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Abstract

The classic finding from short-term relative JOR tasks is that correct re-
sponse time (RT) depends on the lag to the more recent item but not to
the less recent item (Hacker, 1980). For decades, researchers have argued
that this finding is consistent with a self-terminating backward scanning
model (Muter, 1979; Hacker, 1980; Hockley, 1984; McElree & Dosher, 1993).
This finding has taken on new importance in light of recent proposal that
many forms of memory depend on a compressed representation of the past
(Howard, Shankar, Aue, & Criss, 2015). This paper replicates and extends
the results of the classic papers. A Bayesian t-test showed substantial ev-
idence for the null e↵ect of lag to the less recent item on correct RT. In
addition, this paper reports that correct RT is a sub-linear function of lag
to the more recent probe and replicates the classic finding that error RT de-
pends on lag to the less recent probe. These findings place new constraints
on models of short-term memory scanning.

In a relative judgment of recency (JOR) task participants choose which of two probes
from a list was presented more recently. Recency in this task is traditionally measured in
units of lag, which is the number of time steps in the past at which the probe was presented.
That is, if the last item in the list was presented as a probe, it would be associated with a
lag of one. The classic finding from short-term relative JOR tasks is that correct response
time (RT) depends on the lag to the more recent item but not to the less recent item (see
Fig. 1, Muter, 1979; Hacker, 1980; Hockley, 1984). For decades, researchers have argued
that this finding is consistent with a self-terminating backward scan (Muter, 1979; Hacker,
1980; Hockley, 1984; McElree & Dosher, 1993). Because the scan starts at the present and
proceeds backwards in time, RTs show a recency e↵ect. Because the scan is self-terminating
this naturally accounts for the finding that correct RTs do not depend on the lag of the less-
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Figure 1. Schematic of the judgment of recency (JOR) task. a. The participants are shown a list
of letters followed by a probe containing two letters from the list. The participants are required to
choose the more recent of the two probe items. b. The lag combinations in this task. The most
recent lag, lag 1 can be paired with a less recent probe from six possible lags, lags 2 through 6. This
is represented by the darkest line. The shading represents the lag to the more recent item and the
less recent item is plotted on the x-axis. The red box indicates the probed lag in the schematic on
the left. We follow this shading convention in the subsequent plots where both the less and the more
recent lags are included on the same graph.

recent probe. This account also naturally explains the finding that incorrect RTs depend
on the lag to the (incorrectly) selected probe item.

A backward scanning model implies that memory for the list is organized along a tem-
poral axis; in order for memory to be sequentially “scanned” it must be organized in some
way. Recently, this finding has taken on new theoretical importance, with some authors
arguing that many di↵erent forms of memory could be supported by di↵erent operations on
a temporally-organized memory (Howard et al., 2015). This places additional explanatory
importance on the null e↵ect of lag to the less recent probe. Moreover, this theoretical
proposal argues that the temporal dimension should be compressed, consistent with long-
standing arguments about memory (Brown, Neath, & Chater, 2007; Balsam & Gallistel,
2009). A serial scan of a compressed temporal representation should result in a sublinear
increase in RTs, rather than a linear increase in RTs as one would expect from scanning
of an uncompressed representation of time. Although previous results are consistent with
a sublinear increase in RT with lag (see e.g., Fig. 7 of Hockley, 1984, Fig. 5 Hacker, 1980)
this was not statistically evaluated in those prior studies.

This study describes findings from a short-term JOR task very similar to the proce-
dure used in (Hacker, 1980). To anticipate the results, the findings support the results of
the classic papers with modern statistics—we will argue that correct response time does not
depend on the lag to the less-recent item as evaluated using a Bayesian t-test. In addition,
we found that the response time is a sub-linear function of lag to the more recent item.
This finding is as predicted by scanning of a compressed representation. If performance in
the JOR task results from scanning of a temporal representation of the past, the sublinear
increase in RT suggests that this representation is compressed along the temporal axis.
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Method

Procedure

The procedure of this experiment follows the procedure of Experiment 2 of Hacker
(1980) closely. We describe the procedures in detail here, noting di↵erences between this
experiment and prior work where relevant. Participants were presented with a list of 9, 11,
or 13 consonants at the rate of 5.5 letters per second. At the end of the list, two of the
last seven letters were chosen randomly and the participants were asked to indicate using
left or right arrow key which of the two letters had appeared more recently. In Figure 1,
G and T are presented as the probe items. Because G was presented more recently than
T, the correct answer is G. In addition, participants were asked to respond with the up
arrow key if they did not remember seeing either of the probe letters on the list. If the
participant did not make a response within 6 s, the trial was terminated. Less than .004 of
trials terminated without a response.

The distance to the more recent probe stimulus was varied from lag 1 (the last stimulus
in the list) to 6. The lag to the less recent probe was varied from 2 to 7. This leads to
21 possible lag combinations, which were presented in a random order. Each participant
completed 320 trials.

There are several methodological di↵erences between this procedure and the procedure
of Experiment 2 of Hacker (1980). Unlike the Hacker (1980) study, in this experiment
participants were never given foils that did not appear in the list. Also, in the Hacker
(1980) study participants were not given the option to respond indicating that they did
not remember either of the probes. The participants in the Hacker (1980) study were
also more experienced in the task, experiencing a variety of presentation rates over several
experimental sessions. In this experiment, participants received only one presentation rate
in one session lasting about forty minutes.

Participants

The participants that participated in the study were drawn from the participant pool
for Boston University’s introductory psychology class. The study materials and protocol
was approved by the Institutional Review Board at Boston University. 108 participants
signed up for the study. One participant withdrew from the experiment. Data from 11
participants was excluded because their overall accuracy across all lags was no better than
chance. Data from the remaining 96 participants was analyzed using R.

Results

On .17 ± .02 of trials, participants selected neither of the probes, which we refer to
here as “abstain” responses. The overall median RT for the abstain responses was 1.5± .2s.
This was slower than the median response time in the slowest condition (lag 6) for both the
correct and incorrect choices (t(187) = �2.2, p < 0.05). These abstain trials are excluded
from the subsequent analyses. The accuracy and response time calculations that follow are
calculated based on the trials on which the participant made a choice.
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Strategy for analyzing the two lag variables

The analyses that follow consider the e↵ect of two variables, lag to the more recent
probe and lag to the less recent probe. In many cases, the e↵ect of one or more of these
variables is clearly non-linear. Simply putting both lags into a linear model under these
circumstances would raise the possibility that a spurious e↵ect of one lag would result from
an attempt to account for residuals of the other lag. Moreover, because of the definition of
lag, the values of the two lag variables covary (note that the lines in Fig. 1b are of di↵erent
lengths). The probe at the more recent lag was compared to the probe at lags further in in
the past. For each more recent lag, there is a variable number of less recent lags. In order
to control for the e↵ect of unequal number of combinations, we adopt a two stage analysis
strategy.

First, we take the less salient of the two variables and compute a distance e↵ect for
that variable. If that distance e↵ect is di↵erent from zero (as assessed by a Bayesian t-
test), we allow that variable to enter into a linear mixed e↵ect analysis. In cases where the
distance e↵ect is not reliable, the function of the linear mixed e↵ect analysis is simply to
determine whether the apparent e↵ect of the more salient variable is statistically reliable.

To be more concrete, faced with data that looks like Figure 1b, we would, for each
value of the more recent lag (the di↵erent lines in Fig. 1b), compute the slope with respect to
the lag to the less recent probe for each participant. If we found evidence that the distance
e↵ect was zero (as assessed with a Bayesian t-test (Rouder, Speckman, Sun, Morey, &
Iverson, 2009)) we would not include it as a factor in a linear mixed e↵ect analysis. The
purpose of this analysis would simply be to confirm that there is an e↵ect of the lag to the
more recent probe. This strategy applies to both analyses of accuracy and correct RTs. In
the case of error RTs, the salience of the two lags is reversed, consistent with prior results
(Hacker, 1980).

Accuracy depended on both the lag to the more recent probe and the lag to the less recent
probe

The probability that participants selected the more recent probe was .70± 0.01. The
accuracy was .82± .01 when the lag of the more recent probe was 1 and dropped to .49± .02
when the lag to the more recent lag was six. At lag 6 the probability of choosing the more
recent probe was not di↵erent from chance (Chi-squared prop test, �2(96) = 89.1, p-value
not significant). Lag 5 had an accuracy of 0.56±0.1 and was significantly higher than chance
(Chi-squared prop test, �2(96) = 142.6, p < 0.01). Accuracy monotonically increased at
lower lags and was also significantly higher than chance.

Accuracy also depended on both the lag to the more recent probe and the lag to
the less recent probe. For a given lag to the more recent probe, the accuracy improved
as the lag to the less recent probe increased (distance e↵ect). The upward-sloping lines in
Figure 2a indicate the presence of a distance e↵ect. To quantify the distance e↵ect for each
participant, we calculated the slope of each line in Figure 2a. A Bayesian t-test (Rouder
et al., 2009) on the obtained slopes revealed “decisive evidence” (Wetzels & Wagenmakers,
2012; Kass & Raftery, 1995; Je↵reys, 1998) favoring the hypothesis that the slopes are
di↵erent from 0 (JZS Bayes Factor > 102).

The e↵ects of the two lags on accuracy was quantified using a linear mixed analysis
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Figure 2. Accuracy, correct RT and incorrect RT are plotted as a function of the lag to the less
recent probe. Di↵erent lines represent di↵erent values of the lag to the more recent probe. (darker
lines correspond to more recent lags). a. Accuracy depends on the lag to the more recent item and
also shows a weak distance e↵ect (note that the lines are not flat). b. Correct RT depends strongly
on the lag to the more recent probe. The flat lines suggest that there was not an e↵ect of the lag to
the less recent probe (see text for details). c. Incorrect RT for incorrect responses depends on the
lag to the less recent probe, but at most weakly on the lag to the more recent probe (see text for
details).

with independent intercepts for each participant. The accuracy decreased with an increase
in the lag to the more recent probe by .078 ± .002, t(1918) = �31.9, p < 0.01 per unit
change in lag. Accuracy also increased with the lag to the less recent probe by .023± .002,
t(1918) = 9.73, p < 0.01 per unit change in the lag. These findings are consistent with the
findings from prior studies.

Correct response time depended strongly on the lag to the more recent probe but not on the
lag to the less recent probe

The response times for the correct responses depended strongly on the more recent lag
as seen in Figure 2b. The median response time varied from .72±.02 s for the most recent lag
to 1.36± .06 s for a lag of six. In contrast to the distance e↵ect seen in accuracy Figure 2a,
the lines in Figure 2b appear to be flat. In order to assess this distance e↵ect more directly,
we calculated the slopes of lines in Figure 2b separately for each participant and performed
a Bayesian t-test (Rouder et al., 2009) on the slopes. This analysis showed “substantial
evidence” (Wetzels & Wagenmakers, 2012; Kass & Raftery, 1995; Je↵reys, 1998) favoring
the hypothesis that the slopes are not di↵erent from 0 (JZS Bayes Factor = 3.3). A linear
mixed e↵ects analysis allowing for independent intercepts for each participant showed a
significant e↵ect of the lag to the more recent probe, .124± .006 s, t(478) = 21.6, p < 0.001.
These results replicate prior studies, but extend them by establishing positive evidence for
the null using the Bayesian t-test.

Response time varies sub-linearly by lag to the more recent item

Figure 2b suggests that correct RTs depended prominently on the lag to the more
recent item. Further it appears that the spacing between these lines goes down as the lag
increases. This suggests that the RT depends sub-linearly on the lag to the more recent
probe, as predicted by a backward self-terminating scanning model that scans along a
temporally-compressed representation.
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Figure 3. Response time varies sub-linearly with lag. a. Median RT plotted as a function of the
lag to the chosen item. In case of correct responses this is the lag to the more recent item and in
case of errors this is the lag to the less recent item. b. Median RT plotted as a function of the log of
the lag to the chosen item. The median response times are well described by a straight line on a log
scale. c. Schematic of the underlying memory representation inferred from the results obtained in
the experiment. The accuracy goes down with the lag to the more recent item and this is represented
as change in the strength (smaller sized letters). The spacing between the lines is foreshortened to
indicate compression in the underlying memory representations.

In order to evaluate whether scanning times depended on lag to the more recent probe
in a sublinear fashion, we compared two models. In one model, RT was regressed onto the
more recent lag. In the other RT was regressed onto the logarithm of the more recent lag.
The log model fit better than the linear model, �AIC = 4.1 (log model is 60.34 times more
likely as compared to the linear model).

As an additional test for sublinearity we also compared the linear model to polynomial
models with various powers of lag to the more recent probe. A quadratic model fit better
than the linear model�AIC = 3.7. The quadratic term had a negative regression coe�cient
�0.6± 0.2, t(477) = �2.6, p < 0.01. Including higher order terms did not further improve
the fit. Consistent with the conclusions of the logarithmic analysis reported above, both
approaches found evidence that the e↵ect the lag to the more recent probe on correct RT
was sublinear.

The finding of sublinearity is visually consistent with prior studies (Hacker, 1980;
Hockley, 1984). However to our knowledge it had not previously been statistically evaluated.

Incorrect response time depended strongly on the lag to the less recent probe

In a self-terminating backward scanning model, if the scan misses the more recent
probe, it would then terminate on the less recent probe. These responses would be errors
and the scanning time for these errors would depend on the lag to the less recent probe.

Given the overall error rate of .30 ± 0.01, there are less than half the number of
observations for incorrect RTs as there are for correct RTs. Also note that the number of
errors is not evenly distributed over lags, so that some points in Figure 2c have many fewer
observations than others. Nonetheless, error RTs appear to depend reliably on the lag to
the less recent item (note that all the lines increase from left to right). There does not
appear to be a strong e↵ect of the lag to the more recent probe (note that the di↵erent lines
tend to lie on top of one another).
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To evaluate whether there was an e↵ect of the lag to the more recent probe we
calculated the slope of the distance e↵ect for each value of the lag to the less recent probe.
This is analogous to the distance e↵ect calculation for correct RTs except the distance e↵ect
is calculated separately for the lag to the less recent probe rather than the more recent probe.
That is, for errors we computed a slope for each cluster of points in Figure 2c rather than
across each line. A Bayesian t-test showed “strong evidence” (Wetzels & Wagenmakers,
2012; Kass & Raftery, 1995; Je↵reys, 1998) favoring the hypothesis that the slopes of the
median response times as a function of the more recent lag are not di↵erent from 0 (JZS
Bayes Factor = 14.5).

A linear mixed e↵ects analysis, allowing each participant to have an independent
intercept, and the less recent lag as regressor showed a significant e↵ect of the lag to the less
recent probe on the median response time of incorrect responses, .033± .007 s, t(473) = 4.9,
p < 0.001.

Discussion

This study replicated the classical finding in a relative JOR task that correct RT
depends on the lag to the more recent probe but not on the lag to the less recent probe
(Fig. 2b). Beyond simply failing to observe a positive e↵ect, a Bayesian t-test found sub-
stantial evidence that there was no e↵ect of the less recent probe on correct RT. In contrast
to the findings for correct RTs, the pattern was reversed for error RTs. For error RTs, the
lag to the less recent probe showed a robust e↵ect, while a Bayesian t-test found strong
evidence that there was no e↵ect of lag to the more recent probe (Fig. 2c). For both correct
and error RTs, the lag to the probe stimulus that was selected had a large e↵ect on RT
whereas the lag to the probe that was not selected did not have an e↵ect on RT.

Scanning models posit that order information for the items in memory drives access,
such as in conveyor belt models of memory (Murdock, 1974). The dependence of RT on
only the lag of the selected stimulus is a strong prediction of a self-terminating scanning
model. In contrast, strength-based models predict a distance e↵ect on RTs in a relative
JOR task, i.e. RT should depend on both lags. Although there is not a distance e↵ect on
correct RT, there is a distance e↵ect on accuracy. Scanning models have addressed this by
assuming that the probability of the search terminating when a probe is encountered goes
down with increasing lag (Hacker, 1980; Howard et al., 2015).

This paper also showed that the e↵ect of lag to the more recent probe on correct RT
was sublinear (Fig. 3). This is a prediction of the hypothesis of a model in which the self-
terminating search scans over a compressed temporal representaiton (Howard et al., 2015).
This result is also consistent with other conceptions of the scanning process as well. For
instance the model presented in Hacker (1980) assumes that list stimuli are associated with
an availability that falls o↵ with increasing lag. The amount of time to scan a list stimulus
is a function of its availability. Because availability decreases, the scanning rate appears to
accelerate as one proceeds towards the past.

Is scanning under strategic control?

A scanning model implies that the brain maintains some representation organized
such that attention can be sequentially deployed along a temporal dimension. This naturally
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leads to the question of whether that deployment of attention is under strategic control or
not. The scanning rate one would infer from the present results is such that one can scan
a few seconds into the past in about one second of search time. The relative slowness of
this putative scan relative to other cognitive processes suggests it could be under strategic
control.

Additional evidence suggesting that scanning is under strategic control comes from
a variant on the relative JOR task in which the instructions are reversed. Chan, Ross,
Earle, and Caplan (2009) had participants perform either a JOR task or a relative order
judgment in which they were asked to select the probe stimulus that appeared earlier in
the list. Unsurprisingly, their JOR task replicated the canonical results from relative JOR,
with correct RTs failing to show an e↵ect of the lag to the less recent probe, consistent with
a backward self-terminating scanning model. Remarkably, however, when the instructions
were reversed the pattern of results for correct RTs was consistent with a forward self-
terminating scanning model (see also Liu, Chan, & Caplan, 2014). This suggests that a
temporally-organized representation can be accessed strategically.

Relationship to other JOR tasks over longer time scales

In addition to the short-term relative JOR task studied here, investigators have stud-
ied recency judgments using a variety of similar methodologies. Yntema and Trask (1963)
first introduced the relative JOR task as a continuous judgment in which a stream of stim-
uli was occasionally interupted by a pair of probes. They examined a much wider range of
lags than in the short lists used here. The standard finding from continuous JORs is that
accuracy decreases, all else equal, as the distance between the two probes decreases and as
the lag to the more recent probe increases. These findings are broadly consistent with the
changes in accuracy observed in relative JOR on short lists of stimuli (such as this study).

In studies of absolute JOR, participants rate the distance to the probe numerically
(Hinrichs & Buschke, 1968; Hinrichs, 1970; Hintzman, 2010; Hacker, 1980). The canonical
findings from absolute JORs are 1) that the variability in ratings increases for probes further
in the past and 2) participants’ ratings for the lag of a probe decreases sublinearly with
the actual lag of the probe. (Hinrichs & Buschke, 1968) argued that a logarithmic function
relates rated lag to actual lag. Notably, when a probe stimulus was presented multiple times
in the past, participants can rate the separate occurrences nearly independently. Hintzman
(2010) presented stimuli three times, P1, P2 and P3. Participants rated the recency of the
most recent presentation at both P2 and at P3. The key finding was that ratings at P3
depended a great deal on the lag between P2 and P3, but very little on the lag between
P1 and P2 (see also Flexser & Bower, 1974).

A common model for JORs across scales?

While none of the findings discussed here is su�cient in isolation to argue for a
memory representation that utilizes temporal ordering (Friedman, 1993), it is worth noting
that all of these findings can be explained using the same model (Howard et al., 2015).
Suppose first that all of the tasks described rely on a logarithmically-compressed timeline.
In this representation, past experience is represented along a timeline. Consistent with
the Fechner law, the time axis is logarithmically compressed, resulting in a scale-invariant
representation (Chater & Brown, 2008; Brown et al., 2007). This property allows behavioral
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models to exhibit similar properties over time scales ranging from a few seconds (e.g., this
study Hacker, 1980) up to many minutes (e.g., Yntema & Trask, 1963). A backward self-
terminating scan over a timeline with these properties would naturally lead to the results
in this paper, including the sublinear function relating correct RT to the lag to the more
recent probe (Fig. 3).

However, the results from continuous JOR and absolute JORs over longer time scales
are also at least roughly consistent with this model (for detailed models see Howard et al.,
2015). For instance, the logarithmic function relating judged lag to actual lag is a natural
consequence of logarithmic compression. Similarly, the minimal dependence of judged re-
cency on previous presentations of a stimulus (Hintzman, 2010) is a natural consequence
of a backward self-terminating model. The forward scanning results (Chan et al., 2009;
Liu et al., 2014) could result from recovery of the temporal context at the start of the list
(Davelaar, Goshen-Gottstein, Ashkenazi, Haarmann, & Usher, 2005) followed by a forward
scan using a translation operator (Shankar, Singh, & Howard, 2016). The major gap in
reconciling short-term (this study, Muter, 1979; Hacker, 1980; Hockley, 1984; McElree &
Dosher, 1993) and long-term (Hinrichs & Buschke, 1968; Hintzman, 2010; Yntema & Trask,
1963) JORs is the lack of RT data for judgments over scales more than a few seconds.

Conclusions

This study examined response times and accuracy in short-term JOR tasks. We
replicated and extended classic results from the short-term JOR task. Whereas accuracy
showed a distance e↵ect, both correct and error RTs depended only on the lag to the probe
stimulus that was chosen. Bayesian analyses showed positive evidence for a null e↵ect
of the lag to the probe that was not chosen. Moreover, the increase in correct RT was
a sublinear function of the lag to the more recent probe. These findings are consistent
with a backward self-terminating scanning model in which the participant scans over a
logarithmically-compressed representation of the past.
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