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Abstract: Microorganisms evolved adaptive responses that enable them to survive stressful challenges in 
ever changing environments by adjusting metabolism through the modulation of gene expression, protein 
levels and activity, and flow of metabolites. More frequent challenges allow natural selection ampler 
opportunities to select from a larger number of phenotypes that are compatible with survival. 
Understanding the causal relationships between physiological and metabolic requirements that are needed 
for cellular stress adaptation and gene expression changes that are used by organisms to achieve those 
requirements may have a significant impact in our ability to interpret and/or guide evolution. 

Here, we study those causal relationships during heat shock adaptation in the yeast Saccharomyces 
cerevisiae. We do so by combining dozens of independent experiments measuring whole genome gene 
expression changes during stress response with a nonlinear simplified kinetic model of central 
metabolism.  

This combination is used to create a quantitative, multidimensional, genotype-to-phenotype mapping of 
the metabolic and physiological requirements that enable cell survival to the feasible changes in gene 
expression that modulate metabolism to achieve those requirements. Our results clearly show that the 
feasible changes in gene expression that enable survival to heat shock are specific for this stress. In 
addition, they suggest that genetic programs for adaptive responses to desiccation/rehydration and to pH 
shifts might be selected by physiological requirements that are qualitatively similar, but quantitatively 
different to those for heat shock adaptation. In contrast, adaptive responses to other types of stress do not 
appear to be constrained by the same qualitative physiological requirements. Our model also explains at 
the mechanistic level how evolution might find different sets of changes in gene expression that lead to 
metabolic adaptations that are equivalent in meeting physiological requirements for survival. Finally, our 
results also suggest that physiological requirements for heat shock adaptation might be similar between 
unicellular ascomycetes that live in similar environments. Our analysis is likely to be scalable to other 
adaptive response and might inform efforts in developing biotechnological applications to manipulate 
cells for medical, biotechnological, or synthetic biology purposes. 
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Introduction 

Microorganisms evolved adaptive responses that enable them to survive stressful challenges in ever 

changing environments [1]–[8]. Adaptation to those challenges is achieved by adjusting metabolism to the 

new conditions, through the modulation of gene expression, protein levels and activity, and flow of 

metabolites [2], [8], [9]. Such adjustments integrate and balance the effects of stress with the 

physiological needs of the cell, ensuring that critical physiological parameters are tuned to guarantee 

survival [10]–[14]. One expects environmental challenges that were more frequently present during 

evolution to have selected for adaptive responses and metabolic adjustments of cells that are more finely 

tuned. More frequent challenges allow natural selection ampler opportunities to select from a larger 

number of phenotypes that are compatible with survival (successful phenotypes). Understanding this fine 

tuning and the qualitative and quantitative molecular determinants of stress responses may have a 

significant impact in our ability to interpret evolution, treat diseases, and manipulate microorganisms for 

medical, biotechnological, or synthetic biology purposes.  

The yeast Saccharomyces cerevisiae is an important model organism for studying adaptive responses 

[15]–[23]. This yeast is, in many aspects, similar to more complex eukaryotes at the molecular level [15]. 

In addition, its genome, proteome, and metabolome are well characterized in a variety of physiological 

situations and there are many tools and methods available for manipulating and measuring the molecular 

responses of its cells. For these reasons we focus on that organism for the research reported here. 

It is firmly established that the sets of yeast genes whose expression is modulated during adaptive 

responses to different types of stress only partially overlap [24], [25]. For example, TPS1 and TPS2 code 

for proteins involved in the synthesis of trehalose and change their expression in response to various types 

of stress [26]–[28], while MEC1 only changes its expression in response to DNA damage, but not to heat 

shock [27], [29]. In addition, the changes in expression for ubiquitous stress responsive genes 

quantitatively depend on the type and intensity of the stress challenge, as can be seen by comparing 

various published experiments [28], [30], [31]. These quantitative dependencies suggest the existence of 

specific ranges for those changes that lead to successful phenotypes, enabling cell survival. If this is so, 
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yeast can only properly adapt to the specific challenge if it changes the expression of its genes within the 

boundaries established by those “feasibility regions” in gene expression space [10]–[14]. Investigating if 

such feasibility regions for gene expression changes exist and how and why they came about could allow 

us to understand their causal relationship with the physiological and metabolic requirements that are 

needed for cellular adaptation and survival. That understanding would create genotype-to-phenotype 

mappings of stress adaptation at the molecular level [10]–[13], [32]–[39].  

To explore these issues we set our sights on yeast heat shock adaptation [13], [32], [33]. This 

adaptation occurs at different levels. For example, cell cycle stops, a new gene expression program starts, 

and the cell uses its ribosomes to synthesize specific protective molecules, such as chaperones. In 

addition, the cellular metabolism needs to be reorganized in order to permit survival and accommodate for 

all the changes at the level of gene expression and protein synthesis. The gene expression and protein 

synthesis levels of the heat shock adaptive response have been more thoroughly characterized and 

investigated than the biochemical and metabolic level (see for example [40]–[43] for reviews). Yet, it is 

known that the global adaptive response requires that central metabolism meets a varying set of 

physiological requirements for production of energy (ATP), reducing equivalents (NAD(P)H), and 

protective metabolites (e.g. trehalose or glycerol) [2], [10], [13], [33], [44]. These demands entail 

phenotypic adjustments of the levels and activities of proteins and metabolites, which could in principle 

be estimated from the modulation of gene expression via mathematical models [10], [13], [45]–[47]. 

Those mathematical models are a representation of the genotype-to-phenotype mappings of the cellular 

adaptation at the molecular level. They can be combined with experimental measurement of gene 

expression and used to identify the quantitative range within which metabolism and physiology must 

move for the cell to survive a specific stress challenge [10], [13], [14], [33]. These ranges, once known, 

can be used, together with the mathematical model, to solve the inverse problem of identifying the 

feasible regions for adaptive changes in gene expression that allow cells to adapt and survive [10]–[13]. 

The feasible regions for changes in gene expression represent quantitative design principles for genetic 

programs that generate appropriate adaptive responses to the relevant environmental challenges.  
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There are several problems to solve regarding the implementation of an analysis that permits 

identifying feasibility regions for heat shock adaptation. First, one needs to identify the parts of 

metabolism that need to be considered. Second, one needs to identify the physiological variables that are 

more adequate for establishing the feasibility regions of adaptation. Third, one needs to establish how 

(much) those variables must change to ensure adaptation. These problems were tackled by us [2], [13] and 

others [10], [40] before, using Monte-Carlo like simulations and global optimization methods.  

Here, we extend that work to establish a systematic methodology that identifies quantitative design 

principles underlying metabolic adaptation based on gene expression profiles and apply it to the analysis 

of heat shock response in S. cerevisiae as a proof of principle. We adapt a minimal model of yeast central 

metabolism [10]–[13], [33] and use it to estimate the effect of changing gene expression on the 

production of energy (ATP), reducing equivalents (NAD(P)H), and production of metabolites that protect 

and stabilize cellular proteins and membranes, among other metabolic variables. We use this model and 

nine independent datasets (Supplementary Table I) from GEO [48] to estimate the feasibility regions for 

changes in gene expression and the quantitative physiological requirements that functionally constrain 

those regions. The quantitative boundaries for the feasibility regions of physiological changes are 

obtained from mapping the changes in gene expression (which we take as a proxy of the yeast’s 

genotype) to the changes in metabolism (phenotype) using the mathematical model. We then validate 

these quantitative predictions in two ways. First, we measure changes in gene expression in new heat 

shock adaptation experiments and find that they are consistent with the predictions. Second, we compare 

yeast adaptive responses for various types of stress and find that the feasibility regions and physiological 

requirements we identify are specific for heat shock response. These comparisons also reveal that our 

minimal model can be used to identify physiological constraints and feasibility regions that are specific 

for adaptation to desiccation/rehydration. In contrast, our model cannot be used to identify constraints and 

feasibility regions that are specific to the other types of stress response we analyze, indicating that 

additional metabolic variables likely impose physiological constraints that are specific for these 

responses. We conclude by discussing how to extend our analysis to other stress responses. 
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Results 

Physiological requirements for cellular adaptation of Saccharomyces cerevisiae to heat shock 

S. cerevisiae copes with heat shock by mounting a transcriptional response that modulates and adapts its 

physiology to the temperature increase. Overall, the eleven variables in Table I define quantitative 

physiological criteria that have been used by various groups in previous works to study and identify 

design principles of yeast metabolism during adaptation to heat shock [2], [10], [13], [33], [45]. In very 

simple terms, heat shock response requires that yeast increases production of ATP and NADPH 

(represented in Table I by variables V1 and V3, respectively), to allow for increases in the ATPase 

activity of the cell and to improve its reducing power, as one of the consequences of heat shock is an 

increase in oxidative stress [27], [29], [49]–[51]. Additionally, yeast should be able to produce enough 

protective metabolites to stabilize its proteins and membranes, such as trehalose and glycerol (represented 

in Table I by variables V2 and V10, respectively) [13], [45], [49]–[51].  

An important fraction of the material for the production of ATP, NADPH, trehalose and glycerol 

comes from glycolysis [49]–[51]. Thus, the flux distribution through the branching points of the 

glycolytic pathway is an essential target for fine tuning during heat shock adaptation. In broad terms, the 

activity of enzymes that draw material towards trehalose synthesis should be coordinately tuned with the 

activity of enzymes that produce F16P (represented by variable V11 in Table 1), while excessive 

depletion of F16P (Fructose-1,6-bisphosphate – variable V6 in Table I) should be avoided in order sustain 

appropriate production of glycerol and ATP [2], [10], [13], [33], [45].  

This global physiological adjustement needs to be made while taxing the solvent capabilities of 

the cell as little as possible. This can be achieved by buffering changes in the concentrations of 

unimportant metabolic intermediates as much as possible, which simultaneously contributes to prevent 

possible toxic effects of those intermediates [13], [33]. These changes in concentration can be measured 

by variables V4-V8 in Table I.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 21, 2017. ; https://doi.org/10.1101/143487doi: bioRxiv preprint 

https://doi.org/10.1101/143487


7 
 

In addition, the adaptive response should be balanced and as economic as possible in terms of 

overall metabolic cost. A proxy that allows for a rough estimation of the relative costs caused by changes 

in gene expression during the adaptive response  is given by variable V9 in Table I [2], [10], [13].  

By using an appropriate mathematical model of metabolism one can estimate how experimentally 

determined changes in gene expression during response to heat shock propagate and change the 

physiological variables identified in Table I.  

We note that the eleven variables from Table I do not constitute a full description of the whole 

heat shock response. For example, they do not explicitly consider the changes in chaperone ATPase 

activity that is characteristic of stress responses. Instead, they consider that change in a proxy manner, by 

estimating how ATP production changes and how cell uses its metabolic resources (Variables V1 and V9 

in Table I). However, we show below that those eleven variables are sufficient to identify unique and 

specific quantitative requirements imposed on yeast by adaptation to heat shock. 

Minimal model for determining the physiological effects of changes in gene expression with respect 

to basal metabolism 

In order to evaluate how changes in gene expression affect the central metabolism of yeast and the 

physiological variables detailed in Table I (among which production of energy [ATP], reducing 

equivalents [NAD(P)H], and protective metabolites [trehalose and glycerol] are especially important), we 

adapt and use a well-established mathematical model [10], [13], [33]. The system we model is described 

in more detail in Supplementary Figure 1 and in the methods section of the Supplementary Text.  

In summary, the model accounts for a simplified version of glycolysis, for the oxidative stage of 

the pentose phosphate pathways, and for production of glycerol, trehalose, and NADPH. It was 

extensively validated as a good way to estimate the steady state values of the eleven variables from Table 

I [10], [13], [33]. The various individual processes in the model are catalysed by different enzymes. Each 

enzyme is coded by a (set of) gene(s) and, within the same pathway and as an approximation, the changes 

in gene expression can be used as a proxy for the changes in protein activity [52]–[55], which are 
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represented in Eqs 1-5 by variables S1-S7 (see methods and Supplementary Table I for details). The 

rational for the modeling simplifications is also provided in the methods section. (see also [13], [33]). The 

model is used to estimate the basal values for the eleven variables in Table I, thus characterizing the basal 

steady state of yeast.  

Feasibility space for physiological adaptation of yeast to heat shock 

In order to characterize the boundaries within which the genes considered in the model change their 

expression under heat shock, we extensively searched GEO for experiments that exposed S. cerevisiae to 

heat shock and downloaded 36 gene expression databases containing 410 experiments (Supplementary 

Table II). Out of these we selected all micro- or macro-array datasets that measure changes in gene 

expression occurring when yeast is shifted from temperatures below 30ºC to temperatures above 30ºC 

(HS datasets GDS15 [17-37ºC, 21-37ºC, 25-37ºC, 29-37ºC], GDS16 [25-37ºC], GDS36 [29-33ºC], 

GSE38478 [22-37ºC]). We also used publicly available gene expression databases for yeast heat shock 

experiments (yeasts shifted from 25ºC to 37ºC) that are not available in GEO [28], [31]. All datasets are 

referenced in Supplementary Table II. The transcriptional changes of all the genes coding for enzymes in 

the model (Supplementary Table I) are then extracted from the resulting datasets, as described in the 

methods section.  

The gene expression changes for each of the heat shock databases were used independently to estimate 

the changes in protein activities as described in methods. Those changes in protein activity were plugged 

into the model and the corresponding metabolic state under those new activities was calculated 

independently for each of the HS datasets. This allowed us to assess the approximate quantitative 

boundaries between which each of the variables from Table I can change to enable heat shock adaptation 

and survival. The results are summarized in Figure 1A, where variables labeled in red increase their value 

towards the center of the plot, while variables labeled in blue. The figure helps identify a well-defined 

region, marked in grey, within which the physiological adaptation of yeast to heat shock occurs, 

according to the eleven variables being estimated from the experimental results. 
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Production of ATP (V1, see also V8, which is ATP concentration), trehalose (V2), and reducing 

equivalents (V3) is significantly increased during heat shock adaptation. This is easily seen because the 

basal values for these variables, which are represented by the full black line in Figure 1A, are smaller than 

those estimated during adaptation. In contrast, production of glycerol (V10) tends to decrease in our 

model, as indicated by the fact that the black line crossing the axis for variable V10 is below most of the 

other lines in Figure 1A.  

Production of G6P (gucose-6-phosphate, V5) should increase to fuel increases in V1-V3 and V10. 

Figure 1A and Table I show that, in all cases, G6P is higher during heat shock response than at the basal 

steady state by about one order of magnitude. In turn, the concentration of glucose (V4) and PEP (V7) 

should be as buffered as possible against increases. In most cases, V4 decreases its value with respect to 

the basal steady state. When it increases, at most it doubles its basal value. In addition, V7 either remains 

close to its basal value or it decreases by at least an order of magnitude with respect to it. F16P levels 

(V6) are relatively buffered about the basal steady state value, changing by about a factor of two with 

respect to the basal situation. In addition, the changes in the variable that proxies for the cost of gene 

expression (V9) and for flux distribution in glycolysis (V11) also remain within a well-defined range.  

Taking all the results together generates the grey region in Figure 1A. This region can be used as a 

proxy for the feasibility space of phenotypical adaptation of yeast to heat shock. We note that the smaller 

the fraction of the axis within the grey region, the smaller the range within which the corresponding 

variable must fall to ensure adaptation.  

To ensure that the models for the various stress response databases were reasonable, we performed 

sensitivity and stability analyses on all calculated steady states. The sensitivity analysis showed that 

sensitivities to parameters and independent variables are small (see the results section of the 

Supplementary Text and Supplementary Table III), which implies that the computed steady states are 

quite robust to noise in the enzyme activities. This is to be expected for reasonable models of biochemical 

phenomena [56] and indicates that the models are robust to minor parameter changes. In addition, all 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 21, 2017. ; https://doi.org/10.1101/143487doi: bioRxiv preprint 

https://doi.org/10.1101/143487


10 
 

steady states are stable, which is often a necessary condition for them to be physiologically relevant [56]. 

Details are given in the results section of the Supplementary Text. 

Validating the feasibility space for physiological adaptation of yeast to heat shock  

The quantitative feasibility space identified in Figure 1A could be dependent on biological-environmental 

factors and on measurement techniques. To validate that space by changing a biological-environmental 

factor we performed additional heat shock experiments with a strain of S. cerevisiae that had not been 

used in the experiments we analyzed before to identify the feasibility space of Figure 1A. The new 

experiments are described in the methods section. We measured the change in whole genome gene 

expression for the yeast. The results for these experiments are summarized in Figure 1B. They are 

consistent with those obtained for the GEO databases, falling within the feasibility region defined in 

Figure 1A.  

To validate the feasibility region by changing techniques, we searched for RNA-Seq experiments 

in GEO that also analyzed whole genome changes in gene expression during heat shock adaptation. Such 

experiments are reported in GEO datasets GSE58319 [57]. These datasets measure gene expression at 

mid-log growth phase, under basal conditions and after heat shock. According to our model, the changes 

in gene expression for these experiments lead to changes in variables V1-V3, V5-V6 and V8-V11 that fall 

within the feasibility region identified using array techniques (Figure 1C).Only variables V4 (glucose 

concentration) and V7 (phosphoenolpyruvate concentration) fall slightly outside of their feasibility 

ranges. These results suggest that feasibility regions might be a fundamental feature of adaptive responses 

that is robust to the measurement technique. 

Is the feasibility space for physiological adaptation to heat shock valid for pre-adapted yeast cells?  

Yeasts can preadapt to a given stress by being exposed to small doses of that stress. The preadaptation 

process is also called hormesis [58]. Typically, pre-adapted cells are able to survive stress intensities that 

kill naïve cells [59]. The reason for the increased resistance lies on the fact that several protective 
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metabolic adaptations are already in place and functioning when the new stress hits the cell, thus 

decreasing deleterious initial accumulation of cellular damage [13], [45], [59].  

Taking this into account one might hypothesize that cells pre-adapted with a mild heat shock and then 

subjected to further temperature increases should, overall, still adapt their metabolism to fall within the 

feasibility space defined in Figure 1A for the eleven physiological variables. 

To test this, we performed a two-step computational experiment. In the first step, we calculated how 

the values for the eleven variables changed in yeasts subjected to a mild heat shock. This was done by 

using experiment GDS36 [29 - 33ºC] from Supplementary Table II to calculate the steady state of the 

cells in pre-adapted heat shock. The values for the eleven variables of this pre-adapted steady state are 

shown in Figure 1C. Ideally, a dataset for an experiment with the same strain and under the same 

conditions, but now subjecting the preadapted cells to an additional heat shock would be needed for the 

second stage of this experiment. 

Given that no such dataset was available, and as an approximation, we selected three experiments from 

GEO where yeasts preadapted to between 30ºC and 33ºC were subjected to a stronger temperature 

increase (GDS15 – 33 to 37ºC, GDS112 – 30 to 37ºC, GDS2910 – 30 to 37ºC). The second step of the 

experiment took the preadapted steady state calculated for experiment GDS36 as reference. Then, the 

mathematical model was used to estimate the variations in the eleven physiological variables of Table I 

caused by the gene expression changes reported in databases GDS15, GDS112, and GDS2910 (Figure 

1C).  

We see that most of the eleven variables fall within the feasibility regions identified in Figure 1A for 

the three experiments. The GDS15 experiment subjects cells to the mildest heat shock (4ºC temperature 

shift vs. 7ºC for the other two experiments). One would expect that the changes in the physiological 

variables for these cells should in principle be smaller than those observed for the other experiments. This 

would mean that the changes in variables V1-V11 should be closer to (or slightly on the outside of) the 

feasibility space boundaries in Figure 1C for experiment GDS15 than for experiments GDS112 and 

GDS2910. This is observed for all but two variables when we look at Figure 1C. 
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Experiments GDS112 and GDS2910 subject cells to a heat shock that shift temperature by 7ºC and 

measure the time course of the changes in gene expression during adaptation. Thus, we expected that the 

estimated changes in variables V1-V11 are similar between the two experiments, which can also be 

confirmed in Figure 1C. We note that experiment GDS2910 has more replicates than GDS112, allowing 

for more robust estimation of changes in gene expression. This, in turn, made us hypothesize that the 

eleven physiological variables estimated for the GDS2910 dataset would be more robust and thus more 

likely to fully fall within the feasibility space estimated in Figure 1A.  

The results are consistent with our predictions and hypothesis. All the eleven physiological variables 

calculated for the GDS15 experiment are either closer to and within the feasibility border (seven 

variables) or on the outside of that border (four variables). Only two variables calculated for experiment 

GDS112 are on the outside of the feasibility border and all variables calculated for experiment GDS2910 

fall within the feasibility region of Figure 1A. Even with the approximations used in our two step 

computational experiment, the results are quantitatively consistent with the feasibility space determined in 

Figure 1A.  

Is the feasibility space specific for physiological adaptation to heat shock? 

We wanted to understand how specific to heat shock is the feasibility space identified by our analysis in 

Figure 1A. In other words, are the boundaries for that space specific and valid only for heat shock 

adaptation or are they also applicable to adaptive responses to other stresses? 

To answer this question we extensively searched GEO for experiments that exposed S. cerevisiae to 

various types of stress and downloaded gene expression databases related to such experiments 

(Supplementary Table II). These datasets measured changes in whole genome gene expression during 

yeast adaptation to desiccation, rehydration, osmotic, oxidative, reductive, and nutrient stress challenges. 

The transcriptional changes of genes coding for enzymes in the model were extracted from each dataset as 

described in the methods section, and the mathematical model was used to calculate how each of the 

independent sets of transcriptional changes affects the eleven constraints. Figure 2 summarizes the results. 
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Specifically, Figure 2A shows that only heat shock responses fall within the feasibility region for all 

eleven variables from Table I. Figures 2B-2F also show that none of the curves that represent the changes 

in gene expression during the adaptive responses to other stress conditions fall fully within the feasibility 

space defined in Figure 1A. These results suggest that the feasibility space of adaptation shown in Figure 

1A is specific for heat shock. They also suggest that variables V1-V3 are important in separating the 

adaptive response of yeast to heat shock from other adaptive responses.  

Can the same physiological variables be used to define specific feasibility spaces for other adaptive 

responses? 

Our results indicate that the quantitative boundaries for the feasibility space are specific for adaptation to 

heat shock. Nevertheless, there is the possibility that the same physiological variables from Table I might 

be used to identify quantitatively different feasibility spaces for the adaptive responses to other types of 

stress. 

To investigate this possibility, for each type of stress, we established the quantitative boundaries of the 

physiological changes observed for the eleven physiological variables defined in Table I, in the same way 

as we did for heat shock adaptive responses. This revealed that those variables create specific quantitative 

feasibility spaces for the adaptive responses to desiccation, rehydration, and (to a lesser extent) pH 

stresses (Supplementary Figure 2). These profiles are quantitatively different from those for heat shock. 

All other types of stress lead to feasibility spaces that are not specific. Hence, the eleven physiological 

variables studied here appear to be appropriate to identify quantitative design principles that are specific 

to heat shock, desiccation/rehydration, and pH stresses. Other variables need to be identified and used in a 

modified mathematical model for the remaining types of stress. 

Importance of individual physiological requirements 

We identified specific quantitative boundaries for the feasibility space of physiological changes that allow 

yeast cells to adapt to heat shock, rehydration, desiccation and pH. We now ask which variables from 

Table I more strongly contribute to create a “signature of change” that uniquely identifies each type of 
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stress response. Answering this question could help to establish which physiological variables more 

strongly contribute to the selective pressure that shapes adaptive responses as a whole. 

We answered the question using feature subset selection, which is the process of identifying and 

removing as much irrelevant and redundant information as possible (see methods for details). Three 

independent methods for feature subset selection (Booth, Relief, and Correlation-based; see methods) 

identified the requirement for controlling cost of changing gene expression (V9) as the main variable for 

separating the adaptive responses to the various stress types, followed by the production rate of reducing 

equivalents (V3), protective trehalose molecules (V2), and energy (V1 and V8). 

Dependency between physiological variables 

We established that the eleven physiological variables from Table I can be used to identify quantitative 

boundaries for adaptation that are unique for heat shock, and to a lesser extent for desiccation/rehydration 

and pH. We further showed that five of the individual requirements more strongly contribute to separate 

the various types of stress response. This number is not surprising, as the eleven physiological 

requirements are calculated from a model of five differential equations. The eleven requirements we use 

to calculate the feasibility space of physiological adaptation are a non-linear combination of the five 

dependent variables of the model. It follows that the eleven variables are redundant and interdependent. 

We now ask how many unique physiological variables we would need to separate the various stress 

responses. 

To answer this question we performed the following experiments. First, we created an eleven-

dimensional vector, where each dimension contains the value for one of the eleven variables defined in 

Table I. Second, we calculated the value for each variable V1-V11 in each stress response experiment 

from Supplementary Table I. Third, PCA (principal component analysis) was used to cluster the matrix of 

vectors. 

This analysis was done independently three times. First, we performed it considering all stresses 

(Analysis SR1). Second, we performed it considering heat shock adaptation responses alone (Analysis 
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SR2). Third and final, we performed it considering all stresses that were not heat shock adaptation 

(Analysis SR3). Results are summarized in Figure 3 and Table II. We see that heat shock responses are 

separated from the other responses mostly in the PC1 (principal component 1) dimension, while the 

Rehydration/Desiccation responses are separated mostly in the PC3 dimension (Figure 3 and Table II). 

Three principal components explain almost 90% (88.39%) of variability in the data for the SR2 analysis. 

The first principal component (PCA1) accounts for 63.57% of the variation in the data, the second 

(PCA2) 17.51%, the PCA3 only represents 7.31% and PCA4 represents 5.93%. The contribution of each 

variable to each of the PCs is shown in Table II. Variables that are the main contributors to PC1 and PC2 

are similar in Analyses SR1, SR2, and SR3. The rates of ATP, trehalose, and glycerol production, 

together with concentration of pathway intermediates have the higher loadings in the PC1. In contrast, 

rate of NADPH production and metabolic cost of the changes have the higher loadings in the PC2. An 

important loading factor for PC3 in SR1-SR3 comes from variable V11, which evaluates the equilibrium 

between the flux of material that is used for energy production and the flux of material that is used for 

production of protective metabolites. In the SR2 Analysis the major loading for PC3 comes from 

variables V6 and V7, while variable V9 has the major loading in the SR3 analysis.  

Mapping phenotype to genotype 

The quantitative boundaries for the feasibility space of physiological changes was a result of mapping the 

changes in gene expression (genotype) to the changes in metabolism (phenotype) using the mathematical 

model defined in the methods section. This Genotype-to-Phenotype mapping is a one to one mapping. In 

other words, a set of changes in gene expression uniquely generates a set of changes in the physiological 

variables. 

We used the same mathematical model to create an inverse mapping of the feasibility space for 

physiological changes to the corresponding feasibility space for changes in gene expression. This 

Phenotype-to-Genotype mapping is degenerate, in the sense that a set of changes in physiological 

variables can map to more than one set of changes in gene expression. Why is this so? The model 
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considers seven independent enzyme activities (S1-S7) that are allowed to change in order to calculate the 

adapted physiological values of five dependent variables. When we solve the model with respect to those 

dependent variables, we obtain the steady state values for the adaptation, which is then used to calculate 

the eleven physiological variables from Table I. 

If we now take the steady state for the dependent variables and solve the ODE system with respect to 

the enzyme activities, we can calculate five enzyme activities as functions of the dependent variables and 

of the remaining two enzyme activities. The calculations are shown in detail in the results section of the 

Supplementary Text, where we show that S1-S5 can be represented as linear functions of S6 and almost 

linear functions of S7. Given values for the activities of S6 and S7, and a range of values for X1-X5 one 

can then calculate the possible values for S1-S5. Figure 4A shows an example of the feasibility space of 

changes in enzyme activities S2 as a function of S6 and S7 for the extreme values of the dependent 

variables in the feasibility space of adaptation to heat shock (grey shade in Figure 1A). For the same 

steady state of the metabolic variables, the possible range of enzyme activities S1-S5 falls on a plane and 

depends on the exact value for S6 and S7 (see Supplementary Figure 3). Thus, cells can function at 

different values for the independent enzyme activities and still survive heat shock, if the differences 

between the activities of the various enzymes are coordinated in such a way that the values for the 

physiological variables that depend on those activities remain within the feasibility range for survival. 

A similar analysis can be done for the changes in gene expression. The enzyme activities represented 

by S1-S7 depend on a total of 22 genes. The mapping of the changes in enzyme activity to the changes in 

gene expression is defined in methods. S1-S7 depend linearly on the subset of the 22 genes that codes for 

proteins involved in the relevant enzyme activity. Figure 4B shows an example of the gene expression 

change to enzyme activity change mappings for the same examples represented in Figure 4A. Again, we 

can see that cells can use a wide range of coordinated changes in gene expression to adapt metabolism 

and make the value of physiological variables move to the feasibility region of adaptation. The 

representation for activities S1-S5 is shown in Supplementary Figure 3. 
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How do heat shock responses of other fungal species conform to S. cerevisiae’s feasibility space? 

The feasibility spaces and design principles identified so far result from evolutionary selection of 

metabolic adjustments, constrained by the physiological requirements that S. cerevisiae must meet to 

survive heat shock. Now we ask if the same (or similar) requirements can be extended to the adaptive 

responses of other unicellular yeasts to heat shock.  

To answer the question we selected Schizosaccharomyces pombe, Kluyveromyces lactis, Candida 

glabrata, and Candida albicans. This selection was based on phylogenetic diversity and on availability of 

whole genome gene expression measurements during yeast adaptation to heat shock. The idea was to 

create species-specific mathematical models of the same pathways as those we model for S. cerevisiae. 

We would then use those models to estimate gene expression changes propagated to the eleven variables 

from Table I. After extensive literature and database searches, we could at best find kinetic information 

for only a small fraction of the reactions in the other yeasts. Therefore, it was impossible to proceed with 

the analysis in this way. Given that the few parameters we had found had the same order of magnitude as 

those in the S. cerevisiae model, we decided to use the S. cerevisiae model to perform the analysis. 

The genes we considered in this comparative analysis were all those that code for protein in our 

mathematical model and have orthologs in the five yeast species (Supplementary Table IV). The GEO 

datasets from which we extracted gene expression data for each species are provided in Supplementary 

Table V [60], [61]. We used the same approach described in methods for S. cerevisiae to estimate how the 

measured changes in gene expression for the four non-S. cerevisiae yeasts would propagate to the enzyme 

activities. The estimated changes in enzyme activity were then plugged into the model for the basal state 

to calculate how the eleven physiological variables would change in S. pombe, K. lactis, C. albicans and 

C. glabrata (Figure 5). Estimated changes in the eleven variables in S. pombe and C. albicans fall within 

the feasibility space estimated for S. cerevisiae, with one or two minor exceptions.  

The picture is somewhat similar for C. glabrata. While variables V1-V3 and V8 fall outside of the 

feasibility range for S. cerevisiae, they move towards that range and away from their basal values. This 

could have physiological justification. On the one hand C. glabrata is different from other yeasts in that it 
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can only assimilate glucose and trehalose [62], [63]. This suggests that our S. cerevisiae model might not 

be a good estimator for trehalose turnover in C. glabrata. On the other, C. glabrata is a parasite that is 

accustomed to higher optimal growth temperatures than S. cerevisiae. This suggests that production of 

ATP and reducing equivalents might already be geared up for heat shock adaptation and that further 

adaptive changes to these variables could be smaller than for species with lower optimal growth 

temperatures. 

When it comes to K. lactis, the picture is quite different. Our model estimates almost no change in the 

production of ATP, trehalose or reducing equivalents. This is not unexpected, as it is well known that K. 

lactis uses the mitochondrial tricarboxylic acid (TCA) cycle, respiration, and other non-conventional 

alternatives to produce reducing equivalents and ATP [64], [65]. When we analyse the changes in gene 

expression for respiratory complexes II-V in the microarray data, we find that between 20% (Complex 

III) and 35% (Complex IV) of the genes involved in each of the complexes are significantly upregulated 

in the microarray experiments. Furthermore, no gene involved in respiration is significantly 

downregulated. These results are consistent with an upregulation of respiration in K. lactis during heat 

shock adaptation [66]. Analysing the genes involved in the TCA, we also see that 20% of the genes 

involved in production of reducing equivalents are significantly upregulated, while no gene is 

significantly downregulated. Taken together, these results suggest a role of the mitochondria in 

production of energy and reducing equivalents. Given that our model does not account for mitochondrial 

processes, it is likely to be a poor estimator of the changes in the eleven physiological variables for K. 

lactis.  

Dynamical physiological adaptation of S. cerevisiae to heat shock  

Most of the experiments we analyze compare the gene expression changes at an experimental end-point to 

the basal situation. Because of that, only a steady state analysis of the problem is possible. However, the 

transient dimension of adaptive responses is very important. In order to account for this and to understand 

how the feasibility space changes over time during S. cerevisiae adaptation to heat shock we focused on 
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the nine databases from Supplementary Table II that contain time series information for gene expression 

changes (heat shock, nutrient starvation, osmotic stress, oxidative and reductive stress and desiccation). In 

addition, we use our own experimental datasets, which were generated to obtain more gene expression 

time series information (see methods). 

In order to analyze how the eleven physiological variables change over time, and for each gene 

expression time series, we began by fully reconstituting the dynamics of gene expression using 

interpolation functions. Then, we used these interpolated time series as input for our model. This allowed 

us to simulate the transient shift of metabolism during stress adaptation (see methods for details). The 

results are summarized in Tables III and IV and given in detail in Supplementary Figure 4, where 

snapshots of metabolism are shown at 2, 10, 20 and 60 minutes after stress.  

During heat shock response, production of energy (ATP) reducing equivalents (NADPH) and 

protective molecules (trehalose plus glycerol) sharply increases until twenty minutes after the heat shock, 

and tends to stabilize afterwards. Within the first twenty minutes the concentrations of ATP and G6P 

increase by a factor of two and four, stabilizing afterwards. The remaining metabolites remain roughly 

constant during the whole time course. The amount of resources invested by the cell in adapting 

metabolism to the new situation, as measured by variable V9, increases sharply for the first ten minutes of 

the response, remaining approximately constant afterwards. Similarly, at ten minutes, the cell reaches a 

new balance for resources allocated to the various synthetic branches of the model, as measured by 

variable V11. This global picture is reproduced when we use our own experimental measurements for 

gene expression changes in response to heat shock, which we also include in the time series analysis. 

The timing at which the various variables from Table I reach the new steady state was similar for all 

types of stress we analyzed. However, the quantitative changes in energy production, NAD(P)H 

production, and trehalose production are always different from those observed during heat shock. In 

addition, the way that the glycolytic material is distributed between production of glycerol and ATP is 

also different between heat shock and the other stresses, as can be seen by comparing variables V10 and 

V11 in Supplementary Figure 4. 
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Discussion 

Biological design principles 
Biological circuits, pathways, or networks are conceptual models one uses to facilitate the understanding 

of how cells achieve a specific metabolic or physiological goal at the molecular level. These models are 

tremendously helpful for explaining in an organized way how cells perform the multiple tasks that help 

them survive. That conceptual formulation also has its limits, as often there is crosstalk between what one 

considers to be modular circuits or pathways. For example, every intermediate of glycolysis can be used 

by the cell in other pathways and many signaling pathways might crosstalk with each other. Nevertheless, 

it has been shown that biological networks tend to evolve modules that execute each of its required tasks 

in a fairly independent way [67]–[72].   

This quasi modularity of biological circuits provides an opportunity for evolution to 

independently select and optimize each functional module that performs a specific task within the 

network. That selection may eventually lead to the spread in the population(s) of specific circuit designs 

that are the most effective ones in the environmental conditions under which they have evolved. In other 

words, they represent biological design principles that are optimal for the function they perform [73]–

[80]. 

Many biological design principles for the structure of small biological pathways and circuits have 

been identified and explained in metabolic pathways, gene circuits and signaling pathways. For example, 

linear biosynthetic pathways are more efficiently regulated if the first enzyme of the pathway is inhibited 

by the final product of the pathway. This type of regulation provides for the best coupling between 

cellular demand for the product and flux through the pathway, the fastest response to changes in that 

demand and the least sensitivity to spurious fluctuations in the cell [81], [82]. In gene circuits, the demand 

theory for gene expression correlates mode of regulation for the expression of the gene with the fraction 

of the life cycle of the individual in which the gene product is needed [83]–[89]. Finally, in signal 

transduction, the design of the regulatory structure of bacterial two component systems could be selected 
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based on whether the circuit needs to respond in a graded or switch-like manner and integrate signals 

from several sources or not [90], [91]. 

It also became apparent that these “hardware” design principles could be modified as additional 

individual components were integrated in a circuit, which itself could be integrated in larger networks 

[92], [93]. In addition, “software” or operational design principles were also identified [10], [45]. These 

operational design principles refer to how the parameters (concentrations and/or activities) of the 

individual components in a network might best be modulated to adjust environmental shifts. To our 

knowledge, these operational design principles have first been investigated in stress responses [10], [13], 

[33], [94], [95]. That research identified the first examples of feasibility spaces for modulating parameters 

that ensures adaptation and survival of the cell to various environmental challenges [13], [14], [32], [33].  

Evolution of adaptive responses 

Stressful environmental changes required cells to evolve adaptive responses that ensure an appropriate 

reallocation of cellular resources in order to deal with and survive the insult [96]. Over time, natural 

selection favored those responses that more adequately enabled that survival (for example, see [97]–[99]). 

At the mechanistic level these responses favor dynamic gene expression programs that, together with post 

transcriptional regulation of protein activity, ultimately permit metabolism to suitably reallocate cellular 

resources during the response [100]. Given that functional redundancy between genes is very frequent in 

the genomes of free living organisms [101]–[104], many different gene expression programs might 

produce equivalent phenotypes. For example, imagine that cells need to produce more of a given 

metabolite that can be synthesized by two alternative reactions to survive a change in osmotic pressure. 

One subpopulation of cells might increase that production by upregulating genes for one of the reactions, 

while another subpopulation could upregulate the genes for the other reaction. There is ample evidence 

for this phenomenon in long term evolutionary experiments using unicellular and multicellular organisms 

(see for example [98], [105]–[108]). Thus, it is not trivial to predict the changes in gene expression that 

more adequately permit cells to adapt.  
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The evolution of such gene expression programs that are specific for a given type of adaptive 

response is fundamentally constrained by basal metabolism. Natural selection acts on the biological 

variability observed in the gene expression programs that allow cell survival under basal conditions, 

whatever those conditions may be. Once that is taken into account, one is tempted to speculate that the 

evolution of well-defined and stress-specific gene expression programs is more likely to occur if the type 

of stress underlying the evolution of that response is strong and frequently “seen by the cell” during 

evolution. This view is consistent with the Demand Theory for gene expression [85], [109], [89]. That 

theory argues that the selection of regulatory modes of gene expression is more likely if the regulation is 

frequently necessary for the survival of the cell. In addition, one also expects that expression programs for 

adaptive responses to stress conditions that challenge different parts of metabolism might be mostly 

modular and only slightly overlap [68], [72], [110], [111]. 

Quantitative adaptation of yeast to heat shock  

In this work we focus on the adaptive response of the yeast S. cerevisiae to heat shock. Specifically, we 

study how the cellular biochemical phenotype and its gene expression program (genotype) map to each 

other during adaptation to heat shock. There is a multi-level molecular adaptation of yeast cells to 

temperature increases. At the genomic level, there is modulation of gene expression that induces the 

production of chaperones, heat shock proteins, metabolic enzymes, and antioxidant defense proteins [13], 

[112]. At the proteome level, the activity of pre-existing and newly made proteins is regulated, both by 

temperature and by other metabolic events associated with the temperature increase [10], [113]. Finally, 

at the metabolomic level, the production of small molecules and metabolites is adjusted in order to allow 

yeast to meet the new physiological demands imposed on the cell by the temperature increase [45], [114]–

[116]. Taken together, these events protect proteins and cellular structures, enabling recovery of the cell 

after stress adaptation. 

All these molecular changes impose physiological demands on metabolism that require adjusting 

energy production in order to account for the increased ATP consumption. In fact, it is well known that 
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ATP production after heat shock is about five times greater than that of the basal steady state of the cell 

[117]. During heat shock adaptation yeast needs to produce more NADPH reducing equivalents, in order 

to deal with the biosynthesis and redox protection of cellular components [118]. This is consistent with 

the doubling of NADPH production rate that our model predicts, which was also found to occur 

experimentally [119]. Overall production of protective molecules such as trehalose and glycerol needs to 

increase in order to help stabilize membranes and proteins [117]. 

In addition, there are generic physiological demands that impose optimization criteria and constrain 

the ways in which cells can adapt and evolve. These criteria include keeping flux distribution balanced, 

not taxing the cell’s solvent capabilities [120], [121] and adapt its metabolism in ways that are as 

economic as possible [2]. 

Taking into account the various physiological demands imposed on yeast metabolism by heat shock, 

we defined the metabolic variables in Table I as possible descriptors that can be used to measure how 

yeast changes its metabolism (Table I) as it adapts to heat shock. In previous work [10], [13], [32], [33], 

some or all of these variables had been used to investigate the physiological boundaries within which the 

metabolism of S. cerevisiae had to work if cells were to survive heat shock. In the current study we 

generalize the previous analysis and establish the boundaries for the physiological variables using a 

mathematical model that integrates information from a large number of gene expression experiments done 

in independent labs. These boundaries are proxies of the quantitative constraints, or design principles, that 

heat shock adaptation imposes on yeast metabolism. We also used the model to identify the permissible 

ranges within which the cell can change its gene expression and protein activities and still adapt to heat 

shock. 

Our analysis indicated that, globally, the feasibility regions for changes in gene expression and in 

physiological variables were specific for heat shock response. Gene expression databases for other types 

of stress led to metabolic and gene expression changes that fall outside of the feasibility regions for heat 

shock adaptation. In addition, our own microarray heat shock experiments generated gene expression 

profiles and metabolic changes in the yeast model that fall within the previously calculated feasibility 
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regions for heat shock. Our results also suggest that the feasibility regions we identified are likely to be 

biologically meaningful and generalizable to other S. cerevisiae strains (we compared 11 different 

strains). Comparing the heat shock response between S. cerevisiae, S. pombe, C. albicans, and C. 

glabrata suggests that the feasibility regions might also be at least partially generalizable to other 

unicellular yeasts. The predicted changes in the variables for the other three species fall reasonably well 

within the feasibility space defined by our S. cerevisiae analysis, in spite of the diverse ecology and 

lifestyles of these yeasts. The exception is K. lactis. In this case, we believe that our model does not 

account for important contributions to the changes in the physiological variables, given that this is an 

exclusively respiratory yeast [64]. 

The eleven metabolic variables we defined can also be used to identify quantitative constraints that are 

specific for yeast adaptive response to desiccation /rehydration stresses. This is not surprising, as yeast 

must produce significant amounts of trehalose and glycerol to stabilize membranes and proteins when the 

water content of the cell changes [114], [122]. In addition, significant increases in production of energy 

and reducing equivalents are needed to support activation of membrane ATPases and protein chaperones 

to avoid denaturation of proteins [123]. In contrast, the same eleven variables can not be used to separate 

metabolic adaptation of yeast to the other types of stress being analysed. This is not entirely surprising, 

because it is likely that alternative metabolic variables might be more important in determining the 

quantitative constraints for metabolic adaptation to those stresses [2]. For example, this is consistent with 

a complete re-adaptation of metabolism that yeast must make to survive nutrient stress.  

Having identified the quantitative design principles that must be met by the metabolic variables in 

Table I for appropriate yeast adaptation to heat shock, we worked on the inverse problem. In other words, 

we investigated how those quantitative constraints impose restrictions on the changes in gene expression 

that yeast can make in order to adapt to heat shock. In our case, this analysis could be done by solving the 

mathematical model with the enzyme activities as dependent variables and the metabolites as independent 

variables. These experiments emphasized that there are multiple possible solutions to this biological 

problem (Figure 4 and Supplementary Figure 3). Evolution can explore a multidimensional space of gene 
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expression and find solutions that are equivalent with respect to the variables we consider here. This is 

again consistent with many experiments where organisms are subjected to selection for thousands of 

generations and reach a new stable genotype. Afterwards they are subject to selection to return to their 

original metabolic state only to find that the old metabolic state is reached via a new set of mutations that 

are different from the original wild type strains [98], [105]–[107]. 

Our analysis used a steady state approximation to estimate how the eleven physiological variables of 

interest change as yeast adapts to stress. This was mostly due to the fact that very few experimental time 

series were available for the changes in gene expression during stress adaptation. However,  the dynamic 

aspect of adaptation is crucial [124] and changes in gene expression peak at about 10-20 min after yeast 

cells are shifted from 25ºC to 37ºC (heat shock conditions) [10], [13]. Because of this, we extended the 

analysis to the transient regime of the adaptive response whenever time series were available. In addition, 

we measured our own time series for the changes in gene expression in response to heat shock and used 

them in the analysis of the transient part of the adaptive response. This analysis emphasized that the bulk 

part of the adaptive response occurred at most 20 minutes after the heat shock, both at the genetic and 

biochemical level, which is consistent with decades of research on the subject [26], [43]. In fact, we find 

that rates of metabolic production mostly adjust within the first two minutes of the response, while the 

new homeostatic metabolite levels are reached at about 10-20 minutes after the stress stimulus. This is 

consistent with measurements that showed that glucose levels increased at about 10 minutes after the 

stimulus, while trehalose levels increased after glucose reached its new homeostasis [117]. 

We point out that the work presented here provides a proof of principle for a methodology to establish 

quantitative design principles for metabolic adaptation to stress. This methodology can be summarized as 

follows. First, the metabolites, fluxes, and other metabolic variables that are important for the response 

should be tentatively identified. Second, a model for the pathways that contribute to the changes in those 

variables is needed. Third, estimates of how the various activities in the model change in response to 

stress are required. Fourth, these estimates are used to predict how the metabolic variables change in 

response to stress and the metabolic changes are used to identify the feasibility space of the metabolic 
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changes. This feasibility space for physiological adaptation can then be used, together with the model, to 

estimate the feasibility space for the changes in protein activity and in gene expression, thus allowing us 

to establish a multilevel (metabolic, proteomic, and genomic) set of feasibility spaces for adaptation to 

stress. To conclude this part of the discussion we note that our analysis could in principle be extended to 

include a complete and general non-linear kinetic model of metabolism that could be used to study all 

stress responses indistinctly. In fact, such an analysis was done using much simpler FBA (Flux Balance 

Analysis) models [125]–[127]. However these models limit the variables that can be analysed to steady 

state flux distributions, which strongly constrains the type of physiological variables that can be studied. 

Limitations of this study 

There are several limitations to this study. First, we did not analyse the design principles for changes in 

levels and activity of chaperones activated during heat shock to protect yeast proteins from heat induced 

denaturation and aggregation. Adding these chaperones would have required a significantly more 

complex model, for which not enough quantitative data is available. Nevertheless, we note that these are 

indirectly considered when we estimate ATP production and consumption. If (When) the model is 

expanded to include chaperones, additional axes will be added to the spider plots from Figure 1 and new 

feasibility sub-regions will be defined for those chaperones.  

Second, our model simplifies the various pathways that need to be considered in order to identify the 

quantitative boundaries for the feasibility regions of adaptation. In spite of this simplification, the model 

and the analysis appear to be precise enough to identify boundaries for the metabolic variables and gene 

expression changes that are specific for heat shock adaptation. We are currently expanding the model and 

including more details about the pentose phosphate pathway, the production of trehalose and the 

production of glycerol. In addition, to identify important pathways in an unbiased manner, we are using 

pattern recognition methods to identify which pathways are modulated as a whole in response to a given 

stress type. This analysis will point us to areas in metabolism that are likely to constrain the way in which 
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the organism adapts to the relevant stress type, suggesting which pathways need to be included in a model 

of the relevant adaptive response. 

Third, when extending the analysis to other yeasts we assume that the changes in the eleven 

physiological variables we analyse are driven by processes and kinetics that are approximately similar to 

those of S. cerevisiae. In order to be more accurate, we attempted to adapt the S. cerevisiae model for 

each of the four additional yeasts by searching the literature and modelling databases for parameter 

values, basal concentrations, and activities that were yeast-specific. However, we found partial kinetic 

information only for S. pombe and, to a much lower degree, C. albicans. The few parameters and 

concentrations we found were very close to those for S. cerevisiae. Because of that, we decided to 

maintain the original model and use it to estimate changes in the eleven physiological variables. The lack 

of kinetic information also prevented us from creating models that more accurately described trehalose 

turnover in C. glabrata and relevant mitochondrial processes in K. lactis.  

Fourth, the gene expression data we use come from macroarray, microarray, and RefSeq experiments, 

rather than from more precise methods, such as q-PCR. This choice was premeditated for two reasons. On 

the one hand, by selecting these types of experiments we had a larger number of datasets that were 

directly comparable and had a similar type of bias. This allowed us to confirm that the feasibility regions 

we analyse are specific for heat shock adaptation, and that additional metabolic requirements must be 

considered if we are to identify design principles for metabolic adaptation of S. cerevisiae to other types 

of stress. On the other, this type of experiment analyses whole genome gene expression changes, which 

will allow us to identify other pathways that might be important to include in developments of the model, 

as mentioned in the previous paragraph. 

Fifth, our approach assumes that metabolism equilibrates itself on a time scale that is much faster than 

that of mRNA and protein synthesis. That is why we mostly focus on steady state analysis of the 

metabolic variable. Nevertheless, there is extensive evidence that this is so [128]–[131]. In order to 

control for any biases that this assumption might have introduced in the analysis, we also analysed the 
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time course of the adaptive responses, whenever gene expression time series were available for doing so. 

The results of the time course analyses are fully consistent with those for the steady state analysis. 

Sixth, we assume that changes in gene expression are mostly proportional to changes in enzyme 

activity. Although this is not always true, extensive experimental evidence suggests that the assumption is 

valid for the set of genes (metabolic enzymes) we consider in the model [132]. In addition, we 

downloaded whole proteome quantification data from PAXDB [133] and PRIDE [134] and compared the 

amount of the proteins from our model before and after heat shock. We found that the changes in protein 

amount between the two situations were strongly correlated with those seen in mRNA (See the results 

section of the Supplementary Text). 

Materials and Methods 

Mathematical Model 

In order to understand how the eleven variables constrain changes in gene expression during heat shock 

response, we created a minimal mathematical model of the parts of metabolism that affect those variables. 

We used the GMA (Generalized Mass Action) mathematical formalism (see the Methods section of the 

Supplementary Text for details.). This model includes a simplified version of glycolysis that can be used 

to calculate how a specific change in a given gene will affect the physiological requirement that was 

identified in Table I. The mathematical model (Eqs 1-5) we use is given by the following five differential 

equations: 
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The dependent variables contained in the model are: X1 = internal glucose, X2 = G6P, X3 = F16P, X4 = 

PEP, X5 = ATP; and independent variables are: X6 = glucose transporter activity, 19.7 mM min-1; X7 = 

HXK/GLK activity, 68.5 mM min-1; X8 = PFK activity, 31.7 mM min-1; X9 = TDH activity, 49.9 mM 

min-1; X10 = PK activity, 3440 mM min-1; X11 = trehalose production activity, X12 = glycerol 

production activity, 203 mM min-1; X13 = ATPase, 25.1 mM min-1; X14 = NADH/NAD+ ratio, 0.042; 

X15 = G6PDH activity, 1. Parameter values and basal steady state concentrations are extracted from [33]. 

The model, its assumptions, and how parameter values were estimated is described in detail in [13], [33]. 

Calculating the changes in trehalose and NADPH production is done using the following equations: 

11
8.0

2
0008925.0 XXVTre =           (6) 

15
05.0

2769.1 XXVNADPH =          (7) 

These equations account for the major known source of NADPH production in yeast during heat shock 

adaptation, which is the oxidative phase of pentose phosphate pathway [124]. Although Eqs. 6-7 are a 

simplification of more complex pathways, there is ample experimental evidence suggesting that these 

approximations are reliable [13], [33]. 

Gene expression data 

Experiments that exposed S. cerevisiae to stress and measured how the yeast adapts its gene expression 

were identified by first searching GEO [135] for “stress” and “cerevisiae” and then manually going 

through the list and identifying all experiments where classical stress challenges where given to any strain 

of S. cerevisiae. All such databases of micro array data were downloaded and stored locally. 38 databases, 

containing 81 different independent experiments were analysed (Supplementary Table II). Stress 

challenges included heat shock (HS), cold shock (CS), oxidative (Ox), reductive (Red), osmotic (Osm), 

desiccation (Des), pH, toxic elements (Tox), nutrient starvation (NS) and stationary phase (SP). All gene 

expression data were converted to the logarithmic ratio with respect to a basal pre-stress condition. Four 

additional databases were excluded, because only absolute determinations of post-stress mRNA 

abundance were given and no information regarding basal gene expression was found (GDS2969, 
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GDS2050, GDS991, GDS777). Two other classical databases, not included in GEO, were added to this 

study [28], [136].  

Estimating changes in gene expression  

All entries for the twenty two different genes considered in the model were extracted from each database. 

The gene expression databases used in this work resulted from three types of experiments: replicated 

measurements of an end-time for the adaptation, independent conditions of experiment (some databases 

are composed by experiments with different conditions and for this reason were analysed separately), and 

time course experiments. For each gene, and at each time point, we eliminated missing values and then 

used the average of the remaining entries as the representative measure for the change in gene expression.  

Additionally, for time course experiments, we needed to estimate whether a gene was globally activated 

or repressed, as a single value was required to calculate the steady state. This was done in the following 

way. The logarithmic changes in expression for the gene were plotted as a function of time. The area 

under the curve in the positive quadrant of expression was divided by the area under the curve in the 

negative quadrant of expression. If the ratio was larger (smaller) than one, we considered that the gene 

was overexpressed (repressed). The quantile 0.9 (0.1) of change in gene expression over the time course 

was calculated for overexpressed (repressed) genes, and this number was used to estimate the global 

change in gene activity. The quantiles were used instead of maximum or minimum in order to decrease 

the probability of using outlier values.  

Estimating changes in enzyme activity 

All genes coding for proteins directly involved in the enzyme activities of the model were considered, 

These were: S1 – hexose transporters - HXT (HXT1, HXT2, HXT3, HXT4, HXT6, HXT8); S2 – 

glucokinase/hexokinase - GLK (genes: GLK1, HXK1, HXK2); S3 – phosphofructokinase - PFK (PFK1, 

PFK2); S4 – glyceraldehydes-3-phosphate dehydrogenase - TDH (TDH1, TDH2, TDH3); S4 – pyruvate 

kinase - PYK (PYK1, PYK2); S6 – trehalose synthase complex - TPS (TPS1, TPS2, TPS3) and S7 – 

glucose-6-phosphate dehydrogenase - GD6PDH [10]. 
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We could not find direct measurements for the changes in all enzyme activities of the model under 

heat shock. Nevertheless, it is well documented that changes in enzyme activity and gene expression are 

highly correlated in glycolysis [132], Because of this we assumed that the fold-change in gene expression 

directly translates into a similar fold-change in the activity of the corresponding enzymes, whenever a 

single gene coded for that enzyme activity.  

If more than one gene contributed to an enzyme activity we also assessed the relative contribution of 

that gene to the enzyme activity. In cases where the genes coded for alternative enzymes that have the 

same activity, we weighted the change in gene expression by the basal abundance of the protein using the 

formula: 

𝑤𝑤𝑖𝑖 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖 .𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 / ∑ (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖 .𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖)𝑁𝑁
𝑖𝑖=1        (8) 

In Eq 8, Abpi represent the basal abundance of protein i in the cell and kcat represents the catalytic 

constant of the enzyme (Supplementary Table I). We note that kcat for hexose transporters were not 

found in the literature. The relative contribution of the alternative transporters was estimated using the 

information of Vmax and the concentration of molecules per cell [137].  

The expressions used to calculate the new activities of S1 – S7 for each database are 

𝑆𝑆𝑘𝑘,𝐷𝐷𝐷𝐷 = ∑ 𝑤𝑤𝑖𝑖 ∙ 𝛿𝛿𝑖𝑖,𝐷𝐷𝐷𝐷𝑙𝑙
𝑖𝑖=1           (9) 

In Eq 9, 𝑤𝑤𝑖𝑖 are the weights for each gene, as defined by Eq 8, and 𝛿𝛿𝑖𝑖,𝐷𝐷𝐷𝐷 represents the change in gene 

expression for the relevant gene in experiment DB. We note that the changes in PFK activity estimated 

using Eqs. 8-9 are further multiplied by a factor of five to account for a five-fold posttranscriptional 

activation of this enzyme during heat shock response [13]. Similarly changes in TDH activity estimated 

using Eqs. 8-9 are further multiplied by 1.5 to account for a 1.5-fold posttranscriptional activation that is 

also known to occur during stress response [13]. 

The information about the kinetic properties of the various enzymes was compiled and is presented in 

Supplementary Table I. We note that in vivo measurements for the parameters were used whenever 
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available. When only in vitro determinations were found, they were used as a proxy of the in vivo values, 

because it was shown that both values correlate [138].  

Finding orthologs in other yeast species  

Orthologs for the twenty two S. cerevisiae genes in Schizosaccharomyces pombe, Kluyveromyces lactis, 

Candida glabrata and Candida albicans were identified using Uniprot [139], searching for the species 

name combined with the words: heat shock. These orthologs are given in Supplementary Table IV. 

-Macroarray experiments 

S. cerevisiae wild type strain W303-1A was employed for the determination of mRNA levels upon heat 

shock. Cells were grown exponentially in YPD medium at 25ºC, at time 0 they were quickly shifted to 

37ºC by dilution with three volumes of pre-warmed fresh medium at 41ºC, and then maintained in a 37ºC 

water bath for subsequent recovery of samples at different time points. Four independent experiments 

were carried out, and for each experiment two samples were processed for each time point (eight 

replicates per time point). Total RNA isolation and labelling, and determination of mRNA levels were 

done as described in [23] at 0, 3, 6, 9, 12, 15, 18, 21, 25, 30, 45, and 60 min after heat shock. Values at 

each time point after the beginning of the experiment were normalized by those at time 0. 

Bootstrapping was used to determine confidence intervals for the changes in gene expression at 

each time point in the following way. Four replicates were randomly selected from the eight experiments 

one hundred times. The average time series for each set of replicates was estimated. Then, we calculated 

quantiles 0.025 and 0.975 of the bootstrapped datasets to estimate the 95% confidence interval for the 

changes in gene expression at each time point. 

Steady state robustness 

Biological systems must be able to adapt to and survive in an ever-changing environment, without being 

overly sensitive to small changes that are spurious. To achieve this, most biological systems have low 

sensitivity to fluctuation in parameters (e.g. enzyme activity or Km) and such fluctuation will not greatly 
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affect its steady state or homeostasis [140]–[142]. This is called robustness of the steady state and it can 

be measured using sensitivity analysis [140]–[142]. In this work we evaluated the robustness of the 

physiological variables V1-V11 using relative steady state parameter sensitivities (see the Methods 

section of the Supplementary Text for details). In our case, we wanted to determine the relative sensitivity 

of the physiological variables V1 – V11 of Table I to the enzyme activities S1 – S7. The results of this 

sensitivity analysis identify the enzyme activities that more strongly influence each of the relevant 

physiological variables. In approximate terms, if S�𝑒𝑒𝑒𝑒�V𝑖𝑖, S𝑗𝑗� = 0.5 (or -0.5), this means that when the 

value of Sj changes by 100%, the value of Vi is expected to increase (or decrease) by approximately 50%.  

Steady state stability  

A biologically meaningful steady state is stable, and homeostasis should be quickly re-established if the 

system fluctuates away from it. For example, after finding a small bolus of nutrients, this bolus should be 

consumed and the original steady state is reinstated, if it is stable. This property of the steady state is 

called stability and we analysed the stability of each steady state using stability analysis (see the Methods 

section of the Supplementary Text for details).  

Principal component analysis 

Principal component analysis (PCA) is a method to reduce the dimensionality of a dataset and identify 

which orthogonal linear combinations of variables contribute more strongly to the quantitative variation 

in the data. PCA of the matrix containing the eleven metabolic variables for each stress experiments was 

done in the following way: was determined the correlation matrix, from this matrix was calculated the 

eigenvalues and eigenvectors. The eigenvalues represent the amount of variation explained by each 

factor. A varimax was used as a redistribute process that can help interpret the principal components, now 

containing loadings towards either +1 or -1 [143]. 
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Feature Analysis 

While PCA provides a way to determine how many dimensions one needs to describe the variability in 

the data at various degrees of accuracy, often the PC themselves are difficult to interpret. Because of that 

we also performed feature analysis. Feature analysis was done using two methods: Relief-based feature 

selection (RFS) and Correlation-based Feature Selection (CFS) RFS works by randomly sampling an 

instance from the data and then locating its nearest neighbour from the same and opposite class. The 

values of the attributes of the nearest neighbours are compared to the sampled instance and used to update 

relevance scores for each attribute [144]. CFS works by evaluating the subsets of attributes rather than 

individual attributes, and takes into account the usefulness of individual features for predicting the class 

along with the level of inter-correlation among them [145]. 

Analysis of the Transient Response 

The temporal dynamics of the model was studied in all cases where time series were available for the 

gene expression data (databases GDS16, GDS20, GDS30, GDS31, GDS34, GDS36, GDS108, GDS112, 

GDS113, GDS2712, GDS2713, GDS2715, GDS2910, GDS3030, GDS3035 and GSE38478 from 

Supplementary Table II). We simulated the adaptation of yeast to stresses from zero to ninety minutes 

after stress. This analysis was done in the following way. First, the time series for each gene were taken 

from time zero until the maximal change in gene expression was observed. This value was then 

maintained for the remaining of the time series. This modified time series was then represented using 

Akima interpolation, thus guaranteeing smooth and differential curves [46], [146]. This procedure aims at 

capturing the difference in time scales between changes in gene expression (faster) and changes in protein 

synthesis and degradation (slower) [27], [147]. The interpolated function for each gene was then used to 

calculate the changes in protein activity at each time point, as described in subsection “Estimating 

changes in enzyme activity”, above. These values were then fed into the differential equations and 

simulation was used to estimate the dynamics of the eleven variables in Table I. 
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Software 

Most calculations were done using Wolfram Mathematica [148]. Databases of gene expression were also 

imported and manipulated using Mathematica. The steady states for the system of ordinary differential 

equations were solved using the FindRoot function. Time course simulations were done using the 

NDSolve function [148]. Graphical representations were also done using plots designed in-house with 

Mathematica. PCA (Principal component analysis) was also done using MatlabTM and feature analysis 

was done using Weka 3 [149]. 
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Figures Captions 

Figure 1 – Spider plot representation of the feasibility range of adaptation of the eleven physiological 
variables from Table I during heat shock response. Each axis represents the logarithm of one of the 
variables. Variables in red grow towards the center of the axis. Variables in blue grow towards the outside 
of the axis. The grey area in all panels indicates the range of values that the eleven variables can assume 
in yeasts that adapt well to heat shock. The black line in all panels indicates the basal steady state values 
for each variable. A – Determination of the feasibility range using the heat shock experiments from 
supplementary Table II. Each dashed curve represents one of the databases; B – Validation of the 
feasibility range with independent experiments. The red and green curves represent the median and 
average (respectively) responses of our macro array experiment used to validate the feasibility range of 
the variables with a new yeast strain. The red area represents Quantiles 0.25 to 0.75 around the median 
determined using bootstrap. The blue line represents the values for the RefSeq experiment GSE58319 
used to validate the feasibility range of the variables for a newer, more accurate, measurement technique; 
C – The red line represents the values for the eleven variables from Table I in response to a temperature 
shift from 29 to 33ºC (GDS36). The dashed lines represent the values for the eleven variables from Table 
I for preadapted yeast that are subjected to a stronger heat shock (GDS15 – 33 to 37ºC black line, 
GDS112 – 30 to 37ºC magenta line, GDS2910 – 30 to 37ºC green line). 
 
Figure 2 – Specificity of feasibility space for heat shock adaptation. A – Summary of the results. Each 
row represents a type of stress and each column represents one of the physiological variables. Green 
(Red) entries indicate that the value of the variable falls within (outside of) the feasibility range for heat 
shock adaptation. More intense colors are further away from the feasibility boundaries. White indicates 
that the criteria are about the boundary value. Stresses: HS-Heat shock; CS-Cold shock; OxS-Oxidative; 
RS-Reductive; Osm-Osmotic; NS-Nutrient, Tox-Toxic, pH-pH stress, Des-Desiccation, SP-stationary 
phase. B – F: Spider plot representation of the adaptation of the eleven physiological variables from Table 
I. Each axis represents the logarithm of one of the variables. Variables in red grow towards the center of 
the axis. Variables in blue grow towards the outside of the axis. The grey area in all panels indicates the 
range of values that the eleven variables can assume in yeasts that adapt well to heat shock. Each curve 
represents an independent database from Supplementary Table II. B – Osmotic stress. C – Reductive 
stress. D – Toxic stress. E – Desiccation. F – Oxidative stress followed by heat shock.  
 
Figure 3 – Principal Components Analysis of Variables V1 – V11 for all adaptive responses from 
Supplementary Table II. The top three principal components are represented. Each dot represents a 
sample, which is colored by stress type. PCA suggests that heat shock (red dots) and cold shock (grey 
dots) separate from each other and from other stresses mostly on PC1, while desiccation (blue dots) 
separates on PC3. Stresses: HS-Heat shock; CS-Cold shock; OxS-Oxidative; RS-Reductive; Osm-
Osmotic; NS-Nutrient, Tox-Toxic, pH-pH stress, Des-Desiccation, SP-stationary phase. 
 
Figure 4 – Evolution can find different combinations of changes in gene expression and enzyme activities 
that are equivalent with respect to the changes they cause in variables V1 – V11. Graphical representation 
of this situation for hexose transport activity S1. Each plane represents one of the heat shock response 
databases used to calculate the feasibility region shown in Figure 1A. A – Activity S1 as a function of 
activities S6 and S7. Each plane represents all possible sets of values for S1, S6, and S7 that would 
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generate the same values for V1 – V11 for the same heat shock database. The dot that falls in each plane 
represents the actual activity estimated from the experimental changes in gene expression data. B – 
Activity S1 as a function of two high affinity transporters (HTX6 and HXT7) for the same heat shock 
responses we use as an example in panel A. Each plane corresponds to one of the databases. All points 
falling on a plane are formally equivalent, leading to the same S1 activity. The dots in each plane 
represent the actual measurement for the adaptive response. 
 
Figure 5 – Spider plot representation of the feasibility range of adaptation of the eleven physiological 
variables from Table I during heat shock response for S. pombe, K. lactis, C. albicans and C. glabrata. 
Each axis represents a quantitative principle and the scale is logarithmic for all axes. Blue (red) axes 
indicate that the value increases as you move away from (towards) the centre of the plot. The grey area 
indicates the range of values for the criterion during heat shock in S. cerevisiae. A – S. pombe. B – C. 
glabrata. C – C. albicans. D – K. lactis. 
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Tables  
Table I: Physiological variables used to identify possible design principles in the adaptive responses of yeast to heat shock. 

Variable Acronym Rationale for using this variable ([2], [10], [13], [33], [45], [150] and references 
therein). 

Basal condition Quantitative boundaries for heat 
shock survival 

V1 VATP 
Changes in gene expression need to accommodate an increase in the rate of ATP 

production 
60 123.349<V1<339.19 

V2 VTre 
Changes in gene expression need to accommodate an increase in the rate of trehalose 

synthesis 
0.0012 0.0076<V2<0.094 

V3 VNADPH Changes in gene expression need to accommodate an increase in reducing equivalents. 
The flux of NADPH production is used as a proxy for this increase 

1.77 4.31<V3<11.21 

V4 GLC 
Changes in gene expression should allow cells to avoid needless increases in the 

concentration of intermediates, thus minimizing possible toxic effects and the taxing of 
the solvent capabilities of the cell 

0.035 0.0094<V4<0.080 

V5 G6P Increases in the production/uptake of Glucose-6P are needed for the upregulation of 
energy production 

1.01 2.48<V5<19.91 

V6 F16P 
Depletion of Fructose-1,6,BisP needs to be tightly regulated and minimized, as this 
metabolite is an important bifurcation point in glycolysis that provides flux for the 

production of glycerol 

9.10 0.111<V6<20.58 

V7 PEP 
Changes in gene expression should allow cells to avoid needless increases in the 

concentration of intermediates, thus minimizing possible toxic effects and the taxing of 
the solvent capabilities of the cell 

0.0094 0.00019<V7<0.014 

V8 ATP ATP concentration should increase to meet energy demands 1.12 2.39<V8<6.73 

V9 Cost 
Adaptation should be economic. We use changes in gene expression as a proxy for this 
variable. GEP (Gene Expression Profiles that allow adaptation with minimal changes in 

gene expression should be favoured 

0 8.10<V9<14.09 

V10 VGlyce 
Glycerol has a protective role in heat shock adaptation, and its production should either 

increase or not decrease by much. 
1.93 0.18<V10<2.07 

V11 ψ 
Changes in the activity of the enzymes TPS and PFK should be co-ordinately balanced 
after heat shock, in order to appropriately regulate the branching point in the glycolytic 

flux that divides material between glycolysis and trehalose production. 

52.06 5.34<V11<34.48 
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Table II: Variables used to identify design principles in metabolic adaptation of yeast to heat shock and their contribution to principal 
components. 

 All stress – SR1 HS –SR2 Without HS – SR3 

Variable PCA1 PCA2 PCA3 PCA1 PCA2 PCA3 PCA1 PCA2 PCA3 

V1 
0,370 0,016 0,050 0,363 0,072 0,112 0,365 0,015 0,068 

V2 
0,340 0,131 0,140 0,301 0,315 0,115 0,354 -0,01 0,048 

V3 
0,133 0,554 0,197 -0,016 0,6168 -0,116 0,089 0,590 0,129 

V4 
0,169 -0,446 0,034 0,270 -0,307 0,050 0,197 -0,404 -0,082 

V5 
0,366 -0,135 -0,00015 0,359 0,114 -0,184 0,366 -0,083 -0,0004 

V6 
0,348 -0,208 -0,030 0,307 -0,185 0,636 0,363 -0,099 0,009 

V7 
0,358 -0,168 -0,035 0,333 0,009 -0,539 0,360 -0,118 -0,038 

V8 
0,369 -0,003 0,045 0,364 0,032 0,124 0,364 -0,0005 0,067 

V9 
0,201 0,524 0,320 -0,079 0,592 0,233 0,184 0,534 0,448 

V10 
0,352 -0,027 -0,145 0,353 -0,060 -0,354 0,346 -0,008 -0,153 

V11 
-0,117 -0,330 0,899 -0,323 -0,129 -0,178 -0,093 -0,412 0,859 
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Table III: Ranges of dynamics values for each variable during adaptation to heat shock, as estimated by simulating the time course of adaptation. 
Initial values are those of the basal steady state.  

Time 
(min) V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 

 VATP VTre VNADPH GLC G6P F16P PEP ATP Cost VGlyce ψ 
0 60 0.0012 1.77 0.035 1.01 9.10 0.0094 1.12 0 1.93 52.06 
2 61.22-136.68 0.001-0.011 1.75-2.75 0.023-0.064 1.03-4.60 3.16-16.80 0.003-0.007 1.22-2.39 0.48-4.38 1.00-1.60 16.05-49.73 
10 68.94-250.47 0.002-0.050 2.23-6.44 0.012-0.071 1.33-12.44 0.46-20.58 0.0009-0.0070 1.36-5.03 2.93-8.83 0.46-1.51 7.95-39.73 
20 83.12-284.01 0.004-0.070 3.12-9.31 0.009-0.072 1.73-14.73 0.20-20.39 0.0005-0.007 1.61-5.73 5.10-10.72 0.32-1.49 6.68-34.50 
60 98.61-309.11 0.005-0.090 4.31-11.16 0.0085-0.074 1.94-16.11 0.076-20.11 0.0002-0.007 1.70-6.26 7.02-13.23 0.17-1.49 6.00-36.36 
Ratio* 1.39-4.73 3.33-58.99 1.76-5.26 0.26-2.06 1.71-14.58 0.02-2.24 0.05-0.74 1.44-5.12       -  0.17-0.77 0.13-0.66 
*Ratio between the ranges 20 minutes after the stress challenge and the basal value of the corresponding variable. 
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Table IV: How adaptive responses to various types of stress meet the feasibility space of heat shock adaptation for variables V1-V11. Each 
row represents one of the variables. Each column represents a time point in the dynamic adaptive response. Snapshots are taken at 2, 10, 20 and 60 
min after stress. If a time point for a variable is left empty this indicates that all adaptive responses fall within the feasibility space defined by heat 
shock adaptation at that time (e. g. variable V1 at 2 min). Otherwise, the adaptive responses for the indicated stress at that time point falls outside 
of the feasibility range for the variable. HSadp – Dynamic response to heat shock by yeasts pre-adapted to a milder heat shock. NS+HSadp – 
Dynamic response to nutrient stress by yeasts preadapted to a mild heat shock. Ox – Dynamic response to oxidative stress. Red – Dynamic 
response to reductive stress. Des – Dynamic response to desiccation/rehydration. Osm – Dynamic response to osmotic shock. 

 2 min 10 min 20 min 60 min 
V1  HSadp, NS+HSadp, Ox and Des HSadp, NS+HSadp, Ox and Des HSadp, NS+HSadp, Ox, Red, Des 
V2 Red NS+HSadp, Ox, Red and Des HSadp, NS+HSadp, Ox, Red and Des HSadp, NS+HSadp, Ox, Red, Des 
V3 Red Ox, Red and Des HSadp, NS+HSadp, Osm, Ox, Red and Des HSadp, NS+HSadp, Ox, Osm, Red and Des 
V4    Des 
V5  HSadp, NS+HSadp, Ox, Red and Des HSadp, NS+HSadp, Osm, Ox, Red and Des HSadp, NS+HSadp, Ox, Osm, Red and Des 
V6     
V7     
V8 Des HSadp, NS+HSadp, Ox and Des HSadp, NS+HSadp, Osm, Ox, Red and Des HSadp, NS+HSadp, Ox, Red and Des 
V9     
V10  Ox, Red and Des Red and Des Des 
V11  HSadp, Ox, Red and Des HSadp, Osm, Ox, Red and Des HSadp, Ox, Osm, Red and Des 
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Figures  

a) b)  
 
 

c)   
 

Fig 1  
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Fig 2 
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Figure 5 
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Supplementary Figure Captions 
Supplementary Figure 1 – Minimal model to account for the metabolic changes described in Table 1 of 
the main manuscript. 

Supplementary Figure 2 – Heat map representation of the feasibility space for physiological variables 
V1-V11. Each column represents a variable from Table I of the main manuscript, while each row 
represents a database of gene expression. A – Feasibility space for desiccation-rehydration response. The 
eleven variables defined in Table I of the main manuscript were calculated for the data bases that 
measured changes in gene expression during response to Desiccation-Rehydration. The maximum and 
minimum values for each variable were recorded and used to build a feasibility space as described in the 
main manuscript. For each database, if the variable falls within (outside) this range, we color the entry of 
the heat map as green (red). A stress response falls within the desiccation/rehydration feasibility space if 
all entries in a row are green. We see that, with one exception (response to strong osmotic stress) only 
desiccation-rehydration shock responses fall fully within this feasibility space. B – Feasibility space for 
pH stress response. The eleven variables defined in Table I of the main manuscript were calculated for the 
data bases that measured changes in gene expression during response to pH shift. The maximum and 
minimum values for each variable were recorded and used to build a feasibility space as described in the 
main manuscript. For each database, if the variable falls within (outside) this range, we color the entry of 
the heat map as green (red). A stress response falls within the pH feasibility space if all entries in a row 
are green. We see that mostly pH responses fall fully within this feasibility space. 

Supplementary Figure 3 – Evolution can find different combinations of changes in gene expression and 
enzyme activities that are equivalent with respect to the changes they cause in variables V1 – V11. 
Graphical representation of this situation for activities S1 – S5. Each plane represents one of the heat 
shock response databases used to calculate the feasibility region shown in Figure 1A. Left Column 
Activities S1-S5 as a function of activities S6 and S7. Each plane represents all possible sets of values for 
S1-S5, S6, and S7 that would generate the same values for V1 – V11 for the same heat shock database. 
The dot that falls in each plane represents the actual activity estimated from the experimental changes in 
gene expression data. Right Column – Activities S1-S5 as a function of genes that code for proteins that 
contribute for that activity, considering the same heat shock databases we use as an example in the left 
column. Each plane corresponds to one of the databases. All points falling on a plane are formally 
equivalent, leading to the same activity. The dots in each plane represent the actual measurement for the 
adaptive response. 

Supplementary Figure 4 – Spider plot representation for the dynamic adaptation of the eleven 
physiological variables from Table I during the time course of heat shock response. The time course was 
generated as described in methods and using the databases marked with “*” in Supplementary Table II. 
We show snapshots of the adaptation at 2, 10, 20 and 60 min after the onset of the environmental 
challenge. The grey areas are defined by the heat shock responses at each time (HS column). The 
“HSExp” column shows the median results for our time course measurements of heat shock adaptation, 
also representing quantiles 0.25 to 0.75 around that median value. The “NS+HS” column shows the time 
course adaptation for cells preadapted to nutrient stress followed by heat shock adaptation. The “Osm” 
column shows the time course adaptation for osmotic shock. The “Ox” column shows the time course 
adaptation for oxidative stress. The “Red” column shows the time course adaptation for reductive stress. 
The “Des” column shows the time course adaptation for desiccation/rehydration stress. 
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1 Supplementary Methods 

1.1 Biological System to Model 
 

From years of accumulated research, it is apparent that in order to adapt to heat shock, 

Saccharomyces cerevisiae has to adjust its production of different metabolic variables. 1,2. These 

adjustments are described in Table 1 of the main manuscript. Considering that exponentially 

growing S. cerevisiae in a rich medium use glycolysis as the main energy pathway, we have defined 

a minimal representation of the molecular system that needs to be modelled in order to estimate the 

changes in all the physiological variables of Table 1 as the cell adapts to stress. This representation 

is shown in Supplementary Figure 1. 

Experimentally derived parameter values for this model were taken from 1,2 and are given in 

Eqs 1-5 of the main manuscript. The basal model is provided as an SBML file and in supplementary 

notebooks 1-6. It can be used as described in the main methods section to calculate the effect of 

changes in gene expression on the variables described in Table 1 of the main manuscript. All 

computations were done using Mathematica™ 3 and the open-source package MathSBML 4. 

 

1.2 Modeling Formalism 
 

In 1969 Michael Savageau proposed an approximate formalism that can be used to build 

mathematical models of systems for which only limited kinetic information is available 5,6. This 

formalism uses the Taylor theorem, which states that any continuously differentiable function can 

be exactly represented by a polynomial series of its variables. If one creates the Taylor series in a 

non-linear logarithmic space and truncates the series at the first order term, upon return to Cartesian 

space, one obtains a power law representation of the function.  

Assume that the mathematical model that describes the dynamical behavior of a biological system 

can be written as the following set of ordinary differential equations (ODEs): 
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𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

= ∑ 𝜇𝜇𝑖𝑖,𝑗𝑗𝑣𝑣𝑗𝑗(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛,𝑋𝑋𝑛𝑛+1, … ,𝑋𝑋𝑚𝑚),𝑟𝑟
𝑗𝑗=1  𝑖𝑖 = 1, … ,𝑛𝑛     (S1) 

In these ODEs 𝑣𝑣𝑗𝑗 represents all the rates of the individual processes in the system and 𝜇𝜇𝑖𝑖,𝑗𝑗 is the 

stoichiometric coefficient of 𝑋𝑋𝑖𝑖 in process of reaction 𝑗𝑗. It is positive if flux 𝑗𝑗 produces 𝑋𝑋𝑖𝑖 , negative 

if flux 𝑗𝑗  depletes the pool of 𝑋𝑋𝑖𝑖 , and zero if 𝑋𝑋𝑖𝑖  is neither produced nor consumed by flux 𝑗𝑗 . 

𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are the dependent variables of the system and 𝑋𝑋𝑛𝑛+1, … ,𝑋𝑋𝑚𝑚are the independent variables 

of the system.  

One can use a Generalized Mass Action (GMA) representation within the power law formalism 

described above 1,7,8, and write the differential equations for each of the n dependent variables of the 

system as: 

𝑑𝑑𝑋𝑋𝑖𝑖
𝑑𝑑𝑑𝑑

= ∑ �𝜇𝜇𝑖𝑖,𝑗𝑗𝛼𝛼𝑗𝑗 ∏ 𝑋𝑋𝑘𝑘
𝑓𝑓𝑗𝑗,𝑘𝑘𝑛𝑛+𝑚𝑚

𝑘𝑘=1 � , 𝑖𝑖 = 1, … ,𝑛𝑛𝑟𝑟
𝑗𝑗=1       (S2) 

where 𝑋𝑋𝑖𝑖 represents the concentration of metabolite 𝑖𝑖 in the model, 𝑚𝑚 is the number of independent 

variables, and 𝑟𝑟 is the number of fluxes in the system. 𝛼𝛼𝑗𝑗 is the apparent rate constant of reaction 𝑗𝑗. 

𝑓𝑓𝑗𝑗,𝑘𝑘 is the kinetic order of variable 𝑋𝑋𝑘𝑘 in reaction 𝑗𝑗. Each kinetic order quantifies the effect of the 

metabolite 𝑋𝑋𝑘𝑘 on flux 𝑗𝑗 and corresponds to the local sensitivity of the rate 𝑣𝑣𝑗𝑗 to 𝑋𝑋𝑘𝑘, evaluated at the 

operating point indicated by the subscript 0: 

𝑓𝑓𝑗𝑗,𝑘𝑘 = �𝜕𝜕𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕𝑘𝑘

𝑋𝑋𝑘𝑘
𝑣𝑣𝑗𝑗
��
0
         (S3) 

If  𝑋𝑋𝑘𝑘  has no direct influence on the rate of reaction 𝑗𝑗, the kinetic order is zero. If 𝑋𝑋𝑘𝑘  directly 

activates the flux of reaction 𝑗𝑗 , the kinetic order is positive. If 𝑋𝑋𝑘𝑘  directly inhibits the flux of 

reaction 𝑗𝑗, the kinetic order is negative. 

 

1.3 Sensitivity Analysis 
 

Biological systems must be able to adapt to and survive in an ever-changing environment, while 

maintaining low sensitivity to spurious fluctuation in parameters (e.g. enzyme activity or Km) that 
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should not greatly affect its steady state or homeostasis 5,9,10. This is called robustness of the steady 

state and it can be measured using sensitivity analysis. In this work we evaluated the robustness of 

the physiological variables V1-V11 using relative steady state parameter sensitivities. Relative 

steady state parameter sensitivities are “the relative change in a system component (X) that is 

caused by a relative change in a parameter value (p),” 11: 

Sen�����(X, p) = ∂X/X
∂p/p

= ∂ log X
∂ log p

  (S4) 

The extension of this definition for a system of ODEs is trivial and can be seen in 11. In our case, we 

wanted to determine the relative sensitivity of the physiological variables V1 – V11 of Table I to the 

enzyme activities S1 – S7: 

S�𝑒𝑒𝑒𝑒�V𝑖𝑖, S𝑗𝑗� =
∂V𝑖𝑖
V𝑖𝑖
∂S𝑗𝑗
S𝑗𝑗

= ∂ log V𝑖𝑖
∂ logS𝑗𝑗

= 𝑆𝑆𝑗𝑗
𝑉𝑉𝑖𝑖
�𝑑𝑑𝑉𝑉𝑖𝑖
𝑑𝑑𝑆𝑆𝑗𝑗
�  

(S5) 

 

The results of this sensitivity analysis identify the enzyme activities that more strongly influence 

each of the relevant physiological variables. In approximate terms, if S�𝑒𝑒𝑒𝑒�V𝑖𝑖, S𝑗𝑗� = 0.5 (or -0.5), 

this means that when the value of Sj changes by 100%, the value of Vi is expected to increase (or 

decrease) by 50%. Supplementary notebook I provides the script for all these calculations. 

1.4 Steady state stability  

The stability of the steady states was determined using linear stability analysis. First we calculated 

the Jacobian matrix for the differential equations (Eqs 1-5 of the main manuscript) which is defined 

as 

𝛿̇𝛿 = 𝐽𝐽 ∗ 𝛿𝛿𝛿𝛿          (S6) 

Where J* is the Jacobian evaluated at the equilibrium point, the solution is the set of eigenvalues of 

the Jacobian. Then, for each steady state, we calculated the five eigenvalues of that matrix. If the 

steady state is stable, all eigenvalues have negative real parts 5,9,10. Supplementary notebook I 

provides the script for all these calculations. 
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2 Supplementary Results 

2.1 Sensitivity and Stability Analysis 
 

Sensitivity analysis estimates how dependent variables and outputs of the model change with 

respect to changes and/or fluctuations in the values of parameters and independent variables of the 

model. High sensitivities tend to correlate well with parts of the model that are less accurate 

representations of real phenomena. We used relative sensitivities (see main methods section) to 

analyze the impact of changes in enzyme activities S1 - S7 of Supplementary Table IV in the eleven 

physiological variables of interest described in Table I of the main manuscript. 

We calculated relative sensitivities of the steady state for all microarray experiments. Results are 

summarized in Supplementary Table VI, below. We now briefly describe the activities that have the 

stronger influence in each physiological variable V1-V11. 

V1 (VATP) is positively affected by increases in the activity of S1. V2 (VTre) is positively affected 

by increases in activities S1 and S6. It is also inversely affected by increases in S3. In addition, 

increases in S7 were also predicted to cause significant decreases in V2 in some cases (mostly in 

response to desiccation). V3 (VNADPH) is positively affected by increases in S7. V4 (Glucose 

levels) is positively affected by increases in S1 and negatively affected by increases in S2. In a 

small number of cases V4 is also positively influenced by increases in S7. V5 (Glucose-6-phosphate 

levels) is positively affected by increases in S1 and negatively influenced by increases in S3. In a 

small number of cases V5 is also negatively influenced by increases in S7. V6 (Fructose 1-6 

Bisphosphate) is positively affected by increases in S1 and negatively affected by increases in S4. 

V7 (Phosphoenolpyruvate) is positively affected by increases in S1 and negatively affected by 

increases in S5. In addition, in desiccation experiments, V7 is positively affected by increases in S3 

and negatively affected by increases in S7. V8 (ATP) is positively affected by increases in S1. 

Increases in S7 (S3) negatively (positively) affect V8 in some adaptive response, mostly to 

desiccation. V9 (a proxy for biosynthetic cost of the response) does not show an overall pattern. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 21, 2017. ; https://doi.org/10.1101/143487doi: bioRxiv preprint 

https://doi.org/10.1101/143487


63 
 

However, if it is strongly affected by one the activities, it is also strongly affected by all the others. 

V10 (VGLY) is positively affected by S1 and negatively affected by S5. V11 (Ψ) is positively 

affected by S3 (and in some cases by S7), and negatively affected by the S1. 

Stability analysis of the steady state is a valuable predictor of the qualitative behavior of the system. 

Systems with stable steady states are more likely to be adequate representation of biological 

phenomena. At steady state, the eigenvalues of the Jacobian matrix of the ODE system that 

represent the biological process under study measure this stability. Eigenvalues are typically 

complex numbers with an imaginary and real part. If all the eigenvalues have negative real parts, 

the systems will have a locally stable steady-state 10. The steady states for all microarray 

experiments are locally stable, as they all have only eigenvalues with negative real parts. 

All calculations can be reproduced using Supplementary Notebook 1. 

 

2.2 Mapping phenotype to genotype 
 

Our mathematical model can be used to calculate five enzyme activities as functions of the 

dependent variables and of the remaining two enzyme activities. This is shown in Eqs. S4 –S8 , 

where S1-S5 are calculated as a function of S6 and S7: 

𝑆𝑆1 =

0.662(1.780 𝑋𝑋[2]0.2344𝑋𝑋[3]0.05𝑋𝑋[4]0.533+
0.225 S70.9646𝑋𝑋[2]0.287𝑋𝑋[5]0.822+0.00236 S6 𝑋𝑋[2]0.9662𝑋𝑋[5]0.822+

5 𝑋𝑋[2]0.2344𝑋𝑋[5]1.822)
𝑋𝑋[5]0.822     (S4) 

𝑆𝑆2 =
0.000127(754.280 𝑋𝑋[3]0.05𝑋𝑋[4]0.533+95.529 S70.9646𝑋𝑋[2]0.0526𝑋𝑋[5]0.822+

S6 𝑋𝑋[2]0.7318𝑋𝑋[5]0.822+2118.807 𝑋𝑋[5]1.822)
𝑋𝑋[1]0.7464𝑋𝑋[5]0.8473    (S5) 

𝑆𝑆3 =
0.0265 (1508.560 𝑋𝑋[3]0.05𝑋𝑋[4]0.533𝑋𝑋[5]0.3941+63.686 S70.9646𝑋𝑋[2]0.0526𝑋𝑋[5]1.2161+

S6 𝑋𝑋[2]0.7318𝑋𝑋[5]1.2161+4237.615 𝑋𝑋[5]2.2161)
𝑋𝑋[2]0.7318𝑋𝑋[5]0.822   (S6) 

𝑆𝑆4 =
154.836 (0.890 𝑋𝑋[3]0.05𝑋𝑋[4]0.533+0.0751 S70.9646𝑋𝑋[2]0.0526𝑋𝑋[5]0.822+

0.00118 S6 𝑋𝑋[2]0.7318𝑋𝑋[5]0.822+5.𝑋𝑋[5]1.822)
𝑋𝑋[3]0.6159𝑋𝑋[5]0.9528    (S7) 
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𝑆𝑆5 =
0.0643 ( 𝑋𝑋[3]0.05𝑋𝑋[4]0.533+0.0844 S70.9646𝑋𝑋[2]0.0526𝑋𝑋[5]0.822+

0.00133 S6 𝑋𝑋[2]0.7318𝑋𝑋[5]0.822+5.618 𝑋𝑋[5]1.822)
𝑋𝑋[3]0.05𝑋𝑋[4]0.533     (S8) 

 

2.3 Correlation between changes in gene expression and changes in protein abundance during 
heat shock response 
 

In order to evaluate how accurate our assumption of direct proportionality between changes in gene 

expression and changes in protein levels is for our genes of interest we downloaded the whole 

proteome abundance measurements made by Ghaemmaghami et al.12. Then, we downloaded the 

data from CYCLoPS 13,14, and from Mackenzie et al. 15 pertaining to the whole proteome 

quantification in S. cerevisiae after heat shock. Finally, we calculated the median of the ratios 

between protein abundance after heat shock with respect to protein abundance under basal 

conditions. In parallel, we calculated the median change in gene expression from each gene of 

interest to the model in the heat shock databases. The results are shown here: 

 

 We then calculated the Spearman’s Rho between the ratio of changes in protein abundance and 

gene expression. We found that this correlation coefficient was 0.55, which indicate a very strong 

correlation between changes in gene expression and changes in protein abundance. 
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Supplementary Figures 

 
Supplementary Fig 1 
 

Glycogen 
Trehalose 
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Supplementary Figure 2A 
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Supplementary Figure 2B 
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Supplementary Figure 3 
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Supplementary Figure 4 
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Supplementary Table I – continued 

 
CEC critical electrolyte concentrations (M); vmax Maximum specific uptake rate (mmol min-1 g-1 dw); km Michaelis/affinity constant (mM) 
kcat, the turnover number is the maximum number of substrate molecules converted to product per enzyme molecule per second 
kd- dissociation constant. The smaller the value of Kd the stronger the interaction between the enzyme and inhibitor and the greater the inhibitory effect. 
Basal concentration (ppm) was accessed by Paxdb 
The kinetic characteristics of uptake were determined from 5-sec incubations by plotting velocity (V) vs. velocity/substrate concentration (V/S) curves. Km and Kd are expressed in concentration units 
Yeast (Saccharomyces cerevisiae): ~5 mm diameter, ~50 mm3 in volume [30] 
# indicates a detected band that was unquantifiable due to experimental problem
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Supplementary Table II – S. cerevisiae gene expression datasets downloaded from 
GEO or the primary literature and used in our analysis. Databases marked with “*” 
contained time course information that was used to generate Supplementary Figure 4 
and Table IV. 
GEO 
Acession 
number 

Strains Stress agent Type of stress Number of 
experiments 

Type of 
experiment 

GDS15 

DBY7286, 
DBY8768, 
DBY9434, 
DBY9435, 
DBY9439, 
DBY9440, 
DBY9441 

Heat Shock HS (Heat 
shock) 6 Array 

GDS16* 

DBY7286, 
DBY8768, 
DBY9434, 
DBY9435, 
DBY9439, 
DBY9440, 
DBY9441 

Heat Shock HS 8 Array 

GDS17 

DBY7286, 
DBY8768, 
DBY9434, 
DBY9435, 
DBY9439, 
DBY9440, 
DBY9441 

Hydrogen Peroxyde Ox 
(Oxidative) 2 Array 

GDS18 

DBY7286, 
DBY8768, 
DBY9434, 
DBY9435, 
DBY9439, 
DBY9440, 
DBY9441 

Stationary Growth SP (stationary 
phase) 10 Array 

GDS19 

DBY7286, 
DBY8768, 
DBY9434, 
DBY9435, 
DBY9439, 
DBY9440, 
DBY9441 

Nitrogen Depletion NS (Nutrient 
stress) 9 Array 

GDS20* 

DBY7286, 
DBY8768, 
DBY9434, 
DBY9435, 
DBY9439, 
DBY9440, 
DBY9441 

Hyper-osmotic shock 
(Sorbitol) 

Osm 
(Osmotic 
stress) 

6 Array 

 
 
 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 21, 2017. ; https://doi.org/10.1101/143487doi: bioRxiv preprint 

https://doi.org/10.1101/143487


74 
 

Supplementary Table II – Continued. 
GEO 
Acession 
number 

Strains Stress agent Type of stress Number of 
experiments 

Type of 
experiment 

GDS21 

DBY7286, 
DBY8768, 
DBY9434, 
DBY9435, 
DBY9439, 
DBY9440, 
DBY9441 

Change carbon source NS 6 Array 

GDS30* 

DBY7286, 
DBY8768, 
DBY9434, 
DBY9435, 
DBY9439, 
DBY9440, 
DBY9441 

Diamide shock Ox 8 Array 

GDS31* 

DBY7286, 
DBY8768, 
DBY9434, 
DBY9435, 
DBY9439, 
DBY9440, 
DBY9441 

Dithiothreitol shock 
Red 
(Reductive 
Stress) 

8 Array 

GDS34* 

DBY7286, 
DBY8768, 
DBY9434, 
DBY9435, 
DBY9439, 
DBY9440, 
DBY9441 

Cold shock CS (Cold 
Shock) 5 Array 

GDS35 

DBY7286, 
DBY8768, 
DBY9434, 
DBY9435, 
DBY9439, 
DBY9440, 
DBY9441 

Heat shock followed by 
Osmotic challenge 
(Sorbitol) 

Osm+HS 6 Array 

GDS36* 

DBY7286, 
DBY8768, 
DBY9434, 
DBY9435, 
DBY9439, 
DBY9440, 
DBY9441 

Heat shock HS 4 Array 

GDS108* 

DBY7286, 
DBY8768, 
DBY9434, 
DBY9435, 
DBY9439, 
DBY9440, 
DBY9441 

Menadione Ox 9 Array 
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Supplementary Table II – Continued. 
GEO 
Acession 
number 

Strains Stress agent Type of stress Number of 
experiments 

Type of 
experiment 

GDS111 

DBY7286, 
DBY8768, 
DBY9434, 
DBY9435, 
DBY9439, 
DBY9440, 
DBY9441 

Cold shock CS 6 Array 

GDS112* 

DBY7286, 
DBY8768, 
DBY9434, 
DBY9435, 
DBY9439, 
DBY9440, 
DBY9441 

Mild Heat shock or 
Heat Shock after 
adaptation to heat 

HSadp 
(Adapted HS) 5 Array 

GDS113* 

DBY7286, 
DBY8768, 
DBY9434, 
DBY9435, 
DBY9439, 
DBY9440, 
DBY9441 

Dithiothreitol Red 7 Array 

GDS115 

DBY7286, 
DBY8768, 
DBY9434, 
DBY9435, 
DBY9439, 
DBY9440, 
DBY9441 

Amino acid and 
Adenine Starvation NS 5 Array 

GDS1711 

S. cerevisiae 
JN14 (mutant 
strain) and S. 
cerevisiae JN54 
(wild-type) 

Mild Heat shock or 
Heat Shock after 
adaptation to heat 

HSadp 12 Array 

GDS2196 

INVSc1, 
KT1357, 
KT1358, 
KT1115, LPY27, 
LPY25, LPY11, 
S288C, X2180-
1A, UPC20 

Saponine Osm 12 Array 
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Supplementary Table II – Continued. 
GEO 
Acession 
number 

Strains Stress agent Type of stress Number of 
experiments 

Type of 
experiment 

GDS2338 

W303a, W303α, 
S288c, MY1384, 
PLY254, 
PLY332, JK9-
3da, 3H11-1c, 
JH12-17b, 
PLY297, 
PLY344, 
PLY365, 
PLY366, 
PLY369, 
PLY475, 
PLY477, 
PLY479, 
PLY315, 
PLY314, 
PLY671, 
PLY673, 
PLY675 

Cafeine and rapmycin Osm 6 Array 

GDS2343 W303 and 
BY4741 

Triterpenoid exposure 
followed by Heat 
Shock 

Ox+HS 4 Array 

GDS2522 BY4741 Pyocyanin Ox 6 Array 

GDS2712* BY4743 Dissecation - 
Rehydration shock Des 21 Array 

GDS2713* BY4743 Dissecation - 
Rehydration shock Des 21 Array 

GDS2715* BY4743 Dissecation - 
Rehydration shock Des 21 Array 

GDS2716 BY4743 Dissecation - 
Rehydration shock Des 9 Array 

GDS2910* 

BY4743 
Mild Heat shock or 
Heat Shock after 
adaptation to heat 

HSadp 10 Array 

BY4743 Peroxide Ox 6 Array 

BY4743 
Methyl 
methanesulfonate 
(MMS) 

Tox 6 Array 

BY4743 Nitrogen starvation NS 7 Array 

BY4743 Shift from glucose to 
glycerol NS 10 Array 

GDS2925 CEN.PK 113-7D Organic acid shock pH 15 Array 

GDS3030* BY4741 Anaerobic to aerobic 
shift Ox 6 Array 
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Supplementary Table II – Continued. 
GEO 
Acession 
number 

Strains Stress agent Type of stress Number of 
experiments 

Type of 
experiment 

GDS3035* BY4743 
Oxidative stress 
(oxidant cumene 
hydroperoxide) 

Ox 48 Array 

GDS3137 

S288C, JK93dαa 

Sampagine Ox 6 

Array 

BY4743, 
BY4741 Array 

yMH339b, 
HEM1/hem1Δ Array 

HEM2/hem2Δ, 
HEM3/hem3Δ Array 

HEM4/hem4Δ, 
HEM12/hem12Δ, 
HEM13/hem13Δ, 
HEM14/hem14Δ, 
HEM15/hem15Δ, 
yap1Δ/yap1Δ, 
sod2Δ/sod2Δ, 
cin5Δ/cin5Δ, 
TXSc001, 
TXSc025 

Array 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 21, 2017. ; https://doi.org/10.1101/143487doi: bioRxiv preprint 

https://doi.org/10.1101/143487


78 
 

Supplementary Table II – Continued. 
GEO 
Acession 
number 

Strains Stress agent Type of stress Number of 
experiments 

Type of 
experiment 

GDS3438 

DY1457, 
OPY110, 
OPY111, 
YPH499, 
CPY119, 
OPY101, 
OPY102, 
OPY112, 
OPY103, 
BY4742, 
OPY104, 
BY4741, 
OPY105, 
OPY106, 
OPY107, 
OPY108, 
OPY109 

Hypoxia Red 4 Array 

GDS3591 

YPR005c, 
YMR037c, 
YKL062w, 
YDL106c, 
YFR034c, 
YML007w 

Quinine exposure Tox (Toxic 
shock) 4 Array 

GDS3332 
industrial wine 
strain of S. 
cerevisiae, Vin13 

Wine fermentation Tox 21 Array 

GDS3866 

CEN.PK113-1A 
(MATα, URA3, 
HIS3, LEU2, 
TRP1, MAL2-8c, 
SUC2) 

Oxygen depletion Red 28 Array 

GSE58319 BY4741 Heat shock HS 4 RNA-Seq 

Young [9] 
(ATCC)-201388, 
Z985 (1097), wt-
P82a 

Heat shock HS 6 Array 

GSE38478* S228C Heat shock HS 8 Array 

Eisen [10] - Heat shock HS 7 Array 
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Supplementary Table III – Relative Sensitivities of physiological variables V1-V11 to 
enzyme activities S1-S7. Red indicates sensitivities lower than -0.5. Green indicates 
sensitivities higher than 0.5. Sensitivities between -0.5 and 0.5 are not represented. 
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Supplementary Table IV – Orthologs genes in Schizosaccharomyces pombe, Candida glabrata, Candida albicans, Kluyveromyces lactis. 
S. cerevisiae genes Schizosaccharomyces pombe Candida glabrata Candida albicans Kluyveromyces lactis 

GLK1 - CAGL0F00605g orf19.734 HXKG_KLULA 

HXK1 SPAC24H6.04 - orf19.2154 HXK_KLULA 

HXK2 SPAC4F8.07c CAGL0H07579g orf19.542 HXK_KLULA 

HXT1 SPCC548.07c CAGL0A01804 orf19.4527 RAG1_KLULA 

HXT2 SPBC4B4.08 CAGL0D02662, orf19.3668 - 

HXT3 SPAC1F8.01 CAGL0A02321 orf19.4356 - 

HXT4 SPBC1683.08 CAGL0A01782 orf19.5962 - 

HXT6 SPCC1235.13 CAGL0A02233 orf19.2020 - 

HXT7 SPBC1348.14c CAGL0A02211 orf19.2023 HGT1_KLULA 

HXT8 SPCC548.06c CAGL0A00737 orf19.2021 - 

PFK1 SPBC16H5.02 CAGL0F08041g orf19.3967 PFKA1_KLULA 

PFK2 - CAGL0L10758g orf19.6540 PFKA2_KLULA 

PYK1 SPAC4H3.10c CAGL0M12034g orf19.3575 KPYK_KLULA 

PYK2 - CAGL0E05610g - KPYK_KLULA 

TDH1 - CAGL0J00451g orf19.6814 G3P1_KLULA 

TDH2 - CAGL0G09383g - G3P2_KLULA 

TDH3 SPBC354.12 - - - 

TPS1 SPAC328.03 CAGL0J09812g orf19.6640 TPS1_KLULA 

TPS2 SPACUNK4.16c CAGL0G05335g orf19.3038 - 

TPS3 SPAC19G12.15c - orf19.5348 - 

ZWF1 SPAC3A12.18 CAGL0J07612g orf19.4754 G6PD_KLULA 
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Supplementary Table V – GEO databases measuring gene expression changes during heat shock 
response for S. pombe, K. lactis, C. albicans, and C. glabrata. 

DB name Specie Strain Condition of stress Type of stress Number of 
experiments 

GSE50156 Schizosaccharomyces pombe 

SO3483, 
SO4281 

Heat Shock HS 1 

SO4362, 
SO4389 
SO4400, 
SO5216 
SO5217, 
SO5274 
SO5440, 
SO5442 
SO5445, 
SO5448 
SO5522, 
SO5524 
SO5527, 
SO5666 
SO5672, 
SO5673 
SO5683, 
SO5778 
SO5873, 
SO5875 
SO5946, 
SO5947 
SO6017, 
SO6454 
SO6455, 
SO6550 
SO6551, 
SO6965 
SO7020, 
SO7021 
SO7022, 
SO7023 
SO7051, 
SO7052 
SO7053, 
SO7055 
SO7118 

GSE38478 Schizosaccharomyces pombe  Heat Shock HS 8 

GSE38478 Kluyveromyces lactis  Heat Shock HS 10 

GSE38478 Candida glabrata  Heat Shock HS 11 

GSE38478 Candida albicans   Heat Shock HS 10 
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