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Abstract19

Viruses and bacteria are critical components of the human microbiome and play important roles in health and20

disease. Most previous work has relied on studying bacteria and viruses independently, thereby reducing21

them to two separate communities. Such approaches are unable to capture how these microbial communities22

interact, such as through processes that maintain community robustness or allow phage-host populations23

to co-evolve. We implemented a network-based analytical approach to describe phage-bacteria network24

diversity throughout the human body. We built these community networks using a machine learning algorithm25

to predict which phages could infect which bacteria in a given microbiome. Our algorithm was applied to26

paired viral and bacterial metagenomic sequence sets from three previously published human cohorts. We27

organized the predicted interactions into networks that allowed us to evaluate phage-bacteria connectedness28

across the human body. We observed evidence that gut and skin network structures were person-specific29

and not conserved among cohabitating family members. High-fat diets appeared to be associated with30

less connected networks. Network structure differed between skin sites, with those exposed to the external31

environment being less connected and likely more susceptible to network degradation by microbial extinction32

events. This study quantified and contrasted the diversity of virome-microbiome networks across the human33

body and illustrated how environmental factors may influence phage-bacteria interactive dynamics. This34

work provides a baseline for future studies to better understand system perturbations, such as disease states,35

through ecological networks.36
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Author Summary37

The human microbiome, the collection of microbial communities that colonize the human body, is a crucial38

component to health and disease. Two major components to the human microbiome are the bacterial and39

viral communities. These communities have primarily been studied separately using metrics of community40

composition and diversity. These approaches have failed to capture the complex dynamics of interacting41

bacteria and phage communities, which frequently share genetic information and work together to maintain42

ecosystem homestatsis (e.g. kill-the-winner dynamics). Removal of bacteria or phage can disrupt or even43

collapse those ecosystems. Relationship-based network approaches allow us to capture this interaction44

information. Using this network-based approach with three independent human cohorts, we were able to45

present an initial understanding of how phage-bacteria networks differ throughout the human body, so as to46

provide a baseline for future studies of how and why microbiome networks differ in disease states.47
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Introduction48

Viruses and bacteria are critical components of the human microbiome and play important roles in health49

and disease. Bacterial communities have been associated with disease states, including a range of skin50

conditions [1], acute and chronic wound healing conditions [2,3], and gastrointestinal diseases, such as51

inflammatory bowel disease [4,5], Clostridium difficile infections [6] and colorectal cancer [7,8]. Altered52

human viromes (virus communities consisting primarily of bacteriophages) also have been associated with53

diseases and perturbations, including inflammatory bowel disease [5,9], periodontal disease [10], spread of54

antibiotic resistance [11], and others [12–17]. Viruses act in concert with their microbial hosts as a single55

ecological community [18]. Viruses influence their living microbial host communities through processes56

including lysis, host gene expression modulation [19], influence on evolutionary processes such as horizontal57

gene transfer [22] or antagonistic co-evolution [26], and alteration of ecosystem processes and elemental58

stoichiometry [27].59

Previous human microbiome work has focused on bacterial and viral communities, but have reduced them to60

two separate communities by studying them independently [5,9,10,12–17]. This approach fails to capture the61

complex dynamics of interacting bacteria and phage communities, which frequently share genetic information62

and work together to maintain ecosystem structure (e.g. kill-the-winner dynamics that prevent domination63

by a single bacterium). Removal of bacteria or phages can disrupt or even collapse those ecosystems64

[18,28–37]. Integrating these datasets as relationship-based networks allow us to capture this complex65

interaction information. Studying such bacteria-phage interactions through community-wide networks built66

from inferred relationships begins to provide us with insights into the drivers of human microbiome diversity67

across body sites and enable the study of human microbiome network dynamics overall.68

In this study, we characterized human-associated bacterial and phage communities by their inferred69

relationships using three published paired virus and bacteria-dominated whole community metagenomic70

datasets [13,14,38,39]. We leveraged machine learning and graph theory techniques to establish71

and explore the human bacteria-phage network diversity therein. This approach built upon previous72

large-scale phage-bacteria network analyses by inferring interactions from metagenomic datasets, rather73
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than culture-dependent data [33], which is limited in the scale of possible experiments and analyses.74

We implemented an adapted metagenomic interaction inference model that made some improvements75

upon previous phage-host interaction prediction models. Previous approaches have utilized a variety of76

techniques, such as linear models that were used to predict bacteria-phage co-occurrence using taxonomic77

assignments [40], and nucleotide similarity models that were applied to both whole virus genomes [41] and78

clusters of whole and partial virus genomes [42]. Our approach uniquely included protein interaction data79

and was validated based on experimentally determined positive and negative interactions (i.e. who does80

and does not infect whom). We built on previous modeling work as a means to our ends, and focused on the81

biological insights we could gain instead of building a superior model and presenting our work as a toolkit.82

We therefore did not focus on extensive benchmarking against other existing models [41,43–45]. Through83

this approach we were able to provide an initial basic understanding of the network dynamics associated84

with phage and bacterial communities on and in the human body. By building and utilizing a microbiome85

network, we found that different people, body sites, and anatomical locations not only support distinct86

microbiome membership and diversity [13,14,38,39,46–48], but also support ecological communities with87

distinct communication structures and robustness to network degradation by extinction events. Through an88

improved understanding of network structures across the human body, we aim to empower future studies to89

investigate how these communities dynamics are influenced by disease states and the overall impact they90

may have on human health.91

Results92

Cohort Curation and Sample Processing93

We studied the differences in virus-bacteria interaction networks across healthy human bodies by leveraging94

previously published shotgun sequence datasets of purified viral metagenomes (viromes) paired with95

bacteria-dominated whole community metagenomes. Our study contained three datasets that explored96

the impact of diet on the healthy human gut virome [14], the impact of anatomical location on the healthy97
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human skin virome [13], and the viromes of monozygotic twins and their mothers [38,39]. We selected98

these datasets because their virome samples were subjected to virus-like particle (VLP) purification,99

which removed contaminating DNA from human cells, bacteria, etc. To this end, the publishing authors100

employed combinations of filtration, chloroform/DNase treatment, and cesium chloride gradients to eliminate101

organismal DNA (e.g. bacteria, human, fungi, etc) and thereby allow for direct assessment of both the102

extracellular and fully-assembled intracellular virome (Supplemental Figure S1 A-B) [14,39]. Each103

research group reported quality control measures to ensure the purity of the virome sequence datasets,104

using both computational and molecular techniques (e.g. 16S rRNA gene qPCR) (Table S1). These reports105

confirmed that the virome libraries consisted of highly purified virus genomic DNA.106

The bacterial and viral sequences from these studies were quality filtered and assembled into contigs. We107

further grouped the related bacterial and phage contigs into operationally defined units based on their k-mer108

frequencies and co-abundance patterns, similar to previous reports (Supplemental Figure S2 - S3) [42]. This109

was done both for dimensionality reduction and to prevent inflation of node counts by using contigs which are110

expected to represent multiple fragments from the same genomes. This was also done to create genome111

analogs that we could use in our classification model which was built using genome sequences. We referred112

to these operationally defined groups of related contigs as operational genomic units (OGUs). Each OGU113

represented a genomically similar sub-population of either bacteria or phages. Contig lengths within clusters114

ranged between 103 and 105.5 bp (Supplemental Figure S2 - S3).115

While supplementing the previous virome fraction quality control measures (Table S1) we found that, in116

light of the rigorous purification and quality control during sample collection and preparation, 77% (228 /117

298 operational genomic units) still had some nucleotide similarity to a given bacterial reference genome118

(e-value < 10−25). As most phages in these communities have been shown to be temperate (they integrate119

into bacterial genomes) using methods that included nucleotide alignments of phages to bacterial reference120

genomes, we interpreted this as confirmation that the majority of those phages were temperate and therefore121

shared elements with bacterial reference genomes – a trend previously reported [14]. We further confirmed122

that while the majority of these were expected to be temperate phages, there still remained a low level of123
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bacterial sequence noise, which was evident as five (1.7%) OGUs with similar sequence elements to the124

bacterial 16S rRNA gene (blastn, e-value < 10−25, length > 1,000 bp). This is in line with previous work125

which has suggested that bacterial noise is an inevitable technical issue, and we considered this noise while126

interpreting our findings [50]. We also identified two OGUs as being complete, high confidence phages using127

the stringent Virsorter phage identification algorithm (class 1 confidence group) [51].128

The whole metagenomic shotgun sequence samples, which primarily consisted of bacteria, had an average129

viral relative abundance of 0.4% (Table S1) [13,14,38,39]. We found that only 2% (6 / 280 OGUs) of130

bacterial OGUs had significantly strong nucleotide similarity to phage reference genomes (e-value < 10−25)131

[13,14,38,39]. No OGUs were confidently identified as lytic or temperate phage OGUs in the bacterial132

dataset using the Virsorter algorithm [51]. Together this suggests minimal bacterial OGU noise that should133

be considered in the study conclusions.134

Implementing Phage-Bacteria Interaction Prediction to Build a Community Network135

We predicted which phage OGUs infected which bacterial OGUs using a random forest model trained on136

experimentally validated infectious relationships from six previous publications [41,52–56]. Only bacteria137

and bacteriophages were used in the model. The training set contained 43 diverse bacterial species and138

30 diverse phage strains, including both broad and specific ranges of infection (Supplemental Figure S4139

A - B). While it is true that there are more known phages that infect bacteria, we were limited by the140

information confirming which phages do not infect certain bacteria and attempted to keep the numbers of141

positive and negative interactions similar. Phages with linear and circular genomes, as well as ssDNA and142

dsDNA genomes, were included in the analysis. Because we used DNA sequencing studies, RNA phages143

were not considered (Supplemental Figure S4 C-D). This training set included both positive relationships (a144

phage infects a bacterium) and negative relationships (a phage does not infect a bacterium). This allowed145

us to validate the false positive and false negative rates associated with our candidate models, thereby146

building upon previous work that only considered positive relationships [41]. It is also worth noting that while147

a positive interaction is strong evidence that the interaction exists, we must also be conscious that negative148
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interactions are only weak evidence for a lack of interaction because the finding could be the result of our149

inability to reproduce conditions in which those interactions occur. Altogether we decided to maintain a150

balanced dataset at the cost of under-sampling the available positive interaction information because the151

use of such a severely unbalanced dataset often results in over-fit and uninformative model training.152

Four phage and bacterial genomic features were used in our random forest model to predict infectious153

relationships between bacteria and phages: 1) genome nucleotide similarities, 2) gene amino acid154

sequence similarities, 3) bacterial Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)155

spacer sequences that target phages, and 4) similarity of protein families associated with experimentally156

identified protein-protein interactions [57]. These features were calculated using the training set described157

above. We chose to utilize these metrics that directly compare nucleotide sequences between sample158

phages and bacteria, instead of relying on alignment to reference genomes or known marker genes, because159

we are extrapolating our model to highly diverse communities which we expect to diverge significantly from160

the available reference genomes. The resulting random forest model was assessed using nested cross161

validation, and the median area under its receiver operating characteristic (ROC) curve was 0.788, the162

median model sensitivity was 0.905, and median specificity was 0.538 (Figure 1 A). This balance of confident163

true positives at the cost of fewer true negatives is ideal for this type of dataset which consists of primarily164

positive connections (Supplemental Figure S5). Nested cross validation of the model demonstrated that165

the sensitivity and specificity of the model could vary but the overall model performance (AUC) remained166

more consistent (Supplemental Figure S6). This suggested that our model would perform with a similar167

overall accuracy despite changes in sensitivity/specificity trade-offs. The most important predictor in the168

model was amino acid similarity between genes, followed by nucleotide similarity of whole genomes (Figure169

1 B). Protein family interactions were moderately important to the model, and CRISPRs were largely170

uninformative, due to the minimal amount of identifiable CRISPRs in the dataset and their redundancy with171

the nucleotide similarity methods (Figure 1 B). Approximately one third of the training set relationships172

yielded no score and therefore were unable to be assigned an interaction prediction (Figure 1 C).173

We used our random forest model to classify the relationships between bacteria and phage operational174
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Figure 1: Summary of Multi-Study Network Model. (A) Median ROC curve (dark red) used to create the
microbiome-virome infection prediction model, based on nested cross validation over 25 random iterations.
The maximum and minimum performance are shown in light red. (B) Importance scores associated with
the metrics used in the random forest model to predict relationships between bacteria and phages. The
importance score is defined as the mean decrease in accuracy of the model when a feature (e.g. Pfam) is
excluded. Features include the local gene alignments between bacteria and phage genes (denoted blastx;
the blastx algorithm in Diamond aligner), local genome nucleotide alignments between bacteria and phage
OGUs, presence of experimentally validated protein family domains (Pfams) between phage and bacteria
OGUs, and CRISPR targeting of bacteria toward phages (CRISPR). (C) Proportions of samples included
(gray) and excluded (red) in the model. Samples were excluded from the model because they did not yield
any scores. Those interactions without scores were automatically classified as not having interactions. (D)
Network diameter (measure of graph size; the greatest number of traversed vertices required between two
vertices), (E) number of vertices, and (F) number of edges (relationships) for the total network (orange) and
the individual study sub-networks (diet study = red, skin study = yellow, twin study = green).

genomic units, which were then used to build the interactive network. The master network, analogous175

to the universal microbiome network concept previously described [58], contained the three studies as176

sub-networks, which themselves each contained sub-networks for each sample (Supplemental Figure S7).177

Metadata including study, sample ID, disease, and OGU abundance within the community were stored in178

the master network for parsing in downstream analyses (Supplemental Figure S7). The phage and bacteria179

of the master network demonstrated both narrow broad ranges of infectious interactions (Supplemental180

Figure S8). Bacterial and phage relative abundance was recorded in each sample for each OGU and181

the weight of the edge connecting those OGUs was calculated as a function of those relative abundance182

values. The separate extraction of the phage and bacterial libraries ensured a more accurate measurement183

of the microbial communities, as has been outlined previously [59,60]. The master network was highly184

connected and contained 72,287 infectious relationships among 578 nodes, representing 298 phages and185

280 bacteria. Although the network was highly connected, not all relationships were present in all samples.186

Relationships were weighted by the relative abundances of their associated bacteria and phages. Like the187

master network, the skin network exhibited a diameter of 4 (measure of graph size; the greatest number188

of traversed vertices required between two vertices) and included 576 (297 phages, 279 bacteria, 99.7%189

total) and 72,127 (99.8%) of the master network nodes and edges, respectively (Figure 1 E - F). Additionally,190

the subnetworks demonstrated narrow ranges of eccentricity across their nodes (Supplemental Figure S9).191
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The phages and bacteria in the diet and twin sample sets were more sparsely related, with the diet study192

consisting of 89 (41 phages, 48 bacteria) nodes and 5,566 relationships, and the twin study containing 137193

(36 phages, 101 bacteria) nodes and 17,250 relationships (Figure 1 E - F). As an interesting validation194

measure, we identified five (1.7%) examples of phage OGUs which similar genomic elements to the four195

previously described, broadly infectious phages isolated from Lake Michigan (tblastx; e-value < 10−25) [61].196

Role of Diet on Gut Microbiome Connectivity197

Diet is a major environmental factor that influences resource availability and gut microbiome composition198

and diversity, including bacteria and phages [14,62,63]. Previous work in isolated culture-based systems has199

suggested that changes in nutrient availability are associated with altered phage-bacteria network structures200

[30], although this has yet to be tested in humans. We therefore hypothesized that a change in diet would201

also be associated with a change in virome-microbiome network structure in the human gut.202

We evaluated the diet-associated differences in gut virome-microbiome network structure by quantifying how203

central each sample’s network was on average. We accomplished this by utilizing two common weighted204

centrality metrics: degree centrality and closeness centrality. Degree centrality, the simplest centrality metric,205

was defined as the number of connections each phage made with each bacterium. We supplemented206

measurements of degree centrality with measurements of closeness centrality. Closeness centrality is a207

metric of how close each phage or bacterium is to all of the other phages and bacteria in the network. A higher208

closeness centrality suggests that the effects of genetic information or altered abundance would be more209

impactful to all other microbes in the system. Because these are weighted metrics, the values are functions210

of both connectivity as well as community composition. A network with higher average closeness centrality211

also indicates an overall greater degree of connections, which suggests a greater resilience against network212

degradation by extinction events [30,64]. This is because more highly connected networks are less likely to213

degrade into multiple smaller networks when bacteria or phages are randomly removed [30,64]. We used214

this information to calculate the average connectedness per sample, which was corrected for the maximum215

potential degree of connectedness. Unfortunately our dataset was insufficiently powered to make strong216
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conclusions toward this hypothesis, but this is an interesting observation that warrants further investigation.217

This observation also serves to illustrate the types of questions we can answer with more comprehensive218

microbiome sampling and integrative analyses.219

Using our small sample set, we observed that the gut microbiome network structures associated with high-fat220

diets appeared less connected than those of low-fat diets, although a greater sample size will be required221

to more properly evaluate this trend (Figure 2 A-B). Five subjects were available for use, all of which had222

matching bacteria and virome datasets and samples from 8-10 days following the initiation of their diets.223

High-fat diets appeared to exhibit reduced degree centrality (Figure 2 A), suggesting bacteria in high-fat224

environments were targeted by fewer phages and that phage tropism was more restricted. High-fat diets225

also appeared to exhibit decreased closeness centrality (Figure 2 B), indicating that bacteria and phages226

were more distant from other bacteria and phages in the community. This would make genetic transfer and227

altered abundance of a given phage or bacterium less capable of impacting other bacteria and phages within228

the network.229

Figure 2: Impact of Diet and Obesity on Gut Network Structure. (A) Quantification of average degree
centrality (number of edges per node) and (B) closeness centrality (average distance from each node to
every other node) of gut microbiome networks of subjects limited to exclusively high-fat or low-fat diets. Each
point represents the centrality from a human subject stool sample that was collected 8-10 days following the
beginning of their defined diet. There are five samples here, compared to the four in figure 3, because one
of the was only sampled post-diet, providing us data for this analysis but not allowing us to compare to a
baseline for figure 3. (C) Quantification of average degree centrality and (D) closeness centrality between
obese and healthy adult women from the Twin gut study. Each point represents a stool sample taken from
one of the three adult woman confirmed as obese or healthy and with matching virus and bacteria data.

In addition to diet, we observed a possible trend that obesity influenced network structure. This was done230

using the three mother samples available from the twin sample set, all of which had matching bacteria and231

phage samples and confirmed BMI information. The obesity-associated network appeared to have a higher232

degree centrality (Figure 2 C), but less closeness centrality than the healthy-associated networks (Figure233

2 D). These results suggested that the obesity-associated networks may be less connected. This again234

comes with the caveat that this is only an opportunistic observation using an existing sample set with too few235

samples to make more substantial claims. We included this observation as a point of interest, given the data236
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was available.237

Individuality of Microbial Networks238

Skin and gut community membership and diversity are highly personal, with people remaining more similar239

to themselves than to other people over time [13,65,66]. We therefore hypothesized that this personal240

conservation extended to microbiome network structure. We addressed this hypothesis by calculating241

the degree of dissimilarity between each subject’s network, based on phage and bacteria abundance242

and centrality. We quantified phage and bacteria centrality within each sample graph using the weighted243

eigenvector centrality metric. This metric defines central phages as those that are highly abundant (AO as244

defined in the methods) and infect many distinct bacteria which themselves are abundant and infected by245

many other phages. Similarly, bacterial centrality was defined as those bacteria that were both abundant246

and connected to numerous phages that were themselves connected to many bacteria. We then calculated247

the similarity of community networks using the weighted eigenvector centrality of all nodes between all248

samples. Samples with similar network structures were interpreted as having similar capacities for network249

robustness and transmitting genetic material.250

We used this network dissimilarity metric to test whether microbiome network structures were more similar251

within people than between people over time. We found that gut microbiome network structures clustered by252

person (ANOSIM p-value = 0.005, R = 0.958, Figure 3 A). Network dissimilarity within each person over the253

8-10 day sampling period was less than the average dissimilarity between that person and others, although254

this difference was not statistically significant (p-value = 0.125, Figure 3 B). Four of the five available subjects255

were used because one of the subjects was not sampled at the initial time point. The lack of statistical256

confidence was likely due to the small sample size of this dataset.257

Although there was evidence for gut network conservation among individuals, we found no evidence for258

conservation of gut network structures within families. The gut network structures were not more similar259

within families (twins and their mothers; intrafamily) compared to other families (other twins and mothers;260

inter-family) (p-value = 0.312, Figure 3 C). In addition to the gut, skin microbiome network structure was261
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conserved within individuals (p-value < 0.001, Figure 3 D). This distribution was similar when separated by262

anatomical sites. Most sites were statistically significantly more conserved within individuals (Supplemental263

Figure S10).264

Figure 3: Intrapersonal vs Interpersonal Network Dissimilarity Across Different Human Systems. (A)
NMDS ordination illustrating network dissimilarity between subjects over time. Each sample is colored by
subject, with each colored sample pair collected 8-10 days apart. Dissimilarity was calculated using the
Bray-Curtis metric based on abundance weighted eigenvector centrality signatures, with a greater distance
representing greater dissimilarity in bacteria and phage centrality and abundance. Only four subjects were
included here, compared to the five used in figure 2, because one of the subjects was missing the initial
sampling time point and therefore lacked temporal sampling. (B) Quantification of gut network dissimilarity
within the same subject over time (intrapersonal) and the mean dissimilarity between the subject of interest
and all other subjects (interpersonal). The p-value is provided near the bottom of the figure. (C) Quantification
of gut network dissimilarity within subjects from the same family (intrafamily) and the mean dissimilarity
between subjects within a family and those of other families (interfamily). Each point represents the
inter-family and intra-family dissimilarity of a twin or mother that was sampled over time. (D) Quantification
of skin network dissimilarity within the same subject and anatomical location over time (intrapersonal) and
the mean dissimilarity between the subject of interest and all other subjects at the same time and the same
anatomical location (interpersonal). All p-values were calculated using a paired Wilcoxon test.

Network Structures Across the Human Skin Landscape265

Extensive work has illustrated differences in diversity and composition of the healthy human skin microbiome266

between anatomical sites, including bacteria, virus, and fungal communities [13,47,65]. These communities267

vary by degree of skin moisture, oil, and environmental exposure; features which were defined in the original268

publication [13]. As viruses are known to influence microbial diversity and community composition, we269

hypothesized that these differences would still be evident after integrating the bacterial and viral datasets270

and evaluating their microbe-virus network structure between anatomical sites. To test this, we evaluated271

the changes in network structure between anatomical sites within the skin dataset. The anatomical sites and272

their features (e.g. moisture & occlusion) were defined in the previous publication through consultation with273

dermatologists and reference to previous literature [13].274

The average centrality of each sample was quantified using the weighted eigenvector centrality metric.275

Intermittently moist skin sites (dynamic sites that fluctuate between being moist and dry) were significantly276
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less connected than the moist and sebaceous environments (p-value < 0.001, Figure 4 A). Also, skin sites277

that were occluded from the environment were much more highly connected than those that were constantly278

exposed to the environment or only intermittently occluded (p-value < 0.001, Figure 4 B).279

Figure 4: Impact of Skin Micro-Environment on Microbiome Network Structure. (A) Notched box-plot
depicting differences in average eigenvector centrality between moist, intermittently moist, and sebaceous
skin sites and (B) occluded, intermittently occluded, and exposed sites. Notched box-plots were created
using ggplot2 and show the median (center line), the inter-quartile range (IQR; upper and lower boxes),
the highest and lowest value within 1.5 * IQR (whiskers), outliers (dots), and the notch which provides an
approximate 95% confidence interval as defined by 1.58 * IQR / sqrt(n). Sample sizes for each group were:
Moist = 81, Sebaceous = 56, IntMoist = 56, Occluded = 106, Exposed = 61, IntOccluded = 26. (C) NMDS
ordination depicting the differences in skin microbiome network structure between skin moisture levels and (D)
occlusion. Samples are colored by their environment and their dissimilarity to other samples was calculated
as described in figure 3. (E) The statistical differences of networks between moisture and (F) occlusion status
were quantified with an anova and post hoc Tukey test. Cluster centroids are represented by dots and the
extended lines represent the associated 95% confidence intervals. Significant comparisons (p-value < 0.05)
are colored in red, and non-significant comparisons are gray.

To supplement this analysis, we compared the network signatures using the centrality dissimilarity approach280

described above. The dissimilarity between samples was a function of shared relationships, degree of281

centrality, and bacteria/phage abundance. When using this supplementary approach, we found that network282

structures significantly clustered by moisture, sebaceous, and intermittently moist status (Figure 4 C,E).283

Occluded sites were significantly different from exposed and intermittently occluded sites, but there was no284

difference between exposed and intermittently occluded sites (Figure 4 D,F). These findings provide further285

support that skin microbiome network structure differs significantly between skin sites.286

Discussion287

Foundational work has provided a baseline understanding of the human microbiome by characterizing288

bacterial and viral diversity across the human body [13,14,46–48,67]. Here we integrated the bacterial and289

viral sequence sets to offer an initial understanding of how phage-bacteria networks differ throughout the290

human body, so as to provide a baseline for future studies of how and why microbiome networks differ in291

disease states. We implemented a network-based analytical model to evaluate the basic properties of the292
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human microbiome through bacteria and phage relationships, instead of membership or diversity alone.293

This approach enabled the application of network theory to provide a new perspective while analyzing294

bacterial and viral communities simultaneously. We utilized metrics of connectivity to model the extent to295

which communities of bacteria and phages interact through mechanisms such as horizontal gene transfer,296

modulated bacterial gene expression, and alterations in abundance.297

Just as gut microbiome and virome composition and diversity are conserved in individuals [13,46,47,66], gut298

and skin microbiome network structures were conserved within individuals over time. Gut network structure299

was not conserved among family members. These findings suggested that the community properties inferred300

from microbiome interaction network structures, such as robustness (meaning a more highly connected301

network is more “robust” to network degradation because a randomly removed bacteria or phage node is less302

likely to divide or disintegrate [30,64] the overall network), the potential for horizontal gene transfer between303

members, and co-evolution of populations, were person-specific. These properties may be impacted by304

personal factors ranging from the body’s immune system to external environmental conditions, such as305

climate and diet.306

We observed evidence supporting the ability of environmental conditions to shape gut and skin microbiome307

interaction network structure by observing that diet and skin location were associated with altered network308

structures. We observed evidence that diet was sufficient to alter gut microbiome network connectivity,309

although this needs to be interpreted cautiously as a case observation, due to the small sample size. Although310

the available sample size was small, our findings provide some preliminary evidence that high-fat diets are311

less connected than low-fat diets and that high-fat diets may therefore lead to less robust communities312

with a decreased ability for microbes to directly influence one another. We supported this finding with the313

observation that obesity may have been associated with decreased network connectivity. Together these314

findings suggest the food we eat may not only impact which microbes colonize our guts, but may also impact315

their interactions with infecting phages. Further work will be required to characterize these relationships with316

a larger cohort.317

In addition to diet, the skin environment also influenced the microbiome interaction network structure.318
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Network structure differed between environmentally exposed and occluded skin sites. The sites under319

greater environmental fluctuation and exposure (the exposed and intermittently exposed sites) were less320

connected and therefore were predicted to have a higher resilience against network degradation when321

random nodes are removed from the network. Likewise, intermittently moist sites demonstrated less322

connectedness than the moist and sebaceous sites. These findings agree with previous work that has323

shown that bacterial community networks differ by skin environment types [58]. Together these data324

suggested that body sites under greater degrees of fluctuation harbored less connected microbiomes325

that are potentially less robust to network disruption by extinction events. This points to a link between326

microbiome and environmental robustness toward network homeostasis and warrants further investigation.327

While these findings take us an important step closer to understanding the microbiome through interspecies328

relationships, there are caveats to and considerations regarding our findings. First, as with most classification329

models, the infection classification model developed and applied is only as good as its training set – in this330

case, the collection of experimentally-verified positive and negative infection data. Large-scale experimental331

screens for phage and bacteria infectious interactions that report high-confidence negative interactions (i.e.,332

no infection) are desperately needed, as they would provide more robust model training and improved model333

performance. Furthermore, just as we have improved on previous modeling efforts, we expect that new and334

creative scoring metrics will improve future performance. Other creative and high performing models are335

currently being developed and the applications of these models to community network creation will continue336

to move this field forward [43–45].337

Second, although our analyses utilized the best datasets currently available for our study, this work was done338

retrospectively and relied on existing data up to seven years old. These archived datasets were limited by339

the technology and costs of the time. For example, the diet and twin studies, relied on multiple displacement340

amplification (MDA) in their library preparations–an approach used to overcome the large nucleic acids341

requirements typical of older sequencing library generation protocols. It is now known that MDA results342

in biases in microbial community composition [68], as well as toward ssDNA viral genomes [69,70], thus343

rendering the resulting microbial and viral metagenomes largely non-quantitative. Future work that employs344
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larger sequence datasets and that avoids the use of bias-inducing amplification steps will build on and validate345

our findings, as well as inform the design and interpretation of further studies.346

Although our models demonstrated satisfactory accuracy and overall performance, it was important to347

interpret our findings under the realization that our model was not perfect. This caveat is not new to the348

microbiome field, with a notable example being the use of 16S rRNA sequencing using the V4 variable349

region [60]. Use of the V4 variable region excluded detection of major bacterial members, meaning that the350

findings were not able to completely describe the underlying biological environment. Despite this caveat,351

skin microbiome studies provided valuable biological insights by focusing on the community differences352

between groups (e.g. disease and healthy) which were both analyzed the same way. Similarly, here we353

focused our conclusions on the differences between the groups which were all treated the same, so that we354

can minimize our dependence on a perfect predictive model.355

Finally, the networks in this study were built using operational genomic units (OGUs), which represented356

groups of highly similar bacteria or phage genomes or clustered genome fragments. Similar clustering357

definition and validation methods, both computational and experimental, have been implemented in other358

metagenomic sequencing studies, as well [42,71–73]. These approaches could offer yet another level of359

sophistication to our network-based analyses. While this operationally defined clustering approach allows360

us to study whole community networks, our ability to make conclusions about interactions among specific361

phage or bacterial species or populations is inherently limited, compared to more focused, culture-based362

studies such as the work by Malki et al [61]. Future work must address this limitation, e.g., through improved363

binning methods and deeper metagenomic shotgun sequencing, but most importantly through an improved364

conceptual framing of what defines ecologically and evolutionarily cohesive units for both phage and bacteria365

[74]. Defining operational genomic units and their taxonomic underpinnings (e.g., whether OGU clusters366

represent genera or species) is an active area of work critical to the utility of this approach. As a first367

step, phylogenomic analyses have been performed to cluster cyanophage isolate genomes into informative368

groups using shared gene content, average nucleotide identity of shared genes, and pairwise differences369

between genomes [75]. Such population-genetic assessment of phage evolution, coupled with the ecological370
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implications of genome heterogeneity, will inform how to define nodes in future iterations of the ecological371

network developed here. Even though we are hesitant to speculate on phage host ranges at low taxonomic372

levels in our dataset, the data does agree with previous reports of instances of broad phage host range373

[61,76]. Additionally, visualization of our dataset interactions using the heat map approach previously used374

in other host range studies, suggests a trend toward modular and nested tropism, but we do not have the375

strain-level resolution that powered those previous experimental studies.376

Together our work takes an initial step towards defining bacteria-virus interaction profiles as a characteristic377

of human-associated microbial communities. This approach revealed the impacts that different human378

environments (e.g., the skin and gut) can have on microbiome connectivity. By focusing on relationships379

between bacterial and viral communities, they are studied as the interacting cohorts they are, rather than380

as independent entities. While our developed bacteria-phage interaction framework is a novel conceptual381

advance, the microbiome also consists of archaea and small eukaryotes, including fungi and Demodex mites382

[1,77] – all of which can interact with human immune cells and other non-microbial community members [78].383

Future work will build from our approach and include these additional community members and their diverse384

interactions and relationships (e.g., beyond phage-bacteria). This will result in a more robust network and a385

more holistic understanding of the evolutionary and ecological processes that drive the assembly and function386

of the human-associated microbiome.387

Materials & Methods388

Code Availability389

A reproducible version of this manuscript written in R markdown and all of the code used to obtain and390

process the sequencing data is available at the following GitHub repository:391

https://github.com/SchlossLab/Hannigan_ConjunctisViribus_ploscompbio_2017392

18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2018. ; https://doi.org/10.1101/144642doi: bioRxiv preprint 

https://doi.org/10.1101/144642
http://creativecommons.org/licenses/by/4.0/


Data Acquisition & Quality Control393

Raw sequencing data and associated metadata were acquired from the NCBI sequence read archive (SRA).394

Supplementary metadata were acquired from the same SRA repositories and their associated manuscripts.395

The gut virome diet study (SRA: SRP002424), twin virome studies (SRA: SRP002523; SRP000319), and396

skin virome study (SRA: SRP049645) were downloaded as .sra files. For clarity, the sample sizes used397

for each study subset were described with the data in the results section. Sequencing files were converted398

to fastq format using the fastq-dump tool of the NCBI SRA Toolkit (v2.2.0). Sequences were quality399

trimmed using the Fastx toolkit (v0.0.14) to exclude bases with quality scores below 33 and shorter than 75400

bp [79]. Paired end reads were filtered to exclude sequences missing their corresponding pair using the401

get_trimmed_pairs.py script available in the source code.402

Contig Assembly403

Contigs were assembled using the Megahit assembly program (v1.0.6) [80]. A minimum contig length of 1404

kb was used. Iterative k-mer stepping began at a minimum length of 21 and progressed by 20 until 101. All405

other default parameters were used.406

Contig Abundance Calculations407

Contigs were concatenated into two master files prior to alignment, one for bacterial contigs and one for408

phage contigs. Sample sequences were aligned to phage or bacterial contigs using the Bowtie2 global aligner409

(v2.2.1) [81]. We defined a mismatch threshold of 1 bp and seed length of 25 bp. Sequence abundance was410

calculated from the Bowtie2 output using the calculate_abundance_from_sam.pl script available in411

the source code.412
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Operational Genomic Unit Binning413

Contigs often represent large fragments of genomes. In order to reduce redundancy and the resulting414

artificially inflated genomic richness within our dataset, it was important to bin contigs into operational415

units based on their similarity. This approach is conceptually similar to the clustering of related 16S rRNA416

sequences into operational taxonomic units (OTUs), although here we are clustering contigs into operational417

genomic units (OGUs) [67].418

Contigs were clustered using the CONCOCT algorithm (v0.4.0) [82]. Because of our large dataset and limits419

in computational efficiency, we randomly subsampled the dataset to include 25% of all samples, and used420

these to inform contig abundance within the CONCOCT algorithm. CONCOCT was used with a maximum421

of 500 clusters, a k-mer length of four, a length threshold of 1 kb, 25 iterations, and exclusion of the total422

coverage variable.423

OGU abundance (AO) was obtained as the sum of the abundance of each contig (Aj) associated with that424

OGU. The abundance values were length corrected such that:425

AO =
107 ∑k

j=1 Aj∑k
j=1 Lj

Where L is the length of each contig j within the OGU.426

Operational Genomic Unit Identification427

To confirm a lack of phage sequences in the bacterial OGU dataset, we performed blast nucleotide alignment428

of the bacterial OGU representative sequences using an e-value < 10−25, which was stricter than the 10−10429

threshold used in the random forest model below, against all of the phage reference genomes available in430

the EMBL database. We used a stricter threshold because we know there are genomic similarities between431

bacteria and phage OGUs from the interactive model, but we were interested in contigs with high enough432

similarity to references that they may indeed be from phages. We also performed the converse analysis433

20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2018. ; https://doi.org/10.1101/144642doi: bioRxiv preprint 

https://doi.org/10.1101/144642
http://creativecommons.org/licenses/by/4.0/


of aligning phage OGU representative sequences to EMBL bacterial reference genomes. Finally, we ran434

both the phage and bacteria OGU representative sequences through the Virsorter program (1.0.3) to identify435

phages (all default parameters were used), using only those in the high confidence identification category436

“class 1” [51].437

Open Reading Frame Prediction438

Open reading frames (ORFs) were identified using the Prodigal program (V2.6.2) with the meta mode439

parameter and default settings [83].440

Classification Model Creation and Validation441

The classification model for predicting interactions was built using experimentally validated bacteria-phage442

infections or validated lack of infections from six studies [41,52–56]. No further reference databases were443

used in our alignment procedures. Associated reference genomes were downloaded from the European444

Bioinformatics Institute (see details in source code). The model was created based on the four metrics listed445

below.446

The four scores were used as parameters in a random forest model to classify bacteria and bacteriophage447

pairs as either having infectious interactions or not. The classification model was built using the Caret448

R package (v6.0.73) [84]. The model was trained using five-fold cross validation with ten repeats, and449

the median model performance was evaluated by training the model on 80% of the dataset and testing450

performance on the remaining 20%. Pairs without scores were classified as not interacting. The model was451

optimized using the ROC value. The resulting model performance was plotted using the plotROC R package.452

Identify Bacterial CRISPRs Targeting Phages453

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) were identified from bacterial454

genomes using the PilerCR program (v1.06) [85]. Resulting spacer sequences were filtered to exclude455
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spacers shorter than 20 bp and longer than 65 bp. Spacer sequences were aligned to the phage genomes456

using the nucleotide BLAST algorithm with default parameters (v2.4.0) [86]. The mean percent identity for457

each matching pair was recorded for use in our classification model.458

Detect Matching Prophages within Bacterial Genomes459

Temperate bacteriophages infect and integrate into their bacterial host’s genome. We detected integrated460

phage elements within bacterial genomes by aligning phage genomes to bacterial genomes using the461

nucleotide BLAST algorithm and a minimum e-value of 1e-10. The resulting bitscore of each alignment was462

recorded for use in our classification model.463

Identify Shared Genes Between Bacteria and Phages464

As a result of gene transfer or phage genome integration during infection, phages may share genes with465

their bacterial hosts, providing us with evidence of phage-host pairing. We identified shared genes between466

bacterial and phage genomes by assessing amino acid similarity between the genes using the Diamond467

protein alignment algorithm (v0.7.11.60) [87]. The mean alignment bitscores for each genome pair were468

recorded for use in our classification model.469

Protein - Protein Interactions470

The final method used for predicting infectious interactions between bacteria and phages was the detection471

of pairs of genes whose proteins are known to interact. We assigned bacterial and phage genes to protein472

families by aligning them to the Pfam database using the Diamond protein alignment algorithm. We then473

identified which pairs of proteins were predicted to interact using the Pfam interaction information within the474

Intact database [57]. The mean bitscores of the matches between each pair were recorded for use in the475

classification model.476
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Interaction Network Construction477

The bacteria and phage operational genomic units (OGUs) were scored using the same approach as outlined478

above. The infectious pairings between bacteria and phage OGUs were classified using the random forest479

model described above. The predicted infectious pairings and all associated metadata were used to populate480

a graph database using Neo4j graph database software (v2.3.1) [88]. This network was used for downstream481

community analysis.482

Centrality Analysis483

We quantified the centrality of graph vertices using three different metrics, each of which provided different484

information graph structure. When calculating these values, let G(V, E) be an undirected, unweighted graph485

with |V | = n nodes and |E| = m edges. Also, let A be its corresponding adjacency matrix with entries486

aij = 1 if nodes Vi and Vj are connected via an edge, and aij = 0 otherwise.487

Briefly, the closeness centrality of node Vi is calculated taking the inverse of the average length of the488

shortest paths (d) between nodes Vi and all the other nodes Vj . Mathematically, the closeness centrality of489

node Vi is given as:490

CC (Vi) =

 n∑
j=1

d (Vi, Vj)

−1

The distance between nodes (d) was calculated as the shortest number of edges required to be traversed491

to move from one node to another.492

Intuitively, the degree centrality of node Vi is defined as the number of edges that are incident to that node:493

CD (Vi) =
n∑

j=1
aij

where aij is the ijth entry in the adjacency matrix A.494
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The eigenvector centrality of node Vi is defined as the ith value in the first eigenvector of the associated495

adjacency matrix A. Conceptually, this function results in a centrality value that reflects the connections of496

the vertex, as well as the centrality of its neighboring vertices.497

The centralization metric was used to assess the average centrality of each sample graph G. Centralization498

was calculated by taking the sum of each vertex Vi’s centrality from the graph maximum centrality Cw, such499

that:500

C (G) =
∑n

i=1 Cw − c (Vi)
T

The values were corrected for uneven graph sizes by dividing the centralization score by the maximum501

theoretical centralization (T) for a graph with the same number of vertices.502

Degree and closeness centrality were calculated using the associated functions within the igraph R package503

(v1.0.1) [89].504

Network Relationship Dissimilarity505

We assessed similarity between graphs by evaluating the shared centrality of their vertices, as has been506

done previously. More specifically, we calculated the dissimilarity between graphs Gi and Gj using the507

Bray-Curtis dissimilarity metric and eigenvector centrality values such that:508

B (Gi, Gj) = 1 − 2Cij

Ci + Cj

Where Cij is the sum of the lesser centrality values for those vertices shared between graphs, and Ci and509

Cj are the total number of vertices found in each graph. This allows us to calculate the dissimilarity between510

graphs based on the shared centrality values between the two graphs.511
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Statistics and Comparisons512

Differences in intrapersonal and interpersonal network structure diversity, based on multivariate data,513

were calculated using an analysis of similarity (ANOSIM). Statistical significance of univariate Eigenvector514

centrality differences were calculated using a paired Wilcoxon test.515

Statistical significance of differences in univariate eigenvector centrality measurements of skin virome-microbiome516

networks were calculated using a pairwise Wilcoxon test, corrected for multiple hypothesis tests using the517

Holm correction method. Multivariate eigenvector centrality was measured as the mean differences between518

cluster centroids, with statistical significance measured using an ANOVA and post hoc Tukey test.519
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Supplemental Figure Captions534

Figure S1: Sequencing Depth Summary. Number of sequences that aligned to (A) Phage and (B) Bacteria
operational genomic units per sample and colored by study.
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Figure S2: Contig Summary Statistics. Scatter plot heat map with each hexagon representing the
abundance of contigs. Contigs are organized by length on the x-axis and the number of aligned sequences
on the y-axis.
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Figure S3: Operational Genomic Unit Summary Statistics. Scatter plot with operational genomic unit
clusters organized by average contig length within the cluster on the x-axis and the number of contigs in the
cluster on the y-axis. Operational genomic units of (A) bacteriophages and (B) bacteria are shown.
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Figure S4: Summary information of validation dataset used in the interaction predictive model. A)
Categorical heat-map highlighting the experimentally validated positive and negative interactions. Only
bacteria species are shown, which represent multiple reference strains. Phages are labeled on the x-axis
and bacteria are labeled on the y-axis. B) Quantification of bacterial host strains known to exist for each
phage. C) Genome strandedness and D) linearity of the phage reference genomes used for the dataset.
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Figure S5: Classification Model Performance By Nested Cross-Validation. Box plot illustrating the median
and variance of phage-bacteria interaction prediction model. Performance was evaluated using nested cross
validation, meaning that 20% of the samples were randomly withheld from model training and then used to
evaluate performance. The results of 100 random iterations are shown. Metrics include area under the curve
(gray), sensitivity (red), and specificity (tan).
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Figure S6: Stable Classification Model Performance Over Random Iterations In addition to nested
cross-validation, here we show the results from the five-fold cross validation, in which 20% of the samples
were randomly withheld during the training stage for model evaluation and mtry tuning. The results of 25
random iterations are shown. Metrics include area under the curve (red), sensitivity (green), and specificity
(blue). Dashed line highlight the random point of 0.5.
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Figure S7: Structure of the interactive network. Metadata relationships to samples (Phage Sample ID and
Bacteria Sample ID) included the associated time point, the study, the subject the sample was taken from,
and the associated disease. Infectious interactions were recorded between phage and bacteria operational
genomic units (OGUs). Sequence count abundance for each OGU within each sample was also recorded.
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Figure S8: Heatmap of Phage-Bacteria Interaction Relationships of Master Network. Heatmap illustrating
the ranges of infectious interactions predicted between bacteria and bacteriophages across our three studies.
Bacterial OGUs are aligned on the vertical access, and the bacteriophage OGUs are organized on the
horizontal access. OGUs are organized near other OGUs with similar infectious profiles, which are further
illustrated by the dendrograms. Predicted infections are tan and predicted lacks of interactions are red.
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Figure S9: Distribution of node eccentricity across subnetworks. Histograms illustrating the distributions
of node eccentricity values across the subnetworks, for supplementing the node, edge, and diameter values
provided for the networks. Eccentricity of each node is the shortest distance of that node to the furthest other
node within the graph.
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Figure S10: Intrapersonal vs Interpersonal Dissimilarity of the Skin. Quantification of skin network
dissimilarity within the same subject and anatomical location over time (intrapersonal) and the mean
dissimilarity between the subject of interest and all other subjects at the same time and the same anatomical
location (interpersonal), separated by each anatomical site (forehead [Fh], palm [Pa], toe web [Tw], umbilicus
[Um], antecubital fossa [Ac], axilla [Ax], and retroauricular crease [Ra]). P-value was calculated using a paired
Wilcoxon test.
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Supplemental Table Captions535

Table S1: Summary of the primary quality control measures reported in the original publications of the viromes536

used in this current study.537
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