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Abstract 10 
Evolutionary timescales can be inferred from molecular sequence data using a Bayesian 11 
phylogenetic approach. In these methods, the molecular clock is often calibrated using fossil data. 12 
The uncertainty in these fossil calibrations is important because it determines the limiting posterior 13 
distribution for divergence-time estimates as the sequence length tends to infinity. Here we 14 
investigate how the accuracy and precision of Bayesian divergence-time estimates improve with the 15 
increased clock-partitioning of genome-scale data into clock-subsets. We focus on a data set 16 
comprising plastome-scale sequences of 52 angiosperm taxa. There was little difference among the 17 
Bayesian date estimates whether we chose clock-subsets based on patterns of among-lineage rate 18 
heterogeneity or relative rates across genes, or by random assignment. Increasing the degree of 19 
clock-partitioning usually led to an improvement in the precision of divergence-time estimates, but 20 
this increase was asymptotic to a limit presumably imposed by fossil calibrations. Our clock-21 
partitioning approaches yielded highly precise age estimates for several key nodes in the 22 
angiosperm phylogeny. For example, when partitioning the data into 20 clock-subsets based on 23 
patterns of among-lineage rate heterogeneity, we inferred crown angiosperms to have arisen 198–24 
178 Ma. This demonstrates that judicious clock-partitioning can improve the precision of molecular 25 
dating based on phylogenomic data, but the meaning of this increased precision should be 26 
considered critically.  27 
 28 
Key words: Angiospermae, molecular dating, phylogenomics, infinite-sites theory, calibration, rate 29 
heterogeneity  30 
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Introduction 31 
Evolutionary timescales can be estimated from molecular sequence data using phylogenetic 32 
methods based on the molecular clock. In practice, most data sets exhibit substantial rate 33 
heterogeneity among lineages. These ‘lineage effects’ can be caused by variation in life-history 34 
traits, generation time, or exposure to mutagens (Smith and Donoghue 2008; Gaut et al. 2011; 35 
Lanfear et al. 2013). Among-lineage rate variation can be taken into account using Bayesian 36 
relaxed-clock models, in which the rates can be assumed to be either correlated between 37 
neighbouring branches (Thorne et al. 1998; Kishino et al. 2001) or drawn independently from a 38 
chosen distribution (Drummond et al. 2006; Rannala and Yang 2007).  39 
 A number of factors can cause rates to vary across loci in the genome (Wolfe et al. 1987). 40 
These ‘gene effects’ can be taken into account by allowing each locus to have a distinct relative 41 
rate. Less certain is the best way to deal with interactions between gene effects and lineage effects, 42 
which can be caused by differences in selective pressure and other processes (Gaut et al. 2011). In 43 
this case, the extent and patterns of among-lineage rate heterogeneity vary across genes or other 44 
subsets of the data. This form of rate variation can be captured by assigning separate clock models 45 
to different subsets of the data (Ho and Duchêne 2014), a process that we refer to here as clock-46 
partitioning.  47 

Appropriate clock-partitioning can improve the precision of Bayesian date estimates (as 48 
measured by the associated 95% credibility intervals), but it is rarely done in practice. This is also 49 
despite widespread adoption of partitioning schemes for substitution models (Lanfear et al. 2012). 50 
The most likely explanation is that the use of clock-partitioning in Bayesian phylogenetics greatly 51 
increases the risk of overparameterization, and thus to reduced Markov chain Monte Carlo 52 
performance. Overparameterization has been previously addressed in light of the bias-variance 53 
trade-off, which is well established in statistical theory (Burnham and Anderson 2003). Compared 54 
with a complex, parameter-rich model, a simple model that underfits data is expected to have low 55 
accuracy (high bias) but high precision (low variance). Conversely, a parameter-rich model that 56 
overfits the data is likely to have higher accuracy, but this comes at the cost of reduced precision. 57 
The best model is an intermediate one that simultaneously maximizes accuracy and precision 58 
(Wertheim et al. 2010) 59 

It is useful to consider the bias-variance trade-off in the context of molecular dating with 60 
partitioned clock models. Patterns of among-lineage rate variation are likely to differ across genes 61 
(Muse and Gaut 1994), so increasing the number of relaxed clocks will better capture these patterns 62 
of rate heterogeneity and should lead to more accurate age estimates (Duchêne and Ho 2014). 63 
However, each clock-subset has parameters that need to be estimated, including a distinct set of 64 
branch rates. As a consequence, increasing the degree of clock-partitioning should lead to a 65 
widening of the posterior distributions of parameters.  66 

Contrary to the expectations of the bias-variance trade-off, increasing the degree of clock-67 
partitioning tends improve the precision of Bayesian age estimates (Zhu et al. 2015). One possible 68 
explanation for this lies in the treatment of the uncertainty in the estimates of genetic branch 69 
lengths. The accuracy and precision of evolutionary rate estimates depend on the accurate inference 70 
of branch lengths (in substitutions per site). In the case of molecular dating, branch rates for each 71 
clock-subset are combined with node times to give the branch lengths. Therefore, as the number of 72 
clock-subsets increases, the node times in the chronogram are estimated from an increasing number 73 
of data points, leading to increasing precision. Although branch-length estimation generally 74 
improves as the amount of sequence data increases, branch lengths can be estimated with 75 
reasonable accuracy even with fairly small amounts of sequence data (Yang and Rannala 2006). 76 
This suggests that for a data set of a (large) fixed size, increasing the number of clock-subsets 77 
should lead to improved precision in divergence-time estimates until the amount of sequence data in 78 
each clock-subset decreases to a critical point.  79 

Zhu et al. (2015) explain this phenomenon in their ‘finite sites’ theory, although they use the 80 
term ‘loci’ to refer to clock-subsets. Even with sequences of infinite length, there will still be 81 
uncertainty in the age estimates, corresponding to the uncertainty in the fossil calibrations ("infinite 82 
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data limit"; Yang and Rannala 2006; dos Reis and Yang 2013). As the number of clock-subsets (L) 83 
increases, the finite-sites theory suggests that the uncertainty in age estimates decreases to the 84 
infinite-data limit at the rate of 1/L (Zhu et al. 2015). This property has important consequences for 85 
analyses of genome-scale data sets, whereby many genes are analysed concurrently. Therefore, it is 86 
important that both the finite-sites theory and the bias-variance trade-off are tested comprehensively 87 
on a genome-scale data set with clock-partitioning. 88 

Persistent uncertainty in molecular date estimates is perhaps best exemplified by studies of 89 
the origins of flowering plants (angiosperms) (Foster 2016). The earliest unequivocal angiosperm 90 
fossils are tricolpate pollen grains from the Barremian–Aptian boundary, from approximately 125.9 91 
million years ago (Ma) (Hughes 1994). Older pollen grains from the Hauterivian provide some 92 
evidence of crown-group angiosperms, and are usually accepted as belonging to this group, albeit 93 
with less confidence than for the tricolpate pollen grains (Herendeen et al. 2017). Patterns of 94 
diversification in the broader fossil record suggest that angiosperms are unlikely to have arisen 95 
much earlier than this time (Magallón et al. 2015). The majority of molecular dating analyses tell a 96 
vastly different story, with most recent analyses inferring an origin within the Triassic (Foster et al. 97 
2017). Additionally, the uncertainty surrounding the age of the angiosperm crown node is large, 98 
often spanning an interval of many tens of millions of years, unless strong age constraints are 99 
placed on the node. Improving the accuracy and precision of estimates of the age of crown 100 
angiosperms thus represents a key goal of molecular dating. 101 

In this study, we use a Bayesian phylogenetic approach to investigate the impact of clock-102 
partitioning on the precision of divergence-time estimates. We also investigate whether the criteria 103 
used to assign genes to different clocks has an impact on estimation error. To do so, we infer the 104 
evolutionary timescale of angiosperms using a plastome-level data set. In analyses with clock-105 
partitioning schemes comprising up to 20 clock-subsets, we allocate genes to clock-subsets based 106 
on patterns of among-lineage rate heterogeneity or relative substitution rate, or through random 107 
assignment. In all cases, we confirm that increasing the degree of clock-partitioning can lead to vast 108 
improvements in the precision of Bayesian date estimates. 109 
 110 
Materials and Methods 111 

Data Sets and Clock-Partitioning 112 
We obtained full chloroplast genome sequences for 52 angiosperm taxa and two gymnosperm 113 
outgroup taxa from GenBank (supplementary table S1, Supplementary Material online). Each 114 
angiosperm taxon was chosen to represent a different order, with our sampling designed to include 115 
as many as possible of the 63 angiosperm orders recognized by the Angiosperm Phylogeny Group 116 
(2016). We extracted all 79 protein-coding genes from the chloroplast genomes, although some 117 
genes were missing from some taxa. We initially translated all genes into amino acid sequences 118 
using VirtualRibosome (Wernersson 2006) and aligned them using MAFFT v7.305b (Katoh and 119 
Standley 2013). We then translated the aligned amino acid sequences back into nucleotide sequence 120 
alignments using PAL2NAL (Suyama et al. 2006), made manual adjustments, and filtered out any 121 
sites in the alignment at which a gap was present in ≥80% of the taxa. Our total core data set 122 
consisted of 68,790 nucleotides, of which only 7.54% sites were gaps or missing data (see 123 
supplementary file S1, Supplementary Material online). 124 
 Our primary strategy for clock-partitioning based on patterns of among-lineage rate 125 
heterogeneity was to analyse the genes using ClockstaR v2 (Duchêne et al. 2014). ClockstaR takes 126 
predefined subsets of the data, along with the estimated gene tree for each subset, and determines 127 
the optimal clock-partitioning scheme for the data set. This involves identifying the optimal number 128 
of clock-subsets (k), as well as the optimal assignment of the data subsets to each of these clock-129 
subsets. Comparison of clock-partitioning schemes is done by comparing the patterns of among-130 
lineage rate heterogeneity across the gene trees and clustering the gene trees according to the gap 131 
statistic (Gapk) (Tibshirani et al. 2001). Additionally, ClockstaR can determine the optimal clock-132 
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partitioning scheme for any value of k. In our case, each of the 79 protein-coding genes was 133 
considered as a separate data subset for the ClockstaR analysis. 134 

ClockstaR requires all data subsets to share the same tree topology. Since the chloroplast 135 
genome does not typically undergo recombination (Birky 1995), all of its genes should share the 136 
same topology. Therefore, we first inferred the phylogeny for the concatenated data set using 137 
maximum-likelihood analysis in IQ-TREE v1.50a (Nguyen et al. 2015), with node support 138 
estimated using 1000 bootstrap replicates with the ultrafast bootstrapping algorithm (Minh et al. 139 
2013). We partitioned the data set by codon position using the edge-linked partition model 140 
(Chernomor et al. 2016), and implemented the GTR+Γ4 model of nucleotide substitution for each 141 
subset. The best-scoring tree was very similar to previous estimates of the angiosperm phylogeny 142 
based on chloroplast data (Moore et al. 2010; Soltis et al. 2011), and we found strong support for 143 
most nodes in the tree (supplementary fig. S1, Supplementary Material online). We used this tree 144 
for ClockstaR and optimized the branch lengths for each gene alignment. Finally, we determined 145 
the optimal value of k, and then created 12 clock-partitioning schemes using the optimal assignment 146 
of genes to clock-subsets for values of k from 1 to 10, 15, and 20 (“PCSTAR” schemes). We use the 147 
partitioning along medoids (PAM) algorithm, described by Kaufman and Rousseeuw (2009). 148 

As a means of comparison with the ClockstaR partitioning schemes, we also chose clock-149 
partitioning schemes based on relative substitution rates across genes (dos Reis et al. 2012). To do 150 
so, we focused on a subset of 20 taxa for which sequences of all 79 protein-coding genes were 151 
available (supplementary table S1, Supplementary Material online). We then analysed each gene 152 
using maximum likelihood in IQ-TREE, in each case partitioning by codon position and 153 
implementing the GTR+Γ4 model of nucleotide substitution for each codon position. Using the tree 154 
lengths as a proxy for the overall substitution rate of each gene, we created 11 partitioning schemes 155 
based on relative rates of substitution (“PRATE” schemes), in which we assigned genes to clock-156 
subsets for values of k from 2 to 10, 15, and 20. 157 

For an additional form of comparison, we generated clock-partitioning schemes with genes 158 
randomly allocated to clock-subsets. Genes were randomly sampled without replacement in R 159 
v3.3.2 (R Core Team 2016) and assigned to clock-subsets for values of k from 2 to 10, 15, and 20. 160 
We repeated this process three times, resulting in a total of 33 clock-partitioning schemes in which 161 
genes were randomly assigned to clock-subsets (“PRAND” schemes).  162 
 163 
Molecular Dating 164 
We inferred the evolutionary timescale using MCMCTREE in PAML v4.8 (Yang 2007) with the 165 
GTR+Γ4 model of nucleotide substitution. A key requirement of MCMCTREE is a fixed tree 166 
topology, so we used the best-scoring tree that we estimated from the total concatenated data set 167 
using IQTREE. We primarily analysed our data sets with the UCLN relaxed clock (Drummond et 168 
al. 2006; Rannala and Yang 2007), but replicated all analyses to check for any differences under the 169 
ACLN relaxed clock (Thorne et al. 1998; Kishino et al. 2001).  170 

We estimated the overall substitution rate for each clock-partitioning scheme by running 171 
baseml under a strict clock, with a single point calibration at the root. We then used this estimate to 172 
select the shape (α) and scale (β) parameters for the gamma-Dirichlet prior on the overall 173 
substitution rate across loci in the MCMCTREE analysis according to the formulae α = (m/s)2 and β 174 
= m/s2, where m and s are the mean and standard deviation of the substitution rate, respectively. For 175 
all analyses, we set the shape and scale parameters for the gamma-Dirichlet prior on rate variation 176 
across branches to 1 and 3.3, respectively. The posterior distribution of node ages was estimated 177 
with Markov chain Monto Carlo sampling, with samples drawn every 103 steps across a total of 107 178 
steps, after a discarded burn-in of 106 steps. We ran all analyses in duplicate to assess convergence, 179 
and confirmed sufficient sampling by checking that the effective sample sizes of all parameters 180 
were above 200. 181 
 We repeated the MCMCTREE analysis for all PCSTAR, PRATE, and PRAND schemes. An 182 
advantage of MCMCTREE is the option to use approximate likelihood calculation, which is much 183 
faster than full likelihood calculation (Thorne et al. 1998; dos Reis and Yang 2011). However, this 184 
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precludes the calculation of marginal likelihoods using path sampling and similar methods, which 185 
require the full likelihood to be computed. Instead, we compared the means and 95% credibility 186 
intervals of the posterior estimates of divergence times across our partitioning strategies. We chose 187 
to focus on six nodes in the angiosperm phylogeny: the crown groups of all angiosperms, 188 
magnoliids, monocots, eudicots, campanulids, and Liliales. The first four of these were chosen 189 
because they define major clades in the angiosperm phylogeny. The other two nodes were chosen 190 
because they do not have explicit fossil-based calibration priors. 191 
  192 
Fossil Calibrations 193 
Calibrations are the most important component of Bayesian molecular dating, with critical impacts 194 
on posterior estimates of divergence times. Therefore, we selected a set of 23 calibration priors 195 
primarily based on recent studies that carefully considered the phylogenetic affinities of angiosperm 196 
fossils (table 1). We also applied two calibration priors to the gymnosperm outgroup. Fossils can 197 
strictly only provide a minimum age for the divergence of lineages from their common ancestor, so 198 
we chose to implement fossil calibrations primarily as uniform distributions with soft bounds. This 199 
approach assigns an equal prior probability for all ages between specified minimum and maximum 200 
ages, with a 2.5% probability that the age surpasses each bound (Yang and Rannala 2006).  201 

We implemented two maximum age constraints: (i) 350 Ma for the divergence between 202 
angiosperms and gymnosperms (the root), a well accepted upper bound for this divergence (Foster 203 
et al. 2017); and (ii) 126.7 Ma for the origin of crown eudicots, corresponding to the upper bound of 204 
the Barremian–Aptian boundary (reviewed by Massoni et al. 2015a). The latter constraint is widely 205 
used and is justified by the complete absence of tricolpate pollen before the latest Barremian, yet 206 
some molecular dating results have suggested an earlier origin for eudicots (Smith et al. 2010; 207 
Foster et al. 2017; Zeng et al. 2017). Ranunculales, one of the earliest-diverging eudicot orders, has 208 
a fossil record dating back to the late Aptian/early Albian. Therefore, implementing the eudicot 209 
maximum constraint results in a strong prior being placed on crown-group eudicots appearing 210 
between ~126.7–112.6 Ma. As a result, including the eudicot maximum constraint leads to the 211 
eudicot crown node being a useful example of a heavily constrained node for downstream 212 
comparisons of the uncertainty in posterior age estimates. 213 

For comparison, we also performed analyses with our PCSTAR schemes using gamma 214 
calibration priors and the UCLN relaxed clock. In this case, the mean of each gamma prior was set 215 
to the age of each fossil +10%, with an arbitrary standard deviation of 2 (Table 1). This effectively 216 
brackets the age estimates of calibrated nodes within a very narrow interval. In such a calibration 217 
scheme, the precision of age estimates is not expected to improve substantially with increased 218 
clock-partitioning. 219 
 220 
Results 221 

Angiosperm Evolutionary Timescale 222 
Our ClockstaR analysis identified the optimal value of k to be 1, suggesting that a single pattern of 223 
among-lineage rate heterogeneity is shared across protein-coding genes from the chloroplast 224 
genomes. However, despite k=1 being optimal, the values of the gap statistic were still higher for all 225 
values of k>5 (figure 1). Based on our analysis using the optimal clock-partitioning scheme (k=1) 226 
and the UCLN relaxed clock, we estimated the time to the most recent common ancestor of 227 
angiosperms to be 196 Ma (95% credibility interval 237–161 Ma; supplementary fig. S2, 228 
Supplementary Material online). We inferred that crown magnoliids first appeared 171–115 Ma, 229 
and that crown monocots arose contemporaneously, 167–120 Ma. Crown eudicots were inferred to 230 
have arisen 128–124 Ma, with this precise estimate reflecting the strong calibration prior placed 231 
upon this node. Finally, our estimates for the time to the most recent common ancestors of 232 
campanulids and Liliales were 101–91 Ma and 108–91 Ma, respectively. 233 

The true age of crown angiosperms is unknown, so we cannot assess the absolute accuracy 234 
of our date estimates. Instead, we consider the consistency of mean age estimates across analyses 235 
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Fig. 1.—Gap statistic values for different numbers of clock-subsets (k) for the plastome-scale angiosperm data set, inferred using 
partitioning along medoids in ClockstaR. The asterisk indicates the optimal number of clock-subsets.
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(Hillis 1995). The mean age estimates for all crown angiosperms, magnoliids, and monocots varied 236 
slightly across values of k from 1 to 3, but estimates remained stable across all other values of k. 237 
Mean age estimates for crown eudicots only varied by approximately 2 myr across all values of k. 238 
Mean age estimates for crown Liliales were stable across all clock-partitioning schemes. However, 239 
mean estimates for crown campanulids steadily declined by approximately 10–15 myr as the 240 
number of loci increased. We observed the same broad trends in accuracy for all nodes of interest 241 
when using the ACLN relaxed clock, although mean age estimates were consistently slightly 242 
younger than in analyses with the UCLN relaxed clock. In our analyses with the PCSTAR schemes and 243 
with gamma calibration priors, mean age estimates for crown angiosperms steadily increased with 244 
increasing numbers of clock-subsets, but the mean estimates were stable for all other nodes of 245 
interest. 246 
 247 
Precision in Estimates of Divergence Times 248 
We focus first on our results when using the UCLN relaxed clock, uniform calibration priors, and 249 
with clock-partitioning according to ClockstaR. We report improvements in the precision of node-250 
age estimates by calculating the decrease in 95% CI width, which we standardized by dividing by 251 
the posterior mean. The optimal clock-partitioning scheme was inferred to be k=1, matching the 252 
results of previous analyses (Duchêne et al. 2016). However, increasing the number of clock-253 
subsets generally led to large increases in the precision of node-age estimates. The impact of this is 254 
perhaps most striking in the inferred age of crown angiosperms. Increasing the number of clock-255 
subsets from k=1 to k=2 led to a reduction in statistical fit (figure 1), but also reduced the width of 256 
the 95% CI for the inferred age of crown angiosperms from 77 myr to 46 myr (an improvement in 257 
precision of 35.4%). Greater clock-partitioning led to further improvement in precision (figure 2). 258 
For example, implementing a clock-partitioning scheme with k=20 reduced the width of the 95% CI 259 
for the inferred age of crown angiosperms to only 20 myr, representing a 73.1% improvement in 260 
precision. However, the rate of improvement in precision declined rapidly for increasing numbers 261 
of clock-subsets (figure 2).  262 
 An improvement in precision with the number of clock-subsets can also be observed in the 263 
age estimates for both magnoliids and monocots. For example, increasing k from 1 to 20 results in 264 
respective increases of 76.1% and 68% in precision in the age estimates for crown magnoliids and 265 
crown monocots (figure 2). When considering the nodes corresponding to the crown groups of 266 
campanulids and Liliales, a similar trend can be observed, albeit with a less drastic increase in 267 
precision. Increasing the number of clock-subsets led to 29.7% and 37.7% increases in precision for 268 
the crown groups of campanulids and Liliales, respectively. However, there is a vastly different 269 
trend in the age estimate for crown eudicots. In this case, the age estimate for k=1 is already precise 270 
(95% credibility interval: 128–124 Ma) and increasing the number of clock-subsets actually led to a 271 
slight decrease in precision of 0.02%. 272 
 Compared with the PCSTAR clock-partitioning schemes, very similar trends in precision were 273 
observed for both the PRATE scheme (figure 3) and PRAND scheme (figure 4). The only differences 274 
were that there was less variation in mean age estimates for smaller values of k compared with the 275 
ClockstaR partitioning scheme, and standardized improvements in precision were consistently 276 
slightly greater (supplementary table S2, Supplementary Material online). For example, the widths 277 
of the 95% CIs, and the mean age estimates, declined monotonically in both classes of clock-278 
partitioning schemes. 279 

We observed the same broad trends across all clock-partitioning schemes when using the 280 
ACLN relaxed clock. With increasing numbers of clock-subsets, the uncertainty in age estimates 281 
rapidly decreased, with the exception of the age estimate for the eudicot crown node. Even with 282 
k=1, however, the precision of the age estimates was much greater than in the corresponding 283 
analysis with the UCLN relaxed clock. For example, when implementing the PCSTAR clock-284 
partitioning schemes, the 95% credibility interval of the age estimate for crown angiosperms 285 
spanned 77 myr when using the UCLN relaxed clock, but only 59 myr when using the ACLN 286 
relaxed clock. Additionally, age estimates for crown eudicots became less precise as the degree of 287 
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clock-partitioning increased. We observed the same trend for the other nodes of interest across 288 
analyses, and the apparent limit to uncertainty appeared to be reached much more rapidly than with 289 
the UCLN relaxed clock (supplementary fig. S3–S5, supplementary table S2, Supplementary 290 
Material online).  291 

When using highly informative gamma calibration priors in our additional analyses of the 292 
PCSTAR schemes, we found that for the crown groups of angiosperms, monocots, and magnoliids, the 293 
increases in precision with greater clock-partitioning were much lower than with uniform 294 
calibration priors (supplementary fig. S6 and supplementary table S2, Supplementary Material 295 
online). For example, an improvement of only 18.5% occurred in the precision of the age estimate 296 
for crown angiosperms. The opposite trend occurred for the crown nodes of eudicots, campanulids 297 
and Liliales. When implementing uniform calibration priors, greater clock-partitioning led to either 298 
no change or decreases in precision for age estimates of crown-group eudicots, but when using 299 
gamma calibration priors the precision improved by 36% with greater clock-partitioning. For 300 
crown-group Liliales, increasing k from 1 to 20 led to a 64.3% increase in the precision of age 301 
estimates, the greatest improvement of all six key nodes. However, it is worth noting that our age 302 
estimates for all six nodes of interest were very precise even when k=1. Therefore, in terms of 303 
absolute time units, there was generally little improvement in precision with increasing numbers of 304 
clock-subsets.   305 
 306 
 307 
Discussion 308 
The primary aim of the present study was not to provide a novel estimate for the angiosperm 309 
evolutionary timescale, but it is still useful to consider our results in the context of previous 310 
estimates. Our inferred origin for crown-group angiosperms in the late Triassic to early Jurassic is 311 
consistent with most modern molecular dating estimates (Bell et al. 2010; Magallón 2010; Clarke et 312 
al. 2011; Zeng et al. 2014; Beaulieu et al. 2015; Foster et al. 2017). Similarly, our age estimate for 313 
crown magnoliids of 171–115 Ma is very similar to a previous estimate of 179–127 Ma based on 314 
the most comprehensive molecular dating analyses of Magnoliidae (Massoni et al. 2015a). Our 315 
estimate of 167–120 Ma for the age of crown monocots is compelling, because a recent study of 316 
monocots using the fossilized-birth-death model inferred a very similar age of 174–134 Ma (Eguchi 317 
and Tamura 2016). Our age estimate for crown eudicots of 128–124 Ma suggests that there was not 318 
enough signal within the data to overcome the strong calibration priors placed upon this node. 319 
Finally, although our age estimate for the appearance of crown campanulids 101–91 Ma is very 320 
similar to those of recent studies (Magallón et al. 2015; Foster et al. 2017), our age estimate of 108–321 
91 Ma for the time to the most recent common ancestor of Liliales was slightly younger than recent 322 
estimates. 323 

The goal of all molecular dating studies is to estimate the evolutionary timescale with a 324 
useful degree of precision and accuracy. We demonstrated that increasing the degree of clock-325 
partitioning leads to increasingly precise age estimates, as predicted by the finite-sites theory (Zhu 326 
et al. 2015). Additionally, clock-partitioning schemes based on patterns of among-lineage rate 327 
heterogeneity or relative substitution rates did not have any measurable advantage over randomly 328 
assigning genes to clock-subsets, at least in terms of the accuracy and precision of the resulting 329 
estimates of divergence times. The near-identical patterns of precision across all clock-partitioning 330 
schemes stands in contrast with previous suggestions that the assignment of genes to clock-subsets 331 
is more important than the number of clock-subsets (Duchêne and Ho 2014).  332 

Our results demonstrate that to improve the precision of age estimates, one could simply 333 
increase the degree of clock-partitioning by assigning genes to an arbitrarily large number of clock-334 
subsets, until the marginal benefit of increasing the number of clocks is close to zero (Zhu et al. 335 
2015). An obvious consequence of this is that one must consider whether such an increase is 336 
desirable or biologically meaningful. If there is evidence that a data set conforms to a single pattern 337 
of rate variation among lineages, an increase in precision from clock-partitioning is not justifiable 338 
because the clock-subsets do not constitute independent realizations of the process of rate variation 339 
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(Zhu et al. 2015). Our analysis using ClockstaR indicates that within our data set, all genes exhibit 340 
the same pattern of rate heterogeneity among lineages, such that they should be analysed using a 341 
single clock model. In this case, increasing the degree of clock-partitioning leads to a model that 342 
overfits the data, does not appear to accurately predict the data, and is insensitive to the sampled 343 
data. Normally this would be expected to occur when a model underfits the data, but the increasing 344 
sets of “independent” branch-rate estimates for each clock-subset ensure that estimates of node 345 
times remain precise. 346 

The uncertainty in posterior divergence times can be divided into three components: (i) 347 
uncertainty in branch lengths due to limited sequence length (N); (ii) among-lineage rate variation 348 
for each clock-subset, as well as the evolutionary rate variation among clock-subsets; and (iii) 349 
uncertainty in fossil calibrations (Zhu et al. 2015). If L is large, then the uncertainty caused by 350 
limited sequence length approaches zero at the rate of 1/N. Additionally, the uncertainty attributable 351 
to the second component approaches zero at the rate of 1/L. As N→∞ and L→∞, the uncertainty in 352 
divergence-time estimates should be wholly attributable to uncertainty in the fossil calibrations 353 
(Zhu et al. 2015). For a data set of fixed size, such as our angiosperm data set, increasing L will 354 
reduce N, and vice versa. We found that partitioning the data set into increasing numbers of clock-355 
subsets led to improvements in precision, which implies that increasing L has a larger impact on 356 
precision than decreasing N has on reducing precision. However, it is likely that for very small 357 
values of N, the estimation error in branch lengths will grow rapidly. 358 
 An important exception to the overall trend was the age inferences for the crown eudicot 359 
node. The most common calibration strategy for this node has been to place a maximum bound or a 360 
highly informative prior on the age of this node, based on the absence of tricolpate pollen before the 361 
Barremian–Aptian boundary (~126 Ma) (Magallón and Castillo 2009; Sauquet et al. 2012; Massoni 362 
et al. 2015a; Foster et al. 2017). Additionally, many of the earliest-diverging eudicot lineages have 363 
relatively old fossils dating to the late Aptian (~113 Ma). These lines of evidence provide a narrow 364 
age bracket for the eudicot crown, often causing age estimates for the eudicot crown node to be 365 
necessarily highly precise. As a result, the limit in uncertainty of the fossil calibrations should be 366 
reached rapidly. Therefore, the age of the eudicot crown node is useful to evaluate in light of the 367 
finite-sites theory. We found that increasing the number of clock-subsets had essentially no effect 368 
on the uncertainty in the age estimate of this node. A very similar pattern was observed when using 369 
tightly constrained gamma calibration priors, and we expect that the general trend extends to other 370 
cases in which calibrated nodes have strongly constrained ages, for example when lognormal or 371 
exponential priors are chosen (Smith et al. 2010; Magallón et al. 2015). 372 

Our results are especially important for analyses of genome-scale data sets. The size of 373 
phylogenomic data sets generally precludes molecular dating with computationally intensive 374 
phylogenetic software, such as BEAST (Bouckaert et al. 2014) or MrBayes (Ronquist et al. 2012), 375 
unless work-around methods are employed (Ho 2014). For example, some researchers have chosen 376 
to analyse each gene or data subset separately and then take the average of the results (Zeng et al. 377 
2017). However, this methodology effectively assigns to each gene its own model of nucleotide 378 
substitution and its own clock model. Not only does this run the risk of severe 379 
overparameterization, but it also raises the question of how the estimates should be combined in a 380 
way that takes full account of estimation error. Another method is to apply data filtering to select 381 
only a subset of a data set, such as those that are the most clocklike (Jarvis et al. 2014) or the most 382 
informative (Tong et al. 2016).  383 

In cases where data-filtering approaches are not feasible, less computationally intensive 384 
methods can be employed, such as the approximate-likelihood method of MCMCTREE. There are 385 
also non-Bayesian alternatives to phylogenomic dating, such as penalized likelihood (Sanderson 386 
2002), that have been used to analyse large data sets (Zanne et al. 2014). Additionally, a number of 387 
rapid dating methods that can account for among-lineage rate heterogeneity without an explicit 388 
statistical model of branch-rate variation have been developed specifically for phylogenomic data 389 
sets (Kumar and Hedges 2016). Although these methods appear to have accuracy comparable to 390 
that of Bayesian methods, they cannot produce reliable estimates of the uncertainty in the inferred 391 
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ages (Kumar and Hedges 2016). It is also unclear how well the results of these analyses will 392 
conform to the finite-sites theory. 393 
  394 
Conclusions 395 
In this study, we have demonstrated that the finite-sites theory for molecular dating applies to a 396 
typical genome-scale data set from angiosperms, with the exception of nodes that have strong age 397 
constraints. In contrast with previous suggestions, the choice of strategy for assigning genes to 398 
clocks does not appear to be important. These results imply that the data set can be arbitrarily 399 
partitioned into a large number of clock-subsets, up to the point at which there is little marginal 400 
benefit in increasing the degree of clock-partitioning. However, we caution that all molecular date 401 
estimates should be critically interpreted to determine whether their precision is meaningful or not. 402 
To this end, the best approach is to identify the patterns of among-lineage rate heterogeneity in a 403 
data set and to apply a clock-partitioning scheme that appropriately captures this variation. 404 
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