bioRxiv preprint doi: https://doi.org/10.1101/144568; this version posted May 31, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Bacterial colonization stimulates a complex physiological response in
immature human intestinal epithelium

David R. Hill2, Sha Huang?, Courtney Fields®, Disharee Mukherjee®, Brooke Bons®, Shrikar
Thodla?, Priya H. Dedhiad, Alana M. Chin2, Yu-Hwai Tsai?, Melinda S. Nagy?, Thomas Schmidtc,
Seth Walk', Vincent B. Young??:¢* and Jason R. Spence®®*

2Department of Internal Medicine, Division of Gastroenterology
bDepartment of Internal Medicine, Division of Infectious Disease
°Department of Microbiology and Immunology
9Department of Surgery
®Department of Cell and Developmental Biology, University of Michigan, Ann Arbor MI 48109
'Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717

Abstract

The human gastrointestinal tract is immature at birth, yet must adapt to dramatic changes such
as oral nutrition and microbial colonization. The confluence of these factors can lead to severe
inflammatory disease in premature infants; however, investigating complex environment-host in-
teractions is difficult due to limited access to immature human tissue. Here, we demonstrate that
the epithelium of human pluripotent stem cell-derived human intestinal organoids is globally sim-
ilar to the immature human epithelium and we utilize HIOs to investigate complex host-microbe
interactions in this naive epithelium. Our findings demonstrate that the immature epithelium is
intrinsically capable of establishing a stable host-microbe symbiosis. Microbial colonization leads
to complex contact and hypoxia driven responses resulting in increased antimicrobial peptide pro-
duction, maturation of the mucus layer, and improved barrier function. These studies lay the
groundwork for an improved mechanistic understanding of how colonization influences develop-
ment of the immature human intestine.
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Introduction

The epithelium of the gastrointestinal (Gl) tract represents a large surface area for host-microbe
interaction and mediates the balance between tolerance of mutualistic organisms and the
exclusion of potential pathogens (Peterson and Artis, 2014). This is accomplished, in part,
through the formation of a tight physical epithelial barrier, in addition to epithelial secretion of
anti-microbial peptides and mucus (Veereman-Wauters, 1996; Renz et al., 2012). Development
and maturation of the epithelial barrier coincides with the first exposure of the Gl tract to
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microorganisms and the establishment of a microbial community within the gut (Palmer et al.,
2007; Koenig et al., 2011). Although microorganisms have long been appreciated as the primary
drivers of the postnatal expansion of adaptive immunity (Renz et al., 2012; Shaw et al., 2010;
Hviid et al., 2011; Abrahamsson et al., 2014; Arrieta et al., 2015), and more recently as key
stimuli in the development of digestion (Erkosar et al., 2015), metabolism (Cho et al., 2012), and
neurocognitive function (Diaz Heijtz et al., 2011; Clarke et al., 2014; Borre et al., 2014;
Desbonnet et al., 2014), it remains unclear how the human epithelial surface adapts to
colonization and expansion of microorganisms within the immature Gl tract.

Studies in gnotobiotic mice have improved our understanding of the importance of microbes in
normal gut function since these mice exhibit profound developmental defects in the intestine
(Round and Mazmanian, 2009; Gensollen et al., 2016; Bry et al., 1996; Hooper et al., 1999)
including decreased epithelial turnover, impaired formation of microvilli (Abrams et al., 1963), and
altered mucus glycosylation at the epithelial surface (Bry et al., 1996; Goto et al., 2014; Cash

et al., 2006). However, evidence also suggests that the immature human intestine may differ
significantly from the murine intestine, especially in the context of disease (Nguyen et al., 2015).
For example, premature infants can develop necrotizing enterocolitis (NEC), an inflammatory
disease with unknown causes. Recent reports suggest a multifactorial etiology by which
immature intestinal barrier function predisposes the preterm infant to intestinal injury and
inflammation following postpartum microbial colonization (Neu and Walker, 2011; Morrow et al.,
2013; Greenwood et al., 2014; Hackam et al., 2013; Afrazi et al., 2014; Fusunyan et al., 2001;
Nanthakumar et al., 2011). Rodent models of NEC have proven to be inadequate surrogates for
studying human disease (Tanner et al., 2015). Therefore, direct studies of host-microbial
interactions in the immature human intestine will be important to understand the complex
interactions during bacterial colonization that lead to a normal gut development or disease.

Important ethical and practical considerations have limited research on the immature human
intestine. For example, neonatal surgical specimens are often severely damaged by disease and
not conducive for ex vivo studies. We and others have previously demonstrated that human
pluripotent stem cell derived human intestinal organoids (HIOs) closely resemble immature
intestinal tissue (Spence et al., 2011; Finkbeiner et al., 2015; Watson et al., 2014; Forster et al.,
2014; Dedhia et al., 2016; Aurora and Spence, 2016; Chin et al., 2017) and recent work has
established gastrointestinal organoids as a powerful model of microbial pathogenesis at the
mucosal interface (Leslie et al., 2015; McCracken et al., 2014; Forbester et al., 2015; Hill and
Spence, 2017).

In the current work, we used HIOs as a model immature intestinal epithelium and a
human-derived non-pathogenic strain of E. coli as a model intestinal colonizer to examine how
host-microbe interactions affected intestinal maturation and function. Although the composition
of the neonatal intestinal microbiome varies between individuals, organisms within the genera
Escherichia are dominant early colonizers (Gosalbes et al., 2013; Backhed et al., 2015) and
commensal E. coli are widely prevalent and highly abundant components of the neonatal stool
microbiome (Palmer et al., 2007; Koenig et al., 2011; Backhed et al., 2015; Morrow et al., 2013).
Microinjection of E. coli into the lumen of 3-dimensional HIOs resulted in stable bacterial
colonization in vitro, and using RNA-sequencing, we monitored the global transcriptional
changes in response to colonization. We observed widespread, time-dependent transcriptional
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responses that are the result of both bacterial contact and luminal hypoxia resulting from
bacterial colonization in the HIO. Bacterial association with the immature epithelium increased
antimicrobial defenses and resulted in enhanced epithelial barrier function and integrity. We
observed that NF-xB is a central downstream mediator of the transcriptional changes induced by
both bacterial contact and hypoxia. We further probed the bacterial contact and hypoxia
dependent epithelial responses using experimental hypoxia and pharmacological NF-xB
inhibition, which allowed us to delineate which of the transcriptional and functional responses of
the immature epithelium were oxygen and/or NF-<B dependent. We found that NF-xB dependent
microbe-epithelial interactions were beneficial by enhancing barrier function and protecting the
epithelium from damage by inflammatory cytokines. Collectively, these studies shed light on how
microbial contact with the immature human intestinal epithelium can lead to modified function.

Results

Pluripotent stem-cell derived intestinal epithelium transcriptionally resembles the immature
human intestinal epithelium

Previous work has demonstrated that stem cell derived human intestinal organoids resemble
immature human duodenum (Watson et al., 2014; Finkbeiner et al., 2015; Tsai et al., 2017).
Moreover, transplantation into immunocompromised mice results in HIO maturation to an
adult-like state (Watson et al., 2014; Finkbeiner et al., 2015). These analyses compared HIOs
consisting of epithelium and mesenchyme to whole-thickness human intestinal tissue, which also
possessed cellular constituents lacking in HIOs such as neurons, blood vessels and immune
cells (Finkbeiner et al., 2015). Thus the extent to which the HIO epithelium resembles
immature/fetal intestinal epithelium remains unclear. To address this gap and further characterize
the HIO epithelium relative to fetal and adult duodenal epithelium, we isolated and cultured
epithelium from HIOs grown entirely in vitro, from fetal duodenum, adult duodenum, or HIOs that
had been transplanted into the kidney capsule of NSG immuno-deficient mice and matured for 10
weeks. These epithelium-only derived organoids were expanded in vitro in uniform tissue culture
conditions for 4-5 passages and processed for RNA-sequencing (RNA-seq) (Supplemental
Figure 1). Comparison of global transcriptomes between all samples in addition to human
embryonic stem cells (hESCs) used to generate HIOs (Finkbeiner et al. 2015; E-MTAB-3158)
revealed a clear hierarchy in which both in vitro grown HIO epithelium (P = 5.06 x 10-°) and
transplanted epithelium (P = 7.79 x 10~'%) shares a substantially greater degree of similarity to
fetal small intestinal epithelium (Supplemental Figure 1A).

While unbiased clustering demonstrated that transplanted epithelium is closely resembles fetal
epithelium, we noted a shift towards the adult transcriptome that resulted in a relative increase in
the correlation between transplanted HIO epithelium and adult duodenum-derived epithelium
grown in vitro (Supplemental Figure 1B, P = 1.17 x 10~%). Principle component analysis (PCA)
of this multi-dimensional gene expression dataset (Supplemental Figure 1C) corroborated the
correlation analysis, and indicated that developmental stage (PC1, 27.75% cumulative variance)
and tissue maturation status (PC2, 21.49% cumulative variance) were major drivers accounting
for a total of 49.24% of the cumulative variance between samples. Here, HIO epithelium
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clustered with fetal epithelium along PC2 whereas transplanted HIO epithelium clustered with
adult epithelium.

We further used differential expression analysis to demonstrate that in vitro grown HIO
epithelium is similar to the immature human intestine whereas in vivo transplanted HIO
epithelium is similar to the adult epithelium. To do this, we identified differentially expressed
genes through two independent comparisons: 1) human fetal vs. adult epithelium; 2) HIO
epithelium vs. transplanted HIO epithelium. Genes enriched in transplanted HIO epithelium
relative to the HIO epithelium were compared to genes enriched in the adult duodenum relative
to fetal duodenum (Supplemental Figure 1D). There was a highly significant correlation
between log,-transformed expression ratios where transplanted HIOs and adult epithelium
shared enriched genes while HIO and fetal epithelium shared enriched genes (P = 2.6 x 10728).
This analysis supports previously published data indicating that the epithelium from HIOs grown
in vitro recapitulates the gene expression signature of the immature duodenum and
demonstrates that the HIO epithelium is capable of adopting a transcriptional signature that more
strongly resembles adult duodenum following transplantation into mice.

HIOs can be stably associated with commensal E. coli

Given that the HIO epithelium recapitulates many of the features of the immature intestinal
epithelium, we set out to evaluate the effect of bacterial colonization on the naive HIO epithelium.
Previous studies have established that pluripotent stem cell derived intestinal organoids can be
injected with live viral (Finkbeiner et al., 2012) or bacterial pathogens (Leslie et al., 2015;
Engevik et al., 2015; Forbester et al., 2015), however it was not known if HIOs could be stably
co-cultured with non-pathogenic or commensal microorganisms. We co-cultured HIOs with the
human commensal microbe Esherichia coli strain ECOR2 (Ochman and Selander, 1984) using a
microinjection technique to introduce live E. coli into the HIO lumen in a manner that prevented
contamination of the surrounding media. HIOs microinjected with 10° live E. coli constitutively
expressing GFP exhibit robust green fluorescence within 3 h of microinjection (Figure 1A).
Numerous E. coli localized to the luminal space at 48 h post-microinjection and are present
adjacent to the HIO epithelium, with some apparently residing in close opposition to the apical
epithelial surface (Figure 1B).

In order to determine the minimum number of CFU E. coli required to establish short term
colonization (24 hours), we microinjected increasing concentrations of live E. coli suspended in
PBS into single HIOs and collected and enumerated bacteria in the luminal contents at 24 h
post-microinjection (Figure 1C). Single HIOs can be stably colonized by as few as 5 CFU E. coli
per HIO with 77.8 % success (positive luminal culture and negative external media culture at 24
h post-injection) and 100 % success at > 100 CFU per HIO (Figure 1C). Increasing the number
of CFU E. coli microinjected into each HIO at t = 0 did not increase the mean luminal CFU per
HIO at 24 hours post-microinjection (P = 0.37; Figure 1C). Thus, the 24 h growth rate of E. coli
within the HIO lumen was negatively correlated with the CFU injected (R? = 0.625, P =

3.1 x 107'2; Figure 1C).

Next, we examined the stability of HIO and commensal E. coli co-cultures over time in vitro. HIOs
were microinjected with 10 CFU E. coli and maintained for 24-72 h (Figure 1D). Rapid expansion
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of E. coli density within the HIO lumen was observed in the first 24 h, with relatively stable
bacterial density at 48-72 hr. A 6.25-fold increase in bacterial density was observed between 24
and 72 h post-microinjection (P = 0.036). Importantly, samples taken from the external HIO
culture media were negative for E. coli growth under all microinjection conditions (Figure 1E).

Finally, we examined the stability of HIO cultures following E. coli microinjection (Figure 1F). A
total of 48 individual HIOs were microinjected with 10* CFU E. coli each. Controls were
microinjected with sterile PBS alone. The external HIO media was sampled daily and cultured for
bacterial growth. External culture media was sterile in 100% of control HIOs throughout the
entire experiment, and in 100 % of E. coli injected HIOs on days 0-2 post-microinjection. On
days 3-9 post-microinjection some cultured media was positive for E. coli growth; however, 77.08
% of E. coli injected HIOs were negative for E. coli in the external culture media throughout the
timecourse. Thus, the large majority of E. coli colonized HIOs remain stable for an extended
period when cultured in vitro and without antibiotics.

Bacterial association elicits a broad-scale, time-dependent transcriptional response

Colonization of the immature gut by microbes is associated with functional maturation in both
model systems(Kremer et al., 2013; Sommer et al., 2015; Broderick et al., 2014; Erkosar et al.,
2015) and in human infants (Renz et al., 2012). To evaluate if exposing HIOs to E. coli led to
maturation at the epithelial interface, we evaluated the transcriptional events following
microinjection of live E. coli into the HIO lumen. PBS-injected HIOs (controls) and HIOs
co-cultured with E. coli were collected for RNA-seq after 24, 48 and 96 hours (Figure 2). At 24 h
post-microinjection, a total of 2,018 genes were differentially expressed (adjusted-FDR < 0.05),
and the total number of differentially expressed was further increased at 48 and 96 h
post-microinjection relative to PBS-injected controls (Figure 2A). Principle component analysis
demonstrated that global transcriptional activity in HIOs is significantly altered by exposure to E.
coli, with the degree of transcriptional changes relative to control HIOs increasing over time
(Figure 2B).

Gene set enrichment analysis (GSEA) (Subramanian et al., 2005) using the GO (Ashburner

et al., 2000; Gene Ontology Consortium, 2015) and REACTOME (Croft et al., 2014; Fabregat

et al., 2016) databases to evaluate RNA-seq expression data revealed coordinated changes in
gene expression related to innate anti-microbial defense, epithelial barrier production, adaptation
to low oxygen, and tissue maturation (Figure 2C, Table 1). Innate anti-microbial defense
pathways, including genes related to NF-«B signaling, cytokine production, and Toll-like receptor
(TLR) signaling were strongly up-regulated at 24 h post-microinjection and generally exhibited
decreased activation at later time points. GSEA also revealed changes in gene expression
consistent with reduced oxygen levels or hypoxia, including the induction of pro-angiogenesis
signals. A number of pathways related to glycoprotein synthesis and modification, including
O-linked mucins, glycosaminoglycans, and proteoglycans, were up-regulated in the initial stages
of the transcriptional response (Syndecans, integrins), exhibited a somewhat delayed onset
(O-linked mucins), or exhibited consistent activation at all time points post-microinjection (Keratan
sulfate and glycosaminoglycan biosynthesis). Finally, genes sets associated with a range of
processes involved in tissue maturation and development followed a distinct late-onset pattern of
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Figure 1: A Human intestinal organoid (HIO) containing live GFP+ E. coli str. ECOR2. Brightfield, fluorescent, and
overlay images are labeled. B Confocal micrograph of the HIO epithelium (E-cadherin) in direct association with GFP+
E. coli. C Luminal CFU per HIO E. coli at 24 h post-microinjection with 5 x 10~ to 5 x 10° CFU per HIO. D Luminal
CFU per HIO at 0-72 h post microinjection. E HIO culture media or HIO luminal contents plated on LB agar and cultured
overnight at 37 °C. F Daily proportion of HIO cultures with no culturable E. coli in the external media following E. coli
microinjection (n = 48) or PBS microinjection (n = 8).
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expression. This included broad gene ontology terms for organ morphogenesis, developmental
maturation, and regionalization as well as more specific processes such as differentiation of
mesenchymal and muscle cells, and processes associated with the nervous system (Figure 2C).

We also made correlations between upregulated genes in the RNA-seq data (Figure 2D) and
protein factors present in the organoid culture media following E. coli microinjection (Figure 2E).
B-defensin 1 (DEFBT1 (gene); BD-1 (protein)) and g-defensin 2 (DEFB4A (gene); BD-2 (protein))
exhibited distinct patterns of expression, with both DEFB1 and its protein product BD-1 stable at
24 hours after E. coli microinjection but relatively suppressed at later time points, and DEFB4A
and BD-2 strongly induced at early time points and subsiding over time relative to PBS-injected
controls. By contrast, inflammatory regulators IL-6 and IL-8 and the pro-angiogenesis factor
VEGF were strongly induced at the transcriptional level within 24-48 h of E. coli microinjection.
Secretion of IL-6, IL-8, and VEGF increased over time, peaking at 5 - 9 days after E. coli
association relative to PBS-injected controls (Figure 2E). Taken together, this data demonstrates
a broad-scale and time-dependent transcriptional response to E. coli association with distinct
early- and late-phase patterns of gene expression and protein secretion.

E. coli colonization is associated with a reduction in luminal O,

The mature intestinal epithelium is characterized by a steep oxygen gradient, ranging from 8%
oxygen within the bowel wall to < 2% oxygen in the lumen of the small intestine (Fisher et al.,
2013). Reduction of oxygen content in the intestinal lumen occurs during the immediate perinatal
period (Gruette et al., 1965), resulting in changes in epithelial physiology (Glover et al., 2016;
Kelly et al., 2015; Colgan et al., 2013; Zeitouni et al., 2016) and shaping the subsequent
composition of the microbiota (Schmidt and Kao, 2014; Espey, 2013; Albenberg et al., 2014;
Palmer et al., 2007; Koenig et al., 2011). Analysis of the global transcriptional response to E. coli
association in the immature intestinal tissue revealed pronounced and coordinated changes in
gene expression consistent with the onset of hypoxia (Figure 2C-E). We therefore measured
oxygen concentration in the lumen of control HIOs and following microinjection of live E. coli
using a 50 nm diameter fiberoptic optode (Figure 3A-B). Baseline oxygen concentration in the
organoid lumen was 8.04 + 0.48%, which was significantly reduced relative to the external
culture media (18.86 + 0.37%, P = 3.6 x 10~'"). At 24 and 48 h post-microinjection, luminal
oxygen concentration was significantly reduced in E. coli-injected HIOs relative to PBS-injected
HIOs (P = 0.04 and P = 5.2 x 1075, respectively) reaching concentrations as low as 1.67 +
0.62% at 48 h (Figure 3A). E. coli injected HIOs were collected and CFU were enumerated from
luminal contents at 24 and 48 h post-microinjection. We observed a highly significant negative
correlation between luminal CFU and luminal oxygen concentration where increased density of
luminal bacteria was correlated with lower oxygen concentrations (r> = 0.842, P = 6.86 x 107°;
Figure 3B). Finally, in order to assess relative oxygenation in the epithelium itself, we utilized a
small molecule pimonidazole (PMDZ), which forms covalent conjugates with thiol groups on
cytoplasmic proteins only under low-oxygen conditions (Arteel et al., 1998). Fluorescent
immunohistology demonstrated enhanced PMDZ uptake in E. coli associated HIO epithelium
relative to PBS-injected HIOs at 48 h post-microinjection (Figure 3C). PMDZ staining was limited
to the epithelium and was not detected in the underlying mesenchymal tissue. Thus, luminal and
epithelial oxygen concentration is reduced following microinjection of E. coli into the HIO,
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consistent with data in mice showing that the in vivo epithelium is in a similar low-oxygen state in
normal physiological conditions (Schmidt and Kao, 2014; Kelly et al., 2015; Kim et al., 2017).

NF-xB integrates complex microbial and hypoxic stimuli

E. coli association elicits a robust transcriptional response in immature intestinal tissue (Figure
2) that is associated with the onset of luminal oxygen depletion and relative tissue hypoxia
(Figure 3). We set out to determine whether we could assign discrete portions of the
transcriptional response to direct interaction with microbes or to the subsequent depletion of
luminal oxygen. In the RNA-seq analysis (Figure 2), NF-xB signaling emerged as a major
pathway involved in this complex host-microbe interaction, and NF-xB has been shown by others
to act as a transcriptional mediator of both microbial contact and the response to tissue hypoxia
(Rius et al., 2008; Gilmore, 2006; Wullaert et al., 2011). Gene Ontology and REACTOME
pathway analysis showed that NF-xB signaling components are also highly up-regulated
following microinjection of E. coli into HIOs (Figure 2C and Supplemental Figure 2). Thus we
assessed the role of NF-xB signaling in the microbial contact-associated transcriptional
response and the hypoxia-associated response using the highly selective IKKg inhibitor SC-514
(Kishore et al., 2003; Litvak et al., 2009) to inhibit phosphorylation and activation of the
transcription factor p65 (Supplemental Figure 3). Another set of HIOs was simultaneously
transferred to a hypoxic chamber and cultured in 1% O, with and without SC-514. At 24 h
post-treatment, HIOs were harvested for RNA isolation and RNA-seq. We devised an
experimental scheme that allowed us to parse out the relative contributions of microbial contact
and microbe-associated luminal hypoxia in the transcriptional response to association with live E.
coli (Figure 4A). First, we identified a set of genes significantly up-regulated (adjusted FDR <
0.05) by microinjection of either live E. coli or heat-inactivated E. coli (contact dependent genes).
From this gene set, we identified a subset that was suppressed by the presence of NF-xB
inhibitor SC-514 during association with either live or heat-inactivated E. coli (Gene Set |, Figure
4B). Thus, Gene Set | represents the NF-<B dependent transcriptional response to live or dead
E. coli. Genes induced by live or heat-inactivated E. coli but not suppressed by SC-514 were
considered NF-xB independent (Gene Set Ill, Figure 4B). Likewise, we compared genes
commonly up-regulated by association with live E. coli and those up-regulated under 1% O
culture conditions. A subset of genes induced by either live E. coli or 1% O culture but
suppressed by the presence of NF-«B inhibitor was identified as the NF-xB-dependent
hypoxia-associated transcriptional response (Gene Set Il, Figure 4B). Genes induced by live E.
coli or hypoxia but not inhibited by the presence of NF-xB inhibitor were considered NF-xB
independent transcriptional responses to microbe-associated hypoxia (Gene Set IV). Gene lists
for each gene set are found in Figure 4, Table Supplement 1.

Following the identification of these 4 gene sets, we then applied over-representation analysis
using the GO and REACTOME pathway databases to identify enriched pathways for each of the
4 gene sets, resulting in 4 clearly distinguishable patterns of gene pathway enrichment (Figure
4C). Contact with either live or heat-inactivated E. coli is sufficient to promote expression of
genes involved in maintaining epithelial barrier integrity and mucin production, an effect that is
suppressed in the presence of NF-xB inhibitor. Additionally, key developmental pathways
including epithelial morphogenesis, digestive tract development, and expression of digestive
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enzymes appear to be driven primarily by bacterial association and are largely NF-xB dependent.
Robust innate and adaptive defense requires both bacterial contact and hypoxia, with some
genes associated with antigen processing and cytokine signaling being NF-xB dependent (Gene
Set I) and others associated with NF-<B independent gene sets (Gene Sets Ill & V). Genes
associated with antimicrobial defensin peptides were enriched only in the hypoxia asociated,
NF-xB independent gene set (Gene Set 1V), suggesting that antimicrobial peptides are regulated
by mechanisms that are distinct from other aspects of epithelial barrier integrity such as mucins
and epithelial junctions (Gene Set I). TLR signaling components were is broadly enhanced by live
E. coli and associated with both microbial contact and hypoxia were largely NF-xB independent
(Gene Sets Il & IV). Finally, there was a notable transcriptional signature suggesting metabolic
and mitochondrial adaptation to bacteria that was independent of NF-xB and primarily driven by
bacterial contact rather than hypoxia (Gene Set Ill). Taken together, this analysis demonstrates
that association of immature intestinal epithelium with live E. coli results in a complex interplay
between microbial contact and microbe-associated hypoxia induced gene expression.

Bacterial association promotes secretion of antimicrobial peptides

Antimicrobial peptides (AMPs) are key effectors for innate defense of epithelial surfaces (Muniz
et al., 2012) and act to inhibit microbial growth through direct lysis of the bacterial cell wall and
modulation of bacterial metabolism (Ganz, 2003; Bevins and Salzman, 2011; O’Neil, 2003; Vora
et al., 2004; Brogden, 2005). Defensin gene expression is highly up-regulated following
microinjection of E. coli into HIOs (Figures 2D-E and 4C). Using an annotated database of
known AMPs (Wang et al., 2016) to query our RNA-seq datasets, we found that several AMPs
are up-regulated in the immature intestinal epithelium following E. coli association (Figure 5A).
Among these, DEFB4A and DEFB4B, duplicate genes encoding the peptide human g-defensin
2, were the most highly up-regulated; other AMPs induced by E. coli association included
multi-functional peptides CCL20, CXCL2, CXCL1, CXCL6, CXCL3, REGS3A (Cash et al., 2006),
and LTF (Figure 5A). Analysis of RNA-seq data from HIOs microinjected with live or heat-killed E
.coli with and without NF-xB inhibitor or culture of HIOs under hypoxic conditions had indicated
that defensin genes were enriched among the set of NF-xB-independent genes induced by
hypoxia (Figure 4C). We examined DEFB4A expression specifically (Figure 5B) and found that
relative to control treatment, microinjection of live E. coli resulted in a 7.38-fold increase in
normalized DEFB4A expression. Consistent with the notion that DEFB4A expression is induced
by hypoxia and is not dependent on NF-xB signaling, NF-xB inhibitor treated HIOs injected with
E. coli still showed an "8-fold increase in gene expression and hypoxia-cultured HIOs showed a
5.5 fold induction (Figure 5B). On the other hand, microinjection with heat-inactivated E. coli
resulted in DEFB4A induction that was significantly lower relative to microinjection with live E. coli
(P =0.007. A similar pattern of expression was observed for DEFB4B (Supplemental Figure 4).

We also examined secretion of human 5-defensin 2 peptide (BD-2) in the supernatant of E. coli
associated HIOs (Figure 2E and Figure 5C). BD-2 secretion was increased 3.4-fold at 24 h
following E. coli microinjection (P = 2.7 x 10-8). However, heat-inactivation of E. coli or addition
of NF-xB inhibitor resulted in suppression of BD-2 secretion relative to live E. coli (P = 0.000 51
and 1.6 x 1078, respectively). To determine if the levels of BD-2 produced by HIOs and secreted
into the media were sufficient to retard bacterial growth, we tested the effect of BD-2 at
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concentrations recapitulating the baseline state in the HIO ("0.1 pg/mL) and following
microinjection with E.coli ("1 ug/mL) on in vitro growth of E. coli over 18 h (Figure 5D). Although
there was little effect on E. coli density during initial log-phase growth, BD-2 reduced the amount
of time bacteria spent in log-phase growth, and E. coli density was significantly decreased over
time in bacterial growth media supplemented BD-2 (P = 0.001). Furthermore, concentrations of
BD-2 consistent those found in HIO-/E. coli/ supernatant (1ug/mL) was significantly more
inhibitory than low concentration BD-2 (0.1 pg/mL) in our in vitro growth assay (P = 0.013). From
this experiment we conclude that E. coli association promotes enhanced expression of AMPs,
including BD-2, at concentrations that are sufficient to suppress microbial growth.

Bacterial colonization promotes expression of epithelial mucins and glycotransferases

Mucins are an essential component of epithelial integrity, serving as a formidable barrier to
microbial invasion and repository for secreted AMPs (Bergstrom and Xia, 2013; Cornick et al.,
2015; Johansson and Hansson, 2016; Kim and Ho, 2010). Mucin synthesis requires a complex
series of post-translational modifications that add high molecular weight carbohydrate side
chains to the core mucin protein (Varki, 2017). Our RNA-seq data suggested that mucin gene
expression is dependent on both bacterial contact and NF-«B signaling (Figure 4C). Therefore,
we examined expression of genes in control and E. coli microinjected HIOs that encode mucin
core proteins as well as the glycotransferases that generate the wide variety of post-translational
mucin modifications (Figure 6A). Although some glycotransferases were increased at 24 h after
E. coli microinjection, expression of mucin core proteins and many glycotransferases reached
peak levels at 48 h after the introduction of E. coli to the HIO lumen (Figure 6A). Periodic
Acid-Schiff and Alcian blue staining (PAS/AB) of sections taken from HIOs at 48 h after E. coli
microinjection reveal the formation of a robust mucin layer at the apical epithelial surface
consisting of both acidic (AB-positive) and neutral (PAS-positive) glycoprotein components,
suggesting a rich matrix of O-linked mucins, glycosaminoglycans, and proteoglycans (Figures
6B-C). Interestingly, we observed that E. coli association caused an initial induction of MUC5AC
at 48h that was reduced by 96 h (Figure 6A). MUC5AC is most highly expressed within the
gastric mucosa, but has also been reported in the duodenal epithelium (Buisine et al., 1998,
2001; Rodriguez-Pineiro et al., 2013). On the other hand, MUCZ2 is more commonly associated
with the duodenum, and increased more slowly, showing peak expression after 96 hours of
association with E. coli (Figure 6A). Co-staining of control HIOs and E. coli microinjected HIOs
demonstrated colocalization with Ulex europaeus agglutinin | (UEAT), a lectin with high
specificity for the terminal fucose moiety Fuca1-2Gal-R (Figure 6D). This suggests that following
E. coli association, HIOs produce mucins with mature carbohydrate modifications.

RNA-seq data suggested that O-linked mucins were highly enriched among the subset of genes
induced by bacterial contact in an NF-xB-dependent manner (Figure 4). We examined this
phenomenon at the level of individual glycosyltransferase and mucin genes (Figure 6E). E. coli
induced transcription of mucins and glycosyltransferases (Figure 6E) and mucin secretion
(Supplemental Figure 5) was suppressed in the presence of NF-«B inhibitor SC-514.
Furthermore, culture of HIOs under hypoxia conditions was not sufficient to promote transcription
of genes involved in mucin synthesis (Figure 6E). This result was confirmed with PAS/AB
staining of HIOs microinjected with PBS, live or heat-inactivated E. coli, or cultured under hypoxic
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Figure 5: A Normalized fold change in antimicrobial peptide (AMP) gene expression in E. coli-associated HIOs at 24
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BD-2 peptide in culture supernatant at 24 h as measured by ELISA in HIO cultures treated as indicated. D. Optical
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at 37 °C. P values represents the results of a two-tailed Student’s t-test for the comparisons indicated.
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conditions for 24 h, where bacterial contact promoted formation of a mucus layer while PBS
microinjection or culture under hypoxic conditions did not (Figure 6F). Taken together, these
results indicate that association of the immature intestinal epithelium with E. coli promotes robust
mucus secretion through an NF-xB-dependent mechanism and that hypoxia alone is not
sufficient to recapitulate E. coli induced mucus production.

Epithelial barrier integrity is enhanced following bacterial association

Having established that stem-cell derived immature intestinal epithelium (Supplemental Figure
1) can be stably associated with commensal E. coli (Figure 1), resulting in broad changes in
transcriptional activity (Figure 2) and leading to elevated production of AMPs (Figure 5) and
epithelial mucus secretion (Figure 6), we hypothesized that these changes in gene and protein
expression would have functional consequences for the immature epithelial barrier. RNA-seq
analysis demonstrated broad up-regulation of transcription in genes involved in the formation of
the adherens junction and other cell-cell interactions in HIOs after microinjection with live E. coli
that was inhibited in the presence of NF-xB inhibitor SC-514 (Figure 7A). We utilized a modified
FITC-dextran permeability assay (Leslie et al., 2015) and real-time imaging of live HIO cultures to
measure epithelial barrier function in HIOs microinjected with PBS, live E. coli, or live E. coli +
SC-514 at 24 h after microinjection (Figure 7B). While HIOs pre-conditioned by PBS or E. coli
microinjection retained 94.1 + 0.3% of the FITC-dextran fluorescence over the 20 h assay
period, whereas E. coli microinjected HIOs cultured in the presence of SC-514 retained only 45.5
+ 26.3% of the fluorescent signal (P = 0.02; Figure 7B). We also measured the rate of bacterial
translocation across the HIO epithelium, which resulted in contaminated culture media (Figure
7C). HIOs microinjected with E. coli and cultured + SC-514 were compared to HIOs cultured with
vehicle (DMSO controls) and PBS microinjected controls over 7 days in culture. HIOs associated
with E. coli + SC-514 exhibited a rapid onset of bacterial translocation by day 2-3, with bacterial
translocation detected in 96% of SC-514 treated HIOs by day 7 compared to 23% of HIOs
microinjected with E. coli and cultured in the absence of SC-514 (P = <2 x 10~'8; Figure 7C).
Therefore, inhibition of NF-xB signaling inhibited epithelial barrier maturation resulting in
increased bacterial translocation during E. coli association with the immature epithelium.

Finally, we assayed epithelial barrier function under circumstances recapitulating physiologic
inflammation. TNFa and IFN~ are key cytokines mediating innate and adaptive immune cell
activity in the gut (Turner, 2009) during bacterial infection (Rhee et al., 2005; Emami et al., 2012)
and in necrotizing enterocolitis (Tan et al., 1993; Ford et al., 1996, 1997; Halpern et al., 2003;
Upperman et al., 2005). The combination of TNF« and IFN~ has been previously demonstrated
to induce barrier permeability in a dose-dependent manner in Transwell epithelial cultures (Wang
et al., 2005, 2006). Thus, HIOs were microinjected with PBS or live E. coli and cultured for 24 h,
and were subsequently microinjected with FITC-dextran and treated with PBS or a cocktail of
TNF« and IFN~ added to the external media to expose the basolateral epithelium (Figure 7D).
Loss of FITC-dextran fluorescence was observed using live-imaging and indicated that treatment
with TNFa and IFN~ alone resulted in a rapid and sustained decrease in luminal fluorescence
relative to PBS or E. coli injected HIOs (P = 5 x 10~4, Figure 7D). However, HIOs associated
with E. coli prior to addition of the TNF« and IFN~ cocktail retained significantly more fluorescent
signal relative to treatment with TNF« and IFN~ alone (P = 0.042, Figure 7D). We examined
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Figure 6: A Heatmap of normalized RNA-seq glycotransferase and mucin gene counts of HIOs associated with E.
coli at 0-96 h post-microinjection. B Periodic acid-Schiff and Alcian Blue (PAS-AB) staining of control HIOs or HIOs
microinjected with E. coli and cultured for 48 h at 10X magnification. C HIO epithelium from control HIOs or HIOs
microinjected with E. coli and cultured for 48 h stained with H&E, AB, PAS, or PAS-AB and imaged under 100X light
microscopy. D Confocal micrograph of HIO epithelium from a control HIO or an HIO microinjected with E. coli and
cultured for 48 h. Nuclei are stained blue with DAPI, and fluorescent antibody-labeled proteins E-cadherein and Mucin
5 AC are pseudocolored in white or red, respectively. UEAT1 lectin is used to label the carbohydrate moiety Fuca1-2Gal-
R, which is pseudo colored in green. 60X optical magnification. E Heatmap of normalized RNA-seq glycotransferase
and mucin gene counts of HIOs associated with live or heat-inactivated E. coli, E. coli + NF-«B inhibitor (SC-514) or
HIOs cultured under hypoxic conditions for 24 h. F PAS-AB staining of HIOs treated as indicated in the figure labels for
24 h. 10X magnification.
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Figure 7: A Heatmap of RNA-seq data indicating the relative expression of genes associated with the Adherens junction
or Cell-cell junction assembly based on annotation in the REACTOME database. B Relative fluoresscence intensity
over time in HIOs microinjected with 4 kDa FITC-dextran and imaged at 10 minute intervals. Line represents the best
fit to the mean fluorescent intensity values in each condition with the grey region indicating S.E. for the fit line. N =
7-9 HIOs per group. C Rate of bacterial translocation over time in HIOs treated as indicated in the figure legend as
detected by daily collection of external HIO media and enrichment in bacterial growth broth. N = 24 (E. coli + SC-514)
and N = 48 (E. coli). D Relative fluoresscence intensity over time in HIOs microinjected with 4 kDa FITC-dextran and
imaged at 10 minute intervals. Line represents the best fit to the mean fluorescent intensity values in each condition
with the grey region indicating S.E. for the fit line. N = 8-9 HIOs per group. E Representative confocal micrographs of
HIOs treated as indicated in D. Fluorescent immunostaining pseudocoloring applied as indicated in the figure legend.
60X optical magnification with 2X digital zoom. SC-514, small molecule inhibitor of NF-xB ; HK, heat-inactivated; TNF,
tumor necrosis factor-a; IFN, interferon-+

expression and distribution of the tight junction protein ZO-1, and the basal-lateral protein
E-cadherin (ECAD) in histological sections taken from PBS and E. coli-associated HIOs
subjected to TNFa and IFN~ treatment (Figure 7E). Compared to controls, the epithelial layer is
highly disorganized in HIOs treated with TNF«a and IFN~, with cytoplasmic ZO-1 staining and
disorganized ECAD. By contrast, HIOs associated with E. coli prior to TNFa and IFN~ treatment
retain and organized columnar epithelium with robust apical ZO-1 and properly localized ECAD
staining (Figure 7E). Similarly, proper localization of additional markers of epithelial barrier
integrity occludin (OCLN) and acetylated-tubulin are retained in HIOs associated with E. coli
during TNFa and IFN~ treatment relative to HIOs treated with TNFa and IFN~ alone
(Supplemental Figure 6).These results suggest that colonization of the immature epithelium
with E. coli results in an epithelium that is more robust to challenge by potentially damaging
inflammatory cytokines.
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Discussion

The work presented here demonstrates that HIOs represent a robust model system to study the
initial interactions between the gastrointestinal epithelium and colonizing microbes that occurs in
the immediate postnatal period. Microorganisms introduced into the digestive tract at birth
establish an intimate and mutualistic relationship with the host over time (Costello et al., 2012;
Palmer et al., 2007; Koenig et al., 2011; Backhed et al., 2015; Wopereis et al., 2014). However,
the expansion of bacterial populations in the gut also presents a major challenge to intestinal
homeostasis through the exposure to potentially inflammatory MAMPs (Tanner et al., 2015; Renz
et al., 2012), consumption of tissue oxygen (Glover et al., 2016; Espey, 2013; Albenberg et al.,
2014), digestion of the mucus barrier (Marcobal et al., 2013; Desai et al., 2016), and competition
for metabolic substrates (Rivera-Chavez et al., 2016; Kaiko et al., 2016). The mature intestinal
epithelium serves as a crucial barrier to microbes that inhabit the lumen and mucosal surfaces
(Artis, 2008; Turner, 2009; Desai et al., 2016; Kelly et al., 2015; Cornick et al., 2015; Peterson
and Artis, 2014; Hackam et al., 2013; Turner, 2009). The specific function of the epithelium in
adapting to initial microbial colonization, independent of innate and adaptive immune systems,
remains unclear due to the lack of appropriate model systems that recapitulate host-microbe
mutualism. Clarifying the role of the epithelium in colonization of the digestive tract by
microorganisms is essential to understanding the molecular basis of the stable host-microbe
mutualism in the mature intestine.

To examine the establishment of host-microbe mutualism, we chose to examine the interaction
between the immature epithelium of HIOs and a non-pathogenic strain of E. coli.
Enterobacteriaceae, including E. coli, are abundant in the newborn gut (Palmer et al., 2007;
Koenig et al., 2011; Backhed et al., 2015; Yassour et al., 2016). Several large-scale surveys of
microbial composition have demonstrated that E. coli are among the most prevalent and
abundant organisms in stool samples from newborns (Backhed et al., 2015; Koenig et al., 2011),
in meconium (Gosalbes et al., 2013), and in uterine tissue (Aagaard et al., 2014).
Non-pathogenic E. coli strains may represent ideal model organisms for examining the impact of
bacterial colonization of the immature epithelium due to their prevalence in the neonatal
population and relevance to natural colonization, extensive characterization, and ease of
laboratory manipulation. Microinjection of non-pathogenic E. coli into the lumen of HIOs resulted
in stable, long-term co-cultures (Figure 1). E. coli grows rapidly within the HIO lumen (Figure 1),
reaching densities roughly comparable to populations found in the human small intestine
(Donaldson et al., 2016) within 24 h. Furthermore, the HIO is able to sustain this internal
microbial population for several days while retaining the integrity of the epithelial barrier (Figure
1). Implicit is this observation is the conclusion that immature epithelium, along with a loosely
structured mesenchymal layer, is intrinsically capable of adapting to the challenges imposed by
colonization with non-pathogenic gut bacteria.

To more closely examine these epithelial adaptations of microbial colonization, we performed
transcriptional analysis of this response. HIOs colonized by E. coli exhibit widespread
transcriptional activation of innate bacterial recognition pathways, including TLR signaling
cascades and downstream mediators such as NF-xB (Figure 2). Indirect stimuli resulting from
microbial activity can also shape epithelial function (Buffie and Pamer, 2013), and the
transcriptome of E. coli-colonized HIOs reflects a cellular response to reduced oxygen availability
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(Figure 2). Reduction of luminal O, concentration occurs in the neonatal gut (Gruette et al.,
1965; Fisher et al., 2013; Zheng et al., 2015), possibly as a result of the consumption of
dissolved O, by the anaerobic and facultative anaerobic bacteria that predominate in the
intestinal microbiome in early life (Espey, 2013; Fanaro et al., 2003; Favier et al., 2002; Palmer
et al., 2007). We measured luminal oxygen content and epithelial hypoxia in HIOs microinjected
with live E. coli, finding that luminal oxygen concentration is reduced more than 10-fold relative to
the surrounding media. This state of relative hypoxia extends into the epithelium itself and is
correlated with increased microbial density (Figure 3). Thus, E. coli-colonized HIOs recapitulate
in vitro the low-oxygen microenvironment found in the intestine.

Colonization of the HIO by E. coli therefore comprises two broad stimuli: immediate exposure to
contact-mediated signals such as MAMPs, and the onset of limiting luminal oxygen and epithelial
hypoxia. Although the potential significance of exposure to microbial products in the context of
tissue hypoxia is widely recognized in the setting of necrotizing enterocolitis (Tanner et al., 2015;
Afrazi et al., 2014; Hackam et al., 2013; Neu and Walker, 2011; Upperman et al., 2005;
Nanthakumar et al., 2011), this two factor signaling paradigm has not been well studied as a
component of normal intestinal colonization and development. Using the HIO model system, it
was possible to design experiments which separately examine the relative impact of microbial
contact-mediated signals from microbe-associated hypoxic signals (Figure 4). This approach
reveals that the full transcriptional response generated by the HIO following E. coli colonization is
the product of both contact-dependent and hypoxia-dependent signals, with heat-inactivated E.
coli or hypoxia alone recapitulating distinct subsets of the changes in gene expression observed
in HIOs colonized with live E. coli (Figure 4). NF-x<B signaling has been implicated in the
downstream response to both microbial contact-mediated signals (Zhang and Ghosh, 2001; Xiao
and Ghosh, 2005; Kawai and Akira, 2007) and tissue hypoxia (Rius et al., 2008; Arias-Loste

et al., 2015; Oliver et al., 2009; Zeitouni et al., 2016; Colgan et al., 2013; Grenz et al., 2012).
Pharmacologic inhibition of NF-«<B resulted in the suppression of both microbial contact- and
hypoxia-associated gene expression in HIOs, inhibiting both contact-mediated epithelial barrier
defense pathways and hypoxia-associated immune activation (Figure 4). NF-<B appears to play
a key role in integrating the complex stimuli resulting from exposure to microbial products and the
onset of localized hypoxia in the immature intestinal epithelium during bacterial colonization.

The molecular and cellular maturation of the intestine that occurs during infancy ultimately results
in enhanced functional capacity (Lebenthal and Lebenthal, 1999; Sanderson and Walker, 2000;
Neu, 2007). Bacterial colonization is associated with enhanced epithelial barrier function in
gnotobiotic animals, including changes in the production of antimicrobial peptides and mucus
(Vaishnava et al., 2008; Cash et al., 2006; Goto et al., 2014; Garca-Lafuente et al., 2001;
Malago, 2015; Mnard et al., 2008). Defensins produced in the intestinal epithelium are critical
mediators of the density and composition of microbial populations in the gut and protect the
epithelium from microbial invasion (Ostaff et al., 2013; Cullen et al., 2015; Salzman et al., 2003,
2010). Production of BD-2 is dramatically increased in HIOs immediately following E. coli
colonization (Figures 2 and 5), reaching concentrations that are sufficient to limit growth of E.
coli (Figure 5). Secreted and cell-surface associated mucins form a physical barrier to microbes
in the gut, act as local reservoirs of antimicrobial peptide, and serve as substrates for the growth
of beneficial microorganisms (Desai et al., 2016; Johansson and Hansson, 2016; Cornick et al.,
2015; Hansson, 2012; Li et al., 2015; Dupont et al., 2014; Bergstrom and Xia, 2013). The
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immature HIO epithelium produces a robust mucus layer consisting of both neutral and acidic
oligosaccharides with terminal carbohydrate modifications following colonization with E. coli
(Figure 6). Importantly, hypoxia alone does not result in the production of mucus while the
introduction of heat-inactivated E. coli induces mucus secretion at the apical epithelium (Figure
6), suggesting that microbial contact is the major stimulus eliciting mucus secretion in HIOs.

Epithelial barrier permeability is an important parameter of intestinal function reflecting the
degree of selectivity in the transfer of nutrients across the epithelial layer and the exclusion of
bacteria and other potentially harmful materials (Bischoff et al., 2014). Increases in epithelial
barrier permeability occur in the setting of inflammation (Ahmad et al., 2017; Michielan and D’Inc,
2015) and infectious disease (Shawki and McCole, 2017). Colonization of HIOs with E. coli
results in increased transcription of genes associated with the formation of the adherens junction
and other cell-cell interactions in the epithelium (Figure 7). However, inhibition of NF-xB
signaling dramatically increases both epithelial barrier permeability and the rate of bacterial
translocation (Figure 7), suggesting that NF-xB signaling is critical to maintaining epithelial
barrier integrity following colonization. Expression of genes involved in the formation of the cell
junction and the production of antimicrobial defensins and mucus are NF-xB dependent (Figures
5-7, Supplemental Figure 5, Tsutsumi-Ishii and Nagaoka 2002; Ahn et al. 2005). The inability to
mount an effective innate defense response in the presence of NF-xB inhibition results in the
failure of the HIO epithelial barrier and the loss of co-culture stability (Figure 7). This result
underscores the critical role of NF-xB signaling in the formation of a stable host-microbe
mutualism at the immature epithelial interface.

Dysregulated production of pro-inflammatory cytokines contributes to the loss of epithelial barrier
integrity in NEC (Tanner et al., 2015; Hackam et al., 2013; Neu and Walker, 2011; Nanthakumar
et al., 2011; Halpern et al., 2003; Ford et al., 1997, 1996; Tan et al., 1993); this is recapitulated in
HIOs, as exposure to pro-inflammatory cytokines results in the rapid loss of epithelial barrier
integrity and the dissolution of epithelial tight junctions (Figure 7). Probiotics may promote
epithelial barrier integrity in NEC (Robinson, 2014; Alfaleh et al., 2011; Underwood et al., 2014;
Khailova et al., 2009) and HIOs colonized by E. coli exhibit enhanced epithelial barrier resilience
(Figure 7). Functional maturation resulting from colonization of the immature intestinal epithelium
may therefore play an essential role in promoting the resolution of physiologic inflammation.

While great progress has been made in characterizing the composition of the gut microbiota in
health and disease (Shreiner et al., 2015; Costello et al., 2012), this approach has a limited
ability to discern the contributions of individual bacteria to the establishment of host-microbe
symbiosis. Our work establishes an approach that recapitulates host-microbe mutualism in the
immature human intestine in an experimentally tractable in vitro model system. Application of
this approach may facilitate the development of mechanistic models of host-microbe interactions
in human tissue in health and disease. For example, one of the major limitations in our
understanding of NEC has been the lack of an appropriate model system to study colonization of
the immature intestine (Neu and Walker, 2011; Balimane and Chong, 2005; Tanner et al., 2015;
Nguyen et al., 2015). Our results suggest that colonization of the HIO with a non-pathogenic gut
bacteria results in functional maturation of the epithelial barrier. Future work which examines the
effects of organisms associated with the premature gut (Morrow et al., 2013; Greenwood et al.,
2014; Ward et al., 2016) on the molecular, cellular, and functional maturation of the immature
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epithelium may be instrumental in elucidating mechanisms of microbiota-associated disease
pathogenesis in the immature intestine.

Materials and Methods

HIO culture

Human ES cell line HI9 (NIH registry #0062) was obtained from the WiCell Research Institute.
Stem cells were maintained on Matrigel (BD Biosciences, San Jose, CA) in mTeSR1 medium
(STEMCELL Technologies, Vancouver, Canada). hESCs were passaged and differentiated into
human intestinal organoid tissue as previously described (Spence et al., 2011; McCracken et al.,
2011). HIOs were maintained in ENR media without antibiotics prior to microinjection
experiments. For hypoxic culture experiments, HIOs were transferred to a hydrated and sealed
Modular Incubator Chamber (MIC-101, Billups-Rothenburg, Inc. Del Mar CA) filled with 1% Oo,
5% COg, and balance N, and maintained at 37 °C for 24 h.

HIO transplantation and tissue derived enteroid culture

HIO transplantations: All animal experiments were approved by the University of Michigan
Institutional Animal Care and Use Committee (IACUC; protocol # PRO00006609). HIO
transplants into the kidney capsule were performed as previously described (Finkbeiner et al.,
2015; Dye et al., 2016) Briefly, mice were anesthetized using 2% isofluorane. The left flank was
sterilized using Chlorhexidine and isopropyl alcohol, and an incision was made to expose the
kidney. HIOs were manually placed in a subcapsular pocket of the kidney of male 710 week old
NOD-SCID IL2Rgnull (NSG) mice using forceps. An intraperitoneal flush of Zosyn (100 mg/kg;
Pfizer Inc.) was administered prior to closure in two layers. The mice were sacrificed and
transplant retrieved after 10 weeks. Human Tissue: Normal, de-identified human fetal intestinal
tissue was obtained from the University of Washington Laboratory of Developmental Biology.
Normal, de-identified human adult intesintal tissue was obtained from deceased organ donors
through the Gift of Life, Michigan. All human tissue used in this work was obtained from
non-living donors, was de-identified and was conducted with approval from the University of
Michigan IRB (protocol # HUM00093465 and HUM00105750). Isolation and culture of HIO
epithelium, transplanted HIO epithelium, fetal and adult human duodenal epithelium was carried
out as previously described (Finkbeiner et al., 2015), and was cultured in a droplet of Matrigel
using L-WRN conditioned medium to stimulate epithelial growth, as previously described
(Miyoshi et al., 2012; Miyoshi and Stappenbeck, 2013)

Bacterial culture
Escherichia coli strain ECOR2 (ATCC 35321) was cultured in Lysogeny broth media or 1.5%

agar plates at 37 °C under atmospheric oxygen conditions. Glycerol stock solutions are available
upon request.
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Microinjection

Microinjections were performed using a protocol modified from Leslie et al. (2015). Briefly, HIOs
were injected using thin wall glass capillaries (TW100F-4, World Precision Instruments, Sarasota
FL) shaped using a P-30 micropipette puller (Sutter Instruments, Novato CA). Pulled
microcapilaries were mounted on a Xenoworks micropipette holder with analog tubing (BR-MH2
& BR-AT, Sutter Instruments) attached to a 10 ml glass syringe filled with sterile mineral oil
(Fisher Scientific, Hampton NH). Fine control of the micropippette was achieved using a
micromanipulator (Narishge International Inc., East Meadow NY) and microinjection was
completed under 1-2X magnification on an SX61 stereo dissecting scope (Olympus, Tokyo
Japan). HIOs suspended in Matrigel (Corning Inc., Corning NY) were injected with approximately
1 ul solution. In bacterial microinjection experiments, the HIO culture media was removed
immediately following microinjection and the cultures were rinsed with PBS and treated with ENR
media containing penicillin and streptomycin to remove any bacteria introduced to the culture
media during the microinjection process. After 1 h at 37 °C, the media was replaced with fresh
anti-biotic free ENR.

Measurement of luminal oxygen

Luminal oxygen content was measured in HIOs using an optically coated implantable
microsensor with a tip tapered at < 50 um (PM-PSt1, PreSens Precision Sensing GmbH)
attached to a micro fiber optic oxygen meter (Micro TX3, PreSens Precision Sensing GmbH,
Regensburg Germany). The oxygen probe was calibrated according to the manufacturer’s
instructions and measurements of the external media and HIO luminal oxygen content were
collected by mounting the microsensor on a micromanipulator (Narishge International Inc., East
Meadow NY) and guiding the sensor tip into position using 1-2X magnification on a stereo
dissecting scope (Olympus, Tokyo Japan). All oxygen concentration readings were analyzed
using PreSens Oxygen Calculator software (PreSens Precision Sensing GmbH, Regensburg
Germany). For measurement of relative cytoplasmic hypoxia, HIO cultures were treated with 100
1M pimonidazol HCI (Hypoxyprobe, Inc., Burlington MA) added to the external culture media and
incubated at 37 °C and 5% CO. for 2 h prior to fixation in 4% parafomaldehyde. Pimonidazole
conjugates were stained in tissue sections using the Hypoxyprobe-1 mouse IgG monoclonal
antibody (Hypoxyprobe, Inc., Burlington MA) with appropriate secondary antibody (see antibody
dilutions table).

Immunohistochemistry

Immunostaining was carried out as previously described (Finkbeiner et al., 2015). Antibody
information and dilutions can be found in Supplementary Tables 2-3. All images were taken on
a Nikon A1 confocal microscope or an Olympus IX71 epifluorescent microscope. CarboFree
blocking buffer (SP-5040; Vector Laboratories, Inc. Burlingame CA) was substituted for dilute
donkey serum in PBS in staining for mucins and carbohydrate moieties.
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NF-xB inhibition

The NF-xB inhibitor SC-514 (Kishore et al., 2003; Litvak et al., 2009) (Tocris Cookson, Bristol,
United Kingdom) was re-suspended in DMSO at a concentration of 25 mM. HIOs were treated
with SC-514 suspended in DMSO added to the external ENR culture media at a final
concentration of 1 M. Efficacy of SC-514 was verified by Western blot of lysates from HIOs
injected with PBS or live E. coli or injected with live E. coli in the presence of 1 uM SC-514
added to the external media. HIOs were collected after 24 hours in lysis buffer composed of 300
mM NaCl, 50mM Tris base, 1ImM EDTA, 10% glycerol, 0.5% NP-40, and 1X Halt Phosphatase
Inhibitor Cocktail (Pierce Biotechnology, Rockford IL). Lysates were separated on a 10% Bis-Tris
polyacrylamide gel under reducing conditions (Invitrogen, Carlsbad CA) and transferred to PVDF
using a wet transfer apparatus (Bio-Rad Laboratories, Hercules CA) overnight at 4 °C. The PVDF
membrane was blocked in Odyssey TBS blocking buffer (LI-COR Biosciences, Lincoln NE). The
membrane was submerged in blocking buffer containing primary rabbit monoclonal antibodies
against phosphorylated NF-xB p65 (1:200, Cell Signaling Technology #3033S) or total NF-<B
p65 (1:400, Cell Signaling Technology #8242S) and incubated at room temperature for 2 h. All
washes were conducted in Tris-buffered saline with 1% Tween-20 (TBST). The secondary goat
anti-rabbit IgG IRDye 800CW was diluted 1:15,000 in TBST and exposed to the washed
membrane for 1 h at room temperature. After additional washes, the PVDF membrane was
imaged using an Odyssey Scanner (LI-COR Biosciences, Lincoln NE).

Bacterial translocation assay

Incidence of bacterial translocation was determined in HIOs plated individually in single wells of
24-well plates and microinjected with E. coli. The external culture media was collected and
replaced daily. The collected media was diluted 1:10 in LB broth in 96 well plates and cultured at
37 °C overnight. Optical density (600 nm) was measured in the 96-well LB broth cultures using a
VersaMax microplate reader (Molecular Devices, LLC, Sunnyvale CA). ODggo > sterile LB broth
baseline was considered a positive culture.

FITC-dextran permeability

For epithelial permeability assays, HIOs were microinjected with 4 kDa FITC-dextran suspended
in PBS at a concentration of 2 mg/ml as described previously (Leslie et al., 2015) using the
microinjection system detailed above. Images were collected at 10 minute intervals at 4X
magnification on an Olympus IX71 epifluorescent microscope using a Deltavision RT live cell
imaging system with Applied Precision softWoRx imaging software (GE Healthcare Bio-Sciences,
Marlborough MA). Cultures were maintained at 37 °C and 5% CO, throughout the imaging
timecourse. For experiments involving cytokine treatment, recombinant TNF-« and INF-~ were
added to the external culture media at a concentration of 500 ng/ml at the start of the experiment.

In vitro antimicrobial activity assay

Recombinant human BD-2 (Abcam, Cambridge MA) was reconstituted in sterile LB broth and
diluted to 0.1-1 pug/ml. E. coli cultures were diluted 1:1000 in sterile LB containing 0-1 x/ml BD-2
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and transferred to a 96-well microplate. A VersaMax microplate reader (Molecular Devices, LLC,
Sunnyvale CA) was used to measure ODggg at 10 minute intervals in microplates maintained at
37 °C with regular shaking over a 18 h timecourse.

ELISA assays

Secreted cytokine, antimicrobial peptide, and growth factor concentrations were determined by
ELISA (Duosets, R&D Systems, Minneapolis, MN) using the manufacturer’s recommended
procedures at the Immunological Monitoring Core of the University of Michigan Cancer Center.

RNA sequencing and analysis

RNA was isolated using the mirVana RNA isolation kit and following the "Total RNA” isolation
protocol (Thermo-Fisher Scientific, Waltham MA). RNA library preparation and RNA-sequencing
(single-end, 50 bp read length) were performed by the University of Michigan DNA Sequencing
Core using the lllumina Hi-Seq 2500 platform. All sequences were deposited in the EMBL-EBI
ArrayExpress database using Annotare 2.0 and are cataloged under the accession number
E-MTAB-5801. Transcriptional quantitation analysis was conducted using 64-bit Debian Linux
stable version 7.10 ("Wheezy”). Pseudoalignment of RNA-seq data was computed using kallisto
v0.43.0 (Bray et al., 2016) and differential expression of pseudoaligned sequences was
calculated using the R package DEseqg2 (Love et al., 2014).

Statistical analysis

Unless otherwise indicated in the figure legends, differences between experimental groups or
conditions were evaluated using an unpaired Student’s t-test. A P-value < 0.05 was considered
to represent a statistically significant result. All statistical analyses were conducted using R
version 3.4.0 (2017-04-21) (R Core Team, 2017) and plots were generated using the R package
ggplot2 (Wickham, 2009). Gene pathway over-representation tests and Gene Set Enrichment
Analysis (Subramanian et al., 2005) were implemented using the R packages clusterProfiler (Yu
et al., 2012) and ReactomePA (Yu and He, 2016). Analyses conducted in R were collated and
using Emacs v25.2 (Stallman, 1981) with Org-mode v8.3.5 and the paper was written in IKTEX
using Emacs. Complete analysis scripts are available at
https://github.com/hilldr/Hill_HIO_Colonization_2017.
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Supplemental Table 2. Primary antibodies for immunostaining.

Primary target Species Dilution Blocking buffer Product number
E-cadherein goat 1:1000 5% NDS R&D Systems AF748

GFP chicken 1:1000 5% NDS Abcam ab13970

PMDZ-thiol mouse 1:500 5% NDS Hypoxyprobe HP1-1000
Mucin 5AC rabbit 1:250 CarboFree Abcam ab79082

Mucin 2 rabbit 1:50 CarboFree Santa Cruz sc-15334

Z0-1 rabbit 1:400 5% NDS Cell Signaling 13663
Occludin rabbit 1:250 5% NDS Invitrogen 71-1500
acetylated Tubulin mouse 1:500 5% NDS Sigma Aldrich T7451-200UL
Fuca-2Gal-R (UEA1) biotinylated 1:1000 CarboFree Vector labs B-1065

Supplemental Table 3. Secondary antibodies for immunostaining.

Secondary antibody

Supplier

Product number

Dilution

Donkey anti-goat Cy3
Donkey anti-goat 488
Donkey anti-mouse 568
Donkey anti-rabbit 488
Streptavidin 488
Donkey anti-rabbit Cy3

Jackson Immuno
Jackson Immuno
Life Technologies
Life Technologies
Jackson Immuno
Jackson Immuno

32

705-165-147
705-545-147
A10037
A21206
016-540-084
711-165-102

1:500
1:500
1:1000
1:1000
1:1000
1:500


https://doi.org/10.1101/144568
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/144568; this version posted May 31, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1.001

in vitro HIO 1 -
in vitro HIO 0 |
in vitro HIO 2 -

txHIO 2-

txHIO1- P =0.00012

txHIO0-

o
©
Ll

fetal SI 4 -

fetal SI 3

fetal SI 2
fetal SI'1-
fetal SI'5 -

o
©
<

fetal SI 0

adult SI 2
adult SI1 0 -

Pearson's correlation coefficent (r)

adult SI'1-
hPSC 1+

hPSC 0 0.85) | .
hPSC 2| .

N

SOOI I I D A
& 9 Q@o&a\&@\&o} @6\ @e\@ > {;\ @e\ @a\ 0 \%\o%\o 20 © > ° -
AN TS E @ @@ @ F & & ;\\\@ ;\éo A\‘@ ;\\\@ ‘&@ \4;2\ (ob&
IR N
Comparison vs. adult SI
c 1
100 Soe T - .
T-~_ B =
-8 g & - >
< - ~ —_
s  TE=—___ - - s
2 ko
g =
o0 o e === e . @
--=" = 0
8 - L] P =1 0
- - °
a -50f _-""e ° =" 8
- ® o0 ® __ - S5
- . g
100 Y= e == %
-200 -1 0 260 3
PC1 (27.75%)
@ adult SI Status :I"Tguartélre L
Epithelium & ' &'
p @ in vitro HIO
@ tx HIO

= i

0
Log,FC(in vivo HIO / in vitro HIO)

Density ,, 5300

Supplemental Figure 1. A Pearson’s correlation matrix with heirarchical clustering for whole-transcriptome normal-
ized RNA-seq gene counts from epithelium isolated from the tissues indicated on the axes. B Pearson’s correlation
coefficient for the comparison of whole-transcriptome normalized RNA-seq gene counts between each of the sample
types listed on the x-axis and adult small intestinal epithelium. P-value indicates the results of an unpaired two-sided
Student’s t-test. C Principle component analysis of whole-transcriptome RNA-seq normalized gene counts. Cumulative
explained variance for PC1 and PC2 is indicated as a percentage on the x- and y-axes, respectively. D Density plot of
the Logz-transformed Fold change in gene expression in epithelium from transplanted HIOs over epithelium from HIOs
cultured in vitro plotted against the Logs-transformed Fold change in gene expression in adult small intestinal epithe-
lium over fetal small intestinal epithelium. The intensity of the blue color indicates the density of points in 2-dimensional
space. Sl, small intestine; tx, transplanted tissue; hPSC, human pluripotent stem cell; HIO, human intestinal organoid
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Supplemental Figure 2. Heatmap representation of time-dependent normalized RNA-seq gene expression for NF-<B
pathway components in HIOs at 0-96 h post-microinjection

34


https://doi.org/10.1101/144568
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/144568; this version posted May 31, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Microinjection PBS E. coli E. coli
SC-514 - - ¥

phospho-p65

total p65

A

Supplemental Figure 3. Western blot of phosphorylated p65 and total p65 in cell lysates from HIOs microinjected with
PBS or live E. coli and treated with IKKg inhibitor SC-514 (1 M) as indicated in the figure.
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Supplemental Figure 4. Normalized fold change in expression of DEFB4B, a duplicated gene encoding human (-
defensin 2 (BD-2) peptide, in each of the conditions indicated relative to PBS control treatment. C Concentration of

BD-2 peptide in culture supernatant at 24 h as measured by ELISA in HIO cultures treated as indicated. P values
represents the results of a two-tailed Student’s t-test for the comparison indicated.
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E. coli
+ SC-514

Supplemental Figure 5. Representative confocal micrographs of HIOs treated as indicated. Fluorescent immunos-
taining pseudocoloring applied as indicated in the figure legend. 40X optical magnification with 3X digital zoom.
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Supplemental Figure 6. Representative confocal micrographs of HIOs treated as indicated. Fluorescent immunos-
taining pseudocoloring applied as indicated in the figure legends. 60X optical magnification with 2X digital zoom.
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