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Abstract   

Genome sequences for hundreds of mammalian species are available, but an understanding of 
genomic regulatory regions for non-model species is only beginning. A comprehensive 
prediction of potential active regulatory regions is necessary to functionally study the roles of 
the majority of genomic variants in evolution, domestication, and animal production. We 
developed a computational method to predict regulatory DNA sequences (promoters, 
enhancers and transcription factor binding sites) in production animals (cows and pigs) and 
extended its broad applicability to other mammals. The pipeline utilizes human regulatory 
features identified from thousands of tissues, cell lines, and experimental assays to predict 
homologous regions in another mammalian species. Importantly, we developed a filtering 
strategy, including a machine learning classification method, to utilize a very small number 
of species-specific experimental datasets available to select for the likely active regulatory 
regions. The method finds the optimal combination of sensitivity and accuracy to unbiasedly 
predict regulatory regions in non-model species. Importantly, we demonstrated the utility of 
the predicted regulatory datasets in cattle for prioritizing variants associated with multiple 
production and climate change adaptation traits, and identifying potential genome editing 
targets.  
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Background 

Predicting functional features of the genome beyond protein-coding regions has been the 
primary focus of the post-genome sequencing era [1, 2]. More than 90% of common genetic 
variants associated with phenotypic variation of complex traits are located in intergenic and 
intronic regions that regulate gene expression but do not change protein structure [3-5]. 
Moreover, SNPs associated with diseases such as autoimmune diseases, multiple sclerosis, 
Crohn’s disease, rheumatoid arthritis, and type one diabetes are strikingly enriched in 
promoters and enhancers [4, 6, 7]. Annotation of functional regions of the genome that 
harbour SNPs identified by genome-wide association studies (GWAS) to be significantly 
associated with variation in phenotype will contribute to the identification of functional SNPs 
and causative mutations, thereby suggesting genetic targets and markers for numerous 
applications in human health care and agricultural livestock production [8].  

However, in non-model mammalian species, including many livestock species, there is little 
data available at the genome level for discovery of regulatory elements. The recently 
established Functional Annotation of ANimal Genomes (FAANG) consortium has begun to 
address this deficiency in a coordinated fashion [9, 10]. It is expected that core assays 
identifying regulatory elements for key tissues in a number of production animals will be 
produced by the FAANG consortium and collaborators. However, the information generated 
in the foreseeable future for livestock is likely to remain far less comprehensive for coverage 
of tissues, sampling conditions and breadth of annotation of regulatory elements compared to 
human and mouse. The deficiency in the genome-wide prediction of regulatory elements is 
far greater for non-model mammalian species. We have developed a computational method to 
utilize thousands of human regulatory datasets to predict regulatory elements in important 
mammalian species. 

Transcriptional regulatory DNA elements (RDEs) are defined as genomic regions that are 
binding sites for one, or usually a combination of, transcription factors (TFs) and 
transcriptional coregulators [11-13]. Across distant species from C. elegans to D. 
melanogaster to humans, the architecture of gene regulatory networks, organization of 
chromatin topological domains, chromatin context at enhancer and promoter regions, and 
nucleosome positioning are remarkably conserved [15, 16]. Large-scale comparisons between 
humans and mouse (M. musculus) in the ENCODE project found a high level of conservation 
of binding motifs, chromatin states and DNA methylation preferences within TF occupied 
regions [17]. The human ENCODE, FANTOM, ROADMAP and related projects have 
generated large volumes of data relevant to the identification of promoters, enhancers and 
other RDEs [6, 18, 19]. However, these data have not been ultilized for predicting regulatory 
in other mammalian species – a strategy that can produce more comprehensive predictions 
than alternative options using a small set of experimental assays to identify a part of the 
regulatory repertory in the targeted species. We recognise that species specific regulatory 
elements may be underrepresented in this process. However we note that the fundamental 
biology of, for example, that encompassing developmental programs, response to stimuli, 
reproduction, energy homeostasis, and many other systems show considerable conservation 
of components and processes across species [15, 17, 20]. 

In the current research, we developed the Human Projection of Regulatory Regions (HPRS) 
method to utilize results from thousands of biochemical assays in human samples to 
computationally predict equivalent information in other mammalian species. The method 
exploits the conservation of regulatory elements at the DNA sequence and genome 
organizational levels to map these elements to other mammalian species. It then uses species-
specific data to filter these mapped sequences, which are enriched for regulatory sequence 
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features, to predict a set of high confidence regulatory regions. We selected cattle as the 
target species to build the HPRS pipeline and then used the pig as a test species to validate 
the pipeline. The two species are important agricultural ruminant and non-ruminant species, 
respectively, with genomes sequenced but with little information available about genomic 
regulatory regions. We also applied the method to the genomes of eight additional mammals. 
We demonstrated that the predicted regulatory dataset produced by the HPRS pipeline is 
useful for selecting more likely functional SNPs before (e.g. for SNP chip design) and after 
(e.g. for prioritising significant SNPs) GWAS analysis, genomic prediction models, and the 
understanding of biological mechanisms underlying non-coding genomic variant effects to 
potentially identify regulatory targets for genome editing. 

 

Results and Discussion 

A pipeline for the projection of human genomic features to other mammals 

The four key elements of the HPRS pipeline (Fig. 1) include: (1) selection of suitable 
regulatory datatypes (biochemical assays) and tissues in humans; (2) mapping the selected 
features to the target species by utilizing conservation of genome organization and sequence 
identity to maximize coverage without compromising specificity; (3) first round filtering of 
the mapped regions to retain high-confidence mapped features, which had strict one to one 
forward and reciprocal mapping and where human features have multiple mappings to the 
target genome keeping only those with high sequence identity, and; (4) second round filtering 
by applying a pipeline to utilize available (often limited in scale and coverage) species-
specific data to prioritize regions likely to be functional in the target species.  

Optimizing parameters for mapping sequence features across genomes 

To identify regions that were likely to be orthologous between genomes we deployed the 
liftOver tool and the precomputed alignment files available from the UCSC to map regulatory 
regions in human genome to cattle genome based on sequence similarity and genome 
location. First we optimized the minMatch mapping threshold of the liftOver tool, which is 
the minimum proportion of bases to the total length of a region mappable to contiguous 
aligned segments in the target genome. The minMatch parameter was thoroughly tested with 
a range from high stringency 0.95 down to 0.1 (Fig. 2). The minMatch parameter values were 
assessed using seven diverse datasets (Fig. 2, Table S5).  

The percentage of regions mappable to the target genome was compared to the total number 
of elements in the human regulatory databases (Fig. 2a). For cattle, mappable regions were 
defined as: 1) a small sequence segment (SSS) that can be mapped from the human to the 
bovine genome; 2) the resulting SSS can be mapped back (reciprocally mapped) from the 
bovine to the human genome; and 3) the boundaries of the reciprocally mapped SSS were 
within 25 bp of the boundaries of the original SSS in the human genome. In all five enhancer 
datasets tested as shown in the Fig. 2a, the ratio of mapped regions increased steadily when 
the minMatch parameter was reduced from 0.95 to 0.55, with a much slower increase when 
the minMatch was reduced from 0.55 to 0.10 (Fig. 2a). 

The accuracy of the sequence projection was assessed as the percent of mapped regions that 
overlapped with a feature present in a reference cattle liver enhancer dataset, identified 
experimentally by histone 3 lysine 27 acetylation (H3K27Ac - a marker for active enhancer) 
and histone 3 lysine 4 trimethylation (H3K4me3 – a marker for active promoters near 
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transcription start sites) assays (hereafter referred to as the Villar reference datasets) [20] 
(Fig. 2b). The coverage of the relevant reference datasets (Villar reference promoters, Villar 
reference enhancers and UCSC exons) also increased when the minMatch was reduced for 
some, but not all databases (Fig. 2b). Importantly, the reduction in mapping threshold did not 
lead to a loss of specificity, which is defined as the percentage of predicted enhancers that 
matched Villar reference enhancers (true positive for the reference dataset) compared to the 
total number of enhancers predicted using the particular input dataset (Fig. 2c). The testing 
indicated that the optimal minMatch threshold was 0.2. We also developed the method to 
detect regions possibly from gene duplication events (Supplementary Methods). To identify 
regions possibly resulted from duplication events (Fig. S1a), the HPRS mapping pipeline 
pooled unmapped regions in the human datasets (with minMatch=0.2) and mapped regions 
with no exact reciprocal matches for a second round mapping with different parameters 
(allowing multiple mappings and keeping only results  with similarity higher than 80%) to 
rescue regions with multiple map targets. 

Optimised use of human regulatory datasets 

Regulatory regions can be active or quiescent, depending on the cell type and the biological 
states, and therefore prediction using a single tissue/cell line, or a single assay type, is 
unlikely to produce a high coverage of all possible regulatory sequences of a species [21]. 
Therefore, we investigated the effect of using different databases on the predictive capacity of 
HPRS. First, we compared the mapping coverage of enhancers from 42 human ROADMAP 
datasets to the reference liver enhancer datasets, which were experimentally identified for ten 
mammalian species reported in Villar et al. [20] (Fig. 3a, 3b). Second, we evaluated the 
predictions from human to bovine based on different datatypes, including: promoter 
databases (FANTOM), enhancer databases (FANTOM and ROADMAP), and transcription 
factor binding site databases (ENCODE proximal and distal TFs) (Fig. 3c, 3d). In general, 
species with closer evolutionary distance to humans had more HPRS predicted enhancers 
matching the relevant Villar liver reference datasets (Fig. 3a). The relative mapping rates 
were similar between species across the 42 ROADMAP datasets, with thymus enhancers 
having the lowest mapping rate and liver the highest mapping rate in most species (Fig. 3b).  
Notably, the tissue specificity effect, exemplified by the higher mapping rate for ROADMAP 
liver datasets to the relevant species Villar reference datasets than for other ROADMAP 
tissues (Fig. 3b), was reduced substantially if the two primates more evolutionarily related 
humans (macaque and marmoset) were removed from the comparison. 

Since the coverage of the reference cattle liver enhancer dataset was not significantly 
higher with human liver enhancers, than with enhancers from many of the other human 
ROADMAP tissue enhancer datasets, we asked whether combining tissues would increase 
coverage. By combining the predictions from the 42 ROADMAP datasets, 2 to 4-fold higher 
coverage could be obtained than from one tissue alone (at least 60% total coverage) across a 
variety of species could be obtained, with coverage lowest for rat and highest for macaque 
(Fig. 3a, b). Furthermore, we found that separate databases constructed using different 
models and biochemical assays were complementary, and combining them significantly 
increased coverage compared with a single database alone (Fig. 3c, d). For example, 
prediction using the ENCODE distal TF dataset and the ROADMAP enhancer dataset 
covered the highest number of Villar cattle reference enhancers, while prediction using 
FANTOM promoter and ENCODE proximal TFBS databases covered more Villar cattle 
reference promoters, and each dataset could add a number of unique regulatory regions not 
found in other datasets (Fig. 3c, d). The combination of 88 ROADMAP datasets, the 
FANTOM enhancer and promoter datasets, and the ENCODE distal and proximal TF 
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datasets generated a maximum enhancer coverage of 95% (for macaque) and promoter 
coverage of 98% (for marmoset). Therefore, we selected an optimal combination of human 
input databases for the HPRS pipeline on the basis that they represent promoters, enhancers 
and TFBSs from a large combination of human tissues and primary cells and were generated 
by different methods (Table S5).  

Predicting promoters 

One of the most comprehensive human promoter datasets is the FANTOM5 promoter atlas 
generated experimentally by CAGE data from almost one thousand tissues and cell lines [18]. 
CAGE is a sensitive methodology for the detection of transcription start sites (TSSs) and 
hence defines core promoter regions where there is binding of the transcriptional machinery. 
Promoters generally have a high concentration of TFBSs, typically within 300 bp upstream 
and 100 bp downstream of the TSSs [18]. Promoter sequences are more evolutionarily 
conserved than enhancer sequences, and therefore a larger proportion can be mapped from 
human to other mammal genomes [20].  

Of 201,802 CAGE transcription initiation peaks in the FANTOM5 human promoter 
atlas, 154,377 (76.5% of the total) were mappable to the bovine genome (Table 1). The 
HPRS using CAGE predicted new TSSs not present within the existing bovine genome 
annotation. Although a promoter dataset for cattle can be inferred by defining upstream 
sequences of genes with annotated TSSs, this indirect inference results in a small number of 
promoters. Approximately 26,740 cattle genes (coding, lncRNAs, miRNAs etc) in the latest 
reference dataset (Ensembl Build 85) have annotated TSSs. This dataset is far from 
comprehensive because the expected underrepresentation of non-coding genes and of 
alternative promoters (AP). The one gene-one promoter and one gene-one protein concepts 
are no longer appropriate to describe the diverse transcriptome [22]. AP are common and are 
functionally important. A number of APs were found associated with complex traits [23].  
While 51% of the Ensembl cattle TSSs are covered by mapped human CAGE transcription 
initiation peaks (3.7 Mb),  only 38.4% are covered by the  experimentally defined promoters 
(32.9 Mb) in Villar et al. [20], suggesting that HPRS predictions based on human CAGE data 
could enrich promoter coverage in the cow by more than 12 times compared to the standard 
promoter assay (H3K4me3 ChIP-Seq) (Table 1). Active TSS regions from 88 human tissues 
in the ROADMAP were mapped to 81,892 putative promoters in cattle, with a total length of 
135.6 Mb. Noticeably, the average number of Ensembl reference TSSs overlapped to every 1 
Mb of predicted promoters based on the ROADMAP database was 37-fold lower than those 
based on the CAGE database (Table 1). 

HPRS using the CAGE dataset can predict many TSSs at single-nucleotide resolution 
and can accurately predict transcriptional orientation. TSSs are presented in the Ensembl 
database as single nucleotide genomic positions. HPRS predicted promoters based on CAGE 
had exact overlap to the 7,191 Ensembl TSSs for cattle. While promoter prediction by using 
histone marks (such as those used by ROADMAP) cannot directly define transcriptional 
orientation, this information predicted by HPRS using human CAGE data is highly accurate. 
Out of 13,676 genes that have TSSs within 500 bp of mapped CAGE peaks, 96.9% (13,257) 
genes had the same transcriptional orientation in the Ensembl annotation and predicted by 
human CAGE data. We therefore assigned promoter orientation using the predictions from 
the CAGE dataset.  

 

Mapping transcription factor binding site datasets 
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To include potential regulatory regions beyond typical promoter and enhancer classifications, 
we performed HPRS mapping of human experimentally defined ENCODE TFBSs (ENCODE 
annotation version 2) to the bovine genome. The ENCODE TFBS database contains binding 
sites for 163 key TFs, some of which represent additional types of regulatory regions other 
than enhancers and promoters [24] (Table S5). The use of these TFBS datasets not only 
supported predictions from using the enhancer and promoter datasets, but more importantly 
added other regulatory categories into the combined prediction of regulatory regions. For 
example, the binding targets of the CCCTC-binding factor (CTCF) are likely insulator 
regions, while enhancer of zeste homolog 2 (EZH2) binding sites may mark polycomb 
repressor complex 2 (PRC2) regions. These ENCODE TFBSs were identified as binding 
regions of TFs to nucleosome free regions (~151 bp per region), which are more biologically 
relevant than de novo scanning of genome sequence for TFBSs based on short position 
weight matrices (PWMs, typically 6-12 bp) because the later method only uses DNA 
sequence and does not take into account the biological chromatin context, which is essential 
for transcription factor binding. In total, from the ENCODE TFBS dataset, 298,554 proximal 
TFBSs (total 47.97 Mb), and 749,572 distal TFBSs (total 132.04 Mb) were projected by 
HPRS onto the bovine genome. We also show that the HPRS prediction using ENCODE 
transcription factor datasets was supported by two other independent prediction approaches 
(Supplementary Methods).  

 

Mapping enhancer datasets before filtering 

Prediction of enhancers is likely to be more challenging than predicting promoters because: 
1) enhancers are less conserved in DNA sequence; 2) enhancer locations evolve faster [17, 
20], and 3) enhancer effects are usually independent of the distance, orientation, and relative 
location (upstream or downstream) of gene targets [11]. To predict a broad set of sequences 
in a species that are active in one or more tissues or conditions, we expanded the human 
enhancer datasets to include: 88 tissues, primary cell lines and primary cell cultures generated 
by the ROADMAP project [19] (Table S5); all human active enhancers defined by CAGE 
data from hundreds of tissues and cell lines in the FANTOM project [6], and; all the Villar 
experimentally defined reference cattle liver enhancers [20] (Table S5). Cumulatively, the 
HPRS pipeline mapped over 9.1 million human enhancer sequences to over 5.9 million 
regions in the bovine genome, which were then merged into 542,756 non-overlapping regions 
(Table 1). The merged dataset (Universal Dataset) covered 86% (excluding merged regions 
resulting from the original Villar reference enhancers) of the Villar enhancer reference 
dataset (Table 1).  

The HPRS mapping of the enhancer datasets predicted a large set of homologous 
regions that are potentially regulatory regions in cattle (the Universal Dataset). We noted that 
alignability of DNA sequence does not automatically imply functionality [20], and therefore 
we applied a filtering pipeline to incorporate other types of cattle-specific data to prioritize 
functional regions. The filtering pipeline used a combination of sequence features and 
epigenetics marks to enrich for likely functional enhancers and promoters, as discussed in the 
next section.  

 

The filtering pipeline for a high-confidence regulatory region dataset  

The predictions produced by HPRS were optimized so that they occupied a relatively small 
part of the whole genome, but can universally predict regulatory regions in different cell 
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types and tissues. Applying HPRS for selected datasets (Fig. 3 and Table S5), we first 
produced a preliminary Universal Dataset then refined it to generate a Filtered Dataset (Table 
1). To remove redundancies, overlapping mapped ROADMAP enhancers (initially mapped 
separately for each of the 88 ROADMAP datasets) were merged (Table 1). Similarly, all 
mapped regions for promoters, merged enhancers and TFBS with overlapping coordinates 
were merged into larger regions to form the final Universal Dataset (UD), containing 542,756 
non-overlapping regions. These regions covered 937.4 Mb (35.1%) of the bovine genome. 
The high coverage (35.1%) of the UD was due to the large collection of human datasets used 
as inputs for mapping to bovine (37.2% of the human genome) so that the UD covered almost 
all possible promoters, enhancers and TFBS (Table 1). Importantly, the HPRS pipeline 
improves the specificity of the UD by applying a filtering step, which incorporates the power 
of cattle specific data to predict a small set of regions functional in bovine (Fig. 4, Table 3). 

The filtering pipeline reduced the UD to a relatively small part of the whole genome, 
but still predicted most active enhancers and promoters (Table 3 and Figure 4). Detailed 
discussion on rationale for selecting each filter is in the Supplementary Materials and 
Methods. Briefly, the pipeline utilized both biological data in the target species (86 RNA-Seq 
datasets representing 79 cattle tissues [30], cattle H3K27Ac signal [20], and DNA sequence 
conservation scores) and computationally estimated criteria (gapped k-mers support vector 
machine (gkm-SVM) scores, number of overlapping annotations and number of CB-predicted 
TFBS ) (Fig. 4a).  

Before filtering, the Universal Dataset had approximately 2.84 times higher RatioE 

(Number of Villar reference enhancers by predicted regions divided by the length in Mb of 
predicted regions) and 2.82 higher RatioP (Similar to RatioE, but for promoters) than the total 
genome baseline and each filtering step in the pipeline increased RatioE and RatioP compared 
to the baseline (Fig. 4b, Table 3). At the end of the pipeline, a set of high-confident 
regulatory regions, named as the Filtered Dataset, containing 245,384 sequences (with total 
length 356.1 Mb, equivalent to 13.3% of the whole genome) was obtained. The filtering 
reduced the number of regions by 2.2 times and the genome coverage by 2.6 times (Table 1, 
Fig. 4a), while still including most of the cattle liver reference enhancers and promoters 
(73.5% and 95.0% respectively) (Table 3, Fig. 3a). Importantly, the filtered dataset had a 5.5 
and 7.1 times higher RatioE and RatioP, respectively, than the genome baseline (Fig. 4). The 
size and coverage of the bovine genome (356.1 Mb, 13.3%) by HPRS predicted regulatory 
regions was comparable to the published figure for mouse, which is 12.6% of the mouse 
genome, as predicted by ENCODE DNAse I accessibility data and transcription factor ChIP-
Seq (using antibodies for 37 TFs on 33 tissues/cell lines) and histone modification ChIP-Seq 
data [2].  

 

Validating and extending the HPRS pipeline in nine other mammalian species 

The performance of the HPRS pipeline was evaluated using the porcine (pig) genome 
(susScr3). HPRS had been developed based on the bovine genome, and the pig was then 
selected as a species for step-by-step comparison throughout the pipeline because of the 
availability of experimentally defined porcine promoter and enhancer reference datasets [20] 
and because the pig is an evolutionarily divergent non-ruminant production animal. We 
obtained similar results in pig compared to cattle on: numbers of putative regulatory regions, 
percent to total genome length, coverage of the reference datasets (Table 1 and Table 3). 
Importantly, we extended the application of the HPRS mapping data from human to 8 
additional mammalian species, which had reference promoter and enhancer datasets from the 
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Villar et al study. We generated HPRS mapped Universal Datasets (unfiltered) and observed 
consistently high coverage of the reference enhancer and promoter datasets and the coverages 
were comparable between all 10 mammalian species (Table 4). Thus, the pipeline appears to 
have general utility, not just for livestock species, but also for mammals in general. 

 

SNPs in regulatory regions are enriched for significant GWAS SNPs  

Over 90% of significant GWAS SNPs lie outside gene-coding regions, and over 92% are 
within intronic regions [3, 5]. To test the enrichment of potential causal SNPs within 
predicted regulatory regions in cattle, we explored the overlap between SNPs in regulatory 
regions and pleiotropic SNPs, which are SNPs significantly associated with multiple traits. 
The pleiotropic SNPs were identified by an independent GWAS study for 32 cattle feed 
intake, growth, body composition and reproduction traits [31]. The GWAS used 10,191 beef 
cattle, with data (including imputed data) for 729,068 SNPs (Fig. 5). We observed a 
substantial fold enrichment (~2-4 times) of SNPs with –log(P-value) from 3 to 20 in the 
Filtered Dataset compared to all other sets of commonly classifying SNPs in different 
genomic regions, including the set of SNPs 5 kb upstream of protein coding genes. We also 
observed higher counts (for 6 out of 10 traits) of associated SNPs within regulatory regions in 
a study on ten climatic adaptation traits in 2,112 Brahman beef cattle [32] (Fig. S1). Similarly 
we found enrichment of regulatory SNPs in a study of five major production and functional 
traits in 17,925 Holstein and Jersey dairy cattle (p<0.05 for 3 out of 5 traits) (Table S1). 
These observations are consistent with the pipeline identifying regulatory SNPs from millions 
of SNPs in the genome and suggest that the predicted regulatory database is useful for 
prioritizing SNPs likely to be contributing to phenotypic variation of complex traits.  

 

The regulatory region datasets can be used to guide identification of potential causative 
SNPs and their gene targets 

As examples of the application of our resources to identify likely causative mutations from a 
large list of significantly associated SNPs, we applied the HPRS approach to analyse two 
well studied genetic variants in cattle, which were known to contribute to phenotypic 
variation, but their mechanisms of action were not known because they were located within 
non-coding regions.  

The bovine Pleomorphic adenoma gene 1 (PLAG1) locus has been identified in the 
control of stature (weight and height) by several independent GWAS studies in cattle [33, 
34]. The study by Karim et al. [33] fine-mapped 14 SNPs associated with stature. The 14 
SNPs are in the vicinity of PLAG1 and the Coiled-coil-helix-coiled-coil-helix domain 
containing 7 (CHCHD7) gene, which are 540 bp apart (Fig. 6a). The 14 candidate SNPs are 
shown in Fig. 6a with coordinate locations relative to HPRS-predicted regulatory regions. 
The HPRS database suggests a strategy for further filtering these fine-mapped SNPs in two 
ways, first to prioritize gene targets and second to prioritize SNPs. The design of the 
validation experiment by Karim et al. did not separate the two SNPs (rs209821678 and 
rs210030313) in the promoter region because both the long and short fragments used for 
activity assays in the study contained both SNPs. The HPRS prediction separates the two 
SNPs into two core CAGE peaks (Fig. 6b). The two peaks suggest two potentially separate 
binding sites of the transcriptional machinery. HPRS resolves the shared 540 bp promoter 
region into separate core promoter regions and suggests a new validation design, in which 
three short, directional fragments focusing more specifically on core CAGE regions (two near 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 5, 2017. ; https://doi.org/10.1101/143990doi: bioRxiv preprint 

https://doi.org/10.1101/143990
http://creativecommons.org/licenses/by-nc/4.0/


10 

 

PLAG1 and one near CHCHD7 gene) can be used for functional assays of SNP genotype. 
Measuring promoter activity of these three constructs by using the similar promoter luciferase 
assay and transcription factor binding assay employed by Karim et al may confirm which of 
the two SNPs is causative and which gene is affected.  

Furthermore, by applying a scoring model for regulatory variants, we generated 
deltaSVM score for each of 97 million known bovine SNPs (see Supplementary Materials 
and Methods). The SNP rs209821678 had a deltaSVM score of -5.99. The score was beyond 
the 95th percentile range of SVM scores for 97 million SNPs, suggesting that it may play an 
important regulatory role. Notably, the rs209821678 deletion of the (CCG)x11 to (CCG)x9  
trinucleotide repeats lies in a predicted G-quadruplex and may cause changes in its structure, 
an event that could alter transcriptional activity [35]. In contrast, the SNP rs210030313 and 
rs109815800 did not have significant deltaSVM scores (0.51 and 3.2, respectively). 

We then asked if the regions containing the SNPs interact with additional genes 
distant from the PLAG1 locus. We applied HPRS for mapping interactions defined by 
chromatin conformation capture data (5C and Hi-C in the ENCODE human datasets) to 
predict distal targets of the promoter regions in the PLAG1 locus [36, 37], we found that 
rs209821678 and rs210030313 are within the anchor A_447043 (chr14:25,044,319-
25,054,287, UMD3.1) with a predicted target region (chr14:25,478,861-25,497,096) near the 
IMPAD1 (Inositol Monophosphatase Domain Containing 1). Variants within IMPAD1 have 
been implicated in short stature and chondrodysplasia (Table S2). Interestingly, the leading 
SNP identified in an analysis of pleiotropic genes affecting carcase traits in Nellore cattle, 
rs136543212 at chr14: 25,502,915, is slightly closer to IMPAD1 [38]. The rs109815800 SNP, 
on the other hand, does not lie in any mapped Hi-C region. Together, the HPRS predicted 
results strongly suggest that the rs209821678 variant is the causative SNP among the 14 
candidates fine-mapped by Karim et al.  

Another example of applying the HPRS databases for analysis of non-coding 
mutations is for the case of the “Celtic mutation”, which causes the polled phenotype. The 
mutation is a 202-bp-indel, where the duplication of a 212 bp region (chr1:1705834-
1706045) replaces the 10 bp (chr1:1706051-1706060)[39, 40] [41] (Fig. 7). The mechanism 
for the Celtic mutation is unknown, although it may affect the expression of OLIGO1, 
OLIGO2, CH1H21orf62 and two long non-coding RNAs (lincRNA1 and lincRNA2) [39, 
40]. We found that the whole 10 base deletion, but not the upstream 212 base duplication, is 
within an HPRS predicted enhancer sequence (chr1:1706046-1706182, UMD3.1). A detailed 
transcription factor binding motif analysis of the polled mutation site suggests that a binding 
site for the TF HAND1 (Heart And Neural Crest Derivatives Expressed 1) is lost due to the 
10 bp deletion in animals containing the Celtic mutation (Fig. 7c). The neural crest cells give 
rise to the craniofacial cartilage and bone [42], suggesting that the loss of the HAND1 
putative binding site is a plausible explanation for the altered craniofacial development in 
Polled animals. Additionally, using information from Hi-C in the human genome [37], we 
found the mutation is within a mapped interaction targets of the regions Hi-C A_264635 
(chr1:1706078-1714122, UMD3.1) and A_264636 (chr1:1698252-1706077, UMD3.1) and 
interacts with genes 100s of Kb away (Fig. 7: bottom panel, and Table S2). Although, the 
above hypothesis requires experimental validation, it shows that applying HPRS approach 
could lead to biological hypothesis for underlying effects of causative mutations within non-
coding regions. 

Therefore, from the two examples described above (and from the Callipyge example 
described in the supplementary section), we found that the HPRS regulatory database can be 
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used to prioritize SNPs and genetic variants that were identified by GWAS studies and to 
draw hypotheses about biological mechanisms of a causative SNP.  

 

Limitations of the methods 

The main aim of the HPRS pipeline is to predict as many regulatory regions and as accurately 
as possible, so that the dataset could be applied for functional SNP analysis in the target 
species. However, given the uncertain nature of promoter and enhancer identification, the rate 
of false positives and negatives by HPRS is difficult to determine. In our analysis, all of the 
reference cattle liver enhancers were included in the initial unfiltered datasets, although 
~25% were lost during the filtering process. Similarly, 96% of reference cattle liver dataset 
promoters were covered by the unfiltered dataset, with less than 3% lost in the filtering 
process. In addition, the approach cannot predict promoters and enhancers that are unique to 
the species, for example promoters and enhancers that are present in the cow, but not present 
in humans. These unique promoters/enhancers are likely to be a small proportion of the total 
promoter/enhancer set. Indeed, the lineage specific promoters and enhancers across 20 
mammalian species were less than 1% of the total [20]. Of note, relevant human input 
datasets can be integrated depending on the aim of an analysis. For example, if the focus is to 
study milk production, the HPRS pipeline can be applied for more relevant tissues, such as 
the mammary gland. Future cattle-specific datasets can be incorporated into the HPRS 
pipeline to address the tissue and species specificity issues.  

In contrast to the HPRS pipeline prediction of regulatory regions, the prediction of 
causative genetic variation within regulatory regions is much more challenging. The current 
approach relies on the enrichment of sequence motifs within regulatory regions relative to 
non-regulatory regions. At least some of the motifs are TFBSs, but there are likely to be other 
types of motifs, such as G-quadraplexes, present in regulatory regions. While the predicted 
datasets can be useful for generating relevant hypotheses, the identification of causal variants 
still requires considerable future refinement and validation. 

 

Conclusions 

We have developed the HPRS pipeline using a large collection of existing human 
genomics data and a limited number of cattle specific datasets to predict a database of cattle 
regulatory regions that covers a large number of active promoters, enhancers and TFBSs. The 
database generated here is not a final product because HPRS is capable of readily integrating 
new cattle-specific datasets into its mapping and filtering pipeline to expand, refine and 
validate the databases. Moreover, the HPRS pipeline can be applied to data of other 
mammalian species and by scientists without computer programming skills. We anticipate 
that the pipeline will be used to integrate large-scale datasets from the FAANG consortium, 
when they become available, with complementary data from human research. The immediate 
application of the regulatory database is to complement the current species specific GWAS 
analysis by (1) discovery of potential regulatory mechanisms of SNPs lying outside gene 
coding regions, (2) prioritising SNPs that are statistically significant at a genome-wide level 
but located within regulatory regions, (3) prioritising SNPs that are at low allele frequency 
but have potential for large effects, and (4) suggesting possible causative SNPs as targets for 
precise genome editing or selective breeding practices. 
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Methods 

The complete HPRS pipeline is divided into three modules: mapping, filtering, and 
SNP analysis. The whole pipeline and documentation are available at 
https://bitbucket.csiro.au/users/ngu121/repos/hprs/browse.  

 

HPRS mapping pipeline 

We developed a mapping strategy based on four elements: (1) selecting a suitable 
combination of human databases as HPRS inputs; (2) finding an optimal sequence identity 
threshold in the target genome; (3) finding options to remove less confident mapped results, 
and; (4) adding multiple mapped regions that meet a high sequence similarity threshold. 
Depending on the species, targeted tissues or regulatory categories of interest, users can 
select suitable human databases using the following suggested criteria: types of regulatory 
regions (promoters, enhancers, and TFBSs), biochemical assays, computational models for 
combining data, and data sources (tissues, cell lines, traits). Second, by applying the UCSC 
liftOver tool, regions that were aligned at genome-scale (by LastZ pair-wise genome 
alignment) were fine-mapped to identify target regions with proportion of sequence identity 
to the original regions (minMatch) higher than a selected cut-off.  We recommend an optimal 
minMatch=0.20 and not allowing multiple mapping for this step. Users can vary input 
parameters (minMatchMain and minMatchMulti) in the HPRS mapping script 
(Main_Mapping_Pipeline.py) to optimize the minMatch suitable to specific datasets that may 
have different features such as sequence length and conservation. Third, mapped regions 
resulting from using a low minMatch cut-off (0.20) were filtered to retain only regions with 
exact reciprocal mapping back to human genome, with the condition that both the left and 
right borders of the reciprocally mapped regions were within 25 bp windows of the original 
regions. Fourth, to accommodate regions possibly resulting from duplication events, the 
HPRS mapping pipeline added a step to remap regions that are unmapped or are not 
reciprocally mapped by allowing multiple mapped results to be included while setting a high 
sequence similarity threshold (specified by the minMatchMulti parameter, ≥ 0.80).  Fig. S1a 
shows some of the expected mapping scenarios.  

In addition to the customized minMatchMain and minMatchMulti parameter inputs, 
the Main_Mapping_Pipeline.py script also takes user-specified chain files for target species, 
which can be any of the mammalian species with chain files available from the UCSC 
databases or generated in-house. The HPRS mapping pipeline enables fast mapping of as 
many databases as necessary. The script 
PostHPRSMapping_MergeDifferentDatabaseTypes.py (at 
https://bitbucket.csiro.au/users/ngu121/repos/hprs) can be used to combine resulting datasets 
into one dataset containing non-overlapping regions. For example, we merged enhancer 
databases from 88 ROADMAP tissues/primary cell lines, and five additional promoter, 
enhancer and TFBS databases. The script also collapses names of overlapping regions into a 
comma separated field that can be used to count the total number of annotations for each 
merged region.    

 

HPRS filtering pipeline 
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Detailed description of the seven filters is presented in the Supplementary Materials 
and Methods section. Briefly, the HPRS filtering pipeline was written in R and contains 
seven filtering steps (Fig. 4, Table 3). The input file is a merged metadata file, in which each 
region was calculated for the number of CAGE peaks mapped, the RNA-Seq signal from 86 
cattle RNA-Seq datasets, the Villar H3K27Ac signal, the SVM enhancer scores (enhancer 
activity predicted by a machine learning classification method, gkmSVM) [43], the number 
of overlapping annotations, the conservation score based on the UCSC 100 way vertebrate 
alignment [44], and the number of TFBSs based on Cluster-Buster scanning [26]. The main 
filtering pipeline was HPRS_Filtering_pipeline.Rmd. We tested a range of parameters and 
recommend using the parameters set in the script. In addition, prior to running this main 
script, users can choose to optimize parameters suitable to specific datasets using the script 
HPRS_Filtering_optimize_FilterOrder.Rmd, which calculates RatioP and RatioE (average 
number of enhancers and promoters per Mb of the total length of all predicted enhancers and 
promoters) for each filter and for a range of filter parameters so that the optimal parameters 
are used in the main filtering pipeline. The filtering pipeline was written in a way that it is 
simple to add or remove filter layers depending on availability of species-specific data. 

 

Methods to apply HPRS dataset for regulatory SNP analysis 

The HPRS dataset can be applied for the selection of top candidate SNPs in regulatory 
regions which are present in existing genotyping SNP chips. The selected SNPs form a small 
set of SNPs that are more likely to be causal or associated to phenotypes. Using these SNPs 
for GWAS analysis may reduce noise compared with using a large number of non-causal but 
in high linkage disequilibrium to causal SNPs. The top candidate SNPs can be selected by the 
identification of SNPs belonging or not belonging to the following categories: the Universal 
Dataset; the Filtered Dataset; the TFBSs of the predicted regulatory regions; and regulatory 
regions active in tissues related to the trait of interest. In addition, deltaSVM scores can be 
used as one of the indicators for potential SNP effects, as discussed in the supplementary 
method section. Alternatively, the dataset can be used for post-GWAS analysis, in which 
significant SNPs in non-coding regions that are identified from GWAS can be assessed for 
potential effect on gene regulatory activity. We have discussed examples of applications for 
the cases of pleiotropic SNPs, climatic adaptation associated SNPs, and associated SNPs 
milk-production traits (Fig. S1, Table S1), and of post-GWAS analysis for the stature 
phenotype and callipyge phenotype (Fig. 6 and Tables S2, S3).   

We developed an implementation pipeline of the gkm-SVM model to estimate SNP 
effects on enhancer activities in cattle by adapting the model to the case where very limited 
species-specific ChIP-Seq data are available for model training (See Supplementary Materials 
and Methods).  

Data availability 

We have made all HPRS Python and R scripts publically available with usage 
instruction from BitBucket (https://bitbucket.csiro.au/users/ngu121/repos/hprs/browse). 
These codes can be used to perform all steps from mapping, to filtering and scoring 
regulatory SNPs.  

All human databases used for prediction are publically available (Table S6). Results 
of predicted regulatory regions, including the Universal Datasets and the filtered datasets, for 
cattle and pig are available as Supplementary Materials of this article. For cattle, we provide 
deltaSVM scores for ~97 million SNPs, which can be used as one of the parameters for 
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assessing potential SNP effects. Additionally, we share predicted Universal Datasets (not yet 
filtered) for ten other mammalian species in a format compatible for uploading to the UCSC 
genome browser (Table 4 and  Fig. S7). These 10 additional datasets can be useful for 
exploring potential regulatory effects from non-coding genomic regions.  
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 1 

Table 1. Summary of mapped and filtered regulatory sequences. 2 

Datasets Number of mapped regions  Genome coverage (%) 
human cow pig  human Cow pig 

Total genome size (Mb) NA1 NA NA  3,137.2 Mb 
(100%) 

2,670.4 Mb 
(100%) 

2,808.5 Mb (100%) 

ROADMAP enhancers (% 
mapped to target species) 

9,102,278 
(100%) 

5,917,129 
(65%) 

5,620,417 
(62%) 

 8,836.6 Mb2 6,142.4 Mb2 
 

5,809.5 Mb2 
 

ROADMAP enhancers 
(overlapping regions were 
merged) 

494,583 
(100%) 

371,295 
(75%) 

361,682 
(73%) 

 1,123.2 Mb 
(35.8%) 

885.6 Mb 
(33.2%) 

826.2 Mb (29.4%) 

FANTOM CAGE enhancers 43,011 
(100%) 

34,303   
(80%) 

27,558 
(64%) 

 12.4 Mb (0.40%) 12.2 Mb 
(4.6%) 

9.6 Mb (0.34%) 

ENCODE distal TFs 1,122,364 
(100%) 

749,572 
(67%) 

716,515 
(64%) 

 169.7 Mb (5.4%) 132.0 Mb 
(4.9%) 

124.4 Mb (4.4%) 

FANTOM CAGE promoter 
peaks 

201,802 
(100%) 

154,377 
(76%) 

153,893 
(76%) 

 4.3 Mb (0.14%) 3.7 Mb 
(0.14%) 

3.7 Mb (0.13%) 

ENCODE proximal TFs 384,343 
(100%) 

298,554 
(78%) 

279,774 
(73%) 

 58.2 Mb (1.9%) 48.0 Mb 
(1.8%) 

48.9 Mb (1.7%) 

Merged ROADMAP, 
ENCODE, and FANTOM 
datasets (Universal Dataset)3 

760,702 542,756 
(86.1% and 
96.6%) 

519,913 
(89.2% 
and 
97.1%) 

 1,165.7 Mb 
(37.2%) 

919.5 Mb 
(34.4%) 

857.8 Mb (30.5%) 

Filtered Dataset NA 245,384 
(73.5% and 
95.0%) 

151,523 
(69.8% 
and 
95.6%) 

 NA 356.1 Mb 
(13.3%) 

311.5 Mb 
(11.1%) 

1NA, not applicable 3 
2Including overlapping regions 4 
3Universal Dataset, % overlapping Villar reference enhancers and promoters in the targeted species 5 
4% overlap Villar reference liver enhancers and promoters 6 
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Table 2. Summary of promoter predictions. 1 

Dataset Total Regions in Cattle1 
Overlap with 
Villar dataset 

Fold enrichment 
of Villar dataset 

Number within 200 
bp of TSSs2 

Fold enrichment of 
TSSs  

Total number CAGE regions 154,377 (3.68 Mb, 0.138%) 11,606 (84.1%) 609 13,676 (51.0%) 370 
Filtered set CAGE regions 145,912 (3.46 Mb, 0.129%) 11,203 (81.2%) 629 13,011 (48.7%) 377 
Total all regulatory regions 
(Universal Dataset) 542,756 (937.39 Mb, 35.11%) 13,329 (96.6%) 3 20,759 (77.6%) 2 
Filtered regulatory regions 
(Filtered Dataset) 245,384 (356.1 Mb, 13.33%) 13,104 (95.0%) 7 17,715 (66.2%) 5 
Villar reference promoters 13,796 (32.90 Mb, 1.23%) 13,796 (100%) NA 10,212 (38.2%) 31 

ROADMAP promoters 81,892 (135.6 Mb, 5.08%)  12677 (91.9%) 18 14,388 (53.8%) 11 
1minMatch 0.2, exact LO, multiple080 from initial FANTOM promoters, percent to total genome size. 
2Promoter count within 200 bp of the Ensembl annotated UMD3.1 TSSs Ensembl build85 (total 26740). 
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Table 3. Filters with species-specific data for selecting regulatory regions (refer to the Supplementary Materials and Methods). 1 

Filter Filtering parameters Length (Mb)  Number (Ratio Enhancers, Count/Mb)  Number (Ratio Promoters, Count/Mb) 
Cattle Pig  Cattle Pig  Cattle Pig 

Whole 
genome 

Genome baseline (all) 2,670.
4 

2,670.1  31,971 (12.0) 23,804 (8.5)  13,796 (5.2) 11,114 (4.0) 

Universal 
Dataset 

Universal baseline 
(all) 

937.4 882.4  31,971 (34.1) 23,804 (27.0)  13,796 (14.7) 11,114 (12.6) 

CAGE 

CAGE >= 2 or CAGE 
= 1 and RNAseq > 
mean(Villar) 

201.9 194.7  9,628 (47.7) 6,679 (34.3) 
 

 10,152 (50.3) 9,476 (48.7) 

CAGE >= 1 250.7 248  11,318 (45.2) 8,214 (33.0)  12,103 (48.3) 9,936 (39.9) 

H3K27Ac 

Log2(H3K27Ac) >= 
median(log2(Villar)) 

89.6 103.8  16,124 (180.0) 11,985 (115.4)  3,927 (43.8) 9,324 (89.8) 

Log2(H3K27Ac) >= 
mean(log2(Villar)) 

91.0 102.0  16,366 (179.8) 11,670 (114.4)  3,966 (43.6) 9,305 (91.2) 

RNAseq 

Log2(RNAseq) >= 
3rdquartile(log2(Villar
)) 

156.1 85.3  6,999 (44.8) 3,162 (37.1)  5,473 (35.1) 6,412 (75.2) 

Log2(RNAseq) >= 
median(log2(Villar)) 

278.1 184.0  12,147 (43.7) 6,748 (36.6)  8,442 (30.4) 8,709 (47.3) 

Log2(RNAseq) >= 
mean(log2(Villar)) 

319.4 197.7  13,746 (43.0) 7,268 (36.8)  9,249 (29.0) 8,874 (44.9) 

gkm-SVM 

Length < 3000 & 
SVM >= 
median(Villar) 

85.9 4.7  3,603 (41.9) 261 (55.6)  9,208 (107.1) 359 (76.4) 

Length < 3000 & 
SVM >= mean(Villar) 

87.4 3.7  3,645 (41.7) 200 (53.9)  9,230 (105.6) 287 (77.3) 

Length < 5000 & 
SVM >= mean(Villar) 

133.4 49.3  5,673 (42.5) 1,858 (37.6)  9,766 (73.2) 1,333 (27.0) 

Annotation 
count 

AnnCount >= 3rd 
quartile (Villar) 

72.8 41.4  3,308 (45.5) 893 (21.6)  9,618 (132.2) 7,489 (181.0) 

AnnCount >= median 
(Villar) 

109.1 21.2  5,173 (47.4) 887 (21.5)  10,599 (97.2) 7,486 (181.7) 

AnnCount >= mean 273.2 239.6  12,433 (45.5) 7,792 (32.5)  12,391 (45.4) 10,039 (41.9) 

.
C

C
-B

Y
-N

C
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under 

T
he copyright holder for this preprint (w

hich w
as not

this version posted June 5, 2017. 
; 

https://doi.org/10.1101/143990
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/143990
http://creativecommons.org/licenses/by-nc/4.0/


20 

 

(Villar) 

Phastcons 

PhastCons >= 95th 

percentile (Villar) 
28.0 26.7  939 (33.5) 722 (27.1)  1,504 (53.7) 1,165 (43.7) 

PhastCons >= median 
(Villar) 

383.6 351.3  13,068 (34.1) 9,425 (26.8)  9,929 (25.9) 7,746 (22.1) 

PhastCons >= mean 
(Villar) 

247.4 227.0  8,415 (34.0) 6,098 (26.8)  8,000 (32.3) 6,249 (27.5) 

TFBS count 

TFBScount >= median 
(Villar) 

16.3 12.9  4 (0.2) 2 (0.2)  6,700 (411.3) 3,253 (252.0) 

TFBScount >= mean 
(Villar) 

379.9 882.4  12,933 (34.0) 23,804 (27.0)  9,956 (26.2) 10,788 (12.2) 
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Table 4.  HPRS predicted regulatory datasets for 10 species  

Species Number of 
regions 

Total length 
(Mb) 

Enhancer 
coverage1 

Promoter 
coverage1 

Unfiltered datasets 
Cattle (bTau6) 545,748 919.5 86.1% 96.6% 
Pig (susScr3) 519,913 882.4 89.2% 97.1% 
Marmoset (CalJac3) 642,144 1,106.4 93.1% 98.4% 
Rhesus Macaque (RheMac3) 693,312 1,158.2 94.5% 97.6% 
Dog (CanFam3) 570,317 877.5 89.4% 97.6% 
Cat (FelCat5) 570,282 903.9 90.8% 97.1% 
Guinea pig (CavPor3) 523,273 761.6 81.1% 92.7% 
Rabbit (OryCun2) 531,109 819.4 86.8% 96.8% 
Mouse (Mm10) 478,974 699.7 79.6% 93.2% 
Rat (Rn5) 453,017 620.5 75.3% 89.5% 
Filtered datasets3 
Cattle (bTau6)  245,358 356.1 73.5% 95.0% 
Pig (susScr3) 151,523 311.5 69.8% 95.6% 
The datasets were generated for each species using the same human data sources, including: 
88 ROADMAP tissues/primary cell lines, FANTOM promoters and enhancers, and 
ENCODE proximal and distal TFs (Table S2). The prediction results for each species are 
available as part of the supplementary file 2.  
1Coverage of the relevant Villar reference datasets [13]. 
2Not applicable as no Villar reference dataset is available for this species. 
3The relevant Villar reference species enhancer datasets were added prior to filtering. 
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Fig. 1. Framework for the prediction of regulatory regions. Steps are from genomic 
sequence through to prediction of functional SNPs in nonhuman mammalian species.  
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Fig. 2. Optimization of mapping parameters using seven input databases. The input databases included five human enhancer databases 
(ENSEMBL, ENCODE, ROADMAP liver tissue, Vista, and FANTOM enhancers), one human promoter database (FANTOM promoters) and 
one annotated human exon database (UCSC hg19) [6, 16, 19, 45, 46]. We used the UCSC pair-wise whole genome alignment chain files 
between the human genome (hg19) and the bovine genome (UMD3.1) and performed mapping from the human genome to the bovine genome 
(minMatch 0.1 to 0.95 as shown in the x-axis) and then reciprocal mapping from the bovine genome back to the human genome [47-50]. a) 
recovered rate, defined as the percentage of the number of mapped regions with exact reciprocal mapping to the total number of original regions 
in humans. b) confirmation rate, defined as the percentage of reference regions covered by predicted regions to the total number in reference 
regions (Villar reference enhancers, Villar reference promoters, and cattle GENCODE genes V19). c) specificity, defined as the percentage of 
matched reference (true positive for the reference dataset) compared to the total number of predicted regions. 
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Fig. 3. Effects of combining databases. a) Extending the HPRS mapping method to ten 
mammalian species. HPRS projection of 42 combined human enhancer ROADMAP datasets 
[20] (38 adult tissues and four cell lines/cell cultures) to 10 mammalian species. The mapped 
results were compared to the Villar enhancer. b) Similar to a) but separate HPRS mapping for 
each of the 42 human ROADMAP tissues. c) and d) show the optimal combination of five 
databases: ROADMAP enhancers (42 tissues); ENCODE distal TFs; ENCODE proximal 
TFs; FANTOM enhancers and FANTOM promoters. The numbers shown in the intersections 
are the number of common regulatory regions between the HPRS mapped regions and the 
Villar reference datasets. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 5, 2017. ; https://doi.org/10.1101/143990doi: bioRxiv preprint 

https://doi.org/10.1101/143990
http://creativecommons.org/licenses/by-nc/4.0/


25 

 

 

Figure 4. Enrichment of the enhancers and promoters by the filters in the HPRS filtering 
process. a) A pipeline to filter predicted regulatory regions from the Universal Dataset with 
542,756 regions, covering 937.4 Mb of the genome (35.1%). The initial number of 
experimentally defined Villar reference datasets included 31,971 enhancers (E) and 12,257 
promoters (P). The number of reference E and P, total number of predicted regulatory regions 
and total length (in Mb) for all promoters and enhancers passing each filtering layer are 
shown. The RatioE (total enhancers overlapping Villar reference enhancers/total length) and 
RatioP (total promoters overlapping Villar reference promoters/total length) were used as 
criteria to assess enrichment for each filter. b) Enrichment results (using the same starting 
set) of using each of the seven filtering steps in comparison with the baseline (whole genome) 
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as shown in the dashed lines, and the Universal Dataset (mapped regions, not filtered). Each 
filter was tested independently, using the same Universal Dataset as the input, to compare 
enrichment levels resulted from each of the seven filters.  
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Figure 5. Enrichment of significant pleiotropic SNPs in regulatory genomic regions. 
Count of significant pleiotropic GWAS SNPs [31] in a set of  ~729,100 SNPs genotyped 
using the Illumina HD Bovine SNP chip or imputed from genotyped data of smaller size 
Illumina SNP chips. Legend labels, from top to bottom: “AllHDchip”: 43,130 SNPs 
randomly selected (from all 692,529 SNPs in HD chip); “100kbUpstream ”: 43,130 SNPs 
randomly selected (from 325,227 SNPs within 100 kb upstream regions of coding genes); 
“5kbUpstream”: all 30,384 SNPs within the 5kb upstream regions of coding genes (results 
scaled to 43k SNPs); “Genes”: 43,130 SNPs randomly selected (from 240,160 SNPs in 
coding genes); “Exons”:  all 10,003 SNPs in exons of coding genes (results scaled to 43k 
SNPs); “HPRS regions”: 43,130 SNPs in regulatory regions.   
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Figure 6. Application of the regulatory database to prioritize significant bovine SNPs 
identified by GWAS studies for functional validation. Overview of 13 significant SNPs 
fine-mapped by Karim et al [33] is shown in the left panel. Among those SNPs, only three 
overlap regulatory regions and promoter regions in the predicted database. A detailed view 
(right panel) of the two SNPs validated as causative in Karim et al. Both SNPs are within 
promoter regions of the PLAG1 gene but not the CHCHD7 gene.  
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Fig. 7. A potential model for effect of the Celtic mutation. Using human Hi-C 
(chromosome conformation capture) data and scanning of transcription factor binding sites, 
we generated a hypothesis to predict cattle regulatory targets for polled mutation. Two 
common mutations on chromosome 1 in cattle have been associated with polled cattle. One is 
a 202-bp-indel (“Celtic mutation”). The other is an 80 kb duplication ~300 kb away. Purple 
arrows on the top link the Hi-C anchor to multiple targets mapped from human to cattle 
genome. Map with exact size and location of the regulatory regions and the Hi-C anchor 
overlapping the Celtic mutation and its targets.  
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