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Understanding any brain circuit will require a categorization of its constituent neurons. In hippocampal area CA1, at 
least 23 classes of GABAergic neuron have been proposed to date. However, this list may be incomplete; additionally, 
it is unclear whether discrete classes are sufficient to describe the diversity of cortical inhibitory neurons, or whether 
continuous modes of variability are also required. We studied the transcriptomes of 3663 CA1 inhibitory cells, 
revealing 10 major GABAergic groups that divided into 49 fine-scale clusters. All previously described and several 
novel cell classes were identified, with three previously-described classes unexpectedly found to be identical. A 
division into discrete classes however was not sufficient to describe the diversity of these cells, as continuous 
variation also occurred between and within classes. Latent factor analysis revealed that a single continuous variable 
could predict the expression levels of several genes, which correlated similarly with it across multiple cell types. 
Analysis of the genes correlating with this variable suggested it reflects a range from metabolically highly active 
faster-spiking cells that proximally target pyramidal cells, to slower-spiking cells targeting distal dendrites or 
interneurons. These results elucidate the complexity of inhibitory neurons in one of the simplest cortical structures, 
and show that characterizing these cells requires continuous modes of variation as well as discrete cell classes. 
 

ORTICAL CIRCUITS are composed of 
highly diverse neurons, and a clear 

definition of cortical cell types is essential for 
the explanation of their contribution to 
network activity patterns and behavior. 
Cortical neuronal diversity is strongest 
amongst GABAergic neurons. In hippocampal 
area CA1 – one of the architecturally simplest 
cortical structures – GABAergic neurons have 
been divided so far into at least 23 classes of 
distinct connectivity, firing patterns, and 
molecular content (Bezaire and Soltesz, 2013; 
Freund and Buzsaki, 1996; Klausberger and 
Somogyi, 2008; Pelkey et al., 2017; Somogyi, 
2010; Wheeler et al., 2015). A complete 
categorization of CA1 inhibitory neurons 
would provide not only essential information 
to understand the computational mechanisms 
of the hippocampus, but also a canonical 

example to inform studies of more complex 
structures such as 6-layered isocortex.  

CA1 GABAergic neurons have been divided 
into six major groups, based on connectivity 
and expression patterns of currently-used 
molecular markers. Pvalb-positive neurons 
(including basket, bistratified, and axo-axonic 
cells) target pyramidal cells’ somata, proximal 
dendrites or axon initial segments, firing fast 
spikes that lead to strong and rapid 
suppression of activity (Buhl et al., 1994; Hu et 
al., 2014). Sst-positive oriens/lacunosum-
moleculare (O-LM) cells target pyramidal cell 
distal dendrites and exhibit slower firing 
patterns (Katona et al., 2014). GABAergic long-
range projection cells send information to 
distal targets, and comprise many subtypes 
including SST-positive hippocamposeptal 
cells; NOS1-positive backprojection cells 
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targeting dentate gyrus and CA3; and several 
classes of hippocamposubicular cells including 
trilaminar, radiatum-retrohippocampal, and 
PENK-positive neurons (Fuentealba et al., 
2008a; Jinno, 2009; Jinno et al., 2007; Sik et al., 
1994; Takács et al., 2008). CCK-positive 
interneurons are a diverse class characterized 
by asynchronous neurotransmitter release 
(Daw et al., 2009; Hefft and Jonas, 2005), that 
have been divided into at least 5 subtypes 
targeting different points along the 
somadendritic axis of pyramidal cells 
(Armstrong and Soltesz, 2012; Cope et al., 2002; 
Klausberger et al., 2005; Pawelzik et al., 2002; 
Somogyi et al., 2004). Neurogliaform and Ivy 
cells release GABA diffusely from dense local 
axons and can mediate volume transmission as 
well as conventional synapses (Armstrong et 
al., 2012; Fuentealba et al., 2008b). Interneuron-
selective (I-S) interneurons comprise at least 3 
subtypes specifically targeting other inhibitory 
neurons, and expressing one or both of Vip and 
Calb2 (Acsady et al., 1996a, 1996b; Freund and 
Buzsaki, 1996; Gulyás et al., 1996). Finally, 
additional rare types such as large Sst/Nos1 
cells (Jinno and Kosaka, 2004) have been 
described at a molecular level, but their axonal 
targets and relationship to other subtypes is 
unclear.  

This already complex picture likely 
underestimates the intricacy of CA1 inhibitory 
neurons. Currently defined classes likely 
divide into several further subtypes, and 
additional neuronal classes likely remain to be 
found (e.g. Katona et al., 2017). Furthermore, it 
is unclear whether a categorization into 
discrete classes is even sufficient to describe the 
diversity of cortical inhibitory neurons 
(Markram et al., 2004; Parra et al., 1998). For 
example, several Cck interneuron classes have 
been described, targeting pyramidal cells at 
multiple locations ranging from their somata to 
distal dendrites, and the molecular profile and 

spiking phenotype of these cells correlates with 
their synaptic target location, with fast-spiking 
cells more likely to target proximal segments of 
pyramidal neurons (Cope et al., 2002; 
Klausberger et al., 2005; Somogyi et al., 2004).  
Do such cells represent discrete classes with 
sharp inter-class boundaries, or do they 
represent points along a continuum? 
Furthermore, while a cell’s large-scale axonal 
and dendritic structure likely remains fixed 
throughout life, both gene expression and 
electrophysiological properties can be 
modified by factors such as neuronal activity 
(Dehorter et al., 2015; Donato et al., 2013; 
Mardinly et al., 2016; Spiegel et al., 2014). To 
what extent is the observed molecular diversity 
of interneurons consistent with activity-
dependent modulation of gene expression? 

Single-cell RNA sequencing (scRNA-seq) – 
which can read out the expression levels of all 
genes in large numbers of individual cells – 
provides a powerful opportunity to address 
these questions. This method has successfully 
identified the major cell classes in several brain 
regions (Cembrowski et al., 2016a, 2016b; 
Chevée et al., 2017; Ecker et al., 2017; Frazer et 
al., 2017; Habib et al., 2016, 2017; Macosko et 
al., 2015; Paul et al., 2017; Tasic et al., 2016; 
Usoskin et al., 2015; Zeisel et al., 2015). 
Nevertheless, identifying fine cortical cell 
classes has not been straightforward, due to 
both incomplete prior information on the 
underlying cell types, and to complicating 
factors such as potential continuous variability 
within these classes. The large body of prior 
work on CA1 interneurons provides a valuable 
opportunity to identify transcriptomic clusters 
with known cell types in an important cortical 
circuit, enabling confident identification of 
known and novel classes and investigation of 
questions such as continuous variability. 
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Here we describe a transcriptomic analysis of 
3663 inhibitory neurons from mouse CA1. This 
analysis revealed 49 clusters, of which we 
could identify 41 with previously described 
cell types, with the remaining eight 
representing putative novel cell types. All 
previously described CA1 GABAergic classes 
could be identified in our database, but our 
results unexpectedly suggest that three of them 
are identical. The larger number of clusters 
occurring in our transcriptomic analysis 
reflected several previously unappreciated 
subtypes of existing classes, and tiling of 
continua by multiple clusters. Our data suggest 
a common genetic continuum exists between 
and within classes, from faster-firing cells 
targeting principal cell somata and proximal 
dendrites, to slower-firing cells targeting distal 
dendrites or interneurons. Several classes 
previously described as discrete represent 
ranges along this continuum of gene 
expression.  

Results 
Data collection and identification of inhibitory 
cells 
We collected cells from six Slc32a1-Cre;R26R-
tdTomato mice, three of age p60 and three of age 
p27. Cells were procured using enzymatic 
digestion and manual dissociation (Zeisel et al. 
2015), and data were analyzed using the 10X 
Genomics “cellranger” pipeline, which uses 
unique molecular identifiers (UMIs) to 
produce an absolute integer quantification of 
each gene in each cell. The great majority of 
cells (4572/6971 cells total; 3283/3663 high-
quality interneurons) came from the older 
animals. Because we observed no major 
difference in interneuron classes between ages, 
data was pooled between them (Figure S1). 
FACS sorting yielded an enriched, but not 
completely pure population of GABAergic 
neurons. A first-round clustering (using the 

method described below) was therefore run on 
the 5940 cells passing quality control, 
identifying 3663 GABAergic neurons (as 
judged by the expression of genes Gad1 and 
Slc32a1). 

Cluster analysis 
We analyzed the data using a suite of four 
novel algorithms, derived from a probabilistic 
model of RNA distributions. All four methods 
were based on the observation that RNA 
counts within a homogeneous population can 
be approximated using a negative binomial 
distribution (See methods; Lu et al., 2005; 
Robinson and Smyth, 2008). The negative 
binomial distribution accurately models the 
high variance of transcriptomic read counts 
(Figure S2A,B). As a consequence, algorithms 
based on this distribution weight the presence  
or absence of a gene more than its numerical 
expression level – for example, this distribution 
treats read counts of 0 and 10 as more 
dissimilar than read counts of 500 and 1000 
(Figure S2C). 

The algorithm we used for clustering was 
termed ProMMT (Probabilistic Mixture 
Modeling for Transcriptomics). This algorithm 
fits gene expression in each cluster ݇ by a 
multivariate negative binomial distribution 
with cluster-specific mean ૄ௞. The mean 
expression levels of only a small subset of 
genes are allowed to vary between clusters (150 
for the current analysis; Figure S3); these genes 
are selected automatically by the algorithm by 
maximum likelihood methods. The use of such 
“sparse” methods is essential for probabilistic 
classification of high dimensional data 
(Bouveyron and Brunet-Saumard, 2014), and 
the genes selected represent those most 
informative for cluster differentiation. The 
number of clusters was chosen automatically 
using the Bayesian Information Criterion (BIC) 
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(Schwarz, 1978).  The ProMMT algorithm also 
provides a natural measure of the distinctness 

of each cluster, which we term the isolation 
metric (see Methods). 

  
Figure 1. The ProMMT algorithm split CA1 GABAergic neurons into 49 clusters. Dendrogram (left) shows a hierarchical cluster 
analysis of these classes. Table shows class names (chosen hierarchically according to strongly expressed genes), number of cells 
per class, isolation metric of each class (higher for distinct classes), the mean value of latent variable analysis for cells in this class, 
and the biological cell type identified from its gene expression pattern. Asterisks indicating hypothesized novel classes. Right, bar 
chart showing log expression of 25 selected genes for all cells in the class. Note the expression pattern of Lhx6, which suggests a 
developmental origin in medial ganglionic eminence for clusters Cacna2d1.Lhx6.Vwa5a and above.  
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The ProMMT algorithm divided CA1 
interneurons into 49 clusters (Figure 1). We 
named the clusters using a multilevel scheme, 
after genes that are strongly expressed at 
different hierarchical levels; for example, the 
cluster Calb2.Vip.Nos1 belongs to a first level 
group characterized by strong expression of 
Calb2 (indicating interneuron selective 
interneurons); a second level group Calb2.Vip; 
and a third level group distinguished from 
other Calb2.Vip cells by stronger expression of 
Nos1. This naming scheme was based on the 
results of hierarchical cluster analysis of cluster 
means, using a distance metric based on the 
negative binomial model (Methods; Figure 1). 

Data Visualization 
To visualize cell classes in two dimensions, we 
modified the t-stochastic neighbor embedding 
algorithm (Maaten and Hinton, 2008) for data 
with negative binomial variability, terming 
this approach nbtSNE.  In conventional tSNE, 
the similarity between data points is defined by 
their Euclidean distance, which corresponds to 
conditional probabilities under a Gaussian 
distribution. We obtained greater separation of 
clusters and a closer correspondence to known 
cell types, by replacing the Gaussian 
distribution with the same negative binomial 
distribution used in our clustering algorithm 
(see Methods; Figure S4).  

Figure 2. Two-dimensional visualization of expression patterns using nbtSNE algorithm, which places cells of similar expression 
close together. Each symbol represents a cell, with different color/glyph combinations representing different cell classes (legend, 
right). Grey boxes and numbers refer to the “continents” referred to in the text and subsequent figures. 
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The nbtSNE maps revealed that cells were 
arranged in 10 major “continents” (Figure 2). 
The way expression of a single gene differed 
between classes could be conveniently 
visualized on these maps by adjusting the 
symbol size for each cell according to that 
gene’s expression level. Consistent with 
previous transcriptomic analyses, we found 
that classes were rarely if ever identified by 
single genes, but rather by combinatorial 
expression patterns. Thanks to the extensive 
literature on CA1 interneurons, 25 genes 
together sufficed to identify the main 
continents with known cell classes (Figure 3), 

and it was also possible to identify nearly all 
the finer subclasses using additional genes 
specific to each class (Supplementary Text).  

Identification of cell types 
Previous work has extensively characterized 
the connectivity, physiology, and firing 
patterns of CA1 inhibitory neurons, and these 
cellular properties have been related to 
expression of large numbers of marker genes. 
We next sought to identify our transcriptomic 
clusters with previously defined cell types, 
taking advantage of the “Rosetta Stone” 
provided by this extensive prior research. 

 

Figure 3. Expression levels of 25 selected genes, that together allow identification of major cell classes. Each subplot shows an 
nbtSNE map of all cells, with marker size indicating log-expression level of the gene named above the plot. 
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Explaining how the identifications were made 
requires an extensive discussion of the 
previous literature, which is presented in full 
in the Supplementary Text. Here, we briefly 
summarize the major subtypes identified 
(summarized in Figure 4). 

Continent 1 was identified with the Sst positive 
hippocamposeptal and O-LM cells of stratum 
oriens (so). These cells all expressed Sst and 
Grm1, and were further divided into two 
Npy+/Ngf+ clusters identified as 
hippocamposeptal neurons (Acsády et al., 
2000), and three Pnoc+/Reln+/Npy- clusters 
identified with O-LM cells (Katona et al., 2014). 

In addition, Continent 1 contains a previously 
undescribed subclass positive for Sst, Npy, and 
Reln.  

Continent 2 was identified as basket and 
bistratified cells. These were all positive for 
Tac1 (the precursor to the neuropeptide 
Substance P), as well as Satb1 and Erbb4, but 
were negative for Grm1.  They were divided 
into two Pvalb+/Sst- clusters identified with 
basket cells, two Pvalb+/Sst+/Npy+ clusters 
identified with bistratified cells (Klausberger et 
al., 2004), and three Pvalb- clusters identified 
with Oriens-Bistratified (o-Bi) cells (Losonczy 
et al., 2002). 

 

Figure 4: Inferred circuit diagram of identified GABAergic cell types. The identification of transcriptomic clusters with known cell 
classes is described in full in the supplementary material. Laminar locations and connections between each class are derived 
from previous literature. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 18, 2018. ; https://doi.org/10.1101/143354doi: bioRxiv preprint 

https://doi.org/10.1101/143354


Harris et al.  Classes and continua of CA1 inhibitory neurons  8 

Continent 3 was identified as axo-axonic cells, 
due to their expression of Pvalb but not Satb1 
(Viney et al., 2013) This continent’s three 
clusters were Tac1-negative but positive for 
other markers including Snca, Pthlh and C1ql1, 
which have also been associated with axo-
axonic cells in isocortex (Paul et al., 2017; Tasic 
et al., 2016). We note that this dichotomy of 
Pvalb interneurons into Tac1 positive and 
negative subclasses is likely homologous to 
previous observations in isocortex (Vruwink et 
al., 2001).  

Continent 4 was identified as Ivy cells and 
MGE-derived neurogliaform cells. These cells 
expressed  Cacna2d1, which we propose as a 
unique identifier of hippocampal 
neurogliaform/ivy cells, as well as Lhx6 and 
Nos1 (Tricoire et al., 2010). They were divided 
into a Reln+ cluster identified with MGE-
derived neurogliaform cells, and a Reln-
/Vwa5a+ cluster identified with Ivy cells 
(Fuentealba et al., 2008b). This continent is 
homologous to the isocortical Igtp class defined 
by Tasic et al (2016), which we hypothesize 
may represent isocortical neurogliaform cells 
of MGE origin; this hypothesis could be 
confirmed using fate-mapping. 

Continent 5 was identified as CGE-derived 
neurogliaform cells. Its three clusters contained 
Cacna2d1 and many other genes in common 
with those of continent 4, but lacked Lhx6 and 
Nos1 (Tricoire et al., 2010).  Similar to 
isocortical putative neurogliaform cells, this 
continent expressed Ndnf and contained a 
distinct subtype positive for Cxcl14 (Tasic et al., 
2016).  As with continent 4, continent 5 mainly 
expressed Reln but also contained a small Reln-
negative cluster, which we suggest forms a rare 
and novel class of CGE-derived ivy cell.   

Continent 6 was identified with Sst-negative 
long-range projection interneurons. It divided 
into two distinct clusters, both of which were 

strongly positive for Ntng1. The first strongly 
expressed Chrm2 but lacked Sst and Pvalb, 
identifying them as trilaminar cells (Ferraguti 
et al., 2005; Jinno et al., 2007). The second 
subgroup lacked most classical molecular 
markers; this fact, together with their inferred 
laminar location at the sr/slm border, identified 
them as putative radiatum-retrohippocampal 
neurons that project to retrosplenial cortex 
(Jinno et al., 2007; Miyashita and Rockland, 
2007).  

Continents 7 and 8 were identified as what are 
traditionally called Cck interneurons. This term 
is somewhat unfortunate: while these cells 
indeed strongly express Cck, many other 
inhibitory classes express Cck at lower levels, 
including even Pvalb+ basket cells (Tricoire et 
al., 2011). Continents 7 and 8 cells comprised 
thirteen highly diverse clusters, but shared 
strong expression of Cnr1, Sncg, Trp53i11 and 
several other novel genes. Continent 8 is 
distinguished by expression of Cxcl14, which 
localizes these cells to the border of stratum 
radiatum and stratum lacunosum-moleculare 
(sr/slm). This continent comprised a continuum 
ranging from soma-targeting basket cells 
identified by their Slc17a8 (vGlut3) expression, 
to dendrite targeting cells identified by 
expression of Calb1 or Reln (Klausberger et al., 
2005; Somogyi et al., 2004). Continent 7, lacking 
Cxcl14, was identified as Cck cells of other 
layers, and contained multiple subtypes 
characterized by the familiar markers Calb1, 
Vip, Slc17a8 (Somogyi et al., 2004), as well novel 
markers such as Sema5a and Calca. Associated 
with continent 8 were several apparently novel 
subtypes: a rare and distinct group positive for 
both Scl17a8 and Calb1 and marked nearly 
exclusively by Lypd1; a Ntng1+/Ndnf+ 
subgroup related to cells of continent 6; and a 
group strongly expressing both Vip and Cxcl14, 
which therefore likely corresponds to a novel 
Vip+/Cck+ interneuron at the sr/slm border. 
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Continent 9 was identified as interneuron-
selective interneurons. Its eight clusters fell 
into three groups: Calb2+/Vip- neurons 
identified as IS-1 cells; Calb2-/Vip+ neurons 
identified as IS-2 cells; and Calb2+/Vip+ neurons 
identified as IS-3 cells (Acsady et al., 1996a; 
Freund and Buzsaki, 1996; Gulyás et al., 1996; 
Tyan et al., 2014). All expressed Penk (Blasco-
Ibanez et al., 1998).  These cells contained at 
least two novel subgroups: an IS-3 subtype 
positive for Nos1 and Myl1, homologous to the 
Vip Mybpc2 class defined in isocortex (Tasic et 
al., 2016); and a rare subclass of IS-1 cell 
positive for Igfbp6.  

Continent 10 contained a single highly distinct 
cluster located in an “island” off continent 1. In 
contained cells strongly positive for Sst and 
Nos1 (Jinno and Kosaka, 2004), whose 
expression pattern is consistent with that of 
both backprojection cells (Sik et al., 1994) and 
PENK-positive projection cells (Fuentealba et 
al., 2008a), suggesting that these three 
previously-identified classes reflect a single 
cell type. 

Comparison with isocortical classes 
Our finding of 49 clusters in a sample of 3663 
CA1 cells contrasts with a previous study of 
isocortical area V1, which found 23 clusters 
from a sample of 761 inhibitory neurons (Tasic 
et al., 2016). One can imagine three reasons for 
the greater number of clusters found in the 
present study: the larger sample size used here 
may have resulted in our resolving more 
clusters; the use of a different clustering 
algorithm may have allowed the current study 
to reveal finer cell types; or, area CA1 might 
genuinely contain more diverse inhibitory 
neurons than isocortex. To address these 
questions, we performed two analyses. First, 
we applied our clustering algorithm to the data 
of Tasic et al (2016); and we re-analyzed 
subsamples of the data of both the current 

study and of Tasic et al (2016) to see how the 
number of clusters found varies with cell count 
and with sequencing depth. 

Applying the ProMMT algorithm to the Tasic 
dataset yielded 30 clusters (Supplementary 
figure S5A,B). The cluster assignments almost 
completely overlapped as far as top-level 
groupings, but showed some more subtle 
distinctions in finer levels clusters 
(Supplementary figure S5C). We examined 3 
of these novel classes differences in more 
depth, to ask whether the finer distinctions 
found by the ProMMT algorithm could 
correspond to genuine biological cell classes. 
The most notable of these was cluster 11, which 
contained neurons that had previously been 
assigned to the neurogliaform clusters Ndnf 
Cxcl14, Ndnf Car4, but lacked common 
neurogliaform markers such as Lamp5 and 
Gabrd. Instead, cells in these clusters expressed 
Calb2 and Penk but not Vip, suggesting 
interneuron-selective cells homologous to 
hippocampal IS-1 cells, and potentially 
matching the Vip-negative interneuron-
selective layer 1 “single-bouquet cells” (SBCs) 
described Jiang et al (Jiang et al., 2013, 2015). To 
test whether cluster 11 indeed corresponds to 
SBCs, we took advantage of a Patch-seq study 
(Cadwell et al., 2016) that contrasted gene 
expression in anatomically identified layer 1 
SBCs and neurogliaform cells (Supplementary 
Figure S5D). We found that the genes that 
Cadwell et al had reported as distinguishing 
SBCs from neurogliaform cells indeed 
occurred in almost entirely non-overlapping 
populations of cells; furthermore, these 
populations closely matched the ProMMT 
clusters identified with SBCs and 
neurogliaform cells. Examination of two 
further subdivisions found by the ProMMT 
algorithm again revealed genes uniquely 
expressed in non-overlapping subpopulations 
of the Sst Cbln4 and Vip Parm1 clusters 
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(Supplementary Figure S6). We conclude that 
the larger number of clusters identified by the 
ProMMT algorithm at least in part results from 
its ability to distinguish subtle variations in 
gene expression between related cell types. 

To ask whether the greater number of clusters 
found in the current study might in part arise 
from its larger sample size, we reran the cluster 
analysis on randomly-selected subsets of cells 
from our dataset. We found a strong linear 
increase in the number of clusters found with 
sample size (Supplementary figure S7A). To 
investigate what effect sequencing depth may 
have had, we resampled our dataset to 
simulate lower read counts for the same cells, 

and again found an approximately linear 
increase in the number of identified clusters 
with read count (Supplementary figure 
S7B,C). We performed similar analyses on 
Tasic et al’s data, and obtained similar results 
(Supplementary Figure S7D,E).  

We therefore conclude that the larger number 
of clusters found by the current study is more 
likely to reflect a combination of larger sample 
size and more sensitive clustering algorithms, 
than a greater number of biological cell types 
in CA1 than in V1. Furthermore, we expect that 
an even larger sample size or greater 
sequencing depth would have revealed yet 
more, finely distinguished cell types. 

 
Figure 5. Analysis of discrete vs. continuous variation by negative binomial discriminant analysis. A, Histogram of log-likelihood 
ratios for three example cluster pairs, measuring how much better each cell’s whole-genome expression pattern is explained by 
one or the other clusters. The top histogram (basket vs. axo-axonic cells) is clearly bimodal, indicating clearly discrete separation. 
The bottom two histograms (ivy vs. MGE-neurogliaform cells; two subclasses of Cck/Cxcl14 cells) show substantial overlap, 
indicating continuous variation between clusters. The degree of bimodality is captured by the d’ statistic, above each plot. B, 
Pseudocolor matrix showing continuity of each pair of clusters, as assessed by d’ statistic. White means strongly bimodal, darker 
colors indicate continuity. 
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Continuous variation between and within cell 
classes 
Although the major continents of the 
expression map were clearly separated, 
clusters within these continents often appeared 
to blend into each other continuously. This 
suggests continuous gradation in gene 
expression patterns: while our probabilistic 
mixture model will group cells from a common 
negative binomial distribution into a single 
cluster, it will tile cells of continuously graded 
mean expression into multiple clusters.  

Although visualization methods such as 
nbtSNE can suggest whether classes are 
discrete or continuously separated, they are 
not sufficient to confirm the suggestion.  Such 
methods exhibit local optima, raising the 
possibility that apparent continuity only 
occurs for particular initialization conditions. 
Furthermore, as nbtSNE is based on a subset of 
genes, it is conceivable that 
discrete/continuous patterns occur only for this 
subset.  

To confirm the apparent continuity or 
discreteness of these groups, we therefore 
employed a novel method of negative binomial 
discriminant analysis, that is independent of 
nbtSNE and considers all genes. Given a pair of 
cell classes, this method compares how close 
each cell’s whole-genome expression pattern is 
to each class, using a cross-validated likelihood 
ratio statistic. For two classes identified as 
basket and axoaxonic cells, the histogram of 
likelihood ratios was clearly bimodal (Figure 
5A, top), indicating that every cell exhibited a 
much stronger fit to its own class than to the 
other, and confirming the discrete separation 
of these classes. A second example of clusters 
identified with Ivy and MGE-neurogliaform 
cells however showed different behavior 
(Figure 5A, middle): a unimodal likelihood 
ratio histogram indicated that the two clusters 
ran smoothly into each other, tiling a 

continuum of gene expression patterns. The 
bimodality of the likelihood ratio can be 
captured by a d’ statistic, which for these two 
examples was 7.2 and 1.5, respectively. 
Perhaps ironically, the degree to which two 
neighboring classes are discrete or continuous 
was itself a continuous variable. For example, 
Slc17a8-expressing Cxcl14/Cck neurons showed 
largely continuous overlap with their 
neighboring Cck/Cxcl14 cells, but with some 
small indication of bimodality, characterized 
by a d’ of 3.1 (Figure 5A, bottom). We conclude 
that while truly discrete cluster separations do 
exist, the dataset is not fully described as a set 
of discrete classes, and that many clusters tile 
continuous dimensions (Figure 5B). 

Latent factor analysis reveals a common mode 
of variation across all cell types that correlates 
with axon target location 
The existence of continuous variation in gene 
expression suggests that cluster analysis is not 
giving a complete picture of neuronal gene 
expression patterns. To further study the 
biological significance of continuously varying 
gene expression, we therefore applied a 
complementary method, latent factor analysis. 
Cluster analysis can be viewed as an attempt to 
summarize the expression of all genes using 
only a single discrete label per cell (the cell’s 
cluster identify), where the value this label 
takes for each cell is not directly observed, but 
“latent” and inferred from the data. Latent 
factor analysis also attempts to predict the 
expression of all genes using only a single 
variable (the “latent factor”), but now with a 
continuous rather than discrete distribution. 
As with cluster analysis, the latent factor is not 
directly observed, but is inferred for each cell. 
Latent factor analysis operates without 
knowledge of cluster identity, and therefore 
requires that the same rules be used to predict 
gene expression from the latent factor, for cells 
of all types. Clearly, one should expect neither 
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method to precisely predict the expression of 
all genes from a single variable; but the rules of 

cellular organization they reveal may provide 
important biological information.  

Figure 6, Latent factor analysis reveals a common mode of continuous variation that is consistent across cell types and correlates 
with axon target location. A, Latent factor analysis assigns a single number to each cell, via a search for the factor values that best 
predict expression of multiple genes. Mean factor values within each cluster differ systematically in a way that correlates with the 
identified cell class’ axon target location. Each point represents a cell, with x-coordinate showing latent factor value and y-coordinate 
showing cluster, sorted by mean latent factor value. B, Continuous gradient of Latent factor values across continent 8 (top; symbol 
size denotes latent factor value). Largest values are found in western Slc17a8-expressing neurons identified with soma-targeting Cck 
basket cells; smallest values found in eastern Calb1-expressing neurons identified with dendrite targeting Cck cells C, Correlation of 
latent factor values with expression of 6 example genes. Symbols as in (A); blue, continent 2 (basket/bistratified), green, continent 8 
(Cck/Cxcl14). D, Correlations of genes with the latent factor are preserved across cell classes. X-axis: correlation of gene with latent 
factor in continent 2; y-axis, correlation in continent 8; Spearman’s 0.58=ߩ, p<10-100. Inset, Spearman ߩ values for all pairs of 
continents, p<10-100 in each case. 
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As expected, latent factor analysis produced a 
complementary view to cluster analysis 
(Figure 6A). Knowing a cell’s cluster identity 
did not suffice to predict its latent factor value, 
and vice versa. For example, the ranges of latent 
factor values for cells in the clusters identified 
with Cck and Pvalb basket cells overlapped. 
Nevertheless, the range of possible latent factor 
values was not identical between clusters, and 
the mean latent factor value of each cluster 
differed in a manner that had a clear biological 
interpretation.  

The mean latent factor value of each cluster 
correlated with the axon target location of the 
corresponding cell type (Figure 6A). The 
clusters showing largest mean latent factor 
values were identified with soma-targeting 
basket cells (both Pvalb and Cck expressing), 
and with axo-axonic cells. Lower values of the 
latent factor were found in clusters identified 
with dendrite-targeting Cck cells, and with 
bistratified, Ivy and hippocamposeptal cells, 
which target pyramidal cells’ proximal 
dendrites (Fuentealba et al., 2008b; Takács et 
al., 2008). Still lower values of the latent factor 
were found in clusters identified with 
neurogliaform and O-LM cells, which target 
pyramidal distal dendrites. The lowest values 
of all were found in clusters identified with 
cells synapsing on inhibitory interneurons: the 
IS cells of continent 9, and the Sst/Penk/Nos1 
cells of continent 10, whose local targets are 
Pvalb cells (Fuentealba et al., 2008a).  

While mean values of the latent factor differed 
between continents, there was also substantial 
variability within cells of a single continent. 
For example, a gradient of latent factor values 
was seen within continent 8 (identified with 
Cck-positive neurons at the sr/slm border), with 
larger values in the west smoothly 
transitioning to smaller values in the east 
(Figure 6B). Comparison of gene expression 

patterns in continent 8 to previous work again 
suggested that this gradient in latent factor 
values correlates with axon target location. 
Indeed, immunohistochemistry has 
demonstrated that CCK-positive cells 
expressing SLC17A8 (expressed in western 
continent 8) project to the pyramidal layer 
(Somogyi et al., 2004), while those expressing 
CALB1 (expressed in the east) target pyramidal 
cell dendrites (Cope et al., 2002; Gulyás and 
Freund, 1996; Klausberger and Somogyi, 2008). 
The cannabinoid receptor Cnr1, which is more 
strongly expressed in soma-targeting neurons 
(Dudok et al., 2015; Lee et al., 2010) was also 
more strongly expressed in western cells with 
larger latent factor values.  

As expected, the expression levels of many 
individual genes correlated with the latent 
factor, furthermore the directions of these 
correlations were consistent even within 
distantly related cell types. We investigated the 
relationships of genes to the latent factor by 
focusing initially on the Pvalb and Cck 
expressing cells of continents 2 and 8 (Figure 
6C). Most genes correlated similarly with the 
latent factor in both classes. For example, the 
Na+/K+ pump Atp1b1 and the GABA synthesis 
enzyme Gad1 correlated positively with the 
latent factor for multiple cell types, while 
6330403K07Rik, a gene of unknown function, 
correlated negatively. Some genes’ expression 
levels depended on both cell type and latent 
factor value. For example, the ion channel 
Kcnc1 (which enables rapid action potential 
repolarization in fast-spiking cells) correlated 
positively with the latent factor in both Pvalb 
and Cck cells, but its expression was stronger in 
Pvalb cells, even for the same latent factor 
value. Other genes showed correlations with 
the latent factor, but only within the specific 
classes that expressed them. For example, 
expression of Pvalb correlated with the latent 
factor within cells of continent 2 but the gene 
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was essentially absent from cells of continent 8; 
conversely, Cnr1 expression correlated with 
the latent factor in continent 8, but was 
essentially absent in cells of continent 2. Thus, 
the latent factor value is not alone sufficient to 
predict a cell’s gene expression pattern, but 
provides a summary of continuous gradation 
in the expression of multiple genes in multiple 
cell types.  

The relationship of genes to latent factor values 
was statistically similar across cell types. To 
demonstrate this, we computed the Spearman 
correlation of each gene’s expression level with 
the latent factor, separately within cells of each 
continent (Supplementary Table 1). As 
expected from the scatterplots (Figure 6C), the 
correlation coefficients for Atp1b1, Gad1, and 
6330403K07Rik were similar between 
continents 2 and 8 (Figure 6D). Also as 
expected, Pvalb and Cnr1 showed strong 
positive correlations with the latent factor 
within the continent where these genes were 
expressed, but correlations close to zero within 
the continent where they were barely 
expressed. In general, the correlation 
coefficients of genes with the latent factor were 
preserved between continents 2 and 8 (Figure 
6D; Spearman rank correlation 0.58 =ߩ, p<10-

100). A similar relationship was found across all 
continents (Figure 6D, inset; p<10-100 in each 
case), although cells of continents 9 and 10 
showed less similarity than continents 1-8. 
Furthermore, similar results were obtained 
when analyzing isocortical data, most notably 
in isocortical Pvalb cells (Supplementary 
Figure S8) 

In summary, the expression of many genes 
correlates with a single continuous variable, 
the latent factor value assigned to each cell. 
While this latent factor does not provide a 
complete summary of a cell’s gene expression 
pattern, the direction and strength of the 

correlation of individual genes to the latent 
factor is largely preserved across cell types. 
Furthermore, while a cell’s latent factor value 
was not simply a function of its cell class, mean 
latent factor values differed between clusters, 
being largest for clusters identified with cell 
types whose axons target pyramidal somata or 
axon initial segments, and smallest for clusters 
identified with cell types targeting pyramidal 
distal dendrites or interneurons.  

Biological significance of genes correlating 
with the latent factor  
The above results suggest that the expression 
of a large set of genes is modulated in a largely 
consistent way across multiple cell types, in a 
manner that correlated with their axonal 
targets. What biological functions might these 
genes serve? While one might certainly expect 
structural genes be differentially expressed 
between soma- and dendrite-targeting 
interneurons, these cells also differ in their 
physiology. Indeed, Pvalb-expressing basket 
cells are known for their fast spiking 
phenotype, which produces rapid, powerful 
perisomatic inhibition, and is mediated by a set 
of rapidly-acting ion channels and synaptic 
proteins including Kcnc1, Kcna1, Scn1a, Scn8a, 
and Syt2 (Hu et al., 2014). Although most other 
interneurons show regular-spiking phenotype, 
CCK-expressing basket cells with a fast-
spiking phenotype have also been reported 
(Cope et al., 2002; Pawelzik et al., 2002). We 
therefore hypothesized that genes responsible 
for the fast-spiking phenotype might be 
positively correlated with the latent factor, due 
to increased expression in soma-targeting cells 
of all classes. 

Consistent with this hypothesis, genes 
associated with fast-spiking phenotype (Kcnc1, 
Kcna1, Scn1a, Scn8a, Syt2) were amongst the 
genes most positively correlated with the latent 
factor in both Pvalb and Cck basket cells (Figure 
6D). However, this positive correlation was not 
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restricted to these cell types: in an ordering of 
the correlations of all genes with the latent 
factor (taking into account cells of all types), 
these genes ranked in the 99.9th, 98.3rd, 99.5th, 
98.9th, and 95th percentiles respectively 
(Supplementary table 1).   

Other gene families positively correlated with 
the latent factor included genes associated with 
mitochondria (e.g. mt-Cytb), ion exchange and 
metabolism (e.g. Atp1b1; Slc24a2), GABA 
synthesis and transport (e.g. Gad1, Slc6a1), 
vesicular release (e.g. Syp, Sv2a, Cplx2, Vamp1), 
fast ionotropic glutatmate and GABA receptors 
(e.g. Gria1, Gabra1), as well as GABAB receptors 
(e.g. Gabbr1, Gabbr2, Kcnj3, Kctd12). The genes 
correlating negatively with the latent factor 
were less familiar, but included Atp1b2, a 
second isoform of the Na+/K+ pump; Fxyd6, 
which modulates its activity; Nrsn1, whose 
translation is suppressed after learning (Cho et 
al., 2015), as well as many neuropeptides (e.g. 
Sst, Vip, Cartpt, Tac2, Penk, Crh; exceptional 
neuropeptides such as Cck showed positive 
correlation). Genes associated with 
neurofilaments and intermediate filaments 
(e.g. Nefh, Nefl, Krt73) tended to show positive 
weights, while genes associated with actin 
processing (e.g. Gap43, Stmn1, Tmsb10) tended 
to show negative weights. Many other genes of 
as yet unknown function correlated positively 
and negatively with the latent factor (for 
example 6330403K07Rik). Relating the latent 
factor correlations of each gene to their Gene 
Ontology annotations (which are not granular 
enough to list annotations such as fast-spiking 
physiology), suggested that negatively 
correlated genes tended to be associated with 
translation and ribosomes, while positively 
correlated genes were associated with diverse 
functions including transcription, signal 
transduction, ion transport, and vesicular 
function and associated with cellular 

compartments including mitochondria, axons, 
and dendrites (Supplementary table 2).   

We therefore suggest that cells with large 
values of the latent factor not only target more 
proximal components of pyramidal cells, but 
also express genes enabling a faster spiking 
firing pattern, more synaptic vesicles and 
larger amounts of GABA release; receipt of 
stronger excitatory and inhibitory inputs; and 
faster metabolism. These are all characteristics 
of Pvalb-expressing fast-spiking interneurons 
(Hu et al., 2014), but a similar continuum was 
observed within all cell types, suggesting that 
these genes are commonly regulated in all CA1 
interneurons.  

The fact that the latent factor differs 
systematically between cells with different 
axonal targets suggests that this property is in 
good measure fixed, as it seems unlikely that 
neurons would make major changes to their 
axonal targets in adulthood. Nevertheless, 
interneuronal gene expression can be 
modulated by activity, and some of the genes 
that were most strongly correlated with the 
latent factor (Pvalb, Kcna1) are amongst those 
with activity-dependent modulation (Cohen et 
al., 2016; Dehorter et al., 2015; Donato et al., 
2013; Mardinly et al., 2016; Spiegel et al., 2014).  

To investigate whether the genes correlated 
with the latent factor might also be partially 
modulated by neuronal activity, we correlated 
each gene’s latent factor score with that gene’s 
modulation by in vivo light exposure after dark 
housing, using data from three classes of visual 
cortical interneurons (made available by 
Mardinly et al., 2016). We observed a moderate 
relationship of latent factor weighting to 
activity modulation in Sst neurons (r=.26; p<10-

12; Supplementary Figure S9), suggesting that 
activity dependent modulation of Sst cells may 
cause them to move along the continuum of 
latent factor values. A weaker but still 
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significant correlation was observed for Pvalb 
neurons (r=0.11; p<0.002), whereas no 
significant relationship was found for Vip 
neurons (p=0.17). These data therefore suggest 
that a portion of the continuous variability of 
gene expression observed in CA1 interneurons 
may arise from activity-dependent 
modulation, but that such modulation is 
unlikely to be a full explanation for the genetic 
continua revealed by latent factor analysis.  

Histological confirmation of transcriptomic 
predictions 
The transcriptomic classification we derived 
makes a large number of predictions for the 
combinatorial expression patterns of familiar 
and novel molecular markers in distinct CA1 
interneuron types. To verify our transcriptomic 
classification, we set out to test some of these 

predictions using traditional methods of 
molecular histology.  

Our first tests regarded the very distinct 
Sst.Nos1 cluster of continent 10. This cluster’s 
expression pattern matched three previously 
reported rare hippocampal inhibitory cell 
types: large SST-immunopositive cells that are 
intensely immunoreactive for NOS1 
throughout the cytoplasm revealing their full 
dendrites (Jinno and Kosaka, 2004); PENK-
positive projection cells (Fuentealba et al., 
2008a); and strongly NADPH diaphorase-
labelled (i.e. NOS1 positive) backprojection 
cells (Sik et al., 1994). We therefore 
hypothesized that these cell types, previously 
regarded as separate, may in fact be identical. 
To test this hypothesis, we performed a series 
of triple and quadruple immunoreactions, 

Figure 7. Immunohistochemical characterization of intensely NOS1-positive neurons. A. A large multipolar neuron in stratum 
pyramidale is strongly SST and NPY positive in the somatic Golgi apparatus and weakly positive for CHRM2 in the somato-dendritic 
plasma membrane (maximum intensity projection, z stack, height 11 µm; inset, maximum intensity projection of 3 optical slices, z 
stack height 2 µm). A smaller more weakly NOS1-positive cell (double arrow) in lower left is immunonegative for the other molecules; 
a second NPY positive cell (arrow) adjoining the NOS1+ neuron is immunonegative for the other three molecules. B. A NOS1-positive 
cell and another NOS1-immunonegative cell (asterisk) at the border of strartum radiatum and lacunosum-moleculare are both positive 
for GRM1 in the plasma membrane and PENK in the Golgi apparatus and in granules, but only the NOS1+ cell is immunopositive for 
CHRM2 (maximum intensity projection, z stack, height 10 µm). C. An intensely NOS1-positive cell in stratum radiatum is also positive 
for PCP4 in the cytoplasm and nucleus, and for PENK in the Golgi apparatus and in granules (maximum intensity projection, z stack, 
height 15 µm). 
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focusing on the intensely NOS1-positive 
neurons (n=3 mice, n=70 cells: 39% in 
so/alveus; 10% in sp; 27% in sr; 24% at sr/slm 
border). Similar to previously reported 
PENK-projection, backprojection, and 
SST/NOS1 cells (Fuentealba et al., 2008a; 
Jinno and Kosaka, 2004; Sik et al., 1994) – 
but unlike SST-positive O-LM cells (Katona 
et al., 2014) – these neurons all showed 
aspiny or sparsely spiny dendrites. As 
expected from the Sst.Nos1 cluster, we 
found that they were all SST/NPY double 
positive (n=20/20) and were virtually all 
weakly positive for CHRM2 (n=36/38) and 
GRM1 (n=17/17) in the somato-dendritic 
plasma membrane, strongly positive for 
PCP4 (n=19/21) in the cytoplasm and 
nucleus, and for PENK (n=35/42) in the 
Golgi apparatus and granules in the soma 
and proximal dendrites (Figure 7). By 
contrast, the more numerous moderately 
NOS1 positive cells (which include many 
interneuron types such as ivy, MGE-
neurogliaform and a subset of IS-3 neurons) 
were mostly immunonegative for CHRM2, 
PCP4 and PENK, although some were 
positive for GRM1. Our results are therefore 
consistent with the hypothesis that all three 
previously reported classes correspond to 
the Sst1.Nos1 cluster. 

A second prediction of our classification 
was the expression of Npy in multiple 
subclasses of Cck cell, most notably the 
Slc17a8 and Calb1 expressing clusters of 
continent 8. This was unexpected, as NPY 
(at least at the protein level) has instead 
been traditionally associated with SST-
expressing neurons and ivy/neurogliaform 
cells (Fuentealba et al., 2008a, Katona et al., 
2014). Nevertheless, no studies to our 
knowledge have yet examined 
immunohistochemically whether the 
neuropeptides NPY and CCK can be 

 
Figure 8. Confirmation of predicted co-localisation of NPY and pro-CCK.  A, 
Interneurons at the sr/slm border immunopositive for both NPY and pro-CCK 
(cells 1 and 2), one of which (cell 1) is also immunopositive for CALB1. A third 
neuron is positive only for pro-CCK and CALB1 (cell 3). B, Interneurons at the 
sr/slm border immunopositive for NPY (cells 1-3), pro-CCK (cells 2 and 4) and 
SLC17A8 (VGLUT3, cell 2). Note SLC17A8-positive terminals targeting 
unlabelled cells (arrows). (a,b), Both NPY and pro-CCK are detected in the 
Golgi apparatus and endoplasmic reticulum surrounding cell nuclei, in 
addition, some axons are also immunopositive for NPY (see arrow in (a); 
average intensity projections, z stacks, height 6.3 µm and 10.4 µm, 
respectively). C, Combined double in situ hybridization and 
immunohistochemistry shows that nearly all Slc17a8-expressing cells also 
express Npy and are immunopositive for pro-CCK (arrows), but some 
Npy/pro-CCK cells do not express Slc17a8 (arrowheads). Scale bars: 10 µm 
(a,b), 50 µm (c).  
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colocalised in the same interneurons. We 
therefore tested this by double 
immunohistochemistry in sr and slm (Figure 
8A, n=3 mice). Consistent with our predictions, 
119 out of 162 (74±6%) of the cells 
immunopositive for pro-CCK were also 
positive for NPY (an additional 73 cells were 
positive for NPY only, which according to our 
identifications should represent neurogliaform 
and radiatum-retrohippocampal cells). A 
subset (176 cells) of NPY and/or pro-CCK 
immunopositive neurons were further tested 
for CALB1 in triple immunoreactions. As 
expected, nearly all CALB1-positive neurons 
were pro-CCK-positive (89±2%), and CALB1 
immunoreactivity was seen in a subset of the 
cells containing both pro-CCK and NPY 
(27±3%). Additional triple 
immunohistochemistry for NPY, pro-CCK and 
SLC17A8  

(VGLUT3) revealed triple positive cells in sr 
and particularly at the sr/slm border, as 
predicted by the class Cck.Cxcl14.Slc17a8 
(Figure 8B). Due to the low level of somatic 
immunoreactivity for SLC17A8 (which as a 
vesicular transporter is primarily trafficked to 
axon terminals), we could not count these cells 
reliably; however of the cells that were 
unambiguously immunopositive for SLC17A8, 
in a majority we detected NPY. Additional 
analysis combining double in situ 
hybridization for Slc17a8 and Npy with 
immunohistochemistry for pro-CCK (Figure  
8C, n=3 mice) confirmed that the great majority 
of Slc17a8-expressing cells were also positive 
for Npy and pro-CCK (84±3%). As predicted by 
our identifications, the converse was not true: 
a substantial population of Npy/pro-CCK 
double-positive cells (57±7% of the total) did 
not show detectable Slc17a8, which we identify 
with dendrite-targeting neurons in the east of 
continent 8.  

Several cell types in our classification 
expressed Cxcl14, a gene whose expression 
pattern in the Allen Brain Atlas shows 
localization largely at the sr/slm border. The 
Cxcl14-positive population includes all clusters 
of continent 8, which express Cck and contain 
subclusters expressing Npy, Calb1, Reln, and 
Vip; a subtype of CGE-derived neurogliaform 
cell that expresses Reln and Npy but lacks Nos1 
and expresses Kit at most weakly; as well as IS-
1, IS-2, and radiatum-retrohippocampal cells. 
However, as all Cxcl14-positive clusters lacked 
Lhx6 we conclude they should be distinct from 
all MGE-derived neurons, including MGE-
derived neurogliaform cells.   

To test these predictions, we performed in situ 
hybridization for Cxcl14 simultaneously with 
in situ hybridization or immunohistochemistry 
to detect Reln, Npy, CALB1, CCK, PVALB, Sst, 
Nos1 and Kit (n=3 mice; Figure 9). In addition, 
we combined fluorescent in situ hybridization 
for Cxcl14 with immunohistochemistry for YFP 
in Lhx6-Cre/R26R-YFP mice, which allows 
identification of developmental origin by 
marking MGE-derived interneurons (Fogarty 
et al., 2007). The results of these experiments 
were consistent with our hypotheses. We 
found that within CA1, Cxcl14-expressing cells 
were primarily located at the sr/slm border 
(71±3%), although a subpopulation of cells 
were also found in other layers. We found no 
overlap of Cxcl14 with YFP in the Lhx6-
Cre/R26R-YFP mouse, confirming the CGE 
origin of Cxcl14 expressing neurons (Figure 
9A); consistent with this finding, no overlap 
was seen with Cxcl14 and Sst or Pvalb (data not 
shown). The majority of Cxcl14-positive cells 
expressed Reln (72±4%), accounting for 42±9% 
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of Reln-expressing neurons (Substantial 
populations of Reln+/Cxcl14- cells located in so 
and slm likely represent O-LM and MGE-
neurogliaform cells, respectively (Figure 9B). 
Indeed, although less than half of Reln cells 
were located at the R-LM border (44±1%), the 
great majority of Reln+/Cxcl14+ cells were 
found there (88±6%). Consistent with the 
expected properties of continent 8 cells, a large 
fraction of the Cxcl14 population were 
immunoreactive for pro-CCK (62±6%; Figure 
9C), while substantial minorities were positive 
for CALB1 (29±2%; Figure 9D) or Npy (25±5%; 
Figure 9E). However, as expected from the lack 
of Cxcl14 in MGE-derived neurogliaform and 

IS-3 cells, we observed no overlap of Cxcl14 
with Nos1 (0 out of 209 cells; Figure 9F); and 
very weak overlap with Kit, which is primarily 
expressed in clusters Cacna2d1.Ndnf.Npy and 
Cacna2d1.Ndnf.Rgs10, associated with the 
Cxcl14-negative CGE-neurogliaform 
population (1 of 264 cells respectively, from all 
mice; Figure 9G). 

The cluster Cck.Cxcl14.Vip presented a puzzle, 
since Cxcl14 is located primarily at the sr/slm 
border, whereas immunohistochemistry in rat 
has localized CCK/VIP basket cells to sp 
(Acsady et al., 1996a). Because Cxcl14 
expression can sometimes also be found in sp, 

Figure 9. Analysis of Cxcl14 co-expression patterns confirms predicted properties Cck.Cxcl14 cells. A, Cxcl14-expressing cells 
are CGE-derived: in situ hybridization for Cxcl14 combined with immunohistochemistry for YFP in the Lhx6-Cre/R26R-YFP mouse 
yields no double labelling. B, Double in situ hybridization for Cxcl14 and Reln marks a population of neurons located primarily at 
the sr/slm border. Note Reln expression without Cxcl14 in so and slm, likely reflecting O-LM and neurogliaform cells. C-E, Subsets 
of the Cxcl14-positive neurons are positive for pro-CCK or CALB1 (in situ hybridization plus immunohistochemistry), or Npy 
(double in situ hybridization). (f, g) No overlap was seen of Cxcl14 with Nos1 or Kit. In all panels, arrowheads indicate double-
expressing neurons. Layer abbreviations: so, stratum oriens; sp, stratum pyramidale; sr, stratum radiatum; b, sr/slm border region; 
slm, stratum lacunosum-moleculare; sm, stratum moleculare of the dentate gyrus. Scale bars: 200 µm (a), 100 µm (b-g). 
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we tested whether this cluster reflects sp cells, 
by combining in situ hybridization for Cxcl14 
with immunohistochemistry against VIP in 
mouse CA1 (Figure 10). This revealed frequent 
co-expression at the sr/slm border (8 ±1% Cxcl14 
cells positive for Vip; 23 ±1% Vip cells positive 
for Cxcl14), but very few Cxcl14 cells in sp, and 
essentially no double labelling (1 of 147 Vip 
cells in sp was weakly labelled for Cxcl14). We 
therefore conclude that this cluster indeed 
represents a novel cell type located at the sr/slm 
border, expressing Cck, Vip, and Cxcl14. 

Discussion 
The molecular architecture of CA1 
interneurons has been intensively studied over 

the last decades, leading to the identification of 
23 inhibitory classes. Our transcriptomic data 
showed a remarkable correspondence to this 
previous work, with all previously-described 
classes identified in our database. Our analysis 
also revealed a continuous mode of variability 
common across multiple cell types, eight 
hypothesized novel classes, as well as 
additional molecular subdivisions of 
previously described cell types. 

Surprisingly, these data suggest that three 
previously described CA1 cell groups in fact 
represent a single cell class, a fact previously 
overlooked due to the limited combinations of 
molecules tested in prior work. The Sst.Nos1 

Figure 10. Overlap of Cxcl14 and Vip. The class Cck.Cxcl14.Vip represented a puzzle: Vip/Cck cells had previously been 
reported in sp, but Cxcl14 is detected primarily at the sr/slm border, although exceptional cells can be detected in sp also. A, 
double fluorescent in situ hybridization images reveal that the vast majority of cells co-expressing Cxcl14 and Vip were found at 
the sr/slm border, confirming the location of this novel class. B, zoom into rectangles 1 and 2. Arrowheads: double-expressing 
cells. 
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class is strongly positive for Nos1, and also 
expresses Sst, Npy, Chrm2, Pcp4 and Penk, but 
unlike Penk-positive interneuron-selective cells 
of continent 9 lacks Vip. This class is 
homologous to the Int1 and Sst Chodl classes 
defined in isocortex, which have been 
identified with long-range projecting sleep-
active neurons (Gerashchenko et al., 2008; 
Magno et al., 2012; Tasic et al., 2016; Zeisel et 
al., 2015). The three previously described 
classes identified with Sst.Nos1 are: PENK-
immunopositive neurons with projections to 
subiculum, that were shown to be VIP-
negative, but not tested for SST or NOS1 
(Fuentealba et al., 2008b); the NADPH 
diaphorase-labelled (i.e. strongly NOS1 
positive) axons reported by Sik et al (1994) as 
projecting to CA3 and dentate, but not tested 
for SST or PENK; and the SST/NOS1 cells 
identified by Jinno and Kosaka (2004) in 
mouse, which were not tested for long-range 
projections or for PENK. While it remains 
possible that a larger transcriptomic sample of 
these rare neurons would reveal subclasses, 
our present data suggest that Sst.Nos1 cells are 
a homogeneous population: the nbtSNE 
algorithm, BIC criterion, and further manual 
exploration failed to reveal any finer 
distinctions. We therefore suggest that they 
constitute a class of inhibitory neurons with 
diverse long-range projection targets. 
Interestingly, the targets of PENK-positive 
projection cells are most commonly PVALB-
positive interneurons, unlike conventional IS 
cells, which preferentially target SST cells 
(Fuentealba et al., 2008a). As these cells are 
identified as sleep-active, this fact may provide 
an important clue to the mechanisms 
underlying sleep in cortical circuits.  

The match between our transcriptomic 
analysis and previous immunohistochemical 
work (primarily in rat) is so close that it is 
simpler to describe the few areas of 

disagreement than the many areas of 
agreement. First, ACTN2 has been used as a 
neurogliaform marker in rat (Price et al., 2005), 
but was almost completely absent from any cell 
type of our database. We suggest this reflects a 
species difference, as previous attempts with 
multiple ACTN2 antibodies have been 
unsuccessful in mouse (JH-L, unpublished 
observations), and Actn2 labelling is not 
detectable in the Allen atlas (Lein et al., 2007). 
Second, we observed Calb2 in a subset of 
putative O-LM cells; these Calb2-expressing 
neurons typically also expressed Calb1. Such 
O-LM cells have not been described in rat 
(Katona et al., 2014), but CALB2/SST neurons 
have been observed in mouse isocortex (Tasic 
et al., 2016; Xu et al., 2006). A third 
inconsistency regards NCALD, which in rat 
was reported not to overlap with PVALB, SST, 
or NPY (Martínez-Guijarro et al., 1998), but did 
so in our data. Finally, it has previously been 
reported that a subset of O-LM cells show 
Htr3a expression (Chittajallu et al., 2013). In 
our data, we observed at most weak expression 
of Htr3a in Sst cells, and the cells showing it 
belonged to clusters identified as 
hippocamposeptal rather than O-LM cells. 

Our analysis revealed several rare and 
presumably novel cell groups, although we 
cannot exclude that some of these were 
inadvertently included from neighboring areas 
such as subiculum (Figure S10). 
Sst.Npy.Serpine2 and Sst.Npy.Mgat4c, which 
simultaneously expressed Sst, Npy, and Reln fit 
the expected expression pattern of neither O-
LM nor hippocamposeptal cells; 
Sst.Erbb4.Rgs10 is a distinct group related to 
Pvalb basket and bistratified cells; Cck.Lypd1 
formed a rare and highly distinct class 
expressing Cck, Slc17a8, and Calb1; Ntng1.Synpr 
showed an expression pattern with features of 
both sr/slm Cck neurons and projection cells; 
and Cck.Cxcl14.Vip represents a cell class 
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strongly positive for both Cck and Vip located 
at the sr/slm border that appears to represent a 
pyramidal- rather than interneuron-targeting 
class. The analysis also revealed subdivisions 
of known types, such as the division of IS-3 
cells into Nos1 positive and negative groups, 
and the division of CGE-NGF cells into Car4- 
and Cxcl14-expressing subtypes. Finally, our 
data suggested that with more cells or deeper 
sequencing, even rarer types are likely to be 
found, as subsetting analysis showed a linear 
increase in the number of clusters with cell 
count and read depth, with little sign of 
saturation as yet. The data appeared to contain 
several novel cell types not containing enough 
cells to overcome the algorithm’s parsimony 
penalty, such as a small group of cells with 
features of both basket and axo-axonic cells 
located off the coast of continent 3; such cells 
have indeed been rarely encountered by 
quantitative electron microscopic analysis of 
synaptic targets in the rat (P. S., unpublished 
observations).  

Latent factor analysis revealed a common 
continuum of gene expression across the 
database, suggesting a large “module” of genes 
that are co-regulated in multiple types of 
hippocampal interneuron. The latent factor 
differed between clusters, and clusters with 
larger latent factor values were identified with 
interneuron types targeting pyramidal cell 
somas or proximal dendrites (such as Pvalb or 
Cck/Slc17a8 expressing basket cells), while 
those with low mean values were identified 
with interneurons targeting pyramidal distal 
dendrites (such as Sst or Cck/Calb1 expressing 
dendrite-targeting cells) or other interneurons. 
Subtler differences in latent factor were found 
within clusters, suggesting that a similar 
continuum exists within cells of a single type. 
Genes positively correlated with the latent 
factor are associated with fast-spiking 
phenotype, presynaptic function, GABA 

release, and metabolism. Consistent with this 
expression pattern, perisomatic inhibitory cells 
show fast-spiking phenotypes and deliver 
powerful, accurately-timed inhibition (Hu et 
al., 2014), but interneurons targeting distal 
dendrites show slower-spiking patterns; 
presumably because distal inputs are subject to 
passive dendritic filtering, their presynaptic 
vesicle release does not need to be so accurately 
timed. I-S cells had the lowest mean values of 
the latent factor, consistent with their small 
axonal trees and metabolic machinery (Gulyás 
et al., 2006). The stronger expression of many 
neuropeptides in cells of low latent factor 
suggests that these slower, distal-targeting 
interneurons may also rely more heavily on 
neuropeptide signaling, for which slow firing 
rates support outputs transduced by slower G-
protein coupled receptors. Interestingly, a 
study conducted independently of the present 
work identified enriched expression of a gene 
module similar to our latent factor in 
isocortical Pvalb neurons (Paul et al., 2017), and 
suggested it is controlled by the transcription 
factor PGC-1α (Lucas et al., 2010, 2014). Our 
results suggest that Cck-expressing basket cells 
have a similar expression pattern, and that 
more generally, expression of this module 
correlates with a neuron’s axonal target 
location. 

Several novel genes correlating with the factor 
appear interesting candidates for future 
research, such as Trp53i11, Yjefn3 and Rgs10, 
associated with faster spiking Cck cells; Zcchc12 
and 6330403K07Rik, both associated with 
slower-firing cells of all classes; and Fxyd6, 
associated with slow-spiking, which may 
modulate ion exchange. Intriguingly, genes for 
neurofilaments and other intermediate 
filaments were positively correlated with the 
latent factor, while genes involved in actin 
processing were negatively correlated; we 
hypothesize that this might reflect a different 
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cytoskeletal organization required for somatic- 
and dendritic-targeting neurons.  

The question of how many cell classes a given 
neural circuit contains is often asked of 
transcriptomic analyses, but we argue this 
question will not have a clearly defined 
answer. For example, our data indicate no 
sharp dividing line between ivy cells and 
MGE-derived neurogliaform cells. Yet cells at 
the two ends of the continuum are clearly 
different: not only do their gene expression 
patterns differ substantially, but their different 
axonal targets indicate different roles in circuit 
function (Fuentealba et al., 2008b). In statistics, 
multiple criteria can be used to define how 
many clusters should be assigned to a dataset; 
a common approach (which is used by the 
ProMMT algorithm) is to consider a cluster 
indivisible if within-cluster fluctuations cannot 
be distinguished from random noise. Using 
this criterion, the number of clusters of CA1 
interneurons increased with the number of 
cells and read depth analyzed, showing no sign 
of saturation in the current dataset. 
Furthermore, we observed several apparent 
rare classes that were too small to be assigned 
their own clusters at present, together with 
further subtle gradations within currently 
assigned clusters. The fact that we observed 
more clusters in CA1 than the 23 previously 
identified in isocortex (Tasic et al., 2016) should 
therefore not be taken as implying that CA1 is 
a more complex circuit, simply that our larger 
sample size and different clustering algorithm 
were able to detect finer distinctions. Indeed, 
our data suggest that while the divisions 
between the 10 major “continents” are 
unambiguous, the organization of gene 
expression within these continents is complex 
and subtle, and likely far more detailed than 
characterized by our present 49 clusters. An 
understanding this multiscale variability in 
gene expression in CA1 interneurons will be a 

key tool to understand the function of this 
circuit. 

Methods 
Single-cell RNA sequencing 
Animals 
Slc32a1 (vesicular GABA transporter)-Cre BAC 
transgenic mice (Ogiwara et al., 2013) were 
crossed with a tdTomato reporter line to 
generate mice with fluorescently labelled 
inhibitory neurons. Both the Slc32a1-Cre and 
tdTomato mouse lines were of mixed B6 and 
CD1 backgrounds. Three of these mice were 
used for both the p28 and p63 cohorts; both 
males and females were used at each age. All 
experimental procedures followed the 
guidelines and recommendations of Swedish 
animal protection legislation and were 
approved by the local ethical committee for 
experiments on laboratory animals 
(Stockholms Norra Djurförsöksetiska nämnd, 
Sweden). The data are available on GEO under 
accession number GSE99888. 

Single cell suspension and FACS 
Dissection and single cell dissociation were 
carried out as described before (Marques et al. 
2016), with slight alterations for P63 animals, 
where NMDG-HEPES based solution was used 
in all steps to enable better recovery of the aged 
cells (Tanaka, 2008). The NMDG-HEPES based 
cutting solution contained 93mM NMDG, 
2.5mM KCl, 1.2mM NaH2PO4, 30mM NaHCO3, 
20mM HEPES, 25mM Glucose, 5mM sodium 
ascorbate, 2mM thiourea, 3mM sodium 
pyruvate, 10mM MgSO4*7H2O, 0.5mM 
CACl2*2H2O and 12mM N-acetyl-L-cysteine; it 
was adjusted to pH 7.4 with 10N HCl. Mice 
were sacrificed by an overdose of Isoflurane 
and Ketamine/Xylazine, followed by 
transcardial perfusion through the left 
ventricle with artificial cerebrospinal fluid 
(aCSF) equilibrated in 95%O2 5%CO2 before 
use. The brain was removed and CA1 was 
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microdissected from 300μm vibratome 
sections. Single-cell suspensions were 
prepared using Papain (Worthington) with 
30min enzymatic digestion, followed by 
manual trituration with fire-polished Pasteur 
pipettes. The albumin density gradient was 
only performed for the p63 samples. On a BD 
FACSAria II, tdTomato-positive cells were 
sorted into oxygenated aCSF at 4°C, 
concentrated, inspected for viability, and 
counted. 

To assess the accuracy of our dissection, we 
studied the gene expression patterns of 
simultaneously collected pyramidal cells using 
previously published genetic criteria (Figure 
S8). No cells exhibited expression patterns 
consistent with CA2 or CA3  (Cembrowski et 
al., 2016a), but a fraction of these cells (62 of 357 
total excitatory neurons) expressed genes seen 
in a region stretching from the dorsomedial lip 
of CA1 to the subiculum. Although this result 
is consistent with dissection of only CA1 
interneurons, we also cannot rule out the 
presence of a small number atypical 
interneuron classes located at the dorsomedial 
lip, or of inclusion of some subicular 
interneurons.  

10X Chromium mRNA-seq 
Sorted suspensions were added to 10X 
Chromium RT mix aiming at 2500 cells 
recovered per experiment. Downstream cDNA 
synthesis (14 PCR cycles) and library 
preparation were carried out as instructed by 
the manufacturer (10X Genomics Chromium 
Single Cell Kit Version 1). Libraries were 
sequenced on the Illumina HiSeq2500 to an 
average depth 112 000 reads per cell (raw), 
yielding on average 3600 distinct molecules 
and 1700 genes per cell. Demultiplexed 
samples were aligned to the reference genome 
and converted to mRNA molecule counts 

using the “cellranger” pipeline version 1.1, 
provided by the manufacturer. 

Normalization 
Prior to many analyses (including clustering, 
latent factor analysis and nbtSNE) the 
expression vectors for each cell were 
normalized, so that each cell’s total RNA 
expression became equal to the total cellular 
RNA count averaged over all cells in the 
database. However, scatterplots of expression 
(Figure 6C) show unnormalized values. 

Quality control 
Cells showing abnormally high values of 
nuclear noncoding RNAs (Meg3, Malat1, 
Snhg11) or mitochondrial genes were 
discarded, as this can signify cell lysis. Cells 
were discarded if the summed normalized 
expression of these genes exceeded a threshold 
of 600. 

 
Immunohistochemistry (Oxford) 
Six adult (20 weeks old) male C57BL/6J mice 
(Charles River, Oxford, UK) were perfusion 
fixed following anaesthesia and tissue 
preparation for immunofluorescence (Katona 
et al., 2014) and analysis using wide-field 
epifluorescence microscopy (Somogyi et al., 
2004) were performed as described. The 
following primary antibodies were used: anti-
calbindin (goat, Fronteir Inst, Af104); anti-pro-
CCK (rabbit, 1:2000, Somogyi et al., 2004); anti-
metabotropic glutamate receptor 1a (GRM1, 
rabbit, 1:1000; guinea pig, 1:500; gifts from Prof. 
M. Watanabe, Frontier Institute); anti-
muscarinic acetylcholine receptor 2 (CHRM2, 
rat, 1:400, EMD Millipore Corporation, 
MAB367); anti-NOS1 (rabbit, 1:1000, EMD 
Millipore Corporation, AB5380; mouse, 1:1000, 
Sigma-Aldrich, N2280); anti-NPY (mouse, 
1:5000, Abcam, #ab112473); anti-Purkinje cell 
protein 4 (PCP4, rabbit, 1:500, Santa Cruz 
Biotechnology, sc-74816); anti-pre-pro-
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enkephalin (PENK, guinea pig, 1:1000, gift 
from Takahiro Furuta, Kyoto University, 
Japan; rabbit, 1:5000, LifeSpan Biosciences, LS-
C23084); anti-SST (sheep, 1:500, Fitzgerald 
Industries International, CR2056SP); anti-
VGLUT3 (guinea pig, Somogyi et al 2004). 
Secondary antibodies were raised in donkey 
against immunoglobulin G of the species of 
origin of the primary antibodies and 
conjugated to Violet 421 (1:250); DyLight405 
(1:250); Alexa 488 (1:1000); cyanine 3 (1:400); 
Alexa 647 (1:250); cyanine 5 (Cy5, 1:250). With 
the exception of donkey-antimouse-Alexa488 
purchased from Invitrogen, all secondary 
antibodies were purchased from Stratech. 

For cell counting, image stacks (212 x 212 μm 
area; 512 x 512 pixels; z stack height on average 
12 μm) were acquired using LSM 
710/AxioImager.Z1 (Carl Zeiss) laser scanning 
confocal microscope equipped with Plan-
Apochromat 40x/1.3 Oil DIC M27 objective and 
controlled using ZEN (2008 v5.0 Black, Carl 
Zeiss). In a second set of sections, images were 
taken using Leitz DM RB (Leica) 
epifluorescence microscope equipped with PL 
Fluotar 40x/0.5 objective. Counting was 
performed either using ImageJ (v1.50b, Cell 
Counter plugin) on the confocal image stacks 
or OPENLAB software for the epifluorescence 
documentation. For the CCK counts, numbers 
were pooled from two separate reactions 
testing for a given combination of primary 
antibodies (n=3 mice each reaction, 2-3 sections 
each mouse) and reported as average values ± 
standard deviation. For the testing of intensely 
nNOS-positive neurons cells were selected 
using Leitz DM RB (Leica) epifluorescence 
microscope equipped with PL Fluotar 40x/0.5 
objective. Cells were pooled from three 
separate reactions testing for a given 
combination of primary antibodies (n=3 mice 
each reaction, 2 sections each mouse) and 
reported as pooled data. Image processing was 

performed using ZEN (2012 Blue, Carl Zeiss), 
ImageJ (v1.51m, open source), Inkscape (0.92, 
open source) and Photoshop (CS5, Adobe). 

In situ hybridization (UCL) 
Wild type (C57BL/6/CBA) male and female 
adult (P30) mice and Lhx6-CreTg transgenic 
mice were perfusion-fixed as previously 
described (Rubin et al., 2010), followed by 
immersion fixation overnight in 4% 
paraformaldehyde. Fixed samples were 
cryoprotected by overnight immersion in 20% 
sucrose, embedded in optimal cutting 
temperature (OCT) compound (Tissue Tek, 
Raymond Lamb Ltd Medical Supplies, 
Eastbourne, UK) and frozen on dry ice. 30 μm 
cryosections were collected in DEPC-treated 
PBS and double in situ hybridization was 
carried out as described (Rubin et al., 2010). 
Probes used included either a Cxcl14-
(digoxgenin)DIG RNA probe in combination 
with Reln-(fluorescein)FITC, Npy-FITC or Sst-
FITC or Vip-FITC probes, or a Cxcl14-FITC 
probe with Nos1-DIG, Kit-DIG, Scl17a8-DIG, or 
Pvalb-DIG probes. DIG-labelled probes were 
detected with an anti-DIG-alkaline 
phosphatase (AP)-conjugated antibody 
followed by application of a Fast Red (Sigma) 
substrate. The first reaction was stopped by 
washing 3 x 10 min in PBS, and the sections 
were incubated with an anti-FITC-Peroxidase 
(POD)-conjugated antibody (1:1500 - Roche) 
overnight. The POD signal was developed by 
incubating the sections with Tyramide-
FITC:amplification buffer (1:100, TSA™-Plus, 
Perkin Elmer) for 10 minutes, at room 
temperature. For immunohistochemistry after 
in situ hybridization the following antibodies 
were used: anti-Calbindin (rabbit, 1:1000, 
Swant, Bellinzona, Switzerland); anti-pro-CCK 
(rabbit, 1:2000, Somogyi et al., 2004); anti-GFP 
(chicken, 1:500, Aves Labs). All sections were 
counterstained with Hoechst 33258 dye 
(Sigma, 1000-fold dilution) and mounted with 
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Dako Fluorescence Mounting Medium 
(DAKO).  

For cell counts, images (at least two sections 
per mouse) were acquired on an 
epifluorescence miscroscope (Zeiss) with a 10x 
objective. Several images spanning the entire 
hippocampal CA1 were stitched using 
Microsoft Image Composite Editor. Cells were 
counted manually in the CA1 area including sr 
and slm and in a subregion spanning 100 μm 
across the border between sr and slm, where 
most Cxcl14-positive cells are located. Confocal 
images (z stack height on average 25 μm, 2 μm 
spacing) were taken on a Leica confocal 
microscope under a 10x objective and 
processed for contrast and brightness 
enhancement with Photoshop (CS5, Adobe). A 
final composite was generated in Adobe 
Illustrator (CS5, Adobe). 

Cluster analysis 
Sparse Mixture Model 
The ProMMT algorithm performs cluster 
analysis by modeling molecular counts by a 
mixture of sparse multivariate negative 
binomial distributions. Specifically, let ܠ 
represent the ௚ܰ௘௡௘௦-dimensional vector 
summarizing the expression of all genes in a 
single cell. We model the probability 
distribution of ܠ with a mixture model: Pr(ܠ) = ෍ Pr(ܠ|݇)௞ π୩ (1) 

Here, ݇ denotes a cell class, (݇|ܠ)݌ denotes the 
probability that a cell in this class will have 
expression vector ܠ, and the “class prior” ߨ௞ 
represents the fraction of cells belonging to this 
class. To model (݇|ܠ)݌, we use the following 
distribution family: 

Pr(࢞|݇) = ෑ ቊPr൫ݔ௚หߤ௚,଴൯ ݃ ∉ ܵPr൫ݔ௚หߤ௚,௞൯ ݃ ∈ ܵ   ௚  (2) 

In this family, the distribution of all genes is 
modelled as conditionally independent within 
a class. The within-class distribution of each 
gene g depends on a single parameter ߤ௚,௞ (the 
mean level of the gene in that class). 
Furthermore, the distributions of only a subset ܵ of genes are allowed to vary between classes, 
while the remainder are constrained to have a 
class-independent distribution with mean ߤ௚,଴. 
Taking ܵ to have a fixed and small size ௌܰ 
ensures a “sparse model”, which can be fit 
robustly in high dimensions from only a small 
number of cells. Note that while the set S could 
in principle vary between classes, we have 
found that using a single set ܵ for all classes 
provides good results. 

Negative binomial distribution 
To model the variability of each gene within a 
class, we use a negative binomial distribution. 
The negative binomial distribution is a model 
of count data with greater variance than the 
Poisson distribution, and is frequently used as 
a model for gene expression levels (Lu et al., 
2005; Robinson and Smyth, 2008). The negative 
binomial is specified by two parameters, ݎ and ݌, and has distribution  ܲݔ)ݎ; ,ݎ (݌ = ቀݔ + ݎ − ݔ1 ቁ ௫ (1݌ −  ௥ (3)(݌

This distribution has mean ߤ = ௥௣ଵି௣, and for 

fixed ݎ the maximum likelihood estimate of 
parameter ݌ is ఓ௥ାఓ, where ߤ is the sample mean. 

For fixed ݎ the standard deviation of this 
distribution scales asymptotically linearly with 

its mean: ߪ = ටఓమ௥ +  In contrast, the Poisson .ߤ

distribution has a smaller standard deviation, 
which scales with the square root of the mean.  

We verified that a negative binomial with fixed ݎ is appropriate for scRNA-seq data by 
considering a relatively homogeneous class 
(CA1 pyramidal cells; Figure S2A; data from 
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Zeisel et al (2015)). This analysis confirmed that 
the negative binomial with ݎ = 2 accurately 
modelled the relationship of standard 
deviation to mean in this data. The “wide” 
shape of the negative binomial distribution 
(Figure S2B) has a consequence that the 
absolute expression levels of a gene matters 
much less than whether the gene is expressed 
at all. Indeed, examining the symmetrized 
Kullback-Leibler divergence of negative 
binomials with different means (Figure S2C) – 
an indication of the penalty paid for 
misestimating the mean expression level – 
indicates that a much smaller penalty is paid 
for fitting a mean of 500 to a distribution whose 
actual mean is 1000, than to fitting a mean of 10 
to a distribution whose actual mean is 0. 

EM algorithm 
To fit the model, we fix ݎ = 2, and fit the 
parameters ܵ, ߤ, and π by maximum 
likelihood. Because maximum likelihood 
fitting involves a sum over (unknown) class 
assignments, we use a standard Expectation-
Maximization (EM) algorithm (Bishop, 2006; 
Dempster et al., 1977). We define ݖ௖,௞ to be the 
expected value of an indicator variable taking 
the value 1 if cell ܿ belongs to class ݇: ݖ௖,௞ = Pr(݇|ܠ௖; ܵ,  .(ߤ
The algorithm alternates between an E step, 
where ݖ௖,௞ is computed using the current 
values of the parameters ܵ and ߤ, and an M 
step, where ܵ and ߤ are optimized according to 
the current values of ݖ௖,௞. 

E-step 
The E step is straightforward. Observe that log Pr(܋ܠ|݇) = ݐݏ݊݋ܿ + log(ߨ௞)+ ෍ ௖,௚ݔ log൫݌௚,௞൯௚∈ௌ+ log൫1 ݎ −   ௚,௞൯݌

The constant term includes the contributions of 
all genes not in ܵ, as well as the binomial 
coefficient from (3), none of which depend on 
the value of ݇, and therefore do not affect the 
result.  

One can compute ݖ௖,௞ from this using Bayes’ 
theorem; in practice, however we found that 
when the set ܵ  contains a reasonable number of 
genes (~100 or more) all values of ݖ௖,௞ are close 
to 0 or 1, so there is little to lose by employing 
a much faster “hard EM” algorithm, in which 
for all cells ܿ only a single winning ݇௖ has ݖ௖,௞೎ = 1, with all others 0. 

M-step 
In the M-step, we are given  ݖ௖,௞ and must find 
the set ܵ of genes that are allowed to differ 
between classes, and their class means ߤ௚௞, by 
maximum likelihood. Although one might 
expect finding ܵ to pose an intractable 
combinatorial optimization problem, it can in 
fact be solved quickly and exactly. The 
derivation below is for a hard EM algorithm; 
the soft case can be derived easily, but requires 
substantially more computation time, without 
a noticeable increase in performance. 

We first define a quantity ܮ଴ to be the log 
likelihood of the data under a model where ܵ =∅, so all the expression of each genes ݃ is 
determined by its grand mean ߤ௚,଴, 
independent of cluster assignments. Observe 
that ܮ = ଴ܮ + ෍ ௚ܻ௚∈ௌ  

where 

௚ܻ =  ෍ ௚,௞೎൯݌௚,௖ൣlog൫ݔ − log൫݌௚,଴൯൧௖ + log൫1ൣݎ − −௚,௞೎൯݌ log൫1 −  ௚,଴൯൧݌
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represents the gain in log likelihood obtained 
when the distribution of gene ݃ is allowed to 
vary between classes. To compute the optimal 
value of the set ܵ, we note that the values of ௚ܻ 
are independent of each other. Thus, the 
optimal set ܵ is simply the ௦ܰ genes with the 
largest values of ௚ܻ. 

The maximum likelihood estimates of the 
negative binomial parameters ݌௚,௞ are given by ఓ೒,ೖ௥ାఓ೒,ೖ, where ߤ௚,௞ denotes the average 

expression of gene ݃ for the cells currently 
assigned to cluster ݇, and ߤ௚,଴ is the mean 
expression of gene ݃ for all cells in the 
database. Because the negative binomial 
distribution can give zero likelihoods if any  ߤ௚,௞ = 0 , we use a regularized mean estimate:  ߤ௚,௞ = ܣ + ∑ ܤ ௚,௖௖∈௞ݔ + ௞ܰ  

Where ܰ ௞ denotes the number of cells in cluster ݇, and the regularization parameters take the 
values ܣ = 10ିସ, ܤ = 1.  

Finally, we compute the priors ߨ௞ as the 
fraction of cells ܿ with ݇௖ = ݇, as is standard in 
EM. 

BIC penalty 
To automatically choose the number of 
clusters, we employed the BIC method 
(Schwarz, 1978), which for our model takes the 
form of a penalty |ௌ| ୪୭୥(ே೎)ଶ  per cluster added to 
the log likelihood.  

Cluster splitting 
As is typical for cluster analysis, the likelihood 
function has multiple local maxima, and steps 
must be taken to ensure the algorithm does not 
become trapped in a suboptimal position. To 
do this, we use a heuristic that splits clusters 
that are poorly fit by a negative binomial 
distribution. The full clustering method 
consists of a divisive approach that alternates 

such splits with EM runs that then re-optimize 
the parameters.  

For each cluster ݇, the splitting heuristic 
searches for genes ݃ whose likelihood would 
be substantially increased if the cluster was 
split in two, according to whether the 
expression of gene ݃ is above a threshold Θ୥. Note that after splitting, the amount by 
which the log likelihood gain ܻ ௚ changes can be 
written as ∆ ௚ܻ,஀ = ෍ ௚ழ൯݌௚,௖ൣlog൫ݔ − log൫݌௚൯൧௖:௫೒,೎ழ௵ + log൫1ൣݎ − ௚ழ൯݌ − log൫1 − +          ௚൯൧݌ ෍ ௚ஹ ൯݌௚,௖ൣlog൫ݔ − log൫݌௚൯൧௖:௫೒,೎ஹ ஀ + log൫1ൣݎ − ௚ஹ ൯݌ − log൫1 −  ௚൯൧݌
Here, ݌௚ represents the maximum-likelihood 
parameter for gene ݃ in the cluster under 
consideration, ݌௚ழ represents this parameter 
computed only for cells with ݔ௚ < Θ௚, and ݌௚ஹ represents this parameter for cells with ݔ௚ ≥Θ௚.  The only values of Θ for which a split need 
be considered correspond to the expression 
levels of cells in the cluster, and ∆ ௚ܻ,஀ can 
therefore be rapidly computed for all ݃ and Θ 
using cumulative summation, with 
computational cost linear in the size of the 
expression matrix. 

Full algorithm 
The full algorithm consists of repeatedly 
alternating the EM algorithm with cluster 
splitting and merging operations to escape 
from local maxima. The algorithm is initialized 
by assigning all cells to a single cluster. 

On each iteration, all clusters are first split in 
two using the splitting heuristic. Specifically, 
for each cluster, ∆ ௚ܻ,஀ is computed for all ݃ and Θ, and the optimal split points Θ௚ are found for 
each gene. The ten genes giving top values of ∆ ௚ܻ,஀ౝ are found. For each of them, the cluster 
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is split, an EM algorithm run to convergence on 
the resulting cluster pair, and the split 
providing the highest increase in likelihood is 
kept. Once all clusters have been split, they are 
combined to produce a dataset with twice the 
original number of clusters, and the EM 
algorithm is run it, to allow points to be 
reassigned between the split clusters. 

The iteration ends with a round of cluster 
pruning. For each cluster we compute the 
deletion loss: the decrease in log likelihood that 
would occur if all points in the cluster were 
reassigned to their second-best matching 
cluster. If this loss does not outweigh the BIC 
penalty, the cluster’s points are so reassigned, 
and EM is run on the full dataset. This process 
continues until no cluster’s deletion loss is 
smaller than the BIC penalty.  

The algorithm is run for a set number of 
iterations (50 in the current case) and the final 
result corresponds to the clustering that gave 
highest score. 

Isolation metric 
To measure how well separated each cluster is 
from its neighbors, we define an isolation 
metric equal to the deletion loss (described in 
the previous section), divided by ௞ܰlog(2), 
where ௞ܰ is the number of cells assigned to 
cluster ݇. This has an information-theoretic 
interpretation, as the number of additional bits 
that would be required to communicate the 
gene expression pattern of a cell in cluster ݇, 
using a code defined by the probability model 
if cluster ݇ were deleted. 

Hierarchical cluster clustering 
Each cluster produced by the EM algorithm is 
specified by a mean expression vector. To 
understand the relationship between these 
cluster means, we applied a clustering method 
to the clusters themselves. This was achieved 
using Ward’s method, with a distance matrix 

given by the K-L divergence between cluster 
means, weighted by the number of cells per 
cluster. 

nbtSNE algorithm 
To visualize the locations of the cells we 
derived a variant of the tSNE algorithm 
(Maaten and Hinton, 2008) appropriate for 
data following a negative binomial 
distribution.  

Stochastic neighbour embedding algorithms 
such as tSNE start by converting Euclidean 
distances between pairs of high-dimensional 
vectors ݔ௜  into conditional probabilities  
according to a Gaussian distribution: ݌௝|௜ =ܰ൫ݔ௝; ,௜ݔ /௜ଶ൯ߪ ∑ ܰ൫ݔ௞; ,௜ݔ ௜ଶ൯௞ஷ௜ߪ .  The tSNE 
algorithm then adjusts the locations of low-
dimensional representation ݕ௜  in order to 
minimize the K-L divergence of a symmetrized ݌௝|௜, with a t-distribution on the ݕ௜.  
The Gaussian distribution, however, is not the 
most appropriate choice for transcriptomic 
data. We found that we obtained better results 
using the same negative binomial distribution 
as in the ProMMT algorithm: ݌௝|௜ = ;௝ݔ൫ܤܰ ,௜ݔ /൯ݎ ෍ ;௞ݔ)ܤܰ ,௜ݔ ௞ஷ௜(ݎ  

Where  

;௝ݔ൫ܤܰ ,௜ݔ ൯ݎ = exp ቎෍ ௚௝ݔ log ቆ ௚௜ݔ௚௜ݔ + +ቇ௚∈ௌݎ ݎ log ቆ ௚௜ݔݎ +  ቇ቏ݎ

excluding a binomial coefficient that cancels 
when computing ݌௝|௜. The sum runs over the 
set of genes ݃  that were chosen by the ProMMT 
algorithm.  

In the original tSNE algorithm, variations in 
distance between the points ݔ௜ are overcome by 
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adjusting the variance ߪ௜ଶ for each point ݅ to 
achieve constant perplexity of the 
symmetrized conditional distributions. We 
took the same approach, finding a scale factor ߣ௜  for each cell ݅ to ensure that the scaled 
symmetrized distribution ݌௝௜ = exp ௝|௜൯݌൫݃݋௜൫݈ߣ +  ௜|௝൯൯݌൫݃݋݈

had a fixed perplexity of 15. This computation, 
and the implementation K-L minimization was 
achieved using Laurens van der Maaten’s 
drtoolbox 
(https://lvdmaaten.github.io/drtoolbox/).  The 
algorithm was initialized by placing all points 
on a unit circle, with angular position 
determined by their parent cluster, linearly 
ordered by the hierarchical cluster clustering.  

For comparison, we ran four other methods of 
tSNE analysis (Figure S4) using either all genes 
or the 150 genes found by ProMMT, and either 
a Euclidean metric or a Euclidean metric after 
log(1+x) transformation. Perplexity of 15 was 
again used and initialization was the same as 
before. Using all genes gave results that were 
difficult to interpret, particularly for log-
transformed data, which we ascribe the noise 
arising from the large number of weakly 
expressed genes in the database. Using the 
gene subset provided more interpretable 
results, and combining the gene subset with 
log(1+x) transformation yielded results similar 
to nbtSNE, while Euclidean metric yielded less 
clear distinction of isolated classes such as 
Cck.Lypd1 and Sst.Nos1. We conclude that the 
alignment of nbtSNE to the probability 
distribution of RNA counts of allows the 
algorithm to take into account differences 
between weakly expressed genes, and that a 
log(1+x) transformation approximates this 
probability distribution. We also conclude that 
gene subsetting prevents noise from the large 
number of genes that do not differ between 
classes from swamping the signal, and that this 

is particularly important with algorithms 
sensitive to changes in weakly expressed 
genes. We suggest that nbtSNE provides a 
principled probabilistic method for choosing 
the transformation and gene subset required 
for informative tSNE analysis.  

Negative binomial discriminant analysis 
To investigate whether a pair of clusters were 
discretely separated or tiled a continuum we 
developed a method of cross-validated 
negative binomial discriminant analysis. This 
analysis assesses the separation of two clusters ݇ଵ and ݇ ଶ by computing the log likelihood ratio 
for each cell to belong to the two clusters. It is 
simple to show that this ratio for a cell ܿ is 
given by ∆௖ = ෍ ௖,௚൫logݔ ௚,௞భ݌ − log ீ∋௚,௞మ൯௚݌ + ݎ ቀlog൫1 − −௚,௞భ൯݌ log൫1 −    ௚,௞మ൯ቁ݌
The sum runs over all genes ݃ in the database, 
not just the set ܵ found by the ProMMT 
algorithm.  

The degree to which clusters ݇ଵ and ݇ଶ are 
discrete is visible by the bimodality of the 
histogram of ∆௖, which can be quantified using 
a d’ statistic, ఓభିఓమට൫ఙభమାఙమమ൯/ଶ , where ߤ௜ and ߪ௜  
represent the mean and standard deviation of ∆௖ for cells arising in cluster ݅. In this analysis, 
it is essential that the ratios ∆௖ are computed on 
a separate “test set” of cells to the “training set” 
used to estimate ݌௚,௞, otherwise even a random 
division of a single homogeneous cluster 
would give an apparently bimodal histogram 
due to overfitting. 

Latent factor analysis 
To model continuous variation between cells, 
we used a negative binomial latent factor 
model. The model is parametrized by two 
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matrices, ܅ and ۴ of size ௚ܰ௘௡௘௦ × ௙ܰ௔௖௧௢௥௦ and ௙ܰ௔௖௧௢௥௦ × ௖ܰ௘௟௟௦.  The distribution of each cell 
follows a negative-binomial distribution with 
mean ߤ௚௖ = ݎ exp൫∑ ௚ܹ௙ܨ௙௖௙ ൯: Pr൫ݔ௚௖; ,܅ ۴൯= ܤܰ ቌݔ௚௖; ݎ  exp ቌ෍ ௚ܹ௙ܨ௙௖௙ ቍ ,  ቍݎ

This corresponds to the natural 
parameterization of the negative binomial, ݌ =1/ ቀ1 + exp൫∑ ௚ܹ௙ܨ௙௖௙ ൯ቁ. As usual, we take a 
fixed value of ݎ = 2. For the analysis described 
in this study, we use only a single latent factor, 
but add a second column to ۴ of all ones to 
allow the mean expression level to vary 
between genes.  

Given a dataset ݔ௚௖, we fit the matrices ܅ and ۴ by maximum likelihood.  As the negative 
binomial distribution with fixed ݎ belongs to 
the exponential family, we can use the simple 
alternating method of  Collins et al (2001). Note 
that we do not require a sparse algorithm 
because (unlike in clustering), the number of 
parameters is fixed. However to avoid 
instability, only genes that have reasonable 
expression levels in the database are kept 
(genes are included if at least 10 cells express at 
least 5 copies of the RNA), and a quadratic 
regularization penalty −50ൣ|܅|૛ +  ૛൧ added|ࡲ|
to the log likelihood. 

To relate the correlations of each gene with the 
latent factor to their gene ontology (GO) 
categories (supplementary table 2), we used 
the MGI mouse GO database (downloaded 2 
April 2018), accessed via MATLAB’s 
bioinformatics toolbox. An enrichment score 
was computed for each GO term by summing 
the Spearman rank correlations of gene 
expression with the latent factor, over all genes 
annotated with that term. 
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