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Abstract  

We perform quantitative trait locus (xQTL) analyses on a multi-omic dataset, comprising 
RNA sequence, DNA methylation, and histone acetylation ChIP sequence data from the 
dorsolateral prefrontal cortex of 411 older adult individuals. We identify SNPs that are 
significantly associated with gene expression, DNA methylation, and histone 
modification levels. Many SNPs influence more than one type of molecular feature, and 
epigenetic features are shown to mediate eQTLs in a number of (9%) such loci. We 
illustrate the utility of our new resource, xQTL Serve, in prioritizing the cell type most 
affected by an xQTL and in enhancing genome wide association studies (GWAS) as we 
report 18 additional CNS disease susceptibility loci after re-analyzing published studies.  
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Introduction 

Genome wide association studies (GWAS) have identified thousands of SNPs that are 
associated with various human diseases1. However, the majority of identified SNPs fall 
in the non-coding regions of the genome2. Connecting these regulatory changes to 
specific genes or to molecular pathways that may be implicated in human diseases is 
not straightforward. Suggestive evidence indicate that many more such SNPs exist, but 
they are difficult to detect due to their typically small effect sizes and the challenge of 
multiple testing burden in genome-wide assessment of common genetic variation3.  

Expression quantitative trait locus (eQTL) analyses4-9 have been very useful in 
understanding the functional consequences of trait- and disease-associated variants 
and in identifying genes that are likely to be affected by a risk allele. Recently, QTL 
analyses have been extended to other molecular phenotypes, such as DNA methylation 
(mQTL)10,11 and histone modification (haQTL)12. Overall, SNPs associated with 
molecular phenotypes (xQTLs) are over-represented among SNPs that are linked to 
various traits and diseases8,13, and previous studies have used eQTL hits to prioritize 
associations in GWAS, leading to improved detection sensitivity14-16. While a few 
datasets exist for brain tissue, large datasets measuring all three of these epigenomic 
and transcriptomic features have only recently been generated from the same brain 
region of the same individuals.  

Here, we present a new Resource for the neuroscience community by performing xQTL 
analyses on a multi-omic dataset that consists of RNA sequence (RNA-seq), DNA 
methylation, and histone acetylation (H3K9Ac ChIP-seq) data derived from the 
dorsolateral prefrontal cortex (DLPFC) of up to 494 subjects (411 subjects having all 
three data types available). Samples are collected from participants of the Religious 
Orders Study (ROS) and the Rush Memory and Aging Project (MAP), which are two 
longitudinal studies of aging designed by the same group of investigators. These 
studies share the same sample and data collection procedures, which naturally permits 
joint analyses17,18. At its heart, the Resource presents a list of SNPs associated with 
cortical gene expression, DNA methylation, and/or histone modification levels that 
reflects the impact of genetic variation on the transcriptome and epigenome of aging 
brains. While our xQTLs replicated well in both brain and blood, a notable portion is 
specific to genes that are only expressed in brain. Also, many SNPs influence multiple 
molecular features, with a small number of them having their impacts on gene 
expression mediated through epigenetics. Further, we apply a computational approach 
to prioritize the cell types that may be driving the tissue-level effect, a critical piece of 
information for informing the design of follow-up molecular experiments in which an in 
vitro or in vivo target cell type needs to be selected. Finally, we illustrate the efficacy of 
an “xQTL-weighted GWAS” approach for applying our xQTLs to improve the statistical 
power of GWAS, and we identify a number of additional susceptibility variants for 
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several diseases. All data used in this study are available from www.radc.rush.edu, and 
the xQTL results and analysis scripts can be accessed through our online portal, xQTL 
Serve, at http://mostafavilab.stat.ubc.ca/xQTLServe. 

 

Results 

xQTL Discovery  
 
Genotype data19 were generated from 2,093 individuals of European-descent. Of these 
individuals, gene expression (RNA-seq)(n=494), DNA methylation20 (450K Illumina 
array)(n=468), and histone modification data (H3K9Ac ChIP-seq)(n=433) were derived 
from post-mortem frozen samples of a single cortical region, the dorsolateral prefrontal 
cortex (DLPFC) (Figure 1A). 411 individuals have all four data types. Demographics of 
the analyzed individuals are summarized in Tables S1. Although some of these data 
have been previously published with respect to analysis of aging brain phenotypes (see 
Table S2), here we report genome-wide xQTL analyses for these datasets for the first 
time. Genotype imputation was performed using BEAGLE 3.3.221 with the 1000 
genome reference panel22, yielding 7,321,515 SNPs for analysis. For the molecular 
phenotype data, 13,484 expressed genes, 420,103 methylation sites, and 26,384 
acetylation peaks remained after quality control (QC) analyses. The effects of known 
and hidden confounding factors were removed from the molecular phenotype data using 
linear regression (Supplementary Information). Consistent with previous studies, we 
observed that accounting for hidden confounding factors greatly enhances the statistical 
power of cis eQTL detection23,24, and we confirm that this observation holds true for cis 
mQTL and cis haQTL detection (Figure S1).  
 
We employed Spearman’s rank correlation to estimate the association strength between 
alleles of each SNP and gene expression, DNA methylation, and histone acetylation 
levels. We refer to the measurement unit of each molecular phenotype data as a feature 
and a significant association between a SNP and a feature as an xQTL (i.e. an xQTL is 
a SNP-feature pair). Based on the results of prior studies, we performed cis xQTL 
analysis between SNPs and each feature by defining a window size of 1Mb for eQTL 
analysis and haQTL analysis, and a 5Kb window for mQTL analysis25-27. The 1Mb 
window for haQTL analysis was motivated by the possibility that SNPs in enhancer 
regions, which are far away, can indeed impact gene regulation through interaction (e.g. 
chromatin looping) with promoter regions. The much smaller window for the mQTL 
analysis was selected since the majority of cis mQTLs with the strongest correlation lie 
within a window of this size27,28. Also, the smaller window size helps reduce the multiple 
testing burden, given the much larger number of DNA methylation features.  
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Using a Bonferroni corrected p-value threshold (αFWER = 0.05), we found (1) 3,388 
genes associated with eQTL SNPs (p<8x10-10), (2) 56,973 CG dinucleotides linked to 
mQTL SNPs (p<5x10-9), and 1,681 H3K9Ac peaks influenced by haQTL SNPs (p<4x10-

10) (Figure 1B-C, Table 1). Among the eQTL genes, 133 of them correspond to 
lincRNAs out of a total of 391 lincRNAs tested. For results based on several other (cis) 
window sizes, see Supplementary Information. The complete lists of eQTLs, mQTLs, 
and haQTLs are provided through the xQTL Serve webpage  
(http://mostafavilab.stat.ubc.ca/xQTLServe).   
 
Replication and cross-tissue comparisons 
  
We evaluated the extent to which our xQTLs replicate eQTLs and mQTLs found in prior 
studies. We focused on eQTL and mQTL replication since relevant large-sample 
datasets are only available for these two xQTL types. We assessed the replication rate 
of eQTLs and mQTLs discovered in these studies in our dataset using the π1 statistics32, 
which estimates the proportion of these eQTLs (mQTLs) that are also significant in our 
dataset. π1 of the eQTLs are 0.91 and 0.56 for CommonMind and Braineac, 
respectively, and π1 of mQTLs is  0.87,  which are all greater than their respective 
empirical null mean of 0.11 and 0.33 for eQTLs and mQTLs, respectively (p < 0.0001, 
see Supplementary Information). The lower replication rate of Braineac eQTLs 
compared to CommonMind eQTLs could be due to its smaller sample size. Also, the 
Braineac eQTLs are based on false discovery rate (FDR) correction whereas 
CommonMind eQTLs were defined using Bonferroni correction, and stronger 
associations captured by more stringent correction are more likely to replicate33. In the 
reverse direction, we also assessed the replication rate of our eQTLs in the 
commonMind data, and estimated similar replication rate (π1=0.90).  For the mQTL 
replication analysis, we explored restricting our mQTL analysis to a 100Kb window, and 
observed similar replication rate (π1=0.87) on the fetal brain mQTLs, which suggests a 
5Kb window already captures majority of the stronger associations between SNP and 
DNA methylation. 
 
For assessing cross-tissue replication, we used a large whole-blood eQTL dataset from 
the Depression Genes and Networks (DGN)33 study comprising 922 individuals of 
European descent between 21 to 60 years old and two smaller eQTL datasets from the 
Immune Variation (ImmVar) study34 that consist of monocyte and T cell data from 211 
individuals of European descent between 18 to 50 years old. π1 of these eQTLs in our 
dataset are 0.63 (whole blood), 0.61 (monocytes), and 0.67 (T cells), which are greater 
than their empirical null mean of 0.10 (p < 0.0001 for all three datasets). Thus, a large 
proportion of blood eQTLs are present in our brain data. Since blood contains a mixture 
of cell types including immune cells that share characteristics with those in brain, we 
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also assessed the replication rate on three additional tissues, namely, subcutaneous 
adipose, visceral adipose, and liver from the GTEx study35. The replication rates are 
0.51, 0.38, and 0.20, respectively, which are indeed lower than that of blood.  
 
Since DGN is one the largest and hence most well-powered eQTL studies, we also 
assessed flipping the role of the datasets in the π1 estimation here. Specifically, we 
assessed the replication rate of our brain-derived eQTLs in the whole-blood DGN 
dataset (Figure 2A-B). When we consider SNP-gene pairs that can be tested in both 
studies, we observed a replication rate of 0.83 (Figure 2C), which is greater than its 
empirical null mean of 0.30 (p < 0.0001). This increase in replication rate when 
assessing eQTLs from our brain study in the DGN dataset may be due to the higher 
statistical power of the DGN study (n=922 in DGN study and n=494 in ROSMAP study) 
and the fact that cortical tissue consists of a large variety of cell types which, in 
aggregate, express a large proportion of the transcriptome. Additional replication results 
for different tissues, window sizes, and xQTL types are provided in Table S3. 
 
An important question to answer with our data is whether and which of the detected 
xQTLs are brain-specific. However, without tissue samples from the same individuals, 
distinguishing between subject-specific and tissue-specific effects is not possible. 
Nonetheless, based on the sparsity of “population-specific” eQTLs34 and a lower 
replication rate of eQTLs in blood compared to brain, a notable fraction of our eQTLs 
are likely tissue-specific. For example, when we considered only eQTLs that consist of 
the top SNP for each gene, we found that, of the 2,416 eQTLs discovered in our cortical 
tissue study that are testable in the whole-blood dataset, 433 eQTLs (18%) have an 
unadjusted p-value >0.05, indicating that this subset of brain eQTLs are unlikely to be 
present in blood (Figure 2B). As an example, NLRP1 is expressed in both brain and 
blood (whole blood, monocytes and T cells), but its expression is only associated with 
brain-specific eQTL SNPs (Figure 2D). NLRP1 is a member of the NLRP1 
inflammasome complex that is implicated in inflammatory response in both immune 
cells (in particular myeloid cells) and in brain36. Interestingly, a few small-scale studies 
also linked polymorphisms in this gene with amyloid-beta secretion and Alzheimer’s 
disease (AD)37. In addition to the 2,416 eQTLs that are testable in both brain and blood, 
we identified 809 eQTL target genes from our brain analysis that were absent from the 
DGN’s blood eQTL analysis because the corresponding genes were not expressed in 
blood. As expected, this set of 809 brain-specific eQTL genes are enriched for brain-
relevant functions (GSEA enrichment analysis, FDR<0.05) such as “Neuronal System”, 
“Potassium Channel Components”, and “Neurotransmitter Receptor Binding”. 
 
Overall, the high cross-sample and cross-tissue replication rates suggest that a large 
number of SNPs that impact molecular phenotypes are likely shared across contexts. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 7, 2017. ; https://doi.org/10.1101/142927doi: bioRxiv preprint 

https://doi.org/10.1101/142927
http://creativecommons.org/licenses/by-nc/4.0/


7	
	

The degree of overlap between brain and blood eQTLs is quite high, with a π1 of ~0.8. 
Nevertheless, our results suggest some eQTLs are tissue-specific, and more tissue-
specific effects would likely emerge from analyses of purified cell populations.  
 
Genetic architecture of xQTL SNPs and sharing across molecular phenotypes 
 
We used genomic annotations based on DLPFC tissue from ChromHMM38 and  
computed the odds of an xQTL SNP belonging to 1 of 15 regulatory regions (annotated 
by chromatin states) as compared to all non-xQTL SNPs proximal to molecular features, 
i.e. within 1Mb, 5Kb, and 1Mb windows for eQTL, mQTL, and haQTL analyses with all 
SNPs tested in these analyses considered as proximal. As shown in Figure 3A, eQTL 
SNPs are mainly enriched in promoters and transcribed regions, conforming to our 
understanding of how SNPs at transcription factor (TF) binding sites can affect protein-
DNA interactions39 and how SNPs in transcribed regions are known to affect mRNA 
processing and turnover40. haQTL SNPs are also largely enriched in promoter and 
transcribed regions, consistent with the role of H3K9Ac in transcriptional activation41. By 
contrast, mQTL SNPs are mainly enriched in bivalent regions (promoters and 
enhancers) and PolyComb repressed regions, which matches prior findings that a large 
portion of mQTL SNPs resides in chromatin regions that are developmentally 
regulated27. Also, suppressed gene expression in PolyComb repressed regions might 
partly explain why eQTL and haQTL SNPs derived from adult samples are scarce in 
these regions. Notably, xQTL SNPs that are shared across all three molecular 
phenotypes are mainly enriched close to the TSS as well as in the 5’ and 3’ transcribed 
regions. With respect to transcribed sequences, we saw enrichment for all types of 
xQTLs in exons relative to introns (Figure 3B), with this trend being most striking for 
mQTLs.  
 
To quantify the degree to which an xQTL SNP influences more than one molecular 
phenotype, we first identified the list of xQTL SNPs for a “discovery” phenotype and 
then estimated the π1 statistics of the SNP-feature associations for a “test” phenotype 
that share the same xQTL SNPs. Since an xQTL SNP might be tested for association 
with multiple cis features, e.g. an mQTL SNP was, on average, tested for association 
with 18 gene expression levels, a decision on which SNP-feature associations to 
include in the π1 estimation was necessary (see Supplementary Information). In 
particular, we examined the distance between each pair of “discovery” SNP and “test” 
feature, and found this distance to be a prime determinant of cross-phenotype sharing. 
For example, the strongest associated eQTL gene for each mQTL SNP is often the 
gene closest to the mQTL SNP (Figure 3C). Based on this observation, we estimated 
π1 to be 0.41-0.63 when we considered only the closest feature to each xQTL SNP 
(Figure 3D). Also, we examined the effect of window size by restricting the haQTL 
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analyses to 2Kb, 40Kb, and 100Kb windows as well as changing the eQTL and mQTL 
analysis window to 100Kb, and found negligible differences in our estimates of xQTL 
sharing (Table S4). 
 
The availability of multi-omic data from the same individuals enabled us to go beyond 
“overlap analyses” (Figure 4A) and to investigate the cascading effect of genetic 
variation through the measured regulatory genomics layers. Specifically, we 
investigated whether the effect of a regulatory cis xQTL SNP is mechanistically 
mediated through its impact on epigenetic modification or gene expression using the 
casual inference test (CIT)42. This analysis was performed on 10,897 xQTL SNPs 
(impacting 629 genes based on the eQTL analysis) that are associated with all three 
molecular phenotypes, as only such SNPs satisfy the precondition for mediation 
analysis. With this analysis, we distinguished between three models for propagation of 
information from genetic variation: 1) independent effects of a SNP on cis gene 
expression and the cis epigenetic landscape (independent model or IM), 2) a 
propagation path from SNP to gene expression via epigenetic modifications (epigenetic 
mediation model or EM), or 3) a propagation path from SNP to the epigenome (namely 
DNAm) via gene expression (transcription mediation model or TM) (Figure 4B). 
 
Using Bonferroni correction with the CIT test, we observed that 9% of the association 
sets conform to the EM model, 3% conform to the TM model, 85% conform to IM, and 
the remaining 3% could not be classified (Figure 4C, Table S5). As an example, an 
xQTL SNP (rs13015714) associated with Celiac disease (GWAS p<10-8) was found to 
affect IL1RL1 gene expression (p<10-11), DNA methylation (p<10-30) and histone 
modification (p<10-12), but the impact of this SNP on gene expression appeared to be 
fully mediated by epigenetic modifications (Figure 4D-E), and thus this SNP conforms 
to the EM model. We additionally tested whether GWAS SNPs (downloaded from the 
GWAS catalog1) are prefrentially enriched for any of these models but did not find any 
model-specific enrichment.  
 
A large fraction of the shared xQTL SNPs appear to affect gene expression directly. 
This result could be explained by: 1) epigenetic modification playing a passive role26 
where gene expression in fact lies upstream of epigenetic modification (3% based on 
the TM model), 2) regulation of gene expression being dependent on a more complex 
combination of epigenetic marks that are not measured in our subjects, and 3) 
artefactual decorrelation between the expression and epigenomic features due to 
technical or other factors. Thus, we should see these estimates for mediation as a 
minimum of true mediation: these may be the most robust subset of mediation events. 
The important message of these analyses is that mediation exists at a substantial 
number of loci and further work and data may be needed to uncover additional loci. 
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Indeed, in line with this hypothesis, when we separately included only DNA methylation 
or histone modification into the model, we identified a smaller subset of association sets 
for which an effect on gene expression was fully explained by the epigenetic features: 
3% for DNA methylation and 6% for histone modification. Thus, a complementary (non-
redundant) combination of DNA methylation and histone acetylation seems to be 
required to capture the mediation effect, and adding other non-redundant epigenetic 
features would likely further enhance detection of this type of functional propagation.  
 
Enrichment of disease susceptibility SNPs among xQTL SNPs 
 
Studies have shown that SNPs associated with eQTLs are more likely to influence 
complex traits and disease susceptibility8,13. Here, we provide further support for this 
observation for eQTLs, mQTLs, and haQTLs by performing an enrichment analysis on 
reported p-values of 16 GWAS datasets, including large-scale GWAS meta-analyses of 
AD43, Schizophrenia44, and type II Diabetes45 (Supplementary Information). Enrichment 
was assessed using stratified linkage disequilibrium (LD) score regression (LDSR)46. 
For all 12 GWAS studies (out of 16) with over 20,000 samples (Table S6, Figure 5A), 
significant enrichment was observed for the xQTL SNPs. We also repeated this analysis 
using a more stringent background model, where we considered enrichment of our 
xQTLs against a background set of SNPs falling in “generic” annotation categories as 
provided in the LDSR software46. Again, significant enrichment, albeit with lower effect 
size, was observed for many of the GWAS studies (Figure 5A, Table S6). Next, we 
hypothesized that SNPs shared between xQTL types, which affect multiple molecular 
phenotypes, are more likely to impact downstream processes and could constitute a list 
of “high confidence” functional SNPs. We therefore compared all xQTL SNPs that are 
shared across at least two molecular traits, against those xQTLs that are only found for 
one molecular trait. Indeed, we observed enrichment for the shared xQTLs, but their 
enrichment was not always higher than the background xQTL SNPs, i.e. somewhat trait 
dependent (Table S6). To test the robustness of the results to window size, we 
repeated the analysis with 100Kb windows for all three xQTL types (Table S7). The 
overall trend remained the same with slightly higher enrichment observed.  
 
The enrichment results are reassuring, and, as we describe later, we can use our list of 
xQTL SNPs to prioritize testing in GWAS studies and identify new susceptibility loci. 
Also, investigators can use our xQTL list to annotate GWAS SNPs related to the brain 
or nervous system, which accelerates the transition to functional studies. For example, 
we used our eQTLs to map the 21 SNPs (and correlated SNPs in LD with r2 > 0.8) 
reported in the IGAP AD GWAS and identified four candidate AD genes that are absent 
from the reported gene list defined by proximity43 (MADD, MTCH2, PILRA, and 
POLR2E). The TSS of these eQTL mapped genes were >100Kb, on average, from their 
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respective AD SNPs. MTCH2, PILRA, and POLR2E have also been found in recent 
eQTL mapping studies47, demonstrating the robustness of our results. MADD has not 
been previously reported in this context but is a good candidate given that its 
expression correlates with neuronal cell death in AD48 and that it has also been reported 
to modulate AD-related tau toxicity in a Drosophila model49.  
 
Accelerating the transition to functional studies in specific cell types 
 
Identification of the relevant cell type to target in vitro or in vivo functional studies is a 
major challenge since our xQTL study, like many others, relies on tissue profiles 
generated from a complex mixture of cell types. To help prioritize cell types for such 
follow-up efforts, we repeated the analyses relating each SNP to a given molecular 
feature but additionally included a variable that estimates the proportion of a cell type in 
the profiled tissue and an interaction term to identify those SNPs whose effects depend 
on the proportion of a target cell (Supplementary Information). This approach was 
recently validated using whole-blood data50.  
 
Using eQTL results as an example, we examined the potential specificity of each lead 
eQTL SNP for five cell types that are abundant in the cortex: neurons, microglia cells, 
astrocytes, oligodendrocytes, and endothelial cells. With this approach50, we found that 
assignment to a single cell type remains ambiguous for most eQTLs (all cell-specificity 
p-values are available at http://mostafavilab.stat.ubc.ca/xQTLServe). In a minority of 
cases, our analysis returned an unambiguous result for the lead eQTL. For example, at 
an FDR <0.05 threshold, we identified 6 significant cell-specific eQTLs (1 astrocytic, 3 
microglia, and 1 neuronal). One of these results is presented in Figure 5C: the CPVL 
locus harbors an eQTL effect (rs11971828) that is stronger in microglial cells as 
demonstrated by the statistical interaction between the proportion of microglia and the 
genotype of the corresponding eQTL SNP. With a more lenient discovery strategy 
where we thresholded the interaction term at an FDR<0.2, we found putative cell-type 
specific effects in neurons (n=13) and microglia (n=22) (Figure 5B). At this significance 
level, microglia, which are present at low frequency in cortical tissue, show the most 
effects, probably because our approach reduces noise in the expression measures. As 
shown in Figure 5B, even though a small number of cell-specific eQTLs were identified 
using stringent multiple testing correction, our results can still be useful in prioritizing cell 
types for follow-up experiments, based on the observation that suggestive cell-type 
specific eQTL genes show clear cell type preferences. Many of these “top” cell-specific 
eQTL genes tend to conform to the expected function of the implicated cell. For 
example, the MGMT locus harbors an eQTL that ranks among the top 3 for 
oligodendrocytes-specificity (p=1.5x10-4). This gene is known to play a role in 
oligodendrocyte function and its mutations are associated with oligodendrogliomas. 
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These cell-specific results are intriguing but require molecular validation using purified 
cell populations from the cortex with matched genotype; these results should be seen 
as a way to prioritize the selection of genes and cell types to be validated in a given cell 
type.  
 
xQTL-weighted GWAS for gene discovery efforts 
 
Our large compendium of brain xQTLs can also be leveraged to accelerate gene 
discovery by boosting statistical power in GWAS. The simplest way of using our xQTL 
SNP list would be to restrict association analysis to our xQTL SNPs. However, such a 
strategy would miss other relevant SNPs that are not in our list (or were not tested in the 
cis xQTL analysis). Thus, we opted to use a weighted Bonferroni procedure51, which 
permits all SNPs to be analyzed but weights their p-values by their potential phenotypic 
relevance. We refer to this approach as an “xQTL-weighted GWAS”. Provided that the 
weights are non-negative and average to one, strong control on family-wise error rate is 
guaranteed51. We employed a binary weighting scheme, where p-values of xQTL SNPs 
were divided by w1 and all other SNPs were divided by w0 with s = w1/w0 > 1 (see 
Supplementary Information for s selection). Consistent with the standard GWAS 
threshold, significance was declared at p < 5x10-8. To not over-count the number of 
significant hits due to correlations between SNPs, we applied PLINK1.952 on the 1000 
Genomes phase 1 data22 to remove SNPs among the significant hits that are in linkage 
disequilibrium (LD) with one other (r2 < 0.2).  
 
We compared four approaches: (1) no weighting, (2) weighting xQTL SNPs found for 
any of the molecular phenotypes, (3) weighting SNPs within predefined windows from 
the molecular features (1Mb, 5Kb, and 1Mb for eQTL, mQTL, and haQTL analyses) to 
account for distance bias, (4) weighting generic functional SNP in the LDSR baseline 
model46, and (5) weighting xQTL SNPs that are shared across any of the molecular 
phenotypes. Over the 19 GWAS datasets (Supplementary Information), weighting xQTL 
SNPs resulted in equal or more GWAS hits than no weighting, except for inflammatory 
bowel disease (Table S8). For 8 of the 19 studies, the xQTL-weighted GWAS approach 
found at least 2 new independent loci (Table S8). By contrast, weighting SNPs within 
predefined windows from the molecular features (1Mb, 5Kb, and 1Mb for eQTL, mQTL, 
and haQTL, respectively) as well as weighting SNPs in the LDSR baseline model 
resulted in little change in detection sensitivity. Interestingly, the gain in sensitivity was 
not always the highest when we weighted the shared xQTL SNPs. Also, compared to 
weighting the DGN eQTL SNPs, weighting the union of all xQTL SNPs found in this 
study identified more additional independent susceptibility SNPs for a majority of the 
tested GWAS datasets, which demonstrates that additional signals are captured by 
mQTL and haQTL SNPs. In particular, weighting the xQTL SNPs found 22, 18, and 9 
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additional independent SNPs for schizophrenia, height, and inflammatory bowel disease, 
respectively, compared to no weighting. In contrast, weighting the DGN eQTL SNPs 
found only 9, 3, and 2 additional independent SNPs. In fact, weighting just the ROSMAP 
eQTL SNPs identified 17 additional independent SNPs for schizophrenia, which 
illustrates the presence of eQTLs in our data that are enriched in brain diseases and not 
observed in blood. 
 
Among the brain diseases that we examined, the largest detection gain was obtained 
with the schizophrenia dataset44, where 18 additional loci met genome-wide significance 
(excluding those near the MHC region) and were not in linkage disequilibrium (LD<0.2) 
with the reported susceptibility SNPs44. 7 of these 18 SNPs were found to be associated 
with eQTLs (Table S8), including rs57709857, which influences LSM1, a gene 
previously found in a Han Chinese schizophrenia study53. However, the LSM1 locus had 
not reach genome-wide significance in individuals of European ancestry54. The list of 
eQTL genes also includes PCNX (associated with rs2189806), a member of the Notch 
signalling pathway that was reported to harbour a de novo copy number variant linked 
to Autism Spectrum Disorder55, and CPEB1 (associated with rs1864699), which was 
recently found to be implicated in experience-dependent neuronal development and 
circuit formation56 (Figure 5C). Thus, several of our new schizophrenia loci have some 
face validity, but additional replication efforts are required to ensure that these are 
robust findings. In terms of the percentage increase in detection sensitivity, the largest 
gain was observed for Bipolar disorder57, where the standard GWAS approach identified 
one significant hit, whereas xQTL-weighted GWAS identified 2 additional independent 
loci.	

 
Conclusion 
 
Using one of the largest multi-omic datasets for brain tissue, we generated a list of 
xQTLs as a Resource for the neuroscience community to further investigate the 
interplay between the genome, epigenome, and transcriptome in disease susceptibility. 
Our list of xQTLs replicates well in both brain and blood datasets, but it also contains 
xQTLs that appear to be unique to brain. Notable biological insights drawn from this 
Resource include the significant sharing of xQTL SNPs across the measured molecular 
phenotypes. Also, the effects of some eQTL SNPs are fully mediated by our two 
epigenetic features, and further work and data are needed to comprehensively address 
the extent to which epigenomic features mediate eQTL effects. Overall, we have 
created a large new reference with which investigators can functionally annotate their 
results, enhance their analyses, as illustrated by our xQTL-weighted GWAS approach, 
and guide further functional work, as with our cell type analysis. This Resource can be 
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easily accessed through our portal, xQTL Serve 
(http://mostafavilab.stat.ubc.ca/xQTLServe). 
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Table 1. Summary of xQTL associations. 
 

  No. associations (SNP-gene 
pairs) No. features  No. SNPs 

  Tested Significant Tested Significant Tested Significant 
eQTLs (1Mb) 60,456,556 405,429 12,979 3,388 6,442,864 313,467 
mQTLs (5Kb) 9,939,236 693,696 412,152 56,973 2,358,873 383,920 
haQTLs (1Mb) 125,100,450 156,693 25,720 1,681 6,756,597 119,778 

 
 
Figure Legends 
 
Figure 1. Overview of xQTL analysis. (A) A graphical summary of data and analysis 
used in this study. (B) Manhattan plots, showing the negative -log10 p-value (y-axis) for 
association between a SNP and DNA methylation (mQTL), histone acetylation (haQTL) 
or gene expression (eQTL). The x axis is the physical position in the genome. Each dot 
represents the strongest p-value (in a cis window) for each SNP. The bottom panel (C) 
shows the Manhattan plot for chromosome 18, to illustrate the distribution of xQTLs at a 
higher resolution. 
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Figure 2. Cross-tissue replication analysis. (A) Scatter plot of the -log10 p-values for 
association between the lead brain eQTL SNPs and their associated gene in brain and 
blood. The dashed red lines denote the significance threshold (FWER=0.05). (B) This 
panel zooms in on a small area of panel A to display the distribution of eQTLs that 
appear to be brain-specific. (C) This panel shows the distribution of p-values of brain 
eQTLs when assessed in the DGN study. The estimated replication rate between blood 
and brain eQTLs, using the π1 statistics, is 0.83. (D) Here, we highlight one brain-
specific eQTL by zooming in on the NLRP1 locus. Each dot represents one SNP tested 
in either the human cortex (ROSMAP, blue) or blood (DGN, pink). The x axis represents 
the distance between each assessed cis SNP and the NLRP1 TSS, and the y-axis 
reports –log10 p-values for association between SNPs and NLRP1 expression. The LD 
between the lead SNP in blood and brain is r2< 0.1.  
 
Figure 3. Genomic enrichment of xQTLs and their overlap. (A) We present the log 
odds ratio of enrichment of xQTL SNPs in 15 different chromatin states as defined by 
the Roadmap Epigenomics project using data from two cognitively non-impaired 
ROSMAP and the ChromHMM algorithm. (B) This panel shows the enrichment of 
xQTLs in exons and introns. (C) For each lead mQTL SNP, we computed its distance to 
the nearest TSS. The figure shows the distribution of distances to the TSSs from the 
lead mQTL SNPs. (D) π1 statistics for cross-trait replication analysis: Each cell (i,j) 
depicts the replication rate of SNPs identified in trait i (“discovery sample”) when 
assessed in trait j (“replication sample”). In this replication setting, each discovery SNP 
was only assessed for association to its closest feature in the replication set.  
 
Figure 4. Epigenetic mediation of eQTLs. (A) This panel shows a simple overlap 
analysis, to quantify the sharing between eQTL SNPs, mQTL SNPs, and haQTL SNPs. 
2,305,942 SNPs that are tested for all molecular phenotypes are considered in this 
analysis. (B) We illustrate the three models relating SNPs (s), epigenetic features 
(methylation/histone acetylation, m/h) and gene expression (g) that we investigated: (i) 
independent model (IM) where effects on epigenetic features and transcripts are 
unrelated, (ii) epigenetic mediation model (EM) where the epigenetic features mediate 
the SNP’s effect on gene expression, and (iii) transcription mediation model (TM) where 
the effect of SNP on epigenetics is mediated through its effect on gene expression. (C) 
This plot presents the proportion of shared xQTL SNPs that are consistent with each of 
the models in panel B. (D) This box plot on the left shows the expression level of 
IL1RL1 as a function of the number of minor alleles present for rs13015714 (a shared 
xQTL SNP that impacts IL1RL1 and nearby DNA methylation and histone acetylation 
levels). The plot on the right shows that the SNP’s effect disappears after regressing out 
the effect of the mQTL probe and haQTL peak associated with rs13015714 from 
expression of IL1RL1. (E) This panel shows the association between IL1RL1 and the 
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levels of its associated methylation probe and acetylation peaks. Colors indicate the 
genotype for rs13015714: minor allele homozygotes (yellow), heterozygotes (green), 
major allele homozygotes (blue). 
 
Figure 5. Application of the xQTL Resource for translational studies. (A) This bar 
plot shows enrichment of xQTL SNPs in several GWAS datasets based on the LDSR 
model (see Supplementary Information for GWAS references). The enrichments are 
with respect to two different sets of background SNPs: 1) all genome-wide SNPs and 2) 
SNPs falling in generic functional sites previously defined by LDSR. (B) This panel 
shows the -log10 p-value for the interaction test (quantifying cell-specificity) for the 46 
genes with an FDR < 0.2. Colors indicate the level of significance of the interaction term, 
following the color key at the upper right aspect of the panel. (C) We illustrate the effect 
of changing proportions of microglia at the CPVL locus, plotting each subject’s level of 
CPVL expression in relation to a marker of microglial proportion (CD68 gene). The 
effect of the SNP’s major allele on increasing CPVL expression increases as the 
proportion of microglia increases, particularly among major allele homozygotes (pink 
dots). (D-E) Zoomed in Manhattan plot around the PCNX (D) and CPEB1 (E) loci, 
showing the results of the published standard GWAS (bottom panel) and our weighted 
GWAS (top panel). Each dot is one SNP. The standard threshold of genome-wide 
significance (p < 5x10-8) is illustrated by a dotted green line.   
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