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Abstract 

Autism spectrum disorder (ASD) is highly heritable but genetically heterogeneous.  The 

affected neural circuits and cell types remain unclear and may vary at different 

developmental stages. By analyzing multiple sets of human single cell transcriptome 

profiles, we found that ASD candidates showed enriched gene expression in neurons, 

especially in inhibitory neurons. ASD candidates were also more likely to be the hubs of the 

co-expressed module that is highly expressed in inhibitory neurons, a feature not detected 

for excitatory neurons. In addition, we found that upregulated genes in multiple ASD cortex 

samples were also enriched with genes highly expressed in inhibitory neurons, suggesting 

a potential increase of inhibitory neurons and an imbalance in the ratio between excitatory 

and inhibitory neurons. Furthermore, the downstream targets of several ASD candidates, 

such as CHD8, EHMT1 and SATB2, also displayed enriched expression in inhibitory neurons. 

Taken together, our analysis of single cell transcriptomic data suggest that inhibitory 

neurons may be the major neuron subtype affected by the disruption of ASD gene 

networks, providing single cell functional evidence to support the excitatory/inhibitory 

(E/I) imbalance hypothesis. 
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Introduction 

 ASD is a class of neurodevelopmental disorders characterized by persistent deficits 

in social communication/interaction and restricted, repetitive patterns of behaviors, 

interests or activities (DSM-5) 1. Recent epidemiology studies have reported that 1 in 68 

children is diagnosed with ASD, with a 3 to 4-fold increased risk for boys 2, 3. Family and 

twin studies have found that ASD is highly heritable 4, 5, but the genetic risk factors for ASD 

are highly heterogeneous and up to one thousand genes are estimated to be involved, with 

no single gene accounting for >1-2% of the cases 6. These ASD candidate genes converge on 

several molecular and cellular pathways, such as synaptic function, Wnt-signal and 

chromatin remodeling 7-12, indicating that ASD pathogenesis is a complicated 

multidimensional process modulated by genetic factors that play key roles in response to 

intrinsic developmental signaling and environmental perturbations.  

 

At the cellular level, a human brain can be divided into distinct functional regions that are 

composed of diverse but densely connected cell types. It has been reported that ASD risk 

genes form co-expression networks that are expressed at relatively higher levels in specific 

embryonic prefrontal cortex regions and layers 13, 14, and ASD mutations could potentially 

affect certain brain areas and cell types more strongly than others 15. For example, Xu et al. 

previously developed a method (“cell type-specific expression analysis”) to analyze 

microarray gene expression data from mouse and human brains, including cell type data 

from translating ribosome affinity purification (TRAP) technology, and found that multiple 

cell types could be implicated in ASD 16, e.g., astrocytes, glia and cortical interneurons.  

Subsequently, Zhang et al. also used TRAP data from mouse lines and observed that an 

expression signature shared by ASD risk genes is a strong and positive association with 

specific neurons in different brain regions, including cortical neurons 17.  

 

A limitation of these previous studies is related to the concern that the resolution of cell 

types may not be sufficient, in addition to other limitations specifically related to the 

microarray platform.  This can be addressed by single cell RNA-seq (scRNA-seq) analysis 

that measures gene expression profiles for hundreds to thousands of cells in a tissue 

sample simultaneously, which can resolve cell types and reveal expression heterogeneity 
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18. With a mouse scRNA-seq dataset 19 and a novel computational method, Skene et al. 

suggested that genetic susceptibility of ASD primarily affected interneurons and pyramidal 

neurons 20. The method is called “expression weighted cell-type enrichment” (EWCE), 

which evaluates statistically whether a set of genes shows higher expression in a particular 

cell type than what is expected by chance 20.  

 

While the above studies have suggested that ASD risk genes can have cell type specific 

functions and expression patterns, and some brain cell types may be more prone to the 

effects of ASD-associated mutations, no similar studies have been performed using human 

cell type-specific functional genomic data, such as scRNA-seq data. This is important 

because it has been shown that some gene expression modules are human specific, several 

of which are correlated with brain disorders, such as Alzheimer’s disease 21, despite the 

extensive global network similarity of the human and mouse brain transcriptomes.  Our 

previous study of the transcriptional regulatory network modulated by a neural master 

regulator, REST/NRSF, also showed that ASD genes are enriched among human specific 

REST targets 22.  Moreover, the human brain is much more complex than the mouse brain, 

especially in some regions, such as the frontal and temporal lobes, which have undergone 

enormous changes during primate evolution 23. In addition, no systematic studies related to 

ASD have been carried out in which excitatory and inhibitory neuronal transcriptomes 

have been compared, despite the long-standing E/I imbalance hypothesis, which has been 

proposed as a model to explain some ASD-related behaviors 24-27. Therefore, to address if 

some cell types are more prone to genetic network disruptions potentially occurring in the 

brains of individuals with ASD, we have collected multiple human neural or brain 

expression datasets, most of which were derived from advanced scRNA-seq analysis, and 

evaluated if genes implicated in ASD show different expression profiles across human 

neural cell types. The gene sets in our study include a) ASD candidate genes, b) 

differentially expressed genes between ASD individuals and controls, and c) downstream 

targets of ASD candidates. We found that these genes consistently show significantly 

enriched expression in human neurons, particularly inhibitory neuron, suggesting that 

inhibitory neuron is the major cell type affected in ASD. This finding is consistent with the 
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hypothesis that a disruption of the balance between inhibitory and excitatory signaling 

could be an important underlying mechanism of ASD pathogenesis.  

 

Materials and Methods 

Human single cell RNA-seq data 

Four sets of human scRNA-seq data were analyzed. For the fetal brain and cerebral 

organoid datasets 41 and the adult brain dataset 42, raw scRNA-seq reads were aligned to 

the human reference genome (GRCh37/hg19) using STAR (ver. 2.0.13) 43. Duplicate reads 

were removed using Samtools (ver. 0.1.19) 44, 45. Gene length and uniquely mapped reads 

for each gene were calculated using featureCounts in subread package (ver. 1.4.6) 46 with 

gene models from Ensembl release 74. Fragments per kilobase of transcript per million 

mapped reads (FPKM) values were calculated using R (https://www.r-project.org/) 

according to its definition. For the neuron subtype dataset for excitatory and inhibitory 

neurons, transcripts per kilobase million (TPMs) were obtained from the original paper 47. 

For each cell type, mean of log2(FPKM or TPM) across all samples were calculated and 

imported into the EWCE 20 to determine enriched expression. In all four cases, the authors’ 

classification of cell types was used. 

 

Lists of genes associated with ASD, schizophrenia and other brain disorders  

ASD candidate genes were downloaded from the SFARI database 

(https://gene.sfari.org/autdb/GS_Home.do; genes scored as high confidence, to minimal 

evidence and syndromic) and the AutismKB (core dataset) 28. The two schizophrenia gene 

lists were from the SZgene database 29 and a recent GWAS report 30. Bipolar disorder 

associated genes were from the BDgene database 31. Other gene lists associated with brain 

diseases were described in our previous publication 22. Genes encoding excitatory and 

inhibitory postsynaptic density (PSD) proteins were from a previous study by Uezu et al 32. 

The genes associated with human height were from a previous GWAS 33.  

 

Differentially expressed genes between ASD and controls 

Gene expression in postmortem cortices (“Cortex1”) 34 was used to detect 

differentially expressed genes by GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/), 
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which is defined here as FDR < 0.05 and fold change >1.3 - the same criteria as used in the 

original paper. Differentially expressed genes in blood 35 were also detected by GEO2R and 

defined as p<0.05. Gene lists from other brain-related samples, including postmortem 

cortices (“Cortex2” 36 and “Cortex3” 37), induced pluripotent stem cell (iPSC)-derived 

cerebral organoids (“Organoid”) 38, neural progenitor cells (NPC) 39, and neurons 

(“Neuron1” 39 and “Neuron2” 40), were obtained from the original papers. 

 

Downstream genes of ASD candidates 

CHD8-regulated genes in NPCs, neurons 50 and cerebral organoids 51, CYFIP1-

regulated genes 52, TCF4 and EHMT1-regulated genes 53, MBD5 and SATB2-regulated genes 

54, NRXN1-regulated genes 55 and ZNF804A-regulated genes 56 were from studies where the 

expression of a known ASD candidate was reduced by knockout or knockdown. Gene lists 

were obtained from the original papers. 

 

Weighted gene co-expression network analysis (WGCNA) 

Signed co-expression networks were built using the WGCNA package 48. The power 

of 18 was chosen, and blockwiseModules function was performed to build networks. 

Logistic regression was used to find modules expressed higher in excitatory or inhibitory 

neurons using eigengenes. P values were corrected by multiple testing to generate FDR. 

ToppGene 49 was used to find Gene Ontology categories enriched in modules. 

 

 

Results 

 

ASD candidate genes show enriched expression in neurons, especially inhibitory 

neurons. 

It has generally been supposed that functional disruptions of a gene more likely affect 

the cells or tissues where the gene is highly expressed. Such a principle has often been used 

to support the discovery of risk genes from genetic studies in schizophrenia and ASD 30, 57. 

Accordingly, we have used the EWCE method to test what brain cell types are more likely 

to be affected by genes implicated in ASD, using transcriptomic data containing cell type 
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identifies. Throughout this paper, the term “enrichment expression” in a particular cell type 

refers to a set of genes that have a higher level of expression within this cell type than 

expected by chance, as described in the EWCE method 20.  The method also accounts for a 

gene’s overall expression across all cell types in a comparison. We started with scRNA-seq 

expression data from six cell types from adult human brains (21-63 years old; a total of 285 

cells), including neurons, microglia, and astrocytes (Figure 1A) 42.  First, as a negative 

control, we found that genes associated with human height 33 showed no enrichment of 

expression in any of the six cell types in test (Figure 1). Conversely, as a positive control, 

genes encoding postsynaptic density proteins (PSD) proteins showed significant 

enrichment in neuron expression (Figure 1).  

 

Our analysis of the ASD candidates, obtained from either the SFARI 

(https://gene.sfari.org/autdb/GS_Home.do) or the AutismKB 28, demonstrated that their 

expression was significantly enriched in human adult neurons and oligodendrocyte 

precursor cells (OPC) but not astrocytes and microglia (Figure 1A). As ASD is an early 

developmental disorder, we repeated the same analysis using a single cell transcriptome 

dataset from human fetal brains, including 226 single-cell transcriptomes from 12- and 13-

wk post-conception neocortex specimens 41.  The cell types in the fetal brain were classified 

differently from those in adult brains. We found that in comparison to apical and basal 

progenitors, ASD candidates were significantly enriched in neurons, especially mature 

neurons (“N2” and “N3”) in fetal brains (Figure 1B). We also found schizophrenia and 

bipolar disorder associated genes were similarly enriched in mature neurons (Figure 1B), 

consist with the known overlap of genetic risk factors among these disorders 58. 

Meanwhile, genes associated with several other brain diseases, such as Alzheimer and 

Huntington, showed no significantly enriched expression in any of these cell types (Figure 

1). Next, to study whether ASD candidates are enriched in neurons in specific brain regions, 

we analyzed single cell transcriptome data of cerebral organoids, including 495 single-cell 

transcriptomes 41. Again, compared with NPCs, ASD candidates displayed significantly 

enriched expression in neurons - both dorsal and ventral forebrain neurons, as were 

schizophrenia and bipolar disease associated genes (Figure 1C). While not quite surprising, 

our analysis of these three cell type transcriptomic datasets showed that neurons, both 
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early fetal neurons and adult neurons, are a major cell type affected by ASD mutations, 

probably more so than neural progenitors. Finally, neurons could be largely classified into 

two major subtypes: excitatory and inhibitory neurons. Using scRNA-seq data of neuronal 

subtypes, including 3,083 single-cell transcriptomes from six cortical regions of a control 

normal 51-year-old female postmortem brain 47, we found that the expression of ASD 

candidates was significantly enriched in inhibitory neurons, especially among the subtypes 

“In1” and “In3” (Figure 1D), which are superficial layer inhibitory neurons that originate 

from lateral ganglionic eminences 47. These results suggest that functional disruptions of 

ASD genes as a group can affect inhibitory neurons more than excitatory neurons. Although 

it remains to be established with functional assays, this finding indicates that inhibitory 

neuron transcriptome dysregulation can occur in ASD brains, which is consistent with the 

E/I imbalance hypothesis in ASD 24, 59-62. GABAergic neurotransmission appears to play a 

role in both schizophrenia and bipolar disorders as well 63, 64. However, our results suggest 

that bipolar disorder but not schizophrenia-associated genes were significantly enriched 

among highly expressing genes in inhibitory neurons. 

 

ASD candidate genes are more likely to be hubs of co-expression modules in 

inhibitory neurons. 

To further study the roles of ASD candidate genes in inhibitory neurons, we performed 

WGCNA to build a co-expression network from the neural subtype transcriptome data 47 

(Fig S1A), resulting in 73 modules (Fig S1B). One of them showed high expression in 

excitatory neurons and contained 1,936 genes that were enriched for functions related to 

synaptic signaling, neuron projection and morphogenesis, as well as genes expressed in 

excitatory synapses (Fig S1C). A different module contained 951 genes that were highly 

expressed in inhibitory neurons. They were enriched with genes involved in neurogenesis, 

positive regulation of synaptic transmission, and the GABA shunt (Fig S1D). Consistent with 

the EWCE result, ASD candidates, from both the SFARI and AutismKB, were more 

significantly enriched in the module highly expressed in inhibitory neurons (OR = 2.38, p = 

5.94e-07, Fisher’s exact test, one-tailed) than the module highly expressed in excitatory 

neurons (OR = 1.42, p = 0.018, Fisher’s exact test, one-tailed). Among the hub genes in the 

inhibitory module, nine were ASD candidates (Fig 2A), including three genes encoding 
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transcription factors (ARX, DLX2 and DLX6) that are important for appropriate migration of 

inhibitory neurons to the cortex 65, and three genes (SLC6A1, GAD1, ALDH5A1) that 

participate in GABA synthesis, release, reuptake and degradation, as described in the 

Reactome pathway 66.  Notably, those ASD candidate genes had more connections in the 

inhibitory module than non-ASD candidates (p = 0.0057, Wilcoxon test; Fig 2B), suggesting 

that ASD candidates tend to be the hubs in inhibitory module, and consequently, disease-

associated mutations would likely lead to a disruption of the co-expression network. By 

comparison, in the excitatory module, ASD and non-ASD candidate genes had similar 

connections (p = 0.72, Wilcoxon test; Fig 2C, 2D).  

 

Genes up-regulated in ASD-derived neuronal samples show enrichment in inhibitory 

neurons. 

Because of the extensive genetic heterogeneity in ASD, investigators have carried out 

transcriptomic studies in postmortem samples or ASD patient-derived neural samples with 

the goals of finding common pathways and cellular processes dysregulated in ASD brains 

or neural samples 34-40. We thus decided to study whether differentially expressed genes 

(DEGs) in molecular studies carried out between ASD and control subjects exhibited 

similar cell type-biased expression patterns as ASD candidate genes identified from genetic 

studies. We obtained DEGs in ASD brain or blood samples and analyzed their expression 

across brain cell types. Since, as shown above, we uncovered the biased expression pattern 

of ASD candidate genes (from SFARI or AutismKB), they were excluded for this analysis, in 

order to focus on the downstream effects.  In ASD cortex samples, up-regulated genes were 

enriched with genes highly expressed in adult astrocytes and microglia (Fig S2A), whereas 

down-regulated genes were enriched with genes highly expressed in neurons (Fig S2B). 

This is consistent with previous reports 34, 36, 37, but extends the finding to relatively mature 

neurons and both dorsal and ventral forebrain neurons (Fig S2B). We also found up-

regulated genes in ASD cortex samples were enriched for highly expressed genes in NPCs 

(Fig S2A), a pattern not detected when ASD candidates were analyzed (Figure 1). However, 

genes up-regulated in NPCs, neurons and cerebral organoids derived from ASD iPSC-lines 

showed enriched expression in neurons (Fig S2A), while down-regulated genes in the 

patient-derived samples were enriched with genes expressed highly in astrocytes, 
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microglia and NPCs (Fig S2B). These results suggest that cell types can be affected 

differently in early and late developing ASD brains.  The difference may also reflect primary 

vs secondary effects.  However, in our comparison of excitatory vs inhibitory neurons, we 

found that up-regulated genes in both postmortem cortices and cerebral organoids were 

similarly enriched with genes highly expressed in inhibitory neurons (Fig 3A).  The down-

regulated genes from cortices and iPSC-derived neurons or cerebral organoids exhibited 

opposite enrichments, with the former enriched for high expression in excitatory and the 

latter in inhibitory neurons (Fig 3B). Importantly, dysregulated genes in ASD blood 

samples 35 did not exhibit any significant pattern of expression enrichment. 

 

Downstream transcriptional targets of key ASD candidates are enriched among 

genes expressed highly in inhibitory neurons. 

Finally, we studied whether the downstream targets of ASD candidates genes show 

different expression enrichment patterns between inhibitory and excitatory neurons by 

analyzing the DEGs in human neural samples in which the expression of several top ASD 

(or schizophrenia) candidate genes have been reduced by either knockout or knockdown. 

We found that CHD8, EHMT1 and SATB2 regulated genes were exclusively enriched in 

inhibitory neurons (Figure 4). Moreover, a general enrichment in inhibitory neuronal 

genes, especially those in “In1/2/3” classes, was found among the targets of ASD 

candidates (Figure 4). Among the downstream targets, DLX1, a transcription factor critical 

for inhibitory neuron function is markedly upregulated in ASD patient-derived 

telencephalic organoids 38 and CHD8 knockout cerebral organoids 51, but GAD1, an 

inhibitory neuron marker, was downregulated in SATB2 knockdown samples 54. We 

analyzed DEGs from CYFIP1 knockdown in NPCs derived from three independent iPSC-lines 

and found both common and distinct enriched expression patterns.  DEGs from two lines 

(C2 and C5) were enriched in inhibitory neurons, but C4 DEGs showed enriched expression 

in excitatory neurons (Figure 4). This difference could reflect the limited overlap of the 

DEGs 52, but also suggests the intriguing possibility that E/I imbalances are affected by 

inter-individual differences in genetic background. We should point out that CHD8 and 

EHMT1 are expressed at a similar level in excitatory and inhibitory neurons, but SATB2 is 

expressed at a higher level in excitatory neurons. These findings further suggest that some 
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ASD genes can affect the expression of key genes important for inhibitory and excitatory 

neurons and their targets may be involved in the interaction or signaling balance between 

the two types of neurons.   

 

Discussion 

By integrating ASD candidates, dysregulated genes in ASD samples and downstream 

targets of ASD candidates with recently published human scRNA-seq datasets, we found 

that ASD-associated genes exhibited enriched expression in neurons, especially inhibitory 

neurons, with some developmental stage differences. The enrichment of inhibitory 

neuronal expression among ASD candidate genes provides molecular support for the 

finding that deficits in inhibitory neuronal function occurs in some syndromes with autism-

associated behaviors, such as individuals with ARX mutations 67, 68, Dravet syndrome 

caused by loss-of-function (LoF) mutations in SCN1A 69, and Tuberous Sclerosis caused by 

mutations in TSC1/2 70, 71 (for review, see 72). Our current findings are in line with the long-

standing hypothesis that E/I signaling imbalance contributes to ASD. The attractive theory 

of an increase in the ratio between excitatory and inhibitory signaling provides a plausible 

explanation for the relative reduction in GABAergic signaling found in patients with ASD 

and their propensity to develop epilepsy 72. However, a relative excess of inhibitory 

neuronal activity has been observed in mouse models of Rett Syndrome 73, and mice with a 

targeted Mecp2 deletion restricted to GABAergic inhibitory neurons recapitulates most of 

the ASD-like features observed in animal models 74, while restoring Mecp2 expression 

reverses some of the phenotypical defects 75, 76.  

Our analysis showed enriched expression in inhibitory neurons for upregulated but 

not down-regulated genes in ASD samples. This seems inconsistent with the enriched 

expression of ASD candidates in inhibitory neurons, assuming their mutations lead to 

reduced expression and functional loss.  One possibility is that some ASD candidates may 

function as transcriptional inhibitors or the abnormal expression of some ASD candidates 

could lead to an increase in the number of inhibitory neurons, in a subset of ASD subjects 

or in certain brain regions, perhaps as a compensation mechanism for a reduction of GABA 

receptors (or GABAergic function) in individual inhibitory neurons 59. However, previous 

studies have reported an overproduction of GABAergic inhibitory neurons in ASD iPSC-
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derived organoids 38 and neural cells 39, with the former likely resulting from increased 

FOXG1 expression 38, suggesting that an increase in inhibitory interneuron function could 

be due to a direct effect of some candidate genes.  Another key transcription factor in 

GABAergic interneuron differentiation, DLX1, was also upregulated in CHD8 knockout 

NPCs, neurons, 50 and cerebral organoids 51. Furthermore, our study indicates that both 

primary and secondary ASD-affected genes may play roles in inhibitory neurogenesis and 

function, contributing to ASD pathogenesis. We should note that when, where and how an 

E/I imbalance contributes to ASD is unclear and certainly beyond the scope of the current 

study. Nevertheless, it is conceivable that E/I imbalance may tilt to one direction in a 

subset of ASD but to the other in a different subset.  

Since neuronal subtype transcriptomes used in the current study were from an 

adult female brain 47, and there are significant transcriptional (and structural) differences 

in the brain between the pre- to post-natal period, and from the teenage to adult stage 77, it 

would be interesting to perform a similar EWCE study using scRNA-seq data from prenatal 

or fetal neurons in multiple brain regions from both sexes. Considering our findings, it is 

interesting to note that drugs targeting inhibitory neuron function are being developed to 

treat ASD 78. Consequently, it would be valuable to study their effects in early and late 

developing brains, animal models, iPSC models, and in ASD subjects using brain imaging 

and electrophysiology to fully explore the therapeutic potential of such drugs.  

Finally, we found that upregulated genes in postmortem ASD brains were enriched 

in microglia and astrocytes, which is consistent with original reports based on the mouse 

transcriptome 34, 36. This is consistent with the findings that activated microglia and 

astrocytosis occur in multiple brain regions of ASD patients 79, 80. However, ASD candidate 

themselves did not show such an enrichment in our analysis. Thus, dysregulation of 

neuron-glia signaling might be a secondary process in response to the initial insults elicited 

by the primary casual genetic variants, a testable hypothesis.  
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Figure legends 

Figure 1: Cell type enrichment analysis of genes associated with ASD or other brain 

diseases across multiple single cell transcriptome datasets. (A) Adult brains, (B) Fetal 

brains, (C) Cerebral organoids, and (D) Neuron subtypes. The color in each panel 

represents fold enrichment, calculated as the expression of the target gene lists divided by 

the mean expression of the randomly selected genes in bootstrap sampling by EWCE. The 

number in individual boxes represents significant adjusted p value (FDR < 0.05). PSD: 

postsynaptic density; OPC: oligodendrocyte precursor cell; AP: apical progenitor; BP: basal 

progenitor; N: neuron; NPC: neural progenitor cells; Ex: excitatory neuron; In: inhibitory 

neuron. The same annotations are used for the colors and numbers of the boxes in Figure 3 

and 4 below. 

 

Figure 2: Visualization of gene co-expression module associated with excitatory (a) 

and inhibitory (b) neurons. Connections with co-expression coefficient > 0.2 from the 

WGCNA are shown for each module. Node size represents the number of connected genes. 

Darker nodes are ASD candidate genes. Boxplots show the number of connections for ASD 

and non-ASD genes in excitatory (C) and inhibitory (D) modules. 

 

Figure 3: Cell type enrichment analysis of upregulated (A) and downregulated (B) 

genes in ASD samples. Note that ASD candidates from SFARI or AutismKB have been 

excluded from DEGs. 

 

Figure 4: Cell type enrichment analysis of downstream targets of ASD candidates.  

 

Supplementary information: 

Figure S1: Co-expression analysis of neuronal subtype scRNA-seq data. A). WGCNA 

cluster dendrogram. B). Signed association of module eigengenes with excitatory and 

inhibitory neurons (adjusted P values to FDR). Red lines represent adjust P value = 0.05. 

Positive values indicate modules with an increased expression in inhibitory neurons. 
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Negative values indicate modules with an increased expression in excitatory neurons. C) 

and D). Relevant gene ontology categories enriched in M1 and M2 modules. 

 

Figure S2: Cell type enrichment analysis of upregulated (A) and downregulated (B) 

genes in ASD samples across multiple single cell transcriptome datasets:  adult 

brains, fetal brains, and cerebral organoids. Colors and numbers in individual boxes are 

described as Figure 1. OPC: oligodendrocyte precursor cell; AP: apical progenitor; BP: basal 

progenitor; N: neuron; NPC: neural progenitor cells. 
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