prom::DsRed2 50 Simple  3 

OH10689 otIs355 rab-3prom1::NLS::tagrfp 50 - - Simple 
Promoter coordinates (+2921, –

1462). Integrated in chromosome 
IV. 

1 

OH11746 otIs447 unc-3prom::mChOpti 50 pha-1 50 Simple Promoter coordinates (-336, -558). 4 
OH14861 otIs644 tdc-1prom::ChR2::yfp 50 - 50 Simple  5 

OH14942 otEx6944 ric-4prom26::NLS::yfp 15 ttx-3prom::mChOpti 30 Simple Promoter coordinates (+5362, 
+6592). This study 

OH13606 otIs620 unc-11prom8::NLS::gfp 10 - - Complex Promoter coordinates (–775, –
1067). This study 

OH10687 otIs353 ric-4fosmid::SL2::NLS-
YFP-H2B 15 pha-1 2.5 Complex  1 

OH12543 otIs534 cho-1fosmid::SL2::NLS-
YFP-H2B 15 pha-1 2.5 Complex  1 

OH15146 otTi32 lin-4prom::yfp     MiniMos strain. 6 

CA1208 ieSi60 myo-
2prom::TIR1::mRuby     MiniMos strain. 7 

OH14130 ot856 gfp insertion in che-1 
locus     CRISPR/Cas9 strain. 8 

OH14420 otEx6761 pals-22PCR 5 ttx-3prom::mChOpti 3 Complex Injected into pals-
22(ot811);otIs381. This study 

OH14429 otEx6769 pals-22fosmid 10 myo-
2prom::mCherry 3 Complex 

Injected into pals-
22(ot811);otIs381. NotI digested 

WRM0616DC09 fosmid. 
This study 

OH15144 otEx7036 pals-22prom::gfp 5 pha-1 3 Complex pals-22 transcriptional reporter. 
Promoter coordinates (-1, -791). This study 

OH15145 otEx7037 pals-22::gfp 5 pha-1 3 Complex pals-22 translational reporter. 
Promoter coordinates (-1, -791). This study 

 
* All strains were injected either in N2 or pha-1(e2123) background. For complex arrays, transgenes were injected with 100 ng/uL of sheared OP50 bacterial 
genomic DNA. References: 1: (STEFANAKIS et al. 2015), 2: (FIRE et al. 1998), 3: (DOITSIDOU et al. 2013), 5: (SERRANO-SAIZ et al. 2013) 4: (KERK et al. 2017), 6: 
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Kindly provided by Haosheng Sun. Generated as detailed in (FROKJAER-JENSEN et al. 2014), 7: (ZHANG et al. 2015), 8: Kindly provided by Dylan Rahe. Generated 
as described in (DICKINSON et al. 2015).  
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Table 2: pals-22 effects on transgene reporter expression. 
 

Array type Construct Expression pattern Relative intensities of 
reporters	

wild-type pals-221 
Simple array 
 

ric-19p6::gfp2 Pan-neuronal +++ + 
myo-3p::gfp Body-wall muscle ++++ + 
cat-2p::gfp Dopaminergic neurons ++++ ++ 
rab-3p1::rfp Pan-neuronal +++ + 
unc-3p::mCherry Cholinergic neurons ++++ ++ 
tdc-1p::yfp RIC and RIM neurons ++ + 
ric-4p26::yfp3 Neuronal ++++ + 

Complex array	 unc-11p8::gfp Pan-neuronal +++ + 
cho-1fosmid::yfp Cholinergic neurons ++ ++ 
ric-4fosmid::yfp Pan-neuronal ++ ++ 

Single copy	 lin-4p::yfp Ubiquitous ++ ++ 
myo-3p::mRuby Pharyngeal muscle ++ ++ 

None 
(Endogenous tag)	

che-1::gfp ASE neurons + + 

 
See Table 1 for details in arrays. Transgene expression in wild-type and pals-22 mutants. Number of plus signs (+) indicates the relative 
intensity of GFP fluorescence. At least 50 animals examined for each genotype. Unless otherwise indicated, all simple and complex 
arrays correspond to stable genome integrated transgenes. Single copy reporters were generated by miniMos. GFP tagging of the che-1 
locus was achieved using CRISPR/Cas9 technology.  
1 pals-22(ot811) mutant background. 
2 otIs381 and otIs380 strains (independently integrated lines). 
3 Extrachromosomal array. 
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Table 3: List of all pals genes 
 
linkage 
group 

gene cosmid-
based name 

location protein 
size (kD) 

1 

Similarity 
to PALS-

22 2 

Upregulated after 
microspiridal and/or 

viral infection 3 

Upregulated 
after cadmium 

exposure 4 

Highly 
Poly-

morphic 5 

expression 
enrichment 

(ModEncode) 6 
LGI 

  
  
  
  
  
  
  
  
  
  
  
  
  
  

pals-1 F15D3.8 I:9.26 34.9   Yes     broad 
pals-2 C17H1.3 I:17.22 45.2   Yes Yes Yes male L4 
pals-3 C17H1.4 I:17.22 39.2   Yes Yes Yes male L4 
pals-4 C17H1.5 I:17.22 40.5   Yes   Yes male L4 
pals-5 C17H1.6 I:17.22 35.4   Yes   Yes male L4 
pals-6 C17H1.7 I:17.22 46.8   Yes   Yes male L4 
pals-7 C17H1.8 I:17.22 39.3   Yes Yes Yes male L4 
pals-8 C17H1.9 I:17.22 41.1   Yes Yes Yes male L4 
pals-9 C17H1.10 I:17.22 34.9   Yes   Yes male L4 
pals-10 C17H1.11 I:17.22 8.4       Yes male L4 
pals-11 C17H1.13 I:17.22 38.5   Yes   Yes male L4 
pals-12 C17H1.14 I:17.22 46.4   Yes     male L4 
pals-13 Y26D4A.8 I:17.22 43.5         male L4 
pals-14 F22G12.1 I:17.22 41.3   Yes   Yes male L4 
pals-15 F22G12.7 I:17.22 41.7   Yes   Yes male L4 

LGIII 
  
  
  
  
  
  
  
  
  
  
  
  
  

pals-16 Y82E9BR.4 III:-21.90 37.7       Yes broad  
pals-17 Y82E9BR.13 III:-21.90 30 3e-05  Yes   Yes broad 
pals-18 Y82E9BR.21 III:-21.90 29.2       Yes broad 
pals-19 Y82E9BR.23 III:-21.90 30.6 3e-05      Yes broad 
pals-20 Y82E9BR.25 III:-21.90 27.5         low 
pals-21 Y82E9BR.32 III:-21.90 20.7 3e-12        low 
pals-40 Y82E9BR.11 III:-21.90 24 4e-06 Yes   Yes low 
pals-22 C29F9.1 III:-26.98 32.7 0.0      Yes broad 
pals-23 C29F9.3 III:-26.98 34.7 6e-05      Yes broad 
pals-24 C29F9.4 III:-26.98 35.7 2e-10      Yes broad 
pals-25 T17A3.2 III:-26.98 34.7 2e-06        broad 
pals-26 B0284.1 III:-3.18 49.2   Yes     broad 
pals-27 B0284.2 III:-3.18 48.2   Yes Yes   broad 
pals-28 B0284.4 III:-3.18 48   Yes Yes   male L4 

LGIV 
  

pals-29 T27E7.6 IV:12.20 48.4 7e-05  Yes     male L4 + dauer  
pals-30 Y57G11B.1 IV:12.23 48.9 3e-04  Yes     broad  

LGV 
  
  
  
  
  
  
  

pals-31 F48G7.2 V:-19.97 25.6   Yes     broad 
pals-32 C31B8.4 V:-12.86 43.7 9e-05  Yes Yes Yes male L4 + dauer  
pals-33 W08A12.4 V:-8.24  52   Yes Yes Yes male L4 + dauer  
pals-34 F26D11.6 V:0.98 19.1       Yes broad 
pals-36 * C54D10.12 V:4.22 55.4 2e-04  Yes   Yes male L4 + dauer  
pals-37 C54D10.14 V:4.22 87.3   Yes     male L4 + dauer  
pals-38 C54D10.8 V:4.22 48.1   Yes Yes   male L4 + dauer  
pals-39 C54D10.7 V:4.22 48.5 2e-05  Yes Yes Yes male L4 + dauer  

Domain assignments made by either Interpro (IPR026673) or Panther (PTHR21707), v9.0. A newer release of Panther does not assign a ALS2CR12 domain to pals-7,10,11, yet the 
sequence similarity of these genes to neighboring pals genes is clear. * possibly a pseudogene. 1 Protein size of largest predicted isoform. 2PSI Blast e-value. Similarity only above 
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e-04 threshold are shown. 3According to (BAKOWSKI et al. 2014; CHEN et al. 2017). 4According to (CUI et al. 2007). 5According to (VOLKERS et al. 2013). 6According to (CELNIKER et al. 
2009). 
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Figure 5
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