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Abstract
To understand the gene regulation of an organism of interest, a com-

prehensive genome annotation is essential. While some features, such as
coding sequences, can be computationally predicted with high accuracy based
purely on the genomic sequence, others, such as promoter elements or non-
coding RNAs are harder to detect. RNA-Seq has proven to be an efficient
method to identify these genomic features and to improve genome anno-
tations. However, processing and integrating RNA-Seq data in order to
generate high-resolution annotations is challenging, time consuming and re-
quires numerous different steps. We have constructed a powerful and modular
pipeline called ANNOgesic that provides the required analyses and simplifies
RNA-Seq-based bacterial and archaeal genome annotation. It predicts and
annotates numerous features, including small non-coding RNAs, with high
precision. The software is available under an open source license (ISCL) at
https://pythonhosted.org/ANNOgesic/.

1 INTRODUCTION
As the number of available genome sequences has rapidly expanded in the data
bases, numerous tools have been developed that can detect genomic features of
interest based on the genome sequence. Prominent representatives are Glimmer
to identify open reading frames (ORFs) [1], tRNAscan-SE [2] to spot tRNAs and
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RNAmmer to find rRNAs [3]. Pipelines like Prokka [5] or ConsPred [6] combine
such tools and are able to search multiple features in bacterial and archaeal genomes.
Still, these tools that make their predictions purely based on the genome sequences
can predict features like transcriptional start sites and non-coding RNAs, if at all,
only with low confidence.

Recent developments in high-throughput sequencing offer solutions to this prob-
lem. RNA-Seq has revolutionized how differential gene expression can be measured
and is widely used for this purpose [7]. Besides this it has also been applied in
numerous cases to improve the genome annotation of bacteria [8–10], archaea [11]
and eukaryotes [12]. RNA sequencing based protocols like differential RNA-Seq
(dRNA-Seq) [13,14], Term-seq [15] and ribosome profiling [16,17] have been applied
to globally detect transcriptional start sites (TSSs), small non-coding RNAs (ncR-
NAs/sRNAs), terminators, ORFs and sRNA regulatory target but require dedicated
data processing. While there are tools that can process RNA-Seq data in order
to predict genome-wide features like TSSs based on dRNA-Seq data [18–20] or
based on conventional RNA-Seq data [21, 22], there has been, so far, no solution
that combines different predictions of genomic features and compiles them into a
consistent annotation.

Here we present ANNOgesic - a modular, command-line tool that can integrate
different types of RNA-Seq data like dRNA-Seq as well as RNA-Seq generated
after transcript fragmentation (or conventional RNA-Seq) and generate high-quality
genome annotations. It can detect several genomic features including genes, CDSs
(coding DNA sequence), tRNAs, rRNAs, TSSs, and processing sites (PSs), tran-
scripts, terminators, untranslated regions (UTRs) as well as sRNAs, small open
reading frames (sORFs), circular RNAs, CRISPR-related RNAs, riboswitches, and
RNA-thermometers. It can also perform RNA-RNA and protein-protein interaction
predictions on detected features. Furthermore, it groups genes into operons as
well as sub-operons and can generate promoter motifs that are found in front of
transcriptional start sites. It can also allocate GO (Gene Ontology) terms and
subcellular localizations to genes. Several of ANNOgesic’s data processing steps are
new implementations, while others are performed by third-party tools after dynamic
parameter-optimizations through ANNOgesic itself. Numerous visualizations and
statistics help the user to quickly evaluate the feature predictions. The pipeline is
modular and was intensively tested with several RNA-Seq data sets from bacterial
as well as from archaeal species.
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2 MATERIALS AND METHODS

2.1 Implementation and installation
ANNOgesic is implemented in Python 3 and requires the third-party libraries Biopy-
thon [23], numpy [24], matplotlib [25], as well as networkx [26]. Its source code and
comprehensive documentation are hosted at https://pythonhosted.org/ANNOgesic/
and releases are automatically submitted to Zenodo (https://zenodo.org/) to guaran-
tee a long term availability. It can be easily installed using pip (https://pip.pypa.io).
In order to guarantee a frictionless installation including non-Python dependencies,
we additionally offer a docker image (https://hub.docker.com/r/silasysh/annogesic/)
[27].

2.2 Modules and input data of ANNOgesic
ANNOgesic consists of the following twenty modules - their names indicate their func-
tions: Sequence modification, Annotation transfer, SNP/Mutation, Transcript, TSS,
Terminator, UTR, Processing site, Promoter, Operon, sRNA, sRNA target, sORF, GO
term, Protein-protein interaction network, Subcellular localization, Riboswitch, RNA
thermometer, Circular RNA, and CRISPR. Several potential workflows connecting
these modules are displayed in Supplementary Figure 1.

Depending on the task to one wish to perform, ANNOgesic requires a specific
set of input information - either as in coverage information in wiggle, or alignments
in BAM format. This can be generated by a mapper like BWA [28], STAR [29],
segemehl [30], or a full RNA-Seq pipeline like READemption [31]. Certain modules
additionally require annotations in GFF3 format. In case a sufficient genome
annotation is not available, ANNOgesic can perform an annotation transfer from a
closely related strain.

2.3 Optimization of the parameter set for TSSpredator
For several parts of ANNOgesic, the selection of parameters has a strong impact
on the final results. Especially the TSS prediction – building on TSSpredator [18]
– requires a sophisticated fine-tuning of several parameters (namely height, height
reduction, factor, factor reduction, enrichment factor, processing site factor and
base height). To overcome the hard task of manual parameter selection, ANNOgesic
optimized the parameters by applying a genetic algorithm, a machine learning
approach, [32] which is trained based on a small user curated set of TSS predictions.
This approach has the advantage of being able to find global, not only local, optima.
The process of optimization is composed of three parts - random change, large
change, and small change (Figure 1). In this context, a global change means a
random allocation of values to all parameters, a large change is a random allocation
of values to two parameters, while a small change is adding or subtracting a small
fraction to or from one parameter value. The result of each iteration is evaluated by
a decision statement (Equation 1).
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T P Rc − T P Rb ≥ 0.1 (1)
(T P Rc > T P Rb) ∧ (F P Rc < F P Rb) (2)
(T Pb − T Pc > 0) ∧ (F Pb − F Pc ≥ 5× (T Pb − T Pc)) (3)
(T Pb − T Pc < 0) ∧ (F Pc − F Pb ≤ 5× (T Pc − T Pb)) (4)

(T Pm ≥ 100) ∧ (T P Rc − T P Rb ≥ 0.01) ∧ (F P Rc − F P Rb ≤ 5× 10−5) (5)

(T Pm ≥ 100) ∧ (T P Rb − T P Rc ≤ 0.01) ∧ (F P Rb − F P Rc ≥ 5× 10−5) (6)

Equation 1: TPm is the number of manually-detected TSSs. TPc/TPRc represents
the true positive/true positive rate of the current parameters. TPb/TPRb represents
the true positive/true positive rate of the best parameters. FPc/FPRc represents the
false positive/false positive rate of the current parameters. FPb/FPRb represents
the false positive/false positive rate of the best parameters. If one of these six
situations is true, it will replace the best parameters with current parameters.

2.4 Test data sets
In order to test ANNOgesic’s performance, we applied it to RNA-Seq data sets origi-
nating from Helicobacter pylori 26695 [8, 14] and Campylobacter jejuni 81116 [18].
The dRNA-Seq data sets were retrieved from NCBI GEO where they are stored under
the accession numbers GSE67564 and GSE38883, respectively. For Helicobacter con-
ventional RNA-Seq data – i.e. without TEX treatment (which degrades transcripts
without a 5’-triphosphate) and with fragmentation of the transcript before the library
preparation – was also retrieved from NCBI SRA (accession number SRR031126).

3 RESULTS

3.1 Correction of genome sequences and annotations
3.1.1 Genome sequence improvement and SNP/mutation calling.

Conventionally, differences in the genome sequence of a strain of interest and the
reference strain are determined by DNA sequencing. However, RNA-Seq reads can
also be re-purposed to detect such SNPs or mutations that occur in transcribed
regions which can help to save the resources required for dedicated DNA sequencing
or DNA SNP microarray measurements. The two drawbacks of this method are that
only locations which are expressed can be analyzed and that, due to RNA editing,
changes could be present only in the RNA and are not found in the genome. On
the other hand, it has been shown to be a valid approach for eukaryotic species
and that the majority of SNPs are found in the expressed transcripts [33, 34]. In
conclusion, such an analysis could be useful to generate hypotheses that then need
to be tested with complementary methods. ANNOgesic offers the user to perform
the SNP/mutation calling via SAMtools [35] and BCFtools [35] applying read
counting-based filtering.
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Figure 1: The genetic algorithm that ANNOgesic uses for optimizing the parameters
of TSSpredator. It starts from the default parameters. These parameter sets will go
through three steps - global change (change every parameter randomly), large change
(change two of the parameters randomly), and then small change (adds/subtracts
a small fraction to one of the parameters). It will then select the best parameter
set for reproduction when one step is done. Usually, ANNOgesic can achieve the
optimized parameters within 4000 runs.

3.1.2 Annotation transfer.

ANNOgesic integrates RATT [36], which can detect the shared synteny and mutations
between a reference and query genome to transfer annotation (i.e. genes, CDSs,
tRNAs, rRNAs) by applying MUMmer [37]. For the chosen strains, H. pylori 26695
and C. jejuni 81116 annotation files in GFF3 format could be obtained from NCBI
RefSeq. Due to this there was no need to transfer the annotation from a closely
related strain.

3.2 Detection of transcript boundaries
Knowing the exact boundaries and sequence of a transcript is crucial for a compre-
hensive understanding of its behaviour and function. For example, UTRs can be the
target of regulation by sRNAs or small molecules (e.g. riboswitches) [38,39] or even
sources of sRNAs [40]. Unfortunately, most bacterial annotations only cover the
protein coding regions while the information about TSSs, terminators and UTRs is
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Figure 2: Transcript boundary detection. (A) ANNOgesic can integrate TSSs,
terminators, transcripts, genes and UTRs, for defining transcript boundary if those
features were predicted before. (B) An example from H. pylori 26695. The pink
coverage represents RNA-Seq data of libraries after fragmention, the blue coverages
TEX+ libraries of dRNA-Seq, the green coverages TEX- libraries of dRNA-Seq.
Transcript, TSS, terminator, and CDS are presented as red, blue, orange, and green
bars, respectively. This figure shows that the transcript covers the whole gene
location, and that UTRs (presented by purple bars) can be detected based on the
TSS, transcript, terminator, and gene annotations.

lacking. To address this issue, ANNOgesic combines several feature predictions for
the reliable detection of transcript boundaries (Figure 2).

3.2.1 Transcript detection.

The primary step for the detection of transcript boundaries is transcript detection.
For this purpose numerous tools are available (e.g. [41]), but most of them are
optimized for the assembly of eukaryotic transcripts. Due to this, we combined
several heuristics to perform such predictions based on the nucleotide coverage data,
given gene annotations and several parameters that can be set by the user (Figure
3).

By running ANNOgesic’s subcommand for transcript prediction, we detected
1715 transcripts in H. pylori 26695 and 1147 transcripts in C. jejuni 81116. These
transcripts cover 1520 and 1568 genes which shows that 97% and 93% of the known
genes are expressed in at least one condition, respectively.

3.2.2 Optimization of TSS prediction parameters.

For the prediction of TSSs, ANNOgesic builds on TSSpredator [18], which takes
dRNA-Seq coverage data as input. The outcome of TSSpredator’s predictions
depends strongly on the setting of numerous parameters and fine-tuning those can
be time consuming. Due to this, a parameter optimization was implemented in
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Table 1: The features of annotation in H. pylori 26695 and C. jejuni 81116

H. pylori 26695 C. jejuni 81116
Gene 1560 1685

CDS Total 1448 1630
Expressed 1406 1513

Transcript 1716 1147

TSS

Total 2458 1242
Primary 703 565
Secondary 156 92
Internal 719 360
Antisense 1161 510
Orphan 111 30

Processing site 281 345

Terminator
Total 935, (540) 987, (471)
TransTermHP 614, (310) 631, (265)
Convergent gene 397, (289) 464, (274)

UTR 5’ UTR 693 560
3’ UTR 325 286

sRNA

Total 183 40
Intergenic 60 16
Antisense 84 21
5’ UTR-derived 10 0
3’ UTR-derived 23 2
InterCDS-derived 6 1

Operon

Total 1716 1147
Monocistronic 269 386
Polycistronic 285 324
No CDS associated 1162 437

sORF 119 14
Riboswitch 11 14
RNA thermometer 4 8
circular RNA 0 1
CRISPR 0 1, (8)
SNP / mutation 55 89
The numbers in brackets for Terminator and CRISPR mean the amount of terminators
with coverage drop and repeat units of CRISPR, respectively. For Terminators, if
a CDS associated with multiple terminators, ANNOgesic will only keep the high
confidence one.
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Figure 3: Transcript detection. If the coverage (blue curve-blocks) is higher than a
given coverage cut-off value (dash line) a transcript will be called. The user can set
a tolerance value (i.e. a number of nucleotides with a coverage below the cut-off)
on which basis gapped transcripts are merged or are kept separated. Information of
gene positions can also be used to merge transcripts in case two of them overlap
with the same gene.

ANNOgesic that builds on a small, manually curated set of TSSs to find optimal
values.

In order to test the performance of ANNOgesic, we manually annotated TSSs in
the first 200 kb of the genome of H. pylori 26695 and C. jejuni 81116 (Supplementary
Table 2 and 3). This set was used to benchmark the prediction of TSSpredator with
default settings as well with the parameters optimized by ANNOgesic. For the test
set, we manually annotated TSSs from first 200 kb or first 400 kb in the genome of
H. pylori 26695 and C. jejuni 81116 (Supplementary Table 2 and 3), respectively.
As displayed in Table 2, the optimization had minor sensitivity improvements in H.
pylori 26695 (from 96.8% to 99.6%), while strongly increased the sensitivity for the
TSS prediction for C. jejuni 81116 (67.1% to 98.7%) at the same level of specificity.
To underpin those findings, we looked at the overlap of the predicted TSS and
predicted transcripts. This was nearly the same for H. pylori 26695 (82% for default
and 83% for optimized setting) but also increased significantly for C. jejuni 81116
from 81% for default parameters to 96% with optimized parameters.

Moreover, TSSs are classified depending on their relative positions to genes
by TSSpredator. Based on these classifications, Venn diagrams representing the
different TSS classes are automatically generated (Supplementary Figure 2).

3.2.3 Processing sites.

Several transcripts undergo processing, which influences their biological activity
[40,42]. In order to detect processing sites based on dRNA-Seq data, ANNOgesic
facilitates the same approach as described for TSS detection but searches for the
reverse enrichment pattern (i.e. a relative enrichment in the library not treated with
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Table 2: Comparison of default and optimized parameters of TSSpredator for TSS
and processing site prediction

Strains Parameters Sensitivity Specificity
(TP) (FP)

TSS

H. pylori 26695 Default 96.8% (244) 99.98% (32)
Optimization 99.6% (251) 99.98% (32)

C. jejuni 81116 Default 67.1% (104) 99.98% (31)
Optimization 98.7% (153) 99.99% (7)

processing site

H. pylori 26695 Default 92.9% (26) 99.99% (7)
Optimization 92.9% (26) 99.99% (7)

C. jejuni 81116 Default 61.3% (19) 99.99% (2)
Optimization 93.5% (29) 99.99% (6)

The percentages in the table are the sensitivity or specificity. The numbers in
brackets are true positive or false positive.

TEX). As done for the TSSs, we manually annotated the processing sites in first 200
kb of the genomes and found in H. pylori 26695, 281 and in C. jejuni 81116, 345
processing sites, respectively. Based on these, we performed parameter optimization
on the test set (manually-curated from first 200 kb to 400 kb, Supplementary
Table 4 and 5, Table 2) and could improve the prediction of processing sites via
TSSpredator [18].

3.2.4 ρ-independent terminators.

While the transcriptional start sites are in general clearly defined boarders, the 3’-end
of a transcript is often not very sharp. A commonly used tool for the prediction of the
3’-end of a transcript is TransTermHP [43], which detects ρ-independent terminators
based on genome sequences. Manual inspection showed us that TransTermHP
predictions are not always supported by the RNA-data (Supplementary Figure 3e
and f). This could be due to the lack of expression in the chosen conditions.
Additionally, certain locations in 3’-ends that may be ρ-independent were not
detected by TransTermHP. Due to this, we extended the prediction by two further
approaches based on RNA-Seq coverage and the given genome sequence. At first,
terminators predicted by TransTermHP that show a significant decrease of coverage
are marked as high-confidence terminators. For this, the drop of coverage inside the
predicted terminator region plus 30 nucleotides up and downstream is considered as
sufficient if the ratio of the lowest coverage value and the highest coverage value
is at a user-defined value (see Supplementary Figure 3). In order to improve the
sensitivity, an additional heuristic for the detection of ρ-independent terminators
was developed. In this approach, only converging gene pairs (i.e. the 3’-end are
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facing to each other) are taken into account (Supplementary Figure 4). In case
the region between the two genes is A/T-rich and a stem-loop can be predicted in
there, the existence of a ρ-independent terminator is assumed. As default, the region
should consist of 80 or less nucleotides, the A/T-rich region should be longer than 3
nucleotides, the stem-loop needs to be 4 - 20 nucleotides, the length of the loop
needs to be between 3 and 10 nucleotides and maximum 25% of the nucleotides in
the stem should be unpaired.

3.2.5 UTRs.

Based on the CDS locations and the above described detection of TSSs, terminators
and transcripts, 5’ UTR and 3’ UTR can be annotated by ANNOgesic. Additionally, it
visualizes the distribution of UTR lengths in a histogram (as shown in Supplementary
Figure 5).

3.2.6 Promoters.

ANNOgesic integrates MEME [44] (which detects ungapped motifs) and GLAM2 [45]
(which discovers gapped motifs) for the detection and visualization of promoter
motifs. The user can define the number of nucleotides upstream of TSSs that
should be screened and the length of potential promoter motifs. The motifs can
be generated globally or for the different types of TSSs (example in Supplementary
Figure 6).

3.2.7 Operon.

Based on the TSS and transcript prediction, ANNOgesic can generate statements
regarding the organization of genes in operons and suboperons as well as report the
number of monocistronic operons and polycistronic operons (Figure 4).

3.3 Detection of sRNAs and their targets
The detection of sRNAs based on RNA-Seq data is a non-trivial task. While numerous
sRNAs are found in intergenic regions, there are also examples of 3’ UTR-derived
sRNAs [40, 46–48]. ANNOgesic offers the detection of both classes, combined with
a detailed characterization of the sRNA candidates.

In order to classify newly detected intergenic transcripts as sRNAs, ANNOgesic
tests several of their features (Figure 5A). If a BLAST+ [49] search of a transcript
finds homologous sequences in BSRD [50] – a database that stores experimentally
confirmed sRNAs – the transcript gets the status of an sRNA. The user can also
choose further databases for searching homologous sequences. In case a search
against the NCBI non-redundant protein database leads to a hit it is marked as
potentially protein-coding. Otherwise, a transcript must have a predicted TSS,
form a stable secondary structure (i.e. the folding energy change calculated with
RNAfold from Vienna RNA package [51] must be below user defined value) and
their length should be in the range of 30 to 500 nt in order to be tagged as an
sRNA. All these requirements are used per default but can be modified or removed
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Figure 4: Operon and sub-operon detection. (A) If there are more than one TSSs
which does not overlap with genes located within one operon, the operon can be
divided to several sub-operons based on these TSSs. (B) An example from H.
pylori 26695. The coverage of RNA-Seq with fragmentation, TEX+ and TEX-
of dRNA-Seq are shown in pink, blue and green coverages, respectively. TSSs,
transcripts/operons and genes are presented as blue, red and green bars, respectively.
The two genes are located in the same operon, but also in different sub-operons
(two empty red squares).

via ANNOgesic’s command line parameters. ANNOgesic stores the results of all
analyses and generates GFF3 files, fasta files, secondary structural figures, dot plots,
as well as mountain plots based on those predictions.

For sRNAs that share a transcript with CDSs – 5’ UTR, inter-CDS, or 3’ UTR
located sRNAs – we implemented several detection heuristics (Figure 5B / C). 5’
UTR-derived sRNAs must start with a TSS and show a sharp drop of coverage or a
PS in the 3’-end. The requirement for the detection of inter-CDS located sRNAs
is either a TSS or a PS as well as a coverage drop at the 3’-end or a PS. Small
RNAs derived from the 3’ UTR are expected to have a TSS or a PS and either
end with the transcript or at a PS. After the detection of a bona fide sRNA, the
above described quality filters (length range, secondary structure etc.) are applied
to judge the potential of a candidate (examples are shown in Supplementary Figure
7, 8). For the validation of sRNA candidates in our test case, the described sRNAs
of two publications were chosen. Sharma et al. [8] described 63 sRNAs of which 4
were not expressed in the condition of the test data set (removed from the dataset)
(Supplementary Figure 9). Of these 59, 53 were detected by ANNOgesic. In the C.
jejuni 81116 set, 31 sRNAs were found by Dugar et al. [18], and ANNOgesic could
recover 26 (84%) (Supplementary Figure 10).

In order to deduce potential regulatory functions of newly-predicted sRNAs,
ANNOgesic performs prediction of interaction between them and mRNAs using
RNAplex [51, 52] and RNAup [51, 53]. The user can chooose if only interactions
supported by both tools are reported.
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Figure 5: Detection of intergenic and UTR-derived sRNAs. The length of potential
sRNAs should be within a given range and their coverages should exceed a given
cut-off coverage. (A) Detection of intergenic and antisense sRNAs. There are three
cases shown: In the upper panel the transcript starts with a TSS, and length of
the transcript is within the expected length. In the one in the middle the transcript
starts with a TSS but the transcript is longer than an average sRNA; in that case
ANNOgesic will search the coverage (blue region) for a point at which the coverage
is decreasing rapidly. The image at the bottom is similar to the one in the middle,
but the sRNA ends with a processing site. (B) Detection of UTR-derived sRNAs. 3’
UTR-derived sRNAs: if the transcript starts with a TSS or processing site, it will
be tagged as a 3’ UTR-derived sRNA. For 5’ UTR-derived sRNAs: if the transcript
starts with a TSS and ends with a processing site or the point where the coverage
significant drops. (C) Detection of interCDS-derived sRNAs: Similar to the 5’
UTR-derived approach but the transcript starts with a processing site.

3.4 Detection of sORFs
All newly detected transcripts that do not contain a previously described CDS as well
all 5’ UTRs and 3’ UTRs are scanned for potential sORFs [54] (Figure 6). For this,
ANNOgesic searches for start and stop codons (non-canonical start codons are not
included, but can be assigned by the user) that constitute potential ORFs of 30 to
150 base-pairs. Furthermore, ribosomal binding sites (based on the Shine-Dalgarno
sequence, but different sequences can be assigned as well) between the TSS and 3
to 15 bp upstream of the start codon are required for a bona fide sORF.

3.5 Detection of functional related attributes
In order to facilitate a better understanding of the biological function of known and
newly detected transcripts, ANNOgesic predicts several attributes for these features.

This includes the allocation of GO as well as GOslim [55] terms to CDSs via
searching of protein ids in Uniprot [56]. The occurrence of groups is visualized for
expressed and non-expressed CDSs (Supplementary Figure 11). Furthermore the
subcellular localization is predicted by PSORTb [57] for the proteins (Supplementary
Figure 12). Additionally, the protein entries are enriched by protein-protein interaction
information retrieved from STRING [58] and PIE [59] (examples in Supplementary
Figure 13).
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Figure 6: sORF detection. (A) An sORF must contain start codon and stop codon
within transcript and should be inside of a given length range (default 30 - 150 nt).
Additionally, a ribosomal binding site must be detected between the TSS and the
start codon. (B) An example from H. pylori 26695. The coverage of RNA-Seq
(fragmented libraries), TEX+ and TEX- (dRNA-Seq) are shown as pink, blue and
green coverages, respectively. The TSS, transcript and sORF are presented as blue,
red and green bars, respectively.

3.6 Circular RNAs
ANNOgesic integrates the tool "testrealign.x" from the segemehl package for the
detection of circular RNAs [60] and adds a filter to reduce the number of false
positive. Candidates for circular RNAs must be located in intergenic regions and
exceed a given number of reads.

3.7 CRISPRs
CRISPR/Cas systems represent a bacterial defence system against phages and
consist of repeat units and spacers sequences as well as Cas proteins [61]. The
CRISPR Recognition Tool (CRT) [62] is integrated into ANNOgesic and extended by
comparison of CRISPR/Cas candidates to other annotations to remove false positive
(Supplementary Figure 14).

3.8 Riboswitches and RNA thermometers
Riboswitches and RNA thermometers are regulatory sequences that are part of
transcripts and influence the translation based on the concentration of selected
small molecules and temperature change, respectively. For the prediction of these
riboswitches and RNA thermometers, ANNOgesic searches [63] the sequences which
are between TSSs (or starting point of a transcript if no TSS was detected) and
downstream CDSs, as well as associated with ribosome binding site in the Rfam
database using Infernal [64].
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4 DISCUSSION
While RNA-Seq has become a powerful method to annotate genomes, the integration
of the data is usually very laborious and time-consuming. It requires bioinformatic
expertise and involves the application of different programs to perform the different
required steps. Here we presented ANNOgesic, a modular, user-friendly annotation
pipeline for the analysis of bacterial RNA-Seq data that integrated several tools,
optimizes their parameters, and includes novel prediction methods for several genomic
features. With the help of this command-line tool, RNA-Seq data can be efficiently
used to generate high-resolution annotations of bacterial genomes with very little
manual effort. Besides the annotation files in standard formats, it also returns
numerous statistics and visualizations that help the user to explore and to evaluate
the results. While it ideally has conventional (fragmentation) RNA-Seq as well as
dRNA-Seq as input (see Supplementary Figure 15), it can also perform sufficient
predictions with only one class of data for the majority of the genomic features.

The performance of ANNOgesic has been here demonstrated by applying it on two
published data sets and comparing the results to manually-conducted annotations.
ANNOgesic could detect 90% and 83% of the manually-annotated sRNAs H. pylori
26695 and C. jejuni 81116, respectively. The sRNAs missed by ANNOgesic can be
explained by low coverage, not being associated with TSSs, or lack of expression in
the assayed conditions (see Supplementary Figure 16 and 17).

Besides the analyses presented as examples in this study (H. pylori 26695 and
C. jejuni 81116), ANNOgesic was meanwhile successfully applied for detecting
transcripts, sRNAs, and TSSs in additional annotation projects (e.g. Pseudomonas
aeruginosa [65] and Rhodobacter sphaeroides [66]. Despite the fact that the program
was developed mainly with a focus on bacterial genomes, it has also been used to
annotate archaeal genomes (namelyMethanosarcina mazei (Lutz et al., unpublished))
and eukaryotic genomes which have no introns (Trypanosoma brucei (Müller et al.,
unpublished)).

ANNOgesic is freely available under an OSI compliant open source license (ISCL)
and an extensive documentation has been generated in order to guide the novice
and advanced users.
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