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Abstract

Precision genomic oncology–applying high throughput sequencing (HTS) at the point-of-care to in-
form clinical decisions–is a developing precision medicine paradigm that is seeing increasing adoption.
Simultaneously, new developments in targeted agents and immunotherapy, when informed by rich ge-
nomic characterization, offer potential benefit to a growing subset of patients. Multiple previous studies
have commented on methods for identifying both germline and somatic variants. However, interpreting
individual variants remains a significant challenge, relying in large part on the integration of observed
variants with biological knowledge. A number of data and software resources have been developed to
assist in interpreting observed variants, determining their potential clinical actionability, and augmenting
them with ancillary information that can inform clinical decisions and even generate new hypotheses for
exploration in the laboratory. Here, we review available variant catalogs, variant and functional an-
notation software and tools, and databases of clinically actionable variants that can be used in an ad
hoc approach with research samples or incorporated into a data platform for interpreting and formally
reporting clinical results.

1 Introduction

Genomic technologies and approaches have transformed cancer research and have led to the production of
large-scale cancer genomics compendia (International Cancer Genome Consortium n.d.; Cancer Genome
Atlas Research Network et al. 2013). The resulting molecular characterization and categorization of in-
dividual samples from such compendia has driven development of molecular subtypes cancers as well as
enhanced understanding of the molecular etiologies of carcinogenesis (Cancer Genome Atlas Network 2012;
Cancer Genome Atlas Research Network 2015; “Comprehensive genomic characterization defines human
glioblastoma genes and core pathways” 2008). The development of novel and effective targeted therapies
has proceeded in parallel with and been accelerated by deeper, faster, and broader genomic characterization
(Blumenthal, Mansfield, and Pazdur 2016), enabling early application of molecular characterization at the
point of care to inform clinical decision-making (Flaherty et al. 2012; Shaw et al. 2013; Maemondo et al.
2010; Druker et al. 2006) and to address resistance to primary therapy (Ai and Tiu 2014). Genomic char-
acterization also has applications in immune approaches to cancer. For example, chimeric antigen receptor
T-cell (CARt) therapy have shown great success in diseases with well-characterized antigens that are rela-
tively tumor-specific (Grupp et al. 2013) as identified by genomic profiling. Variously referred to as precision
oncology (Sohal et al. 2015), genomics-driven oncology (Garraway 2013), genomic oncology, and even simply
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as precision medicine, the paradigm of applying high-throughput genomic approaches to patient samples is
rapidly changing the landscape of oncology care and clinical oncology research.

Conventional approaches to clinical trials design may be inadequate due to molecular heterogeneity of
tumors derived from a single primary tissue (Simon 2016), leading to the adoption of basket, umbrella,
and hybrid trials designs. A number of studies are ongoing to determine feasibility and potential impact of
precision genomic oncology at the point-of-care (Cheng et al. 2015; NCI-MATCH Trial (Molecular Analysis
for Therapy Choice) n.d.; Lopez-Chavez et al. 2015). In addition to studies focused on identifying targetable
mutations, immune-based therapeutic approaches are also being informed by HTS applied to patient samples
(Bethune and Joglekar 2017; Chalmers et al. 2017; Faltas et al. 2016).

One of the most recent developments in the field of precision oncology is the approval of Pembrolizumab
(Keytruda), a anti-PD-1 antibody that functions as a checkpoint inhibitor, by the US Food and Drug
Administration for treatment of solid tumors that show genetic evidence of mismatch repair and therefore
carry very high mutational burdens (Le et al. 2017). Pembrolizumab was previously approved for use in
melanoma, but the most recent approval is the first that is targeting allows a drug to be used in a non-
tissue-specific context in patients showing a specific genomic marker in any solid tumor (Garber 2017).

As with any clinical testing modality, whether in a research setting or at the point-of-care, a clear
understanding of the goals of applying the test is necessary when first designing the test and its validation.
However, the flexibility and number of potential data items that arise from even a limited application of HTS
has lead the US Food and Drug Administration (FDA) has begun to define its regulatory role (FDA 2015)
and, critically, how existing knowledge bases can be applied in real time to address findings from clinical
HTS testing (FDA 2016).

This review aims to provide an organized set of biological knowledge bases with relevance to the interpre-
tation of small variants, defined as single nucleotide variants or short (on the order of 20 base pairs or fewer)
insertions and deletions. The catalogs of observed variants section lists large-scale catalogs of variants, useful
for filtering known common polymorphisms and identifying previously-identified cancer variants. When a
variant observed in a clinical sample has not been seen but appears to affect the protein coding sequence,
the functional annotation resources section presents a sampling of some of the most common software and
databases for predicting the impact on protein function. Finally, we catalog several data products and knowl-
edgebases have been developed to provide decision support (with strong disclaimers and caveats) directly
linking observed variants to clinical intervention in point-of-care HTS applications. Integrating the various
data sources described in this review with variants observed in individual patients can be accomplished with
combinations of software tools for the manipulation of variant datasets.

1.1 Catalogs of observed germline and somatic variants

Databases of observed variation in normal populations, diseased individuals, and cancer compendia form the
map onto which observed variants in patients are projected. Because of the vast quantities of genomic data
and, specifically, DNA variants, there is a tension between providing rich, highly-curated information about
individual variants and producing the largest possible catalog of variants with manageable levels of curation.
This section reviews some of the available catalogs (Table 1) of genomic variation observed in the germline
as well as those that appear in tumors as somatic mutations. Note that many of the databases mentioned
below overlap in data sources (some nearly completely), but they may differ in the amount and depth of
curation, additional metadata added to each variant, speed of updates, and methods or formats for access.

1.2 Germline

Comprehensive catalogs of germline variants inform decisions about the frequency of variants as seen in the
general population as well as to identify variants that are annotated as cancer-associated. In the context of
tumor sequencing, common variants are unlikely to be genomic drivers of carcinogenesis and are often filtered
from a report of potential somatic variants. This filtering process is particularly important when tumor
sequencing is not accompanied by matched normal sequencing. Additional germline databases that catalog
disease-associated variants can be useful to begin to address familial risk and potentially pharmacogenomic
loci (Wheeler et al. 2013; Relling and Evans 2015).
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Perhaps the oldest of the variant catalogs, dbSNP contains 325,658,303 individual variant records (build
150, accessed May 30, 2017) and is available in multiple formats, searchable, and linked to records in
literature and other data resources and databases. While the vast majority of variants in dbSNP have
been observed in individuals without cancer, somatic variants are included and annotated in the database.
Because dbSNP is driven by community submission of variants, levels of evidence vary among individual
variants. The genome Aggregation Database, or gnomAD, (Lek et al. 2016; gnomAD browser n.d.) contains
information from 123,136 exomes and 15,496 whole-genomes from unrelated individuals sequenced as part of
various disease-specific and population genetic studies (accessed May 30, 2017). These data were collected
by numerous collaborations, underwent standard processing, and unified quality control and results area
accessible as a searchable online database and as a downloadable VCF-format text file. ClinVar (Landrum et
al. 2016), maintained by the NIH National Center for Biotechnology Information (NCBI), is a freely available
archive for interpretations of clinical significance of variants for reported conditions. Entries in ClinVar are
taken directly from submitters and represent the relationship between variants and clinical significance.
When multiple submissions concerning a single variant are available, ClinVar supplies high-level summaries
of agreement or disagreement across submitters. Importantly, though, clinical significance in ClinVar is
reported as supplied by the submitter. The Personalized Genome Project (Church 2005) provides a limited
number of fully open-access genome sequencing results provided by volunteers with trait surveys and even
some microbiome surveys of participants. A catalog of germline variants derived from 69 genomes sequenced
using the Complete Genomics sequencing platform (Drmanac et al. 2010) may be useful for groups who
have data generated from the same platform, particularly for identifying sequencing-platform-specific false
positive results.

1.3 Somatic

Whereas databases of germline variants are useful to filter out variants unlikely to be directly involved in
carcinogenesis, databases of somatic variants are useful to identify variants and their frequencies as observed
in tumors. In some cases, identified variants may be associated with specific tumor types, offering mechanistic
clues, particularly in the rare cancer setting where biological understanding may be limited.

Several catalogs of somatic variants have, at their core, variants derived from The Cancer Genome Atlas
(TCGA). These databases vary in the pipelines used to define the variants, the level of annotation associated
with individual variants, the proportion of TCGA included, and methods for accessing or querying. Recently,
National Cancer Institute (NCI) has established the Genomic Data Commons (GDC) to harmonize clinical
information and genomic results across enterprise cancer datasets (Grossman et al. 2016), particularly those
funded by NCI, such as TCGA. In addition to the adult tumors profiled as part of the TCGA, the NCI GDC
also contains data from several pediatric tumors profiled as part of the Therapeutically Applicable Research
To Generate Effective Treatments (TARGET) project (Therapeutically Applicable Research to Generate
Effective Treatments (TARGET) n.d.). Cancer cell line data from the Cancer Cell Line Encyclopedia (CCLE)
are also included (Barretina et al. 2012) in the GDC data collection. The GDC is a modern data platform
that provides multiple access methods including a programmatic application programming interface (API),
data file download, and web browser based text and graphical queries and visualization. The International
Cancer Genome Consortium (ICGC) is a large, international collaboration with a collection of 76 studies
(including TCGA studies) encompassing 21 tissue primary sites. Like the NCI GDC, the ICGC data portal
provides modern data platform approaches to data access, visualization, and query (Zhang et al. 2011). The
Catalog of Somatic Mutations in Cancer (COSMIC) database is perhaps the largest and best-known cancer
variant database. It presents a unified dataset consisting of curated cancer variants for specific genes as well
as genomic screens from projects such as TCGA. Several other cancer variant data resources are listed in
Table 1.

2 Functional Annotation Resources

When faced with variants with little or no literature or database support, differentiating those that variants
that are likely to be deleterious, perhaps contributing to carcinogenesis, versus those that likely are tolerated
by the cell is a critical task, particularly in the setting of clinical precision genomic oncology. Note that
determing that a variant is deleterious is not likely to result in a change in diagnosis, prognosis, or therapy.
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However, prioritizing variants for further study, research interest, and for discussion in forums such as a
molecular tumor board is a valuable and necessary aspect of applying genomic technologies in the clinical
arena.

A number of algorithms and methods have been developed to predict the effect of observed variants
on protein structure and function as well as the potential for clinical impact. These prediction methods
utilize features of the variant and its context such as sequence identity, sequence conservation, evolutionary
relationship, protein primary and secondary structure, entropy based protein stability and approaches such
as clustering based on sequence alignments and machine learning. Some of them are specific to the type of
variant or mutation, some to a disease type, and some more general. Therefore, applying these functional
annotational tools and interpreting the results in a clinical or research setting may require significant human
curation before being recognized as clinically actionable. Here we present a review of a representative set
of approaches for predicting pathogenicity of different variants. For a comprehensive list of prediction tools
and their details see Table 2. For more detailed scientific and technical explanations of these methods, we
refer the reader to a comprehensive review (Addepalli 2014).

2.1 SIFT

Sorting Intolerant From Tolerant, or SIFT, predicts functional impacts of amino acid substitutions (Ng and
Henikoff 2003) is one of the earliest variant effect prediction tools and represents the class of prediction
algorithms that utilizes protein conservation. It has since been updated and an online version of the tool
is available (Kumar, Henikoff, and Ng 2009). SIFT uses sequence homology, as measured by protein-level
conservation, to classify variants based as tolerated or deleterious based on the associated protein coding
changes. SIFT has served as a benchmark against which other methods are compared because of its relative
simplicity. SIFT considers the type of amino acid change induced by a genomic variant and the position at
which the change/mutation occurs. SIFT relies on the presence of sequences from which conservation can
be determined; variants for which such databases are limited will potentially lack robust predictions.

2.2 PolyPhen-2

Polymorphism Phenotyping v2, or PolyPhen2, predicts the effecting of coding nonsynonymous SNPs on
protein structure and function and annotates them (Adzhubei, Jordan, and Sunyaev 2013). This algorithm
uses a naive Bayes approach to combine information across a panel of 3D structural, sequence-based, and
conservation-based features. Trained on two datasets, HumDiv and HumVar, and associated non-deleterious
controls, the PolyPhen2 algorithm represents a class of multivariate prediction algorithms that employ
machine learning and multiple features of variant impact.

2.3 Mutation Assessor

Mutation Assessor is an algorithm and tool that, like SIFT, uses a conservation-based approach. However,
Mutation Assessor also incorporates evolutionary information in an attempt to account for shifts in function
between subfamilies of proteins (Reva, Antipin, and Sander 2011), potentially extending the functional
annotation of variants to “switch of function” as well as loss or gain of function. By quantifying the impact
to conserved residues both globally and within subfamilies (residues that distinguish subfamilies from each
other are thought to be less tolerant to change), Mutation Assessor defines a functional impact score to
predict which variants are likely to be deleterious.

2.4 CONDEL

The CONsensus DELeteriousness, or CONDEL score, is an integrated prediction method for missense mu-
tations that is relatively easy to extend with additional prediction resources (Gonzlez-Prez and Lpez-Bigas
2011). Originally implemented as a weighted average of the normalized scores from the output of two com-
putational tools, Mutation Assessor and FATHMM, CONDEL can be extended or adapted to data at hand
and represents an “aggregator” approach to variant effect prediction. Condel scores can be derived for a
limited set of specified mutations via an online web application. The Ensembl database provides a variation
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of position-specific CONDEL predictions that combine SIFT and Polyphen-2 for every possible amino acid
substitution in all human proteins.

2.5 CHASM

Cancer-specific High-throughput Annotation of Somatic Mutations, or CHASM, is a computational method
that identifies and prioritizes the missense mutations likely to enhance tumor cell proliferation (Carter et
al. 2009). CHASM uses machine learning to classify putative “driver” cancer mutations as distinct from
“passenger” mutations. Training the CHASM model employed in-silico simulation to generate realistic
“passenger” mutations, specifically modeled to represent variant context and genes that are observed in
cancer settings. Multiple features of the variants including their DNA and protein contexts were then
used to build a machine learning approach that attempted to maximize the specificity of separating driver
mutations from passenger mutations. CHASM represents a relatively specific algorithm focused not on
“deleteriousness” but, rather, on the likelihood that an observed variant is a cancer “driver”.

3 Clinical Actionability

The ultimate goal for many of the above-mentioned resources is to develop an individualized approach to
the diagnosis, prevention and treatment of cancer, or precision oncology. However, despite recent advances
in HTS, determining the clinical relevance of experimentally observed cancer variants remains a challenge
in the application of HTS in clinical practice. Difficulties in differentiating driver and passenger mutations,
lack of standards and guidelines in reporting and interpretation of genomic variants, lack of clinical evidence
in associating genomic variants to clinical outcome, lack of resources to disseminate clinical knowledge
to the cancer community and the precise definition of actionability have been reported to contribute to
the bottleneck (M. M. Li et al. 2017; Prawira et al. 2017; Uzilov et al. 2016; Hedley Carr et al. 2016).
Comprehensive resources linking experimentally determined cancer variants and clinical actionability have
been developed to address some of these challenges and address various aspects of translating research
results into clinical valuable information to support clinical decisions in precision oncology (See Table 3). In
recognition of the fact that central curation of information regarding actionability is extremely challenging,
several of the resources below use crowdsourcing as a means of gathering updates and enhancing curation
efforts. In addition to a web interface, some tools provide additional access via API, mobile app, and/or
social media tagging to facilitate dissemination of information and enhance accessibility. While some of
these tools share similar functions, in the section below, we highlight distinct features and capabilities for a
representative set of resources.

Clinical Interpretation of Variants in Cancer (CIViC) is an open access and open source platform for
community-driven curation and interpretation of cancer variants. It is based on a crowdsourcing model
where individuals in the community can contribute to produce a centralized knowledge base with the goal
of disseminating knowledge and encouraging active discussion. Users, including patients, patient advocates,
clinicians and researchers, can participate, along with community editors, in various stages of interpreting
the clinical significance of cancer variants using standards and guidelines developed by community experts
(M. M. Li et al. 2017; M. Griffith, Spies, et al. 2016).

The Drug Gene Interaction Database (DGIdb) is an open source and open access platform for gene
and drug annotation for known interaction and potential druggability. Users can can cross-reference genes
of interest and drugs against up to 15 sources and in functionally classified gene categories (Wagner et
al. 2016; M. Griffith, O. L. Griffith, et al. 2013). Cancer Genome Interpreter (CGI) identifies mutational
events that are biomarkers of drug response or interact with known chemical compounds (Tamborero et al.
2017). PharmGKB is a pharmacogenomic resource for building clinical implementation and interpretation
based on annotating, integrating and aggregating knowledge extracted from research-level publications. It
provides scored clinical annotation, prescription annotation (drug dosing, prescribing information), as well
as pharmacokinetics/pharmacodynamics (PK/PD) annotation, with primary literature reference.

OncoKb contains information on the clinical implication of specific genetic alterations in cancer. Each
variant is annotation from multiple sources and scored using Levels of Evidence ranging from Level 1,
which includes FDA approved biomarker predictive of response to an FDA-approved drug, to Level 2, which
includes variants for which an FDA-approved or standard of care treatment is available, Level 3 and Level
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4 contain variants with investigational and hypothetical therapeutic implications, respectively. A similarly
structured scoring system is available for indicating therapeutic implications for variants associated with
resistance (Chakravarty et al. 2017). Cancer Driver Log (CanDL), an expert-curated database for potential
driver mutations in cancer, employs a similar four-level scoring system based on FDA approval, clinical,
pre-clinical and experimental functional evidence (Damodaran et al. 2015).

MyCancerGenome (MCG) is a knowledge resource highlighting the implication of tumor mutation on
cancer care. It allows users to access its content via a mobile app and provide patient-focused information.
Patients can access a database entitled DNA-mutation Inventory to Refine and Enhance Cancer Treatment
(DIRECT) for Epidermal Growth Factor Receptor (EGFR) mutation for non-small cell lung cancer (NSCLC).
Personalized Cancer Therapy (PCT) at the MD Anderson Cancer Center is a resource for clinical response
associated with cancer variants and aims to facilitate patient involvement in biomarker-related clinical trials.
Drug effectiveness is associated with a specific biomarker and scored based on prospective clinical study as
well as Food and Drug Administration (FDA) approval.

4 Tools for manipulating variant datasets

Processing sequence data with the goal of determining variants (somatic or germline) often ends with a file in
Variant Call Format (VCF format), a loose, self-describing data standard describing variants along a genome,
associated statistical and numeric metrics for each variant, and information integrated from data resources
such as those described in the preceding sections (Danecek et al. 2011). An ecosystem of tools, listed in Table
4, has been developed for basic transformations, manipulations, merge operations, and for adding transcript,
protein, and higher-level functional annotations to variants in a VCF file. The vt and bcftools software
suites perform operations such as slicing by genomic coordinate, data compression, and, importantly variant
normalization, rendering variants more readily comparable across resources. Annovar (Yang and Wang 2015;
Wang, M. Li, and Hakonarson 2010) and the SnpEff suite (Cingolani 2012) add annotations relative to gene
annotations, including information about transcript and protein-coding changes. Recently, several software
developers of variant annotation tools have developed a standard for reporting gene-centric annotations that
has simplified post-processing of variants after annotation. Finally, tools such as Vcfanno (Pedersen, Layer,
and Quinlan 2016) have been developed that can flexibly add fields to variants in a VCF file based on
relatively sophisticated logic and data transformations, reducing the number of tools required to bring a new
data resource into the annotation pipeline.

5 Pragmatic details

Despite advanced toolsets for manipulating variant files and increasing adoption available standard formats,
practical pitfalls and challenges remain to the basic manipulation of variant datasets. Some data resources are
available in multiple formats and not all formats contain identical information. Matching variants between
resources and observed variants can be challenging, as some variants can be represented validly in multiple
forms. Ideally, variants are cataloged with clarity with respect to a reference genome and, whenever possible,
using HGVS nomenclature (Dunnen et al. 2016). In spite of increasing awareness and uptake of HGVS
standard nomenclature, the critical step of matching variants across tools and databases in assessing clinical
significance is still hampered by inconsistencies across tools and databases (Yen et al. 2017). Particularly
when handling clinical samples, an information system that provides results from multiple resources when
assessing novel variants, incorporates in silico controls when adding or updating data resources (to avoid
introducing errors), and adheres to HGVS nomenclature wherever possible in data processing pipelines can
increase the likelihood of discovering potentially relevant variants.

6 Discussion

Robust sequencing technologies and increasingly reliable bioinformatics pipelines, combined with parallel
development of therapeutics and diagnostics has bolstered the field of precision genomic oncology. However,
the sheer number of resources available that can inform the interpretation of small variants is staggering,
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except for the very few variants with well-established clinical relevance or an associated targeted therapy.
This review has highlighted a number of important data resources individually. For other variants, data
integration remains a significant hurdle to the rapid turnaround required to apply HTS in a clinical context.
Expert panel review (the molecular tumor board) has been effective for some groups (Knepper et al. 2017;
Beltran et al. 2015; Sohal et al. 2015) while other groups have adopted a protocol-based approach (Ghazani
et al. 2017). Even when molecularly targetable lesions are identified, barriers to delivering therapy have been
observed, limiting the impact of precision genomic oncology in some settings (Bryce et al. 2017).

Cancer arises in an individual after a typically complex and incompletely understood set of oncogenic
events that are increasingly observable at the molecular level. Progress in cancer prevention, early detec-
tion, diagnosis, prognosis, and treatment is increasingly driven by insight gained through the analysis and
interpretation of large genomic, proteomic, and pharmacological knowledge bases. Reductionist approaches
to cancer biology can achieve only limited success in understanding cancer biology and improving therapy.
Cancer is a disease associated with disruption of normal cellular circuitry and processes that leads to ab-
normal or uncontrolled proliferative growth, characterized by a complex spectrum of biochemical alterations
that affects biological processes at multiple scales from the molecular activity and cellular homeostasis to
intercellular and inter-tissue signaling. The cancer research community has made great strides in measuring
the oncogenic events that lead to the development of cancer and therapy resistance. However, the chal-
lenges brought by complexity inherent in protein networks, intercellular signaling, cellular heterogeneity,
and the dynamic nature of cancer demand multiscale systems and modeling approaches that address the
interrelatedness of the biological processes underlying cancer.

7 Conflict of Interest

This work was performed while KA and HT were employed by Attain, LLC, in support of bioinformatics
projects at the National Cancer Institute. The authors declare that the work was conducted in the absence
of any commercial or financial relationships that constitute a potential conflict of interest.

8 Acknowledgments

This work was supported by the National Cancer Institute Center for Biomedical Informatics and Informa-
tion Technology and the National Cancer Institute Center for Cancer Research in the Intramural Research
Program at the National Institutes of Health.

References

[1] International Cancer Genome Consortium. http://icgc.org. Accessed: 2017-5-15.

[2] Cancer Genome Atlas Research Network et al. “The Cancer Genome Atlas Pan-Cancer analysis
project”. en. In: Nat. Genet. 45.10 (Oct. 2013), pp. 1113–1120.

[3] Cancer Genome Atlas Network. “Comprehensive molecular portraits of human breast tumours”. en.
In: Nature 490.7418 (Apr. 2012), pp. 61–70.

[4] Cancer Genome Atlas Research Network. “The Molecular Taxonomy of Primary Prostate Cancer”. en.
In: Cell 163.4 (May 2015), pp. 1011–1025.

[5] “Comprehensive genomic characterization defines human glioblastoma genes and core pathways”. In:
Nature 455.7216 (23 10 2008), pp. 1061–1068.

[6] Gideon M Blumenthal, Elizabeth Mansfield, and Richard Pazdur. “Next-Generation Sequencing in
Oncology in the Era of Precision Medicine”. en. In: JAMA Oncol 2.1 (Jan. 2016), pp. 13–14.

[7] Keith T Flaherty et al. “Combined BRAF and MEK inhibition in melanoma with BRAF V600 muta-
tions”. en. In: N. Engl. J. Med. 367.18 (Jan. 2012), pp. 1694–1703.

[8] Alice T Shaw et al. “Crizotinib versus chemotherapy in advanced ALK-positive lung cancer”. en. In:
N. Engl. J. Med. 368.25 (20 06 2013), pp. 2385–2394.

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/144766doi: bioRxiv preprint 

http://icgc.org
https://doi.org/10.1101/144766
http://creativecommons.org/licenses/by/4.0/


[9] Makoto Maemondo et al. “Gefitinib or Chemotherapy for Non–Small-Cell Lung Cancer with Mutated
EGFR”. In: N. Engl. J. Med. 362.25 (24 06 2010), pp. 2380–2388.

[10] B J Druker et al. “Long-term benefits of imatinib (IM) for patients newly diagnosed with chronic
myelogenous leukemia in chronic phase (CML-CP): the 5-year update from the IRIS study”. In: J.
Clin. Oncol. 24.90180 (2006), pp. 6506–6506.

[11] Jing Ai and Ramon V Tiu. “Practical management of patients with chronic myeloid leukemia who
develop tyrosine kinase inhibitor-resistant BCR-ABL1 mutations”. en. In: Ther. Adv. Hematol. 5.4
(Aug. 2014), pp. 107–120.

[12] Stephan A Grupp et al. “Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia”.
In: N. Engl. J. Med. 368.16 (25 03 2013), pp. 1509–1518.

[13] Davendra P S Sohal et al. “Prospective Clinical Study of Precision Oncology in Solid Tumors”. en. In:
J. Natl. Cancer Inst. 108.3 (Sept. 2015).

[14] Levi A Garraway. “Genomics-Driven Oncology: Framework for an Emerging Paradigm”. In: J. Clin.
Orthod. 31.15 (20 05 2013), pp. 1806–1814.

[15] Richard Simon. “Genomic Alteration-Driven Clinical Trial Designs in Oncology”. en. In: Ann. Intern.
Med. 165.4 (16 08 2016), pp. 270–278.

[16] Donavan T Cheng et al. “Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer
Targets (MSK-IMPACT): A Hybridization Capture-Based Next-Generation Sequencing Clinical Assay
for Solid Tumor Molecular Oncology”. In: J. Mol. Diagn. 17.3 (May 2015), pp. 251–264.

[17] NCI-MATCH Trial (Molecular Analysis for Therapy Choice). https://www.cancer.gov/about-
cancer/treatment/clinical-trials/nci-supported/nci-match. Accessed: 2017-5-31.

[18] Ariel Lopez-Chavez et al. “Molecular profiling and targeted therapy for advanced thoracic malignancies:
a biomarker-derived, multiarm, multihistology phase II basket trial”. en. In: J. Clin. Oncol. 33.9 (20 03
2015), pp. 1000–1007.

[19] Michael T Bethune and Alok V Joglekar. “Personalized T cell-mediated cancer immunotherapy: progress
and challenges”. en. In: Curr. Opin. Biotechnol. 48 (Aug. 2017), pp. 142–152.

[20] Zachary R Chalmers et al. “Analysis of 100,000 human cancer genomes reveals the landscape of tumor
mutational burden”. en. In: Genome Med. 9.1 (19 04 2017), p. 34.

[21] Bishoy Faltas et al. “Generating a neoantigen map of advanced urothelial carcinoma by whole exome
sequencing”. In: J. Clin. Oncol. 34.2 suppl (Oct. 2016), p. 354.

[22] Dung T Le et al. “Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade”.
en. In: Science (Aug. 2017). issn: 0036-8075, 1095-9203. doi: 10.1126/science.aan6733. url: http:
//dx.doi.org/10.1126/science.aan6733.

[23] Ken Garber. “In a major shift, cancer drugs go ’tissue-agnostic’”. en. In: Science 356.6343 (16 06
2017), pp. 1111–1112. issn: 0036-8075, 1095-9203. doi: 10.1126/science.356.6343.1111. url:
http://dx.doi.org/10.1126/science.356.6343.1111.

[24] FDA. Optimizing FDA’s Regulatory Oversight of Next Generation Sequencing Diagnostic Tests—
Preliminary Discussion Paper. 20 02 2015.

[25] FDA. Draft Guidance for Stakeholders and Food and Drug Administration Staff. Aug. 2016.

[26] Heather E Wheeler et al. “Cancer pharmacogenomics: strategies and challenges”. en. In: Nat. Rev.
Genet. 14.1 (Jan. 2013), pp. 23–34.

[27] Mary V Relling and William E Evans. “Pharmacogenomics in the clinic”. en. In: Nature 526.7573
(15 10 2015), pp. 343–350.

[28] Monkol Lek et al. “Analysis of protein-coding genetic variation in 60,706 humans”. en. In: Nature
536.7616 (18 08 2016), pp. 285–291.

[29] gnomAD browser. http://gnomad.broadinstitute.org/. Accessed: 2017-5-31.

[30] Melissa J Landrum et al. “ClinVar: public archive of interpretations of clinically relevant variants”. en.
In: Nucleic Acids Res. 44.D1 (Apr. 2016), pp. D862–8.

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/144766doi: bioRxiv preprint 

https://www.cancer.gov/about-cancer/treatment/clinical-trials/nci-supported/nci-match
https://www.cancer.gov/about-cancer/treatment/clinical-trials/nci-supported/nci-match
http://dx.doi.org/10.1126/science.aan6733
http://dx.doi.org/10.1126/science.aan6733
http://dx.doi.org/10.1126/science.aan6733
http://dx.doi.org/10.1126/science.356.6343.1111
http://dx.doi.org/10.1126/science.356.6343.1111
http://gnomad.broadinstitute.org/
https://doi.org/10.1101/144766
http://creativecommons.org/licenses/by/4.0/


[31] G M Church. “The personal genome project”. en. In: Mol. Syst. Biol. 1 (13 12 2005), p. 2005.0030.

[32] Radoje Drmanac et al. “Human genome sequencing using unchained base reads on self-assembling
DNA nanoarrays”. en. In: Science 327.5961 (Jan. 2010), pp. 78–81.

[33] Robert L Grossman et al. “Toward a Shared Vision for Cancer Genomic Data”. In: N. Engl. J. Med.
375.12 (22 09 2016), pp. 1109–1112.

[34] Therapeutically Applicable Research to Generate Effective Treatments (TARGET). https://ocg.
cancer.gov/programs/target. Accessed: 2017-5-31.

[35] Jordi Barretina et al. “The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer
drug sensitivity”. In: Nature 483.7391 (29 03 2012), pp. 603–607.

[36] Junjun Zhang et al. “International Cancer Genome Consortium Data Portal—a one-stop shop for
cancer genomics data”. In: Database 2011 (Jan. 2011).

[37] Kanakadurga Addepalli. “Models Predicting Effects of Missense Mutations in Oncogenesis”. PhD the-
sis. George Mason University, 2014.

[38] Pauline C Ng and Steven Henikoff. “SIFT: Predicting amino acid changes that affect protein function”.
en. In: Nucleic Acids Res. 31.13 (Jan. 2003), pp. 3812–3814.

[39] Prateek Kumar, Steven Henikoff, and Pauline C Ng. “Predicting the effects of coding non-synonymous
variants on protein function using the SIFT algorithm”. en. In: Nature protocols 4.7 (25 06 2009),
pp. 1073–1081. issn: 1754-2189, 1750-2799. doi: 10.1038/nprot.2009.86. url: http://dx.doi.org/
10.1038/nprot.2009.86.

[40] Ivan Adzhubei, Daniel M Jordan, and Shamil R Sunyaev. “Predicting functional effect of human
missense mutations using PolyPhen-2”. en. In: Curr. Protoc. Hum. Genet. Chapter 7 (Jan. 2013),
Unit7.20.

[41] Boris Reva, Yevgeniy Antipin, and Chris Sander. “Predicting the functional impact of protein muta-
tions: application to cancer genomics”. en. In: Nucleic Acids Res. 39.17 (Jan. 2011), e118.

[42] Abel Gonzlez-Prez and Nuria Lpez-Bigas. “Improving the assessment of the outcome of nonsynonymous
SNVs with a consensus deleteriousness score, Condel”. en. In: Am. J. Hum. Genet. 88.4 (Aug. 2011),
pp. 440–449.

[43] Hannah Carter et al. “Cancer-specific high-throughput annotation of somatic mutations: computational
prediction of driver missense mutations”. en. In: Cancer Res. 69.16 (15 08 2009), pp. 6660–6667.

[44] Marilyn M Li et al. “Standards and Guidelines for the Interpretation and Reporting of Sequence
Variants in Cancer”. en. In: J. Mol. Diagn. 19.1 (Jan. 2017), pp. 4–23.

[45] A Prawira et al. “Data resources for the identification and interpretation of actionable mutations by
clinicians”. en. In: Ann. Oncol. 28.5 (Jan. 2017), pp. 946–957.

[46] Andrew V Uzilov et al. “Development and clinical application of an integrative genomic approach to
personalized cancer therapy”. en. In: Genome Med. 8.1 (Jan. 2016), p. 62.

[47] T Hedley Carr et al. “Defining actionable mutations for oncology therapeutic development”. en. In:
Nat. Rev. Cancer 16.5 (26 04 2016), pp. 319–329.

[48] Malachi Griffith, Nicholas C Spies, et al. “CIViC: A knowledgebase for expert-crowdsourcing the clinical
interpretation of variants in cancer”. en. Jan. 2016.

[49] Alex H Wagner et al. “DGIdb 2.0: mining clinically relevant drug-gene interactions”. en. In: Nucleic
Acids Res. 44.D1 (Apr. 2016), pp. D1036–44.

[50] Malachi Griffith, Obi L Griffith, et al. “DGIdb: mining the druggable genome”. en. In: Nat. Methods
10.12 (Dec. 2013), pp. 1209–1210.

[51] David Tamborero et al. “Cancer Genome Interpreter Annotates The Biological And Clinical Relevance
Of Tumor Alterations”. en. 20 05 2017.

[52] Debyani Chakravarty et al. “OncoKB: A Precision Oncology Knowledge Base”. In: JCO Precision
Oncology 1 (Jan. 2017), pp. 1–16.

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/144766doi: bioRxiv preprint 

https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
http://dx.doi.org/10.1038/nprot.2009.86
http://dx.doi.org/10.1038/nprot.2009.86
http://dx.doi.org/10.1038/nprot.2009.86
https://doi.org/10.1101/144766
http://creativecommons.org/licenses/by/4.0/


[53] Senthilkumar Damodaran et al. “Cancer Driver Log (CanDL): Catalog of Potentially Actionable Cancer
Mutations”. en. In: J. Mol. Diagn. 17.5 (Sept. 2015), pp. 554–559.

[54] Petr Danecek et al. “The variant call format and VCFtools”. en. In: Bioinformatics 27.15 (Jan. 2011),
pp. 2156–2158.

[55] Hui Yang and Kai Wang. “Genomic variant annotation and prioritization with ANNOVAR and wAN-
NOVAR”. en. In: Nat. Protoc. 10.10 (Oct. 2015), pp. 1556–1566.

[56] Kai Wang, Mingyao Li, and Hakon Hakonarson. “ANNOVAR: functional annotation of genetic variants
from high-throughput sequencing data”. en. In: Nucleic Acids Res. 38.16 (Sept. 2010), e164.

[57] Pablo Cingolani. snpEff: Variant effect prediction. 2012.

[58] Brent S Pedersen, Ryan M Layer, and Aaron R Quinlan. “Vcfanno: fast, flexible annotation of genetic
variants”. en. In: Genome Biol. 17.1 (Jan. 2016), p. 118.

[59] Johan T den Dunnen et al. “HGVS Recommendations for the Description of Sequence Variants: 2016
Update”. en. In: Hum. Mutat. 37.6 (June 2016), pp. 564–569.

[60] Jennifer L Yen et al. “A variant by any name: quantifying annotation discordance across tools and
clinical databases”. en. In: Genome Med. 9.1 (26 01 2017), p. 7.

[61] Todd C Knepper et al. “Key Lessons Learned from Moffitt’s Molecular Tumor Board: The Clinical
Genomics Action Committee Experience”. en. In: Oncologist 22.2 (Feb. 2017), pp. 144–151.

[62] Himisha Beltran et al. “Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment
Response”. en. In: JAMA Oncol 1.4 (July 2015), pp. 466–474.

[63] Arezou A Ghazani et al. “Assigning clinical meaning to somatic and germ-line whole-exome sequencing
data in a prospective cancer precision medicine study”. en. In: Genet. Med. (26 01 2017).

[64] Alan H Bryce et al. “Experience with precision genomics and tumor board, indicates frequent target
identification, but barriers to delivery”. en. In: Oncotarget 8.16 (18 04 2017), pp. 27145–27154.

[65] S T Sherry et al. “dbSNP: the NCBI database of genetic variation”. en. In: Nucleic Acids Res. 29.1
(Jan. 2001), pp. 308–311.

[66] Ethan Cerami et al. “The cBio cancer genomics portal: an open platform for exploring multidimensional
cancer genomics data”. en. In: Cancer Discov. 2.5 (May 2012), pp. 401–404.

[67] Jianjiong Gao et al. “Integrative analysis of complex cancer genomics and clinical profiles using the
cBioPortal”. en. In: Sci. Signal. 6.269 (Feb. 2013), p. l1.

[68] Carlota Rubio-Perez et al. “Abstract 2983: In silico prescription of anticancer drugs to cohorts of 28
tumor types reveals novel targeting opportunities”. en. In: Cancer Res. 75.15 Supplement (Jan. 2015),
pp. 2983–2983.

[69] Abel Gonzalez-Perez et al. “IntOGen-mutations identifies cancer drivers across tumor types”. en. In:
Nat. Methods 10.11 (Nov. 2013), pp. 1081–1082.

[70] James R Downing et al. “The Pediatric Cancer Genome Project”. en. In: Nat. Genet. 44.6 (29 05
2012), pp. 619–622.

[71] Jana Marie Schwarz et al. “MutationTaster2: mutation prediction for the deep-sequencing age”. en.
In: Nat. Methods 11.4 (Apr. 2014), pp. 361–362.

[72] Yongwook Choi et al. “Predicting the functional effect of amino acid substitutions and indels”. en. In:
PLoS One 7.10 (Aug. 2012), e46688.

[73] Martin Kircher et al. “A general framework for estimating the relative pathogenicity of human genetic
variants”. en. In: Nat. Genet. 46.3 (Mar. 2014), pp. 310–315.

[74] Eugene V Davydov et al. “Identifying a high fraction of the human genome to be under selective
constraint using GERP++”. en. In: PLoS Comput. Biol. 6.12 (Feb. 2010), e1001025.

[75] Adam Siepel et al. “Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes”.
en. In: Genome Res. 15.8 (Aug. 2005), pp. 1034–1050.

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/144766doi: bioRxiv preprint 

https://doi.org/10.1101/144766
http://creativecommons.org/licenses/by/4.0/


[76] Katherine S Pollard et al. “Detection of nonneutral substitution rates on mammalian phylogenies”. en.
In: Genome Res. 20.1 (Jan. 2010), pp. 110–121.

[77] Lei Bao, Mi Zhou, and Yan Cui. “nsSNPAnalyzer: identifying disease-associated nonsynonymous single
nucleotide polymorphisms”. en. In: Nucleic Acids Res. 33.Web Server issue (Jan. 2005), W480–2.

[78] Remo Calabrese et al. “Functional annotations improve the predictive score of human disease-related
mutations in proteins”. en. In: Hum. Mutat. 30.8 (Aug. 2009), pp. 1237–1244.

[79] Maximilian Hecht, Yana Bromberg, and Burkhard Rost. “Better prediction of functional effects for
sequence variants”. en. In: BMC Genomics 16 Suppl 8 (18 06 2015), S1.

[80] Peng Yue, Eugene Melamud, and John Moult. “SNPs3D: Candidate gene and SNP selection for asso-
ciation studies”. In: BMC Bioinformatics 7.1 (2006), p. 166.

[81] Vikas Pejaver et al. “MutPred2: inferring the molecular and phenotypic impact of amino acid variants”.
en. Sept. 2017.

[82] Majid Masso and Iosif I Vaisman. “AUTO-MUTE: web-based tools for predicting stability changes
in proteins due to single amino acid replacements”. en. In: Protein Eng. Des. Sel. 23.8 (Aug. 2010),
pp. 683–687.

[83] Paul D Thomas et al. “PANTHER: a library of protein families and subfamilies indexed by function”.
en. In: Genome Res. 13.9 (Sept. 2003), pp. 2129–2141.

[84] Alper Uzun et al. “Structure SNP (StSNP): a web server for mapping and modeling nsSNPs on protein
structures with linkage to metabolic pathways”. en. In: Nucleic Acids Res. 35.Web Server issue (July
2007), W384–92.

[85] Margarida C Lopes et al. “A combined functional annotation score for non-synonymous variants”. en.
In: Hum. Hered. 73.1 (18 01 2012), pp. 47–51.

[86] Yong Mao et al. “CanDrA: cancer-specific driver missense mutation annotation with optimized fea-
tures”. en. In: PLoS One 8.10 (30 10 2013), e77945.

[87] Christine M Micheel, Christine M Lovly, and Mia A Levy. “My Cancer Genome”. In: Cancer Genet.
207.6 (Jan. 2014), p. 289.

[88] Micheal Hewett et al. “PharmGKB: the Pharmacogenetics Knowledge Base”. en. In: Nucleic Acids
Res. 30.1 (Jan. 2002), pp. 163–165.

[89] Linda Huang et al. “The Precision Medicine Knowledge Base: an online application for collaborative
editing, maintenance and sharing of structured clinical-grade cancer mutations interpretations”. en.
19 06 2016.

[90] Michael S Lawrence et al. “Discovery and saturation analysis of cancer genes across 21 tumour types”.
en. In: Nature 505.7484 (23 01 2014), pp. 495–501.

[91] Adrian Tan, Gonalo R Abecasis, and Hyun Min Kang. “Unified representation of genetic variants”.
en. In: Bioinformatics 31.13 (Jan. 2015), pp. 2202–2204.

[92] Heng Li et al. “The Sequence Alignment/Map format and SAMtools”. en. In: Bioinformatics 25.16
(15 08 2009), pp. 2078–2079.

[93] Alex H Ramos et al. “Oncotator: cancer variant annotation tool”. en. In: Hum. Mutat. 36.4 (Apr.
2015), E2423–9.

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/144766doi: bioRxiv preprint 

https://doi.org/10.1101/144766
http://creativecommons.org/licenses/by/4.0/


Resource Variant
Type

URL Citation

dbSNP Germline
and somatic

https://www.ncbi.nlm.nih.gov/

projects/SNP/

(Sherry et al. 2001)

gnomAD Germline http://gnomad.broadinstitute.org/ (Lek et al. 2016)
69 genomes from CGI Germline http://www.completegenomics.com/

public-data/69-genomes/

(Drmanac et al.
2010)

Personalized Genome
Project

Germline http://www.personalgenomes.org/ (Church 2005)

ClinVar Germline
predispo-
sition and
somatic

https://www.ncbi.nlm.nih.gov/

clinvar/intro/

(Landrum et al.
2016)

NCI Genomic Data
Commons

Germline
and somatic

https://portal.gdc.cancer.gov/ (Grossman et al.
2016)

cBioPortal Somatic http://www.cbioportal.org (Cerami et al. 2012;
Gao et al. 2013)

Intogen (Partial
TCGA dataset)

Somatic https://www.intogen.org/search (Rubio-Perez et al.
2015; Gonzalez-
Perez et al. 2013)

Pediatric Cancer
Genome Project

Somatic http://explorepcgp.org (Downing et al.
2012)

Table 1: catalogs of germline and somatic variants
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Resource URL Citation Notes
PolyPhen-2 http://genetics.bwh.harvard.edu/pph2 (Adzhubei, Jordan,

and Sunyaev 2013)
Bayesian classification

SIFT http://sift.jcvi.org (Ng and Henikoff 2003) Alignment scores
MutationAssessor http://mutationassessor.org (Reva, Antipin, and

Sander 2011)
evolutionary conserva-
tion, naive Bayes clas-
sifier

MutationTaster http://www.mutationtaster.org (Schwarz et al. 2014)
PROVEAN http://provean.jcvi.org/index.php (Choi et al. 2012)
CADD http://cadd.gs.washington.edu (Kircher et al. 2014)
GERP++ http://mendel.stanford.edu/SidowLab/

downloads/gerp/index.html

(Davydov et al. 2010)

PhyloP and
PhastCons

http://compgen.cshl.edu/phast/index.

php

(Siepel et al. 2005; Pol-
lard et al. 2010)

nsSNPAnalyzer http://snpanalyzer.uthsc.edu/ (Bao, Zhou, and Cui
2005)

Random Forest

SNPs&GO http://snps-and-go.biocomp.unibo.it/

snps-and-go/

(Calabrese et al. 2009) SVM

SNAP2 https://rostlab.org/services/

snap2web/

(Hecht, Bromberg, and
Rost 2015)

Neural Networks

SNPs3D http://www.snps3d.org/ (Yue, Melamud, and
Moult 2006)

Structure and se-
quence analysis

MutPred2 http://mutpred.mutdb.org/ (Pejaver et al. 2017) Random Forest
AUTO-MUTE http://binf2.gmu.edu/automute/ (Masso and Vaisman

2010)
Topology and statisti-
cal contact potential,
and machine-learning
techniques

Panther http://www.pantherdb.org/tools/

csnpScoreForm.jsp

(Thomas et al. 2003) Hidden Markov Model

stSNP http://ilyinlab.org/StSNP/ (Uzun et al. 2007) comparative modelling
of protein structure

Integrated Pre-
dictive Methods
Condel http://bg.upf.edu/fannsdb/ (Gonzlez-Prez and

Lpez-Bigas 2011)
a weighted average of
the normalized scores
from multiple methods

CoVEC https://sourceforge.net/projects/

covec/files

CAROL http://www.sanger.ac.uk/science/

tools/carol

(Lopes et al. 2012) combines information
from PolyPhen-2 and
SIFT

Cancer Specific
Prediction tools
CHASM http://wiki.chasmsoftware.org/index.

php/Main_Page

(Carter et al. 2009) Random Forest, cancer
mutations from COS-
MIC and other cancer-
related resources

CanDrA http://bioinformatics.mdanderson.org/

main/CanDrA#CanDrA

(Mao et al. 2013) 96 structural, evolu-
tionary and gene fea-
tures

Table 2: Tools, software, and databases for functional prediction and annotation of variant impact.
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Resource URL Citation Crowd-
sourcing
used

Access

Cancer Driver Log https://candl.osu.edu/ (Damodaran et al. 2015) Yes
Cancer Genome In-
terpreter

https://www.

cancergenomeinterpreter.

org/home

(Tamborero et al. 2017) Yes API

CIViC https://civic.genome.

wustl.edu/home

(M. Griffith, Spies, et al.
2016)

Yes API

DGIdb http://dgidb.genome.

wustl.edu/

(Wagner et al. 2016; M.
Griffith, O. L. Griffith, et
al. 2013)

Yes

Clinical Knowledge
Base

https://www.jax.org/

clinical-genomics/

clinical-offerings/ckb

My Cancer Genome http://www.

mycancergenome.org

(Micheel, Lovly, and Levy
2014)

Yes API, app

OncoKb http://oncokb.org/ (Chakravarty et al. 2017) API
Personalized Can-
cer Therapy

https://pct.

mdanderson.org

PharmGKB https://www.pharmgkb.

org/

(Hewett et al. 2002) Yes

Precision Medicine
Knowledge Base
(Beta)

https://pmkb.weill.

cornell.edu/

(Huang et al. 2016) Yes

TumorPortal http://www.

tumorportal.org/

(Lawrence et al. 2014)

Table 3: Tools, software, and databases for functional prediction and annotation of variant impact.

Software URL Citation
vt http://genome.sph.umich.edu/wiki/

Vt

(Tan, Abecasis, and Kang 2015)

bcftools http://www.htslib.org/download/ (H. Li et al. 2009)
ANNOVAR http://annovar.

openbioinformatics.org/en/latest/

(Wang, M. Li, and Hakonarson 2010)

SnpEff http://snpeff.sourceforge.net/ (Cingolani 2012)
Oncotator https://portals.broadinstitute.

org/oncotator/

(Ramos et al. 2015)

vcfanno https://github.com/brentp/vcfanno (Pedersen, Layer, and Quinlan 2016)

Table 4: Software tools for manipulating and adding annotations to variant datasets.
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