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Abstract

Elucidating interactions between cancer cells and their microenvironment is a key
goal of cancer research with implications for understanding cancer evolution and
improving immunotherapy. Previous studies used association-based approaches to
infer relationships in transcriptomic data, but could not infer the direction of
interaction. Here we present a causal modeling approach that infers directed
interactions between signaling pathway activity and immune activity by anchoring
the analysis on somatic genomic changes. Our approach integrates copy number
profiles, transcriptomic data, image data and a protein-protein interaction
network to infer directed relationships. As a result, we propose 11 novel genomic
drivers of T cell phenotypes in the breast cancer tumour microenvironment and
validate them in independent cohorts and orthogonal data types. Our framework
is flexible and provides a generally applicable way to extend association-based
analysis in other cancer types and to other data and clinical parameters.

Keywords: Breast Cancer; Cancer Immunology; Tumour Microenvironment;
Causality; Integrative Analysis

Background
Solid tumours like breast cancers are complex tissues consisting of a cell-autonomous

compartment of cancer cells accumulating somatic changes and undergoing clonal

evolution [1], and a non-cell-autonomous compartment containing lymphocytes, fi-

broblasts and other cell types forming the tumour microenvironment [2]. Both com-

partments are known to influence each other [3] but the details of how they commu-

nicate are still poorly understood. For example, it is unclear how breast cancer cells

hijack signaling pathways and regulatory mechanisms to influence the recruitment

and activity of tumour infiltrating lymphocytes (TILS) [4, 5].

Previous studies used association-based methods to characterise tumour-micro-

environment interactions within the bulk [6, 7] and micro-dissected tumour tran-

scriptomes [8]. For example, Ali et al [7] showed that patterns of immune infil-

tration varied between molecular subtypes of breast cancer in bulk tumour tran-

scriptomes; and Oh et al [8] derived stromal-epithelial co-expression networks from

micro-dissected tumour data to investigate crosstalk within the tumour microenvi-

ronment.

Data from transcriptomic studies are readily available, and association-based anal-

yses have provided profound insights into the general structure of co-expression pat-

terns within the data. However, association-based methods have several limitations.

First of all, when analysing bulk data they are limited by the convolution of gene

expression patterns arising from both the cell autonomous and non-autonomous
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compartments [9]. Second, associations alone can not distinguish whether a change

in gene expression is caused by a change in immune activity or is a response to

it [10].

To overcome these limitations, we propose a statistical approach integrating data

on somatic genomic changes, signaling pathway activity and immune activity in

the tumour. Our approach assigns a direction to an association between signaling

pathway activity and immune activity by anchoring the analysis on an underlying

genomic event. We exemplify this general idea here by using copy number alterations

(CNA) to measure genomic events, transcription factor (TF) activity inferred from

transcriptional profiles to measure signaling activity, and expression of marker genes

as well as imaging data to measure immune activity. Based on these data, our ap-

proach uses Bayesian networks and likelihood approaches to choose the best fitting

model (similar to [10]), and reduces the search space by using protein-interaction

networks to limit the number of potential models.

For discovery, we apply our approach to 1,980 breast tumour samples with paired

genomic-transcriptomic data [11] to generate candidate models for transcriptomic

phenotypes. For validation, we test these models in an independent genomic-

transcriptomic dataset comprising 1,154 samples [12]. For further validation on an

orthogonal measure of immune activity, we use data on lymphocyte infiltration de-

rived from over 550 Haematoxylin & Eosin (H&E) stained whole tumour slides [13].

As a result, we find 12 models that robustly validate and propose 11 novel genomic

drivers of T cell phenotypes in the breast cancer tumour microenvironment.

Results
We developed a framework to formalise causal relationships between somatic ge-

nomic events, signaling pathway activity and immune activity in the tumour. Our

approach is implemented in the statistical environment R [14] and all code to re-

produce the results presented here is available as part of a annotated document in

the supplementary information.

To measure genomic events we used the copy number profiles of 19,702 genes, as

provided by the METABRIC [11] and TCGA projects [12]. To measure signaling

pathway activity, we focused on 788 experimentally verified TFs [15]and used the

paired transcriptional profiles from the same resources to apply VIPER [16], a

method for network based prediction of transcription factor activity.

To measure immune activity, we used two orthogonal approaches: the first ap-

proach uses the mean expression of marker genes to define a cytolytic score (CS) [17]

and a novel T-cell score (TCS). While the CS trait is a measure of lymphocyte ac-

tivity, the TCS measures the degree to which they are represented in the tissue. We

validated TCS on paired gene expression and flow cytometry blood sample data [9]

and found that of the 9 leukocytes subsets tested, CD8+ T-cells demonstrated the

only significant positive correlation with the TCS (ρ = 0.675, P = 0.001), while the

remaining leukocytes show either negative or no significant correlation (see Addi-

tional file 1). The second approach uses paired H&E images from the METABRIC

cohort to measure the absolute number of lymphocytes and their density per tu-

mour [13]. The details of how we derived these measurements are given in the

Materials and Methods section.
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A multi-step causal inference approach to assign directionality to signaling-immune

associations

Our framework to assign directionality to signaling-immune associations is moti-

vated by an established approach to order gene expression traits relative to one

another and relative to other complex traits [10]. The key idea is to anchor the

analysis on genomic variation and to systematically test whether DNA changes

that lead to changes in signaling and immune activity support a causative, reactive

or independent model of the interaction between signaling and immune activity.

We formalise different causal relationships in three different types of graphical

models (Fig. 1A). Model 1 (M1: the causative model) represents a case in which

a genomic event changes immune activity by perturbing signaling activity. Model

2 (M2: the reactive model) represents a case in which a genomic event leads to a

change in immune activity, which then in turn changes signaling activity. Model

3 (M3: the independence model) represents a case in which the genomic event

influences immune activity and signaling activity independently of each other. We

used standard assumptions of causal inference [18] to derive likelihood functions for

each of the three models (see Materials and Methods). For each triplet consisting

of one genomic locus, one transcription factor and one immune score, we maximise

the likelihood function of the three models over their parameters, and finally choose

the model with the smallest Akaike Information Criterion [19], a model selection

criterion balancing goodness-of-fit with model complexity.

To limit the search space and reduce the number of triplets to test, we developed

a multi-step causal model inference framework (CMIF) approach (Fig. 1). In a first

step, CMIF filters only selects genes with experimentally verified protein-protein in-

teraction (PPI) with a TF of interest (Fig. 1C). There are 19, 702×788 = 15, 525, 176

pairwise associations between copy number profiles and TF activities, and filtering

them according to the StringDB database [20] results in just 2,333 potential mod-

els. This filtering substantially reduces the search space and enriches for biologically

relevant drivers in groups of correlated genes that are jointly amplified or deleted.

In a second step, undirected skeletal association graphs are constructed for CNA

events underlying both the TF activity and immune phenotype by computing pair-

wise correlation coefficients between the variables. Benjamini-Hochberg [21] p-value

correction is applied and only skeletons where all pairwise associations are sig-

nificant are passed to the final step (Fig. 1C). Finally, the likelihood function of

each model consistent with these skeletons is maximised over its parameters and

the model with the smallest Akaike Information Criterion is chosen. After filtering

and model selection, CMIF provides as output the model of the causal relationship

between the variables (Fig. 1D).

Evaluating CMIF with CS/TCS immune metrics

In the first analysis we used the TCS and CS metrics derived from gene expression

data as measurements of immune activity. Applying CMIF to the TCS/CS metrics,

TF activities and copy number profiles resulted in 111 unique TFs that were signif-

icantly associated with either the TCS or CS measurements, and whose underlying

CNA modulator correlates significantly with the immune phenotype. CNA events

at loci corresponding to 176 genes significantly correlated with both the TF activity
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and either immune phenotype, resulting in 475 undirected skeletal graphs. For each

graph, we fit the likelihood models M1, M2 and M3 to the respective copy number

profiles, TF activity and TCS/CS trait measurements (see Methods). 344 triplets

(72%) were best represented by the causal model (M1) whereas the reactive model

(M2) was the best in the remaining 131 (28%) cases. No M3 models were supported

by the data, which can be explained by the degree to which the association and PPI

filtering step of the method (Fig. 1C) identifies strictly causal or strictly reactive

mechanisms.

Validation in independent cohort We validated these results in the independent

TCGA cohort. Of the candidate triplets, 194 (54.6%) M1 and 24 (18.3%) M2 mod-

els validated in the TCGA cohort using CMIF (Fig. 2A). The higher validation

percentage of M1 models over M2 models in TCGA data indicates that causal

drivers of T cell infiltration are more robust and thus more frequently recapitulated

in breast cancer populations. The higher prevalence of M1 over M2 models might

be explained by cancer cells being immunoedited [22], a process in which somatic

mutations break downstream pathways associated with a normal immune response.

Over time, this would enable the tumour to exert more control over the immune

system than vice-versa.

The correlation between TF activity and the individual immune traits agreed well

between METABRIC and TCGA (TCS: ρ = 0.98, P < 2.2× 10−16; CS: ρ = 0.984,

P < 2.2×10−16) (Fig. 1B), highlighting robust co-dependence relationships between

lymphocyte infiltration/activation and TF activity. Of the validated models, 118

were shared between the TCS and CS traits, with 47 unique to the TCS (165 total)

and 53 unique to the CS (171 total). (Fig. 2C). This high degree of concordance

is reassuring considering that many molecular pathways facilitating lymphocyte

aggregation will also directly or indirectly influence the cytolytic activity and vice-

versa.

Validation by literature Many of the top predictions generated by CMIF are

well supported by the literature. For example, when ranked by the strength of

their correlation with the immune phenotype, CMIF analysis highlighted IRF1

as the strongest causal mediator of the TCS phenotype across both METABRIC

and TCGA, whose TF activity is down-regulated by the amplification of PIAS3

(Fig. 2D). This is consistent with reports that PIAS3 induces transcriptional re-

pression of IRF1 through binding to it as a SUMO-1 ligase [23]. Furthermore, IRF1

has been shown to play a crucial role in driving anti-tumour immune response [24]

and thus this model’s categorisation as causal for TCS is well supported by the

strong body of literature surrounding the relationship between the variables.

RUNX3, a well known tumour suppressor gene [25], was identified as the second

strongest causal modulator of the TCS. RUNX3 activity has been found experi-

mentally to mediate lymphocyte chemotaxis through the TGF-B pathway [26, 27].

The positive association found between TAL1 and RUNX3 has been also been

confirmed in studies demonstrating that the RUNX genes are direct targets of

TAL1 [28]. Additionally, CMIF identified ETS1 as a causal mediator for the

TCS, which is unsurprising given that its activity has been shown to regulate the

transcription of chemokines and cytokines directly involved in lymphocyte migra-

tion [29].
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Validation with image-derived features Another way of validating the robustness

of our model is testing how well it predicts lymphocyte infiltration in an orthog-

onal dataset. To facilitate this, we used the paired tumour whole tissue section

slides stained with Haematoxylin & Eosin (H&E) provided by the METABRIC

study [11], which provide an estimate of lymphocytic infiltration independent of

the gene expression based estimates used above.

We evaluated the predictive utility of 165 validated TCS M1 models on an image

cohort consisting of 534 samples. We used the results of previous image analyses

to segment and quantify the absolute number of lymphocytes and the lymphocyte

density [13], with further normalisation techniques applied in our study to generate

traits from these features (See Methods).

We combined these image features, TF activities and copy number profiles in our

CMIF approach and computed the overlap between the image-based causal models

and those from the transcriptomic phenotype set. 18 (10.9%) of the initial pre-

dictors of the TCS were also predictive of the image features, with the majority

(15/18) belonging to the lymphocyte density trait. The extent to which TF activ-

ity significantly correlated with both the TCS and the image lymphocyte density

feature simultaneously was weaker (ρ = 0.45, P < 2.2 × 10−16) than that of the

TCS between METABRIC and TCGA. This might be due to the fact that the

transcriptomic T cell features are not necessarily perfect proxies to lymphocyte

features extracted from images. For example, while the TCS makes measurements

about T cells exclusively, the feature information in H&E images is not sufficiently

descriptive to differentiate NK cells from T cells leading to a weaker correlation.

Furthermore, there are confounding systematic errors that may have arisen during

the segmentation and classification process used to generate the image features that

render the correlation with the transcriptomic phenotypes weaker than expected.

For consistency, we only considered causal models that demonstrated the same

directionality of association between the TF activity and both the TCS feature and

image feature. The image validated model list was comprised of 12 triplets, revealing

11 unique DNA loci exerting influence over lymphocyte infiltration through activity

perturbation to 8 TFs (Table 1). Notably, 8 out of the top 10 strongest causal models

for the TCS phenotype (as ranked by association with TF activity) validated for

the lymphocyte density trait, highlighting the excellent predictive potential of our

models in the image cohort. The remaining 2 triplets negatively associated with the

trait and demonstrated a stronger predictive power in the images.

Of our validated models, notable examples include a process by which PIAS3 copy

number aberration was found to attenuate the TCS/lymphocyte density through

TFEB and IRF1 activity repression, both of which positively associate with the

mentioned traits (Table 1). CREBBP and EP300 were found to exert similar

causal pressure on the traits through their action on the TF ETS1. This follows from

experimental evidence demonstrating that CREBBP and EP300 form a protein

complex CBP/p300 that is recruited by ETS1 to facilitate its transcription factor

functionality [30].

Among the top 8 candidate TFs (Table 1) we identified NR3C1: this gene encodes

for the glucocorticoid receptor, and influences immune activity through inflamma-

tion [31]. This TF was ranked only 95th of 510 in the list of image associations and
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27th of 510 in the TCS associations. Its function as a driver of immune infiltration

was only elucidated once the causal relationships between genome, signaling and

immune phenotypes were modeled together, highlighting the advantage of CMIF

over standard pairwise-association approaches.

Causal model case studies and mechanisms

Our results provide several specific biological examples of causal models of the

interaction between cancer signaling and immune activity.

EP300 and NCOR1 modulate cytolytic activity through ETS1/SPI1/TP53 network

perturbation Copy number amplification of EP300 and NCOR1 were found to

underlie the cytolytic activity trait in both the METABRIC and TCGA cohorts.

Interestingly, the original study by Rooney and colleagues [17] found that single

nucleotide variants in these genes correlated positively with cytolytic activity in

cancer types other than breast. The CMI’s ability to elucidate these mechanisms in

breast cancer may be due the higher prevalence of CNA mutations over SNPs in the

disease [32]. Furthermore, our method extends the understanding of the association

between these DNA-level drivers and the cytolytic score by suggesting they act

through perturbations to the activity of ETS1, SPI1 and TP53.

Our discovery of a positive association between SPI1 activity and the CS (ρ =

0.7) is consistent with studies demonstrating that SPI1 transcribes CCL5, a key

player in cytolytic activity [33]. Similarly, ETS1 deletion in mice has been linked to

decreased cytolytic activity in NK cells [34], consistent with our observed positive

correlation (ρ = 0.58). The association between TP53 activity and cytolysis is

not well characterised, although it has been shown that mutant TP53 attenuates

cytolytic activity in ovarian and other cancers [17].

The direct correlations between cytolytic activity and EP300 (ρ = 0.141) and

NCOR1 (ρ = 0.08) are weak, and the additional causal context provided by CMIF

was needed to highlight EP300 and NCOR1 amplification as drivers of cytolytic

activity in breast cancer through TF network perturbation.

TF drivers of immune localisation regulate adaptive immune pathways Functional

annotation of TF transcriptional targets can elucidate which molecular pathways are

over- or underrepresented in the presence of an immune phenotype. We investigated

this by partitioning our model set into those where the activity of a TF positively

associated with lymphocyte infiltration and those that were negatively associated.

We then aggregated the transcription targets of each TF and applied GO term

enrichment to functionally annotate the gene sets (Fig. 3A).

For TFs positively associated with lymphocyte recruitment, the term “T cell ac-

tivation” and “adaptive immune response” (full term list in Additional file 1) were

among the top associated pathways (adjusted P = 1.7 × 10−33 and 2.4 × 10−28

respectfully). Interestingly, “antigen processing and presentation” was also ranked

highly on the list (adjusted P = 1.3 × 10−14) highlighting the importance of com-

prehensive antigen recognition in facilitating lymphocyte recruitment. All positively

associative TFs in our model space demonstrated target overlap with one another

(Fig. 3B(i)). TFs negatively associated with lymphocyte recruitment displayed dis-

joint sets of target genes (Fig. 3B(ii)) whose aggregate functional annotation was

predominantly associated with pathways involved in innate immune cell regulation.
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Systems driving lymphocyte recruitment stratify by ER status Differences in mag-

nitude and prognostic relevance of lymphocytic infiltration between ER stratified

breast cancer patients have been widely observed [35, 36, 7], but little is known

regarding the causal chain of events that gives rise to this discrepancy. We hy-

pothesised that suppressed TF activity in ER+ samples could suggest a possible

mechanism by which ER+ tumours evade immune destruction. To investigate this,

we used the clinical data for the METABRIC cohort samples to investigate whether

genomic drivers of lymphocytic recruitment stratify by ER status.

The copy number profiles of all genomic drivers in our list of models (Table 1)

significantly stratified by ER status with the exception of HAX1 (Fig. 4A). For

example, genes such as PIAS3, POU2F1 and CREBBP were significantly more

amplified in ER+ patients over ER-. These genes downregulate TFs positively asso-

ciated with lymphocytic activity such as TFEB, IRF1, NR3C1 and ETS1 leading

to significantly less activity relative to ER- samples (Fig. 4B). Further to this, TAL1

and CBFB were both significantly more amplified in ER- samples over ER+, and

subsequently, significantly higher activity observed in the activity of the respective

TFs they modulate in ER- samples over ER+. Significantly lower cytolytic activity

was also observed in ER+ samples relative to ER- (see Additional file 1), which

is unsurprising given that transcriptional targets of TFs regulating the TCS were

shown to modulate T cell activation (Fig. 3B).

The stratification of these causal events provides compelling evidence of a genomic

basis for the ER stratification of lymphocyte infiltration and activity. These results

are difficult to infer from association studies alone, highlighting a chief advantage

of a deriving causal frameworks from large datasets.

Discussion & Conclusions
The aim of our study was to dissect interactions between cancer cells and their

microenvironment. To achieve this aim, we developed a multistep methodology to

inferring directed relationships between signaling activity and immune infiltration

in the tumour microenvironment that overcomes limitations of conventional associ-

ation studies by anchoring the analysis on somatic genomic events.

Our approach uses established methods to estimate TF activity and lymphocyte

infiltration (CS) from gene expression data, and proposed a novel score for lympho-

cytic activity (TCS). Since genes tend to be amplified/deleted together, we use a

PPI network as a biological prior to isolate drivers from a list of genes correlated

with an imune trait. Causal inference is achieved using a likelihood test, which re-

turns the most likely relationship between the genotype, TF activity and phenotype

given the data. Association based methods are widely used in cancer research and

our methodology is a step towards a causal and mechanistic understanding of these

relationships.

Our analysis consisted of identifying models for the TCS/CS traits in a dis-

covery cohort (METABRIC [11]), validating them in a large independent cohort

(TCGA [12]) and further evaluating their predictive utility using orthogonal mea-

sures of lymphocyte infiltration from H&E images. The final model list revealed

11 driver genes modulating lymphocyte recruitment into the microenvironment

through perturbation to the activity of 8 TFs. Whilst most TFs in our models
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have been experimentally linked to lymphocyte infiltration, the majority of driver

genes we found are novel, highlighting a principal advantage of causal driver discov-

ery over standard association studies. This was further realized with the discovery

of EP300/NCOR1 copy number alterations as drivers of cytolytic activity, whereas

SNV mutations in these genes were previously found not to correlate with the trait

in breast cancer. Drivers of lymphocytic infiltration were found to stratify by ER

status, leading to significant stratification of activity profiles of TFs found to be

causal for lymphocyte infiltration. This observation provides evidence supporting a

genomic basis for the observed stratification of lymphocyte infiltration and prog-

nostic utility by ER status.

Our approach has several limitations, many of which are technical and relate

to the assumptions we had to make for statistical modelling. One such limitation

involves measurement errors within the individual data inputs to our integrative

analysis. If the margin of error for one variable is wider than that of another,

it could potentially lead to the misclassification of the causal-reactive relationship

between the two variables. Another limitation arises from the simplicity of the DAG

models we design for the interaction between two variables. TFs causal for a trait

will regulate genes that are interacting within the context of a much larger network

and with feedback controls that need to be accounted for. Although our models

successfully predict lymphocyte infiltration in image cohorts, a stronger validation

would involve knockdown experiments in mice to to directly observe changes in TF

profile and our trait of interest. While our methodology is generally applicable, the

details of the statistical model will have to tailored to the specific type of data used

in the study, which might not all be normally distributed.

A conceptual limitation is that the whole study is based on one major assumption:

genomic events in the cell-autonomous compartment drive the development of the

cancer and can thus be used as anchors for causal analysis. This assumption is

shared by almost all cancer genomics studies, in particular those that aim to identify

genomic drivers of the disease [11, 32]. At the same time, we acknowledge that there

could be situations in which microenvironmental changes like inflammation cause

genomic events, rather than being caused by them.

Despite these limitations, our method has demonstrated power to recapitulate

known mechanisms and has shown results that stay robust when using indepen-

dent data sets and orthogonal data types. Given our method’s high validation rate

between two large and independent datasets and its capacity to predict results sup-

ported by the literature, we believe it to be a robust predictor of cancer-immune

communication mechanisms in transcriptomic data.

Our analysis was focused on breast cancer, but large efforts like The Cancer

Genome Atlas (TCGA) or the International Cancer Genome Consortium (ICGC)

provide the same types of data for many other kinds of cancer and thus our method-

ological framework can be easily be applied to many other forms of the disease.

Additionally, the framework is not confined to the CS/TCS metrics as measures of

immune activity and can be applied to any other available feature of the microenvi-

ronment. Thus, in summary, we have presented an integrative analysis of genomic

events, signaling activity and immune markers, which is flexible and can form the

foundation for a more mechanistic understanding of tumour-microenvironment in-

teractions across cancer types.
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Materials and Methods
CMIF Step 1: Data preparation

Gene Expression Data Microarray transcriptomic profiles corresponding to 1980

patients from the METABRIC cohort were downloaded from the European

Genome-Phenome archive under the accession id: EGAD00010000268 (https://ega-

archive.org/datasets/EGAD00010000268). The issue of multiple probes mapping

to the same gene was addressed by selecting the probe with the highest variance.

RNA-seq count data comprising 1154 BRCA samples was downloaded from the

TCGA archive (https://tcga-data.nci.nih.gov/tcga) and processed using a two-step

process: applying the variance stabilising transform and quantile normalising the

matrix with respect to the METABRIC gene expression distribution. This was done

to correct for the large heteroscedasticity between genes and make the expression

distributions more comparable.

DNA copy number aberrations METABRIC Affymetrix SNP 6.0 data were down-

loaded from the same resource as the transcriptomic data. SNP array genomic

positions were mapped to gene symbols using the hg18 build. TCGA GISTIC2

gene-level, zero-centered, focal copy number calls for each patient were accessed

from GDAC Firehose (http://gdac.broadinstitute.org/).

Transcripton Factor Network Enrichment To infer TF activity, we used a coex-

pression network [37] for 788 experimentally verified TFs derived using mutual

information and used this to calculate the activity of each TF for each sample us-

ing the R package viper (virtual inference of protein activity by enriched regulon

analysis) [16] using default parameters. VIPER tests the activity of each TF by

examining the relative transcript abundance of known targets genes, collectively

referred to as a ”regulon”. An activity score for each TF is computed using an

enrichment analysis method that includes a probabilistic weighting using TF-gene

association likelihoods.

Immune trait inference from transcriptomic data To gauge the degree of T cell

infiltration in transcriptomic data, we introduce the T cell score (TCS) as the

geometric mean of CD3D, CD4, CD8A and CD8B expression. In addition to

being well established T cell markers, they are expressed primarily in cells of a

haematopoietic lineage with little noise contamination from the rest of the tumour.

To measure cytolytic activity from transcriptomic data, we define the cytolytic score

(CS) as the geometric mean of GZMA and PRF1 as per wok done by Rooney and

colleagues [17]. In both cases, the geometric mean is chosen over the arithmetic

mean given its reduced sensitivity to outliers.

Protein-protein interactions A network detailing protein-protein interactions was

downloaded from the STRINGdb resource (http://string-db.org/) and ENSEMBL

identifiers were mapped to HUGO gene symbols using the R biomaRt package.

CMIF Step 2: Triplet Initialisation

Here we describe our approach for deriving pairwise associations between CNA

profiles, TF activity and immune phenotypes. These triplet skeletal graphs are the

input to the model scoring step of the CMIF.
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Significance of assocations All associations in this manuscript are computed using

the Pearson correlation coefficient and p-values are calculated using Student’s test

unless explicitly stated otherwise.

Computing undirected triplet graphs Undirected skeletal graphs were constructed

by computing pairwise associations between the CNA profiles, TF activity and

the phenotype of interest. To reduce the number of hypotheses to test, we only

considered pairs of TFs and CNAs, if the corresponding proteins showed protein-

protein interaction.

METABRIC was taken as our discovery cohort and thus association P -values were

adjusted using the Benjamini–Hochberg (BH) procedure [21] and a conservative

significance threshold defined at P 6 10−3. Findings were said to be validated if

reproduced at unadjusted P 6 0.05 in the TCGA cohort.

Skeletal graphs between triplets of variables were passed to the model scoring step

if all three pairwise associations in the graph demonstrated significance.

CMIF Step 3: Model scoring

Likelihood Function Definitions Our approach uses Bayesian networks and like-

lihood models to determine which relationship between the variables is best sup-

ported by the data. Assuming the conditional probability distribution of the future

state of the system depends only on the present state, we can write our joint prob-

ability distribution of models M1, M2 and M3 as

M1. P (X,Y, Z) = P (X)P (Y |X)P (Z|Y ), (1)

M2. P (X,Y, Z) = P (X)P (Z|X)P (Y |Z), (2)

M3. P (X,Y, Z) = P (X)P (Z|X)P (Z|Y,X), (3)

where X, Y and Z correspond to the copy number profile, transcription fac-

tor activity and immune phenotype measurements respectively. We assume that

Y and Z are normally distributed with a constant variance such that the like-

lihood of each model can be described by multivariate Gaussian density func-

tions. Individual component likelihoods are summed over all copy number states

(J = {Amplified,Deleted,Neutral}) and the likelihood of each joint distribution

given the parameterisation is computed by multiplying over the entire sample space

N as such:

L(θM1 ;M1) =
N∏
i=1

∑
j∈J

P (Xj)P (Yi|Xj)P (Zi|Yi), (4)

L(θM2 ;M2) =
N∏
i=1

∑
j∈J

P (Xj)P (Xj |Yi)P (Yi|Zi), (5)

L(θM3
;M3) =

N∏
i=1

∑
j∈J

P (Xj)P (Yi|Xj)P (Zi|Yi, Xj). (6)

Individual component definitions are described in the Additional file 1.
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Maximum Likelihood Estimation and Model Selection The joint distribution like-

lihoods are maximised over the parameter space using the maximum likelihood

estimation algorithm as implemented by the optim function in R. We then compute

the Akaike information criterion (AIC) as

AICj = −2 ∗ log (L(θM(j);M(j))) ∗ |θM(j)|, ∀j ∈ J. (7)

The model with the smallest AIC is the strongest causal candidate as given by

the data.

Validation Approaches

The robustness of our analysis is evaluated with several validation strategies that

use orthogonal datasets such as H&E images and flow cytometry data.

T Cell Score Validation using Flow Cytometry Gene expression profiles for 20

peripheral blood mononuclear cell admixture samples and their corresponding

flow cytometry profiles as measured by Newman et al [9] were downloaded from

(http://cibersort.stanford.edu). Pearson’s test was then used to infer correlations

between flow cytometry measurements for 9 subsets of leukocytes and the TCS

measurements for all 20 samples.

H&E Section Validation We made use of the image dataset published by Yuan

and colleagues [13], comprising the segmented H&E stained primary tissue sections

of 564 patients sampled from the METABRIC cohort. Segmented objects were clas-

sified using a SVM trained by an expert pathologist and metrics pertaining to the

absolute number of lymphocytes and the lymphocyte density relative to the num-

ber of overall objects were measured. The absolute number of lymphocytes were

then log-transformed to enable more robust comparison across the patient space.

Furthermore, this transformation ensures input to the MLE process exhibits a sim-

ilar range of values and ensure that the algorithm can be initialised with the same

parameters for all cohorts. Finally, CMIF was run with the lymphocyte statistics,

their paired copy number profiles and TF activities.

Additional analyses

GO Term Enrichment Analysis GO term enrichment analysis is used to charac-

terise groups of TFs causal for our observed phenotypes. Causal TF regulators of

immune infiltration were split into two groups given by the directionality of their

association with the TCS phenotype. Their regulons were aggregated and GO term

enrichment was performed using the clusterProfiler package in R [38]. Further

details can be found in the Supplementary Statistical Analysis (Additional file 1).

Code & Data Availability

The R script [14] implementation for the CMIF is provided in the Supplementary

R Sweave file (Additional file 1). Additional file 1 can also be used to reproduce all

figures and results of the described case studies.
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Data accession details are provided in the Materials and Methods section. Fur-

thermore, the datasets used can be downloaded directly using either code avail-

able in the R Sweave file (Additional file 1) or from the github repository

https://github.com/databro/Chlon2017.
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TF Interactions

 from PPI Network

Causal ModelsA

Figure 1 Description of CMIF A Directed Acyclic Graphs (DAGs) representing each
respective model evaluated during the analysis. Model M1 describes a causal relationship in which
the DNA aberration event acts on the immune trait through perturbation of the underlying
transcription factor network. Model M2 described as a reactive relationship with respect to the
transcription factor activity, causally modulated by the immune trait. Model M3 describes an
independence relationship, in which the DNA aberration acts upon each of the traits
independently. B The inputs for CMIF are a matrix of TF activities per sample as measured by
VIPER, continuous intensity profiles for the copy number calls and phenotype data that can be
either image features or features derived from gene expression data. C The CMIF extracts all
experimentally verified interactions between a given TF and other intracellular proteins from a
protein interaction network. Three pairwise correlations are then computed, the first between the
copy number profile of the gene coding for the protein and the given TF’s activity, second
between the copy number profile and the phenotype, and finally, between the TF activity and the
phenotype. If all associations are significant at a user-defined threshold, the protein-TF-phenotype
triplet is admitted to the next step of the analysis. Pre-defined likelihood functions for each model
in A are maximised over their parameters using an algorithm for maximum likelihood estimation,
with the model most likely to be supported by the data determined by the model with the
smallest Akaike Information Criterion (AIC). D The output of CMIF is a table of functional
triplets with their corresponding model classification.
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Figure 2 Model validation in TCGA A Scatter plots with fitted regression lines illustrating
strong concordance between METABRIC and TCGA when transcription factor activity
significantly explains the variance in the TCS and CS immune traits. B The proportion of
predicted relationships in METABRIC that validate in TCGA as stratified by model type and
lymphocyte trait. C Stacked barchart illustrating the frequency and overlap of models between the
different immune traits. D Top and bottom 10 TCGA-validated causal models as ranked by the
proportion of TCS variance explained by the transcription factor activity. Y-axis indexing is
organised as (Gene at locus of CNA event): (Transcription Factor). Heatmap columns illustrate
Pearson’s correlation coefficient between the CNA signal and transcription factor activity, and
transcription factor activity and TCS measurement (left to right).
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Figure 3 Analysis of TF targets A Network visualisation of the inter-regulon overlap
(illustrated through purple dots) between causal TFs that (i) down-regulate the TCS/lymphocyte
density and (ii) those that up-regulate it. Evidently, TFs that causally up-regulate the T cell
representation have a greater degree of regulon overlap whereas no intersection is observed for TFs
that down-regulate the trait. B GO term enrichment analysis highlighting the most significantly
annotated terms to the gene sets A(i) and A(ii) respectively. Whereas regulons pertaining to TFs
positively associative with lymphocyte infiltration are more enriched for T-cell related pathways,
down-regulators the phenotype are more associated with innate immune system pathways.
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Figure 4 METABRIC ER Stratification of Causal Models a Boxplots highlighting the
difference in the normalised DNA copy number signal between ER+/ER- cases in our validated
triplet list. Population mean rank difference is computed using the Wilcoxon signed-rank test. The
plot shows that 10/11 genes are differentially amplified/deleted between ER+/ER- at P 6 0.05. b
Heatmap highlighting the difference in causal transcription factor activity as stratified by ER
status. It can be seen that a large proportion TFs positively associated with lymphocyte infiltration
have upregulated activity in the majority of ER- samples. Concurrently, TFs inversely or weakly
correlated with the phenotype demonstrate stronger representation in ER+ samples over ER-.
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Tables

CNA TF TF-TCS Correlation TF-TCS P value Model Type
RBBP5 YEATS4 -0.10 0.00 1 TCS

CREBBP ETS1 0.62 0.00 1 TCS
EP300 ETS1 0.62 0.00 1 TCS
PIAS3 IRF1 0.94 0.00 1 TCS
PIAS3 TFEB 0.80 0.00 1 TCS

POU2F1 NR3C1 0.60 0.00 1 TCS
PARP1 HES1 -0.85 0.00 1 TCS
NR5A2 NFYA -0.08 0.00 1 TCS
PATZ1 BACH2 0.81 0.00 1 TCS

TAL1 RUNX3 0.91 0.00 1 TCS
CBFB RUNX3 0.91 0.00 1 TCS
HAX1 HCLS1 0.84 0.00 1 TCS

Table 1 CMIF output of genomic drivers and TF perturbations causal for the TCS
trait that also predict lymphocyte density in stained tumour sections.

Additional Files
Additional file 1

Zipped file containing a set of R code, results, and datasets to fully reproduce the results and analysis outlined in

this manuscript.
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