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Abstract: Antibodies are created and refined by somatic evolution in B cell populations, 
which endows the human immune system with the ability to recognize and eliminate 
diverse pathogens. However, the evolutionary processes that sculpt antibody repertoires 
remain poorly understood. Here, using an unbiased repertoire-scale approach, we show 
that the molecular signatures of evolution are evident in human B cell lineages and reveal 
how antibodies evolve somatically. We measured the dynamics and genetic diversity of B 
cell responses of five adults longitudinally before and after influenza vaccination using 
high-throughput antibody repertoire sequencing. We identified vaccine-responsive B cell 
lineages that carry signatures of selective sweeps driven by positive selection, and 
discovered that they often display evidence for selective sweeps favoring multiple 
subclones. We also found persistent B cell lineages that exhibit stable population 
dynamics and carry signatures of neutral drift. By exploiting the linkage between B cell 
fitness and antibody binding affinity, we demonstrated the potential for using signatures 
of selection to identify antibodies with high binding affinity. This quantitative 
characterization reveals that antibody repertoires are shaped by an unexpectedly broad 
spectrum of evolutionary processes and shows how signatures of evolutionary history can 
be harnessed for antibody discovery and engineering. 
 
One Sentence Summary:  
Molecular signatures of somatic evolution reveal that diverse evolutionary processes 
ranging from strong positive selection to neutral drift sculpt human antibodies. 
 
Main Text: 
Antibodies are created through evolutionary processes involving mutation and selection, 
all of which unfold in B cell populations. As proposed by Burnet in his “clonal selection 
theory” in 1957, the concepts of population genetics offer an avenue for understanding 
how antibody repertoires evolve (1). Yet, after 60 years of progress in immunology, the 
somatic evolution of human antibodies remains poorly understood and immunology has 
yet to benefit from the quantitative theories and models of population genetics which 
have been transformative in our understanding of evolution at the organismal level. 

Selective processes are widely thought to exist during affinity maturation, as they 
would help focus the antibody repertoire on antibodies that can bind antigens with high 
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affinity (2–4). After infection or immunization, activated B cells migrate to germinal 
centers (GCs) where they undergo genetic diversification via somatic hypermutation and 
selection for affinity-enhancing mutations. Within several weeks after antigenic 
challenge, this Darwinian process generates antibodies with increased average affinity to 
the antigen (5, 6). Despite intense experimental effort focused on the cellular and 
molecular mechanisms of affinity maturation (7–12), the evolutionary process itself 
remains poorly characterized. Each GC is founded by tens to hundreds of distinct B cell 
clones and this diversity is often lost due to competition between clones as affinity 
maturation proceeds (13). However, how the competition unfolds between the genetically 
diverse variants within the same clonal B cell lineage has not been described, despite its 
importance for the emergence of protective antibodies. Furthermore, although it is often 
presumed that the same evolutionary processes affect B cells across the entire repertoire, 
some B cell types, such as B-1 cells, do not participate in classical affinity maturation, 
and little is known about the full diversity of evolutionary patterns that shape human 
antibody repertoires. 

Here, we characterize the dynamics and somatic evolution of human B cell 
lineages using high-throughput sequencing of the antibody repertoire and analytical 
methods inspired by population genetics. We performed time-resolved measurements of 
antibody repertoires in healthy young adults before and after seasonal influenza 
vaccination. We identified vaccine-responsive B cell lineages that expanded dramatically 
after vaccination, and we show that patterns of genetic variation within these lineages 
reflect a history of strong positive selection. This selection drove recurrent selective 
sweeps during somatic evolution, and many vaccine-responsive B cell lineages display 
evidence for selective sweeps favoring multiple subclones. Other abundant B cell 
lineages are stable and lack a response to vaccination; we show that these lineages carry 
signatures of neutral evolution. Finally, we present an approach for using phylogenetic 
information to rapidly identify potential high-affinity antibodies and affinity-enhancing 
mutations. Our results offer a detailed portrait of the somatic evolutionary processes that 
shape human antibody repertoires and link models of evolution with quantitative 
measurements of the human immune system. 

We measured the dynamics of the antibody repertoires of five healthy young 
adults before and after vaccination in late spring 2012 with the 2011–2012 trivalent 
seasonal flu vaccine (Figure 1A). Volunteers were influenza vaccine-naïve for the 2010–
2011 and 2011–2012 influenza seasons. We sampled peripheral blood at the time of 
vaccination and 1, 4, 7, 9, and 11 days afterwards (D0, D1, D4, D7, D9, and D11), as 
well as 3 and 5 days before vaccination (D-3 and D-5). We sequenced transcripts of the 
immunoglobulin heavy chain gene (IGH) using RNA extracted from peripheral blood 
mononuclear cells (Materials and Methods). The sequences span ~100 bp of the variable 
region including complementarity determining region 3 (CDR3), enabling tracking of the 
dynamics of clonal B cell lineages. We used molecular barcoding to mitigate errors 
arising during library preparation and sequencing, enabling accurate measurement of 
genetic diversity (14). 

To identify sequences that belong to the same clonal lineage, defined as those that 
share a common naïve B cell ancestor, we first grouped sequences having the same V and 
J germline genes and CDR3 length. Within each group, we identified clonal lineages by 
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performing single-linkage clustering on the CDR3 sequence using a cutoff of 90% 
sequence identity, an approach that accurately partitions sequences into clones (15, 16). 

To visualize how the composition of the antibody repertoire changed after 
vaccination, we examined the fractional abundance of clonal B cell lineages over time 
(Figure 1B). All five subjects had a strong response to vaccination, exhibiting dramatic 
changes in the relative abundance of B cell lineages within 7 days, which is characteristic 
of a memory recall response to vaccination (14). In each subject’s repertoire, we 
identified 36 ± 12 (mean ± s.d., range 16 – 49) B cell lineages that expanded >50-fold 
between D0 and D7 after vaccination (Figure 1C; Table S1). In contrast, across a similar 
timespan in the absence of vaccination (between D0 and D-5), only 6 ± 4 lineages within 
each subject expanded to this extent (Figure S1A) and expansion of these lineages may 
be attributable to exposure to environmental antigens. Because most of these “vaccine-
responsive” lineages were undetectable prior to vaccination, the identification of vaccine-
responsive lineages was robust to the specific choice of fold-change cutoff (Figure S1A). 
Together, these vaccine-responsive lineages accounted for 22% ± 12% (mean ± s.d., 
range 10% – 43%) of each subject’s repertoire during peak response at D7. Vaccine-
responsive antibodies have high levels of somatic mutation (Figure 1E) and are 
predominantly class-switched (Figure 1F and Figure 1G), as expected for memory B 
cells. Thus, influenza vaccination triggers rapid memory recall of dozens of clonal B cell 
lineages in healthy human adults. 

We discovered that each subject harbored a distinct set of clonal B cell lineages 
that exhibited high abundance throughout the study and were unresponsive to vaccination 
(Figure 1D). In each subject, we detected 83 ± 23 (mean ± s.d., range 44 – 111) of these 
“persistent lineages”, which together accounted for 22% ± 8% (mean ± s.d., range 10% - 
33%) of the repertoire at any time point (Table S1). Persistent lineages displayed 
remarkably stable dynamics compared with vaccine-responsive lineages (Figure S1B), 
implying detailed balance in their cellular population dynamics and mRNA expression 
levels. Persistent antibodies have low levels of somatic mutation (Figure 1E) and are 
mostly the IgM isotype, but a minority of persistent lineages is composed predominantly 
of the IgA isotype (Figure 1F and Figure 1G). Thus, many human antibody repertoires 
possess a large complement of persistent B cell lineages, which have slow turnover and 
do not respond dynamically to influenza vaccination. 

Evolutionary history leaves enduring signatures in the genetic diversity of 
populations. Vaccine-responsive B cell lineages carrying memory B cells underwent 
affinity maturation when the subjects were exposed to influenza antigens for the first 
time. We reasoned that examination of the patterns of genetic variation within these 
lineages might give insight into the evolutionary processes that unfolded during affinity 
maturation. Visualizing the phylogenies of clonal B cell lineages revealed that many 
vaccine-responsive lineages possess highly imbalanced branching structure across many 
levels of depth, suggesting that these lineages experienced recurrent selective sweeps 
(Figure 2A). This signature reflects continuous adaptive evolution under strong positive 
selection and has been found in many asexual populations evolving under sustained 
adaptive pressure, such as influenza virus (17) and human immunodeficiency virus (18). 

To quantitatively characterize the evolutionary histories of clonal B cell lineages, 
we examined the frequency spectrum of derived somatic mutations, also known as the 
site frequency spectrum (SFS). The SFS carries detailed information about evolutionary 
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history and can be useful for detecting selective processes. In continuously adapting 
asexual populations, the SFS exhibits a distinct excess of high frequency variants, which 
can be used to rule out neutral models and infer positive selection (19), as in the cases of 
influenza virus (17) and human immunodeficiency virus (18). We calculated the SFS of 
each clonal B cell lineage based on somatic point mutations relative to the personalized 
germline V and J gene sequences for each subject because the ancestral state is known 
with high confidence for these sites (Figure S1C; Materials and Methods). We compared 
the observed SFSs against population genetic models of neutral evolution [Kingman 
coalescent (20)] and continuous adaptation [Bolthausen-Sznitman coalescent (21)] using 
computer simulations (Materials and Methods). 

We first visualized the SFS as an average over all vaccine-responsive lineages and 
found that the SFS was highly skewed, exhibiting a large excess of high frequency 
somatic mutations in clear disagreement with the neutral model (Figure 2C). Instead, the 
model of positive selection has an excellent fit to the data, implying that the dominant 
mode of evolution in vaccine-responsive lineages is recurrent selective sweeps driven by 
the occurrence of beneficial mutations. This finding is consistent with the classical model 
of affinity maturation: affinity-enhancing mutations arise and selection focuses the 
repertoire on these variants, driving the loss of intraclonal diversity. The presence of deep 
branches harboring persistent minor alleles within each clonal lineage reveals that 
memory B cells frequently exit GCs while selection continues, preventing complete loss 
of diversity due to selective sweeps. These characteristics were also observed in the SFS 
averaged over vaccine-responsive lineages in each subject (data not shown), indicating 
that signatures of positive selection within vaccine-responsive lineages are a conserved 
feature of healthy human immune systems. 

Next, we sought to characterize the patterns of somatic evolution at the resolution 
of individual clonal B cell lineages. While individual lineages have fewer somatic 
mutations and exhibit sparse spectra compared to the population averages, we found that 
many vaccine-responsive lineages have a large excess of high frequency mutations 
(Figure S2A). To quantitatively detect selection, we used Fay and Wu’s H statistic (22), 
which was originally devised to detect high-frequency hitchhiking alleles that are 
transiently associated with selective sweeps in recombining populations but can also 
sensitively detect selective sweeps in asexual populations. Using H, we found that 32% 
of vaccine-responsive lineages deviate significantly from the neutral model (Figure 2E, 
Figure S2B, and Figure S2C; P < 0.05). We also directly measured the non-monotonicity 
of the SFS, and found that 14% of vaccine-responsive lineages deviated significantly 
from neutrality by this alternative metric for selection (Figure S2D and Figure S2E). 
Nearly every subject had at least one vaccine-responsive lineage that evidently 
experienced selection (Figure S2G), and the failure to detect selection in every vaccine-
responsive lineage is consistent with statistical limits of detection arising from population 
sizes of the lineages (Figure S2F). Indeed, selection was detected at a rate that is 
consistent with a model in which every vaccine-responsive lineage evolved under strong 
positive selection (Figure 2E and Figure S2H), suggesting that affinity maturation forges 
the entire vaccine-responsive antibody repertoire. Further, high-frequency derived 
mutations are enriched within complementarity determining regions (CDRs), which form 
the antibody-antigen binding interface and often evolve under positive selection (23, 24); 
such mutations are depleted in framework regions (FWRs; Figure S2I), which form the 
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structural scaffold of the antibody molecule and typically evolve under purifying 
selection (23, 24). Together these observations demonstrate that evolutionary history can 
be quantitatively characterized at the resolution of individual clonal B cell lineages and 
support the conclusion that vaccine-responsive lineages evolved under strong positive 
selection for antibody-antigen interactions. 

Persistent antibody lineages have a strikingly different mode of evolution. When 
we visualized the SFS as an average over all persistent lineages, we found that its shape 
is consistent with neutral evolution, lacking an excess of high frequency somatic 
mutations (Figure 2D). Indeed, persistent lineages had no mutations at frequencies above 
99%, in agreement with the prediction of the neutral model but not the model of positive 
selection. This pattern was also clearly evident in individual clonal lineages (Figure 
S3A), as reflected in their balanced phylogenies, which are characteristic of neutral drift-
like evolution (Figure 2B). Using Fay and Wu’s H statistic, we found that nearly every 
persistent lineage (94%) had no significant departure from neutrality (Figure 2F, Figure 
S3B, and Figure S3C; P > 0.05). We also found no significant departure from neutrality 
for nearly every persistent lineage (99%) using the non-monotonicity of the SFS as a 
metric for selection (Figure S3D and Figure S3E). Persistent lineages had large 
population sizes comparable to those of vaccine-responsive lineages (100 to ~11,000 
sequences; Figure S3F), indicating that limits of detection arising from population size 
cannot explain the failure to detect selection. Indeed, the rate at which we detected 
selection on persistent lineages is much lower than the detection limit (Figure S3H). 
Thus, persistent lineages evolve in a manner consistent with neutrality, indicating that 
neutral birth-death processes are responsible for the expansion and maintenance of a 
substantial fraction of the antibody repertoire.  

The molecular features of persistent lineages are characteristic of B-1 cells, a B 
cell subtype that has a different life history than the better-studied B-2 cells. Both 
persistent lineages and B-1 cells are mostly IgM (25) with a minority of lineages 
composed predominantly of IgA (26) (Figure 1F and Figure 1G), and have low levels of 
somatic hypermutation (Figure 1E), consistent with a life history lacking a stage of 
classical affinity maturation. If persistent lineages are indeed derived from B-1 cells, our 
results strongly suggest that expansion and maintenance of B-1 cell populations are 
homeostatic neutral processes with balanced birth and death rates, in sharp contrast with 
the strong positive selection that shapes vaccine-responsive B cells. B-1 cells exhibit 
preferential usage of V gene families (27), so selection on allelic diversity at the level of 
human populations may drive the evolution of these genes. The molecular identity of 
human B-1 cells has been elusive (28), and our prediction that these cells are 
distinguished by the genetic signatures of somatic evolution opens a new avenue for 
identification and characterization of this cell population. 

How is the clonal structure of individual B cell lineages influenced by selection? 
During affinity maturation, subclones harboring independent mutations within a B cell 
lineage compete with one another for evolutionary success. Competition can result in 
either one winner or multiple winners within a clonal lineage. Multiple winners may arise 
due to independent competition in spatially separated regions, such as different GCs, or 
because subclones harboring different beneficial mutations compete to a stalemate within 
the same GC, a scenario known as “clonal interference” (29). To further dissect the 
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evolutionary processes of affinity maturation, we characterized the clonal structures of 
vaccine-responsive lineages. 

Using phylogenetic analysis, we found that many vaccine-responsive clonal B cell 
lineages contain multiple positively selected subclones. While some phylogenies harbor 
only one imbalanced clade displaying characteristics of recurrent selective sweeps 
(Figure 2A), others have several large clades that each exhibit these characteristics, 
suggesting that multiple subclones persisted as winners within these clonal lineages 
(Figure 3A). To quantify this phenomenon, we developed an algorithm to identify and 
count positively selected subclones in an unbiased manner (Materials and Methods). We 
found that 24% of vaccine-responsive lineages composed of >1000 sequences harbor 
multiple subclones that have evidence of positive selection (Figure 3B; false discovery 
rate of 1%). This indicates that affinity maturation often focuses the repertoire onto 
multiple subclones arising from a common B cell ancestor. These subclones share 
somatic mutations that were acquired prior to branching in every case, which is evidence 
against these results being artifacts arising from erroneous joining of non-clonal 
sequences during lineage reconstruction. The number of selective sweeps within a lineage 
is modestly but significantly correlated with the population size of the lineage (Figure 
3C), suggesting that massive clonal amplification of vaccine-responsive B cell lineages 
often involves selection favoring multiple subclones. Previous reports indicate that 
clonally related sequences are occasionally found in distinct GCs located within the same 
lymph node (13), supporting a role for spatial segregation in facilitating independent 
selection of subclones. 

Because B cell fitness is tightly linked to antibody affinity during affinity 
maturation, we hypothesized that the genetic diversity of B cell populations encodes 
information about binding affinity. Amplification of highly fit variants can be readily 
observed in phylogenies, and elevated fitness is thought to be associated with enhanced 
antibody affinity. To test this idea, we sought to leverage phylogenetic signals that reveal 
the fitness of individual antibody sequences in order to rapidly identify candidate high-
affinity antibodies and affinity-enhancing mutations based on sequencing data alone. 
Specifically, we used a computational approach to infer the fitness of sequences based on 
their phylogenetic context (30) and then identified specific sequences that had high 
fitness. 

In line with a history of selective sweeps, phylogenetic inference revealed wide 
variation in fitness among sequences within vaccine-responsive B cell lineages, with 
some sequences predicted to have much higher fitness than other sequences in the same 
clonal lineage (Figure 4A). We identified mutations associated with the strongest fitness 
enhancements (top 3 branches ranked by fitness change from parent to child sequence in 
each lineage) (Materials and Methods). In comparison with synonymous mutations, non-
synonymous fitness-enhancing mutations were highly enriched in CDRs (Figure 4B; P < 
0.008 for CDR1, P < 0.1 for CDR2, and P < 2 × 10-6 for CDR3; Fisher’s exact test, two-
sided) and depleted in FWRs (P < 0.009 for FWR1, P < 2 × 10-11 for FWR3, and P < 0.01 
for FWR4) with the sole exception of FWR2 (P = 0.87). This finding supports the 
functional relevance of the identified fitness enhancement-associated non-synonymous 
mutations and is consistent with the structural basis of antibody-antigen interactions (31–
33). Mutations associated with the strongest fitness diminishments (bottom 3 branches in 
each lineage) were also enriched in CDR3 (Figure 4B; P < 8 × 10-11), which is consistent 
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with the idea that mutations in CDRs can sometimes harm fitness because they disrupt 
antibody-antigen binding interfaces, suggesting that the traditional notion of purifying 
selection being confined to FWRs is overly simplistic. Together these results show how 
phylogenetic methods can potentially reveal information about antibody affinity that is 
encoded in sequence diversity and thus be used to identify high-affinity antibodies and 
affinity-enhancing mutations.  

In summary, our results demonstrate that human antibody repertoires are shaped 
by a broad spectrum of somatic evolutionary processes. Prior efforts to detect selection in 
antibody genes have focused on regions or residues in aggregate across many clonal B 
cell lineages (23, 24, 34), and did not account for the fact that evolution acts differently 
on different clonal lineages. We have characterized signatures of selection within 
individual clonal B cell lineages up to the fundamental limits imposed by their population 
size, revealing that a diversity of evolutionary modes exists within the B cell repertoire. 
Vaccine-responsive lineages display pervasive evidence of positive selection, and many 
lineages experience selective sweeps favoring multiple subclones, revealing how the 
complex clonal structure of B cell populations is shaped by selection during affinity 
maturation. On the other hand, persistent lineages display signatures of neutral drift-like 
evolution, revealing that non-selective birth-death processes generate a substantial 
fraction of human antibody repertoires and requiring a major modification of the 
conventional notion that selective processes are ubiquitous in antibody maturation. This 
diversity of evolutionary modes likely reflects the diversity of life histories among 
distinct B cell types. The presence of large clonal lineages lacking molecular signatures 
of selection also provides an inherent control and constitutes evidence that the detection 
of such signatures in vaccine-responsive lineages is not an artifact of our approach, 
including a failure to correctly determine the germline sequence. Importantly, we have 
shown that the molecular signatures of selection distinguish the vaccine-responsive 
lineages from the persistent clonal lineages that are also highly abundant after 
vaccination. These signatures can also be harnessed through phylogenetic approaches to 
identify sequences that were most favored by selection during affinity maturation and 
thus are likely to encode high-affinity antibodies, demonstrating potential utility for 
biomedical applications. High-throughput sequencing of human antibody repertoires and 
analysis through the lens of population genetics therefore offers a promising avenue for 
antibody discovery and engineering. 
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Figure Legends: 
 
Figure 1. Dynamics and molecular features of antibody repertoires. 
(A) Schematic of experiment design. 
(B) Dynamics of antibody repertoires. Each line represents a clonal B cell lineage and its 
width indicates the fractional abundance of that lineage (the number of unique sequences 
belonging to the lineage divided by the number of unique sequences in the entire 
repertoire) at a given time. Lineages that compose >0.01% of the repertoire at D7 are 
shown. 
(C) Dynamics of vaccine-responsive lineages.  
(D) Dynamics of persistent lineages. In (C) and (D), each line represents a clonal lineage. 
(E) Distributions of somatic mutation density within the V gene in sequences belonging 
to vaccine-responsive lineages, persistent lineages, or the entire antibody repertoire. 
Mutations were called by comparison with the germline sequence. 
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(F) Distributions of the fraction of sequences within each clonal lineage that were the 
IgM or IgD isotypes among vaccine-responsive and persistent lineages. 
(G) Fractions of sequences in each clonal lineage that were IgM or IgD, IgG, or IgA. 
Each dot is a lineage and is positioned according to the isotype composition of that 
lineage and colored according to identification as vaccine-reponsive (yellow) or 
persistent (blue). 
 
Figure 2. Genetic signatures of somatic evolution in clonal antibody lineages. 
(A and B) Examples of phylogenies of vaccine-responsive (A) or persistent (B) clonal B 
cell lineages. Leaves are colored by isotype. Phylogenies are rooted on the germline 
sequence. 
(C and D) Site frequency spectrums (SFSs) averaged across all vaccine-responsive 
lineages (C) or persistent lineages (D). Error bars indicate standard error of the mean. 
SFSs generated by population genetic models of continuous adaptation driven by strong 
positive selection (orange) and neutral drift (green) are shown for comparison. Shading 
indicates standard error of the mean across simulations (100 replicates).  
(E and F) Distribution of significance scores of Fay and Wu’s H statistic for vaccine-
responsive lineages (E) or persistent lineages (F) compared against models of neutral 
evolution and continuous adaptation driven by strong selection. Distributions for the 
models were generated via simulations of evolving populations having sizes sampled 
from the observed population size distributions of vaccine-responsive or persistent 
lineages (10,000 replicates). 
 
Figure 3. Signatures of selective sweeps within multiple subclones of vaccine-
responsive antibody lineages.  
(A) Examples of phylogenies of vaccine-responsive clonal B cell lineages having 
evidence for selective sweeps favoring multiple subclones. Arrows indicate clades that 
were identified as significantly positively selected by our algorithm (P < 0.05). Leaves 
are colored by isotype. Phylogenies are rooted on the germline sequence. 
(B) Distribution of the number of distinct selective sweeps within vaccine-responsive 
lineages having >1,000 sequences. FDR, false discovery rate. 
(C) Relationship between the number of distinct selective sweeps within a clonal lineage 
and the population size (number of sequences) of the lineage. Pearson correlation 
coefficient is shown. 
 
Figure 4. Phylogenetic identification of affinity-enhancing mutations. 
(A) Example of a phylogeny of a clonal B cell lineage colored by the inferred fitness of 
each sequence. 
(B) Regional distribution of non-synonymous mutations associated with strong fitness 
enhancements (top 3 branches ranked by fitness change from parent to child) or 
diminishments (bottom 3 branches ranked by fitness change from parent to child), 
displayed as enrichment relative to synonymous mutations (dN/dS) in the same branches. 
Dashed line indicates no enrichment. Error bars indicate one standard deviation as 
determined by bootstrap (100 replicates). 
 
Supplementary Materials: 
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Materials and Methods 
Figures S1-S4 
Tables S1-S2 
 
Figure S1. Dynamics of antibody repertoires and personalized annotation of 
germline variants. 
(A) Effect of cutoff for identifying vaccine-responsive lineages. Plots show the number 
of lineages having a significant change in abundance as a function of the fold-change 
cutoff used to determine significance. Right panel, comparison of D-5 to D0 (no 
vaccination). Left panel, comparison of D0 to D7 (after vaccination). We chose the cutoff 
of >50-fold change because at this value few lineages (27 among all five subjects) are 
identified as having a significant change in abundance in the absence of vaccination (D-5 
to D0). The abundance fluctuation of these lineages may be due to environmental 
exposure to antigens, and in fact most of these lineages had infinite fold-change on the 
interval D-5 to D0 because they were not detected at D-5. The identity of vaccine-
responsive lineages is largely insensitive to the choice of fold-change cutoff across a 
broad range (10-fold to 10,000-fold increase) because most vaccine-responsive lineages 
are not observed at D0 and therefore have infinite fold-change on the interval D0 to D7. 
(B) Dynamical variation in the fractional abundance of vaccine-responsive and persistent 
lineages. Plot shows the distribution of the coefficient of variation of fractional 
abundance for individual lineages across the observation period. 
(C) Personalized annotation of germline variants for study subjects using the method of 
Gadala-Maria and colleagues (35). Left panel shows an example of an identified non-
reference germline variant. Identification is based on the presence of a y-intercept value 
that is significantly larger than zero. Right panel shows the number of non-reference 
germline variants detected for each subject. 
 
Figure S2. Genetic signatures of selection in individual vaccine-responsive B cell 
lineages. 
(A) Site frequency spectrums (SFSs) of individual clonal vaccine-responsive B cell 
lineages. The density of mutations in each frequency bin is indicated by color. 
(B) Fay and Wu’s H statistic of each lineage. 
(C) Significance of Fay and Wu’s H statistic in comparison with a null model of neutral 
drift.  
(D) Non-monotonicity D of the SFS of each lineage. 
(E) Significance of the non-monotonicity D in comparison with a null model of neutral 
drift. 
In (C) and (E), significance values were calculated by creating a ensemble of lineages via 
simulation of the Kingman coalescent model (neutral drift-like evolution) with each 
lineage having a population size matching that of the focal lineage, calculating the 
desired test statistic on each simulated lineage, fitting the Johnson’s U distribution to the 
simulated distribution of test statistics, then calculating the P value of the observed value 
of the test statistic. 
(F) Number of sequences in each lineage observed at D7 using long amplicon sequencing 
(paired-end 300 bp sequencing of 480 bp amplicons). 
(G) Subject of origin of each clonal B cell lineage. 
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(H) Rate of detecting selection among clonal lineages of varying size. Detection limit 
imposed by population size is shown for comparison, assuming a false discovery rate of 
0.05. Error bars show exact binomial 95% confidence intervals. 
(I) Distribution of mutations across sequence regions for mutations of different 
frequencies found in vaccine-responsive lineages. All mutations were placed into bins 
based on their frequency, then within each bin the fraction of mutations falling in each 
region was calculated. Error bars show exact binomial 95% confidence intervals. 
 
Figure S3. Genetic signatures of neutral evolution in individual persistent B cell 
lineages. 
 (A) Site frequency spectrums (SFSs) of individual clonal persistent B cell lineages. The 
density of mutations in each frequency bin is indicated by color. 
(B) Fay and Wu’s H statistic of each lineage. 
(C) Significance of Fay and Wu’s H statistic in comparison with a null model of neutral 
drift.  
(D) Non-monotonicity D of the SFS of each lineage. 
(E) Significance of the non-monotonicity D in comparison with a null model of neutral 
drift 
In (C) and (E), significance values were calculated as described in Figure S2.  
(F) Number of sequences in each lineage observed at D7 using long amplicon sequencing 
(paired-end 300 bp sequencing of 480 bp amplicons). 
(G) Subject of origin of each clonal B cell lineage. 
(H) Rate of detecting selection among clonal lineages of varying size. Detection limit 
imposed by population size is shown for comparison, assuming a false discovery rate of 
0.05. Error bars show exact binomial 95% confidence intervals. 
 
Figure S4. Effect of selective sweeps favoring multiple subclones on detection of 
selection. 
Distributions of Fay and Wu’s H statistic for vaccine-responsive lineages in which one, 
multiple, or no subclones have evidence for positive selection (false discovery rate of 
1%). Lineages where multiple subclones were selected display a distinct rightward shift 
in the distribution of H, reflecting the hard upper bound on the frequency of mutations 
that are private to each subclone and causing the failure of this test for selection when 
applied to the entire lineage. 
 
Table S1. Vaccine-responsive and persistent lineages found in each subject. 
Subject Vaccine-responsive lineages Persistent lineages 

1 16 111 
2 32 97 
3 49 44 
4 45 76 
5 40 89 

 
Table S2. PCR primers used for library preparation. 
Amplicon type Step Name Sequence (5’–3’) 
Short  RT  G TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNAAGACCGATGGGCCCTTG 

  A TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNGAAGACCTTGGGGCTGGT 
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  M TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNGGGAATTCTCACAGGAGACG 

  D TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNGGGTGTCTGCACCCTGATA 

  E_1 TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNGAAGACGGATGGGCTCTGT 

  E_2 TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNTTGCAGCAGCGGGTCAAGGG 

 SS V1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNAGCCTACATGGAGCTGAGC 

  V2 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNAGGTGGTCCTTACAATGACCAAC 

  V3_1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNTCTGCAAATGAACAGCCTGA 

  V3_2 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNTGTTCAAATGAGCAGTCTGAGAG 

  V3_3 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNTCTGCAAATGGGCAGCCTGA 

  V4/6 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNTTCTCCCTGAAGCTGAACTCTG 

  V5 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNGCCTACCTGCAGTGGAGCAG 

  V6 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNTTCTCCCTGCAGCTGAACTCTG 

  V7_1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNGCATATCTGCAGATCAGCAGC 

  V7_2 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNCAGATCAGCAGCCTAAAGGC 

Long  RT IgA_08N TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNGGGGAAGAAGCCCTGGAC 

  IgA_12N TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNNNGGGGAAGAAGCCCTGGAC 

  IgG_08N TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNGGGAAGTAGTCCTTGACCA 

  IgG_12N TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNNNGGGAAGTAGTCCTTGACCA 

  IgM_long_8N TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNGAAGGAAGTCCTGTGCGAG 

  IgM_long_12N TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNNNGAAGGAAGTCCTGTGCGAG 

  IgE_long_8N TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNAAGTAGCCCGTGGCCAGG 

  IgE_long_12N TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNNNAAGTAGCCCGTGGCCAGG 

  IgD_long_8N TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNTGGGTGGTACCCAGTTATCAA 

  IgD_long_12N TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNNNTGGGTGGTACCCAGTTATCAA 

 SS V1_1_70 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNSCAGCTGGTGCAGTCTGG 

  V1/3/5_70 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNGTGCAGCTGGTGGAGTCTG 

  V2_70 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNGTGCAGCTGGTGGAGTCTG 

  V4_1_70 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNTGCAGCTGCAGGAGTCG 

  V4_2_70 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNGTGCAGCTACAGCAGTGG 

  V6_70 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNGTACAGCTGCAGCAGTCA 

Short amplicon primers were used to prepare libraries for paired-end 100 bp sequencing 
from samples from all time points. Long amplicon primers were used to prepare libraries 
for paired-end 300 bp sequencing from samples from D7. RT, reverse transcription; SS, 
second-strand synthesis. 
 
Materials and Methods: 
 
Study participants 
All study participants gave informed consent and protocols were approved by the 
Stanford Institutional Review Board. Five humans aged 18-28, including 3 males and 2 
females, were recruited in 2011. All subjects were apparently healthy and showed no 
signs of disease. 
 
Sample collection 
Blood was drawn by venipuncture. Peripheral blood mononuclear cells (PBMCs) were 
isolated using a Ficoll gradient and frozen in 10% (vol/vol) DMSO and 40% fetal bovine 
serum (FBS) according to Stanford Human Immune Monitoring Center protocol. 
Subjects were vaccinated with the 2011–2012 seasonal trivalent inactivated influenza 
vaccine. Blood was collected 3 and 5 days before vaccination (D-3 and D-5); 
immediately before vaccination (D0); and 1, 4, 7, 9, and 11 days afterwards (D1, D4, D7, 
D9, D11). 
 
RNA extraction and library preparation 
PBMCs were thawed on ice and total RNA was extracted using the Qiagen AllPrep kit 
(Valencia, CA) following manufacturer’s instructions. Sequencing libraries were 
prepared from samples at all time points using 500 ng of total RNA as input following the 
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protocol described in (14). Briefly, RNA was annealed to a pool of six isotype-specific 
IGH constant region primers containing 8 random nucleotides (nt), which serve as a 
molecular barcode for consensus error correction, by incubation at 72 C for 3 min, then 
placed on ice for 2 min. First-strand cDNA synthesis was performed using Superscript III 
reverse transcriptase (Life Technologies, Carlsbad, CA) following manufacturer’s 
protocol. Second-strand cDNA synthesis was performed using Phusion HiFi DNA 
polymerase (Thermo Scientific, Waltham, MA) and a pool of ten IGH variable region-
specific primers containing 8 random nt (98°C for 4 min, 52°C for 1 min, 72°C for 
5 min). Double-stranded cDNA product was purified twice using Ampure XP beads (1:1 
ratio) (Beckman Coulter, Indianapolis, IN). Amplification was performed using Platinum 
Hifi DNA polymerase (Life Technologies, Carlsbad, CA) and primers containing 
Illumina sequencing adapters and dual sample indexes. Products were purified using 
Ampure XP beads (1:1 ratio), then pooled for multiplexed sequencing. 
 We prepared additional sequencing libraries from D7 following the protocol 
described in (15). This protocol is identical to that described above, except that ten 
isotype-specific IGH constant region primers and six IGH variable region-specific 
primers each containing 8 or 12 random nt were used. Products are longer amplicons 
spanning most of the IGH variable region and ~100 bp of the IGH constant region. We 
used a different aliquot of total RNA from the same D7 samples as input. All PCR primer 
sequences are provided in Table S2. 
 
Sequencing 
Sequencing was performed for libraries from all time points using the Illumina HiSeq 
2500 platform (San Diego, CA) using paired-end 101 bp reads. For libraries prepared 
from the D7 time point with longer amplicons, sequencing was performed using the 
Illumina Miseq platform using paired-end 300 bp reads. We obtained 826472 ± 413841 
reads (mean ± s.d., range 170477 – 1988165) for each library. 
 
Preprocessing of sequence data 
To process sequencing reads, we used a custom informatics pipeline similar to (15). 
Briefly, consensus sequences were constructed from reads containing the same 16 nt 
random barcode. Quality scores were propagated to the consensus sequence. Sequences 
were annotated with V and J germline gene usage and CDR3 length using IgBlast (36). 
Isotypes were determined using BLASTN against a custom database of IGH constant 
region sequences.  
 
Identification of clonal B cell lineages 
Sequences belonging to the same clonal B cell lineage were identified using clustering 
following (15). Briefly, sequences sharing the same V and J germline genes and CDR3 
length were grouped. Within each group, single-linkage clustering was performed with a 
cutoff of 90% nt sequence identity across both the CDR3 and the rest of the variable 
region. Sequence identity was computed by counting mismatches in gapless pairwise 
sequence alignments. Quality filtering was implemented by assuming mismatches at 
positions where either aligned base had Q ≤ 5. The cutoff of 90% was chosen because it 
is a distinct minimum in the distribution of pairwise nucleotide distances between 
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sequences (data not shown). This approach has been shown to partition sequences into 
clonal lineages with high sensitivity and specificity (15, 16).  
 
Tracking dynamics of clonal B cell lineages 
To track the dynamics of clonal B cell lineages, we calculated the fractional abundance of 
the each lineage, defined as the number of unique sequences within the lineage divided 
by the total number of unique sequences observed in the repertoire at that time point. For 
this calculation, we only used reads that were sequenced using the short amplicon 
protocol. Vaccine-responsive lineages were identified based on the fold-change of their 
fractional abundance between D0 and D7 (>50-fold increase). Persistent lineages were 
identified as those having stable fractional abundance between D0 and D7 (<2-fold 
increase). We further required that each vaccine-responsive and persistent lineage 
represent >0.1% of the repertoire at D7 (corresponding to ~40 distinct sequences) to 
remove very small clonal lineages from consideration. Isotype composition and mutation 
density were calculated using sequences from all time points. 
 
Identification of non-reference germline variants 
To annotate non-reference germline variants in a personalized manner for each subject, 
we adapted the method proposed by Gadala-Maria and colleagues (35). We first grouped 
sequences having the same V or J germline sequence. For each mutation detected by 
comparison against the reference germline sequence, we performed regression on the 
mutation frequency against the mutation count of the entire V or J segment. Specifically, 
we binned sequences into groups based on the number of mutations per sequence and 
calculated the frequency of the focal mutation in each bin. We then fit a linear model to 
these data using least-squares optimization. Mutations with y-intercepts greater than 
0.125 at a significance level of P < 0.05 as assessed using Student’s t test were 
considered potential germline variants. Because alleles might contain multiple non-
reference germline variants, bins were excluded from the regression based on detection of 
outliers (bins having more than 1.5-times the interquartile range greater than the third 
quartile of the number of sequences in the bins carrying 1–10 mutations). If an outlier bin 
was found, then all bins having fewer mutations per sequence were excluded from the 
regression. 
 
Calculation of site frequency spectrums 
We constructed the site frequency spectrum (SFS) of each clonal B cell lineage based on 
somatic mutations relative to the germline V and J genes. For analysis of the SFS and 
further phylogenetic analysis, we used only reads originating from the D7 samples that 
were sequenced using the long amplicon protocol. Vaccine-responsive and persistent 
lineages having <100 unique sequences in these samples were excluded from this 
analysis. Mutations were called using IgBlast (36) and we removed non-reference 
germline variants for each individual subject as determined above. We calculated the 
frequency of each mutation within a clonal lineage (number of sequences containing the 
mutation / number of sequences in the lineage). We note that our approach conservatively 
excludes most mutations in the CDR3 because these mutations lie within the highly 
variable untemplated region of the IGH sequence and therefore the ancestral state may 
not be known with high confidence. 
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 To visualize the SFS, we binned the mutation frequencies using bins spaced 
according to the logit function (inverse logistic transform). Bin edges were 10-5, 10-4, 10-

3, 10-2, 10-1, 0.5, 0.9, 0.99, 0.999, 0.9999, 0.99999. The mutation density within each bin 
was calculated by normalizing by the bin size (number of mutations in bin / width of bin). 
To calculate the average SFS across many lineages (e.g., all vaccine-responsive lineages 
or vaccine-responsive lineages from one study subject), we calculated the SFS for each 
lineage individually, then calculated the average mutation density in each bin. Each 
lineage is weighted equally and therefore the average is not influenced by the population 
sizes or relative mutational loads of the lineages. 

Use of the SFS for detecting selection has several practical advantages. 
Calculation of the SFS does not depend on phylogenetic reconstruction or ancestral 
sequence reconstruction and the reliability of these inferences. Unlike traditional tree 
imbalance measures, such as the Colless or Sackin indices, the SFS is readily calculated 
for populations with multifurcating phylogenies, such as B cell populations. Finally, 
calculation of the SFS scales linearly with the number of sequences and therefore can be 
evaluated readily for lineages having many sequences. 
 
Simulations of evolutionary models 
To compare the observed patterns of evolution with evolutionary models, we performed 
simulations of beta coalescent models using the betatree package in Python (37). 
Specifically, we simulated neutral evolution using the Kingman coalescent (α = 2) and 
evolution under strong positive selection using the Bolthausen-Sznitman coalescent (α = 
1). For comparison with the observed SFSs averaged across many lineages, we simulated 
ensembles of 100 lineages (similar to the number of observed vaccine-responsive 
lineages) each having a number of leaves sampled without replacement from the 
distribution of population sizes of vaccine-responsive lineages (median population size 
was approximately 1,000 sequences), and calculated the average SFS across these 
lineages (Figure 2A and Figure 2B). 
 
Calculation of test statistics for selection 
We calculated Fay and Wu’s H statistic on the counts of somatic mutations within a 
clonal lineage: 

 
with 

 
and  

, 
where Si is the number of mutations observed in i sequences of the lineage and n is the 
total number of sequences in the lineage, i.e. the population size of the lineage (22). 
 As an alternative metric for selection, we directly estimated the non-monotonicity 
of the high-frequency region of the SFS. Specifically, we fit a quadratic polynomial to the 
binned SFS using least-squares minimization, calculated its first derivative, and 
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determined the maximum value of the first derivative in bins representing frequencies 
>0.25, which we define as the non-monotonicity D. SFSs having an excess of high-
frequency mutations display a characteristic “uptick” or non-monotonicity in the high-
frequency region and therefore have positive D.  
 
Calculation of the statistical significance of test statistics  
We evaluated the statistical significance of tests for selection by comparison with a null 
distribution of the test statistic generated under a neutral model of evolution (the 
Kingman coalescent). We simulated an ensemble of 1,000 lineages using the Kingman 
coalescent and calculated the test statistic (Fay and Wu’s H or the non-monotonicity D) 
for each lineage. Thus, we created a distribution of the test statistic under the null model. 
We then fitted the Johnson’s U distribution to this data. To evaluate the statistical 
significance of a test statistic for a focal lineage, we calculated the P value of the test 
statistic (that is, the probability of obtaining by chance a value of the test statistic that is 
at least as extreme as the given value) under the null distribution by integrating its 
probability density. Because population size strongly influences the distribution of test 
statistics, we always tested for selection by comparison against a null distribution 
characterizing populations of a size matched to that of the focal lineage. To accomplish 
this, we simulated the null distribution as described above for a range of population sizes 
(N = 100, 200, 500, 1000, 2000, 5000, 10000, and 20000 leaves). Given a focal lineage, 
we determined the nearest lineage size within this set and used the corresponding null 
distribution for comparison. We refer to this procedure as matching the population size of 
the focal lineage to the null distribution. 
 
Determining the limit of detection of selection due to population size 
Detection of selection is fundamentally limited by population size. The detection limit 
was calculated by simulating an ensemble of 1,000 lineages under strong positive 
selection using the Bolthausen-Sznitman coalescent model. Fay and Wu’s H statistic was 
calculated for each lineage and its significance was assessed by comparison with the 
neutral model. This was repeated for populations having various sizes (N = 100, 200, 
500, 1000, 2000, 5000, 10000, 20000 leaves). The fraction of lineages that were 
identified as significantly positively selected (P < 0.05) in each case is the expected rate 
of detecting positive selection in the scenario where all lineages are generated under 
strong positive selection. 
 
Phylogenetic reconstruction 
We used a fast heuristic algorithm to construct a multiple sequence alignment and 
reconstruct the phylogeny of each clonal lineage. Sequences were first aligned in an 
ungapped manner using the start and end positions of the CDR3 as anchor points. This 
alignment was refined using MUSCLE with “-refine –maxiters 1 –diags –gapopen -5000” 
(38). The large gap penalty reflects our expectation that insertions and deletions are 
uncommon during somatic hypermutation (24, 39). We aligned a germline sequence 
consisting of the concatenated V and J germline alleles of the lineage by profile-profile 
alignment using MUSCLE with “-profile –maxiters 1 –diags”. We reconstructed the 
phylogeny using FastTree 2 with “-nt –gtr” (40). Finally, we performed joint refinement 
of the multiple sequence alignment and phylogeny by identifying extremely long 
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branches (>0.5 substitutions/site), removing them from the alignment, and realigning one 
sequence at a time by profile-profile alignment using MUSCLE with “-profile –maxiters 
2 –diags”, then repeating phylogenetic reconstruction as described above. 
 
Detecting selection in multiple subclones of a clonal lineage 
We developed an algorithm to identify subclones having evidence of positive selection. 
Our algorithm is based on calculation of the test statistic on subclones, then searching 
within the phylogeny to identify the largest independent subclones displaying significant 
evidence of selection. Specifically, we calculate Fay and Wu’s H statistic on every large 
clade (having >100 sequences) based on the frequency of somatic mutations that occurred 
within the clade, and calculate its P value by comparison with the null distribution for 
phylogenies matched in size to the number of leaves in the clade. We then perform a 
greedy breadth-first search for clades having significant evidence of selection. This 
search strategy yields the deepest subclones having evidence of selection and guarantees 
that all such subclones represent mutually exclusive subsets of the lineage. We note that 
this is a conservative strategy because in a case where a deep clade has evidence of 
selection, but in turn harbors two independent subclades that themselves have evidence of 
selection, the search stops at the deep clade and therefore will not discover the selected 
subclades. To correct for multiple hypothesis testing, we adjusted the P value associated 
with Fay and Wu’s H statistic using the Bonferroni method based on the number of tests 
performed during the search step.  

We observed that standard tests of selection, such as Fay and Wu’s H statistic, 
often failed to detect selection when applied to lineages harboring multiple positively 
selected subclones. When multiple subclones persist, the frequency of a derived mutation 
which is private to a single subclone has a hard upper bound, causing tests based on the 
presence of high frequency mutations to fail (Figure S4). This highlights the influence of 
clonal population structure on tests for selection, an important design consideration for 
efforts to detect selection in any asexual population.  
 
Identification of candidate affinity-increasing mutations 
Using the reconstructed phylogeny of each clonal lineage as input, we performed fitness 
inference following (30). Fitness inference is based on the idea that nodes having higher 
fitness create offspring at a faster rate than other nodes and therefore the local branching 
rate of a phylogeny carries information about the fitness of sequences within the 
phylogeny. Fitness was inferred using fitness diffusion constant D = 0.5, distance scale = 
2.0, and sampling fraction = 0.1. We annotated each branch with the mean fitness change 
from the parent to the child node. To identify branches having large fitness enhancements 
or diminishments, we ranked all branches by their fitness change and selected those 
among the top 3 or bottom 3. Our conclusions also hold true when analysis is performed 
using the top and bottom 1, 5, or 10 branches. We performed ancestral sequence 
reconstruction for each clonal lineage using maximum-likelihood assuming equal rates 
for all mutations. We then identified mutations that occurred on each branch by 
comparing the reconstructed parent and child sequences. We assigned these mutations to 
regions (CDRs and FWRs) based on the region boundaries identified using IgBlast (36). 
To compute the enrichment of non-synonymous mutations in a region in comparison with 
synonymous mtuations (dN/dS), we calculated the fraction of non-synonymous mutations 
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falling in a region, and then divided this fraction by the corresponding fraction calculated 
using synonymous mutations. We calculated the error of this measurement by bootstrap 
resampling of branches (100 replicates). 
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