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Abstract	1 

Natural	environments	convey	information	through	multiple	sensory	modalities,	all	of	which	2 

contribute	to	people’s	percepts.	Although	it	has	been	shown	that	visual	or	auditory	content	of	3 

scene	categories	can	be	decoded	from	brain	activity,	it	remains	unclear	where	and	how	humans	4 

integrate	different	sensory	inputs	and	represent	scene	information	beyond	a	specific	sensory	5 

modality	domain.	To	address	this	question,	we	investigated	how	categories	of	scene	images	6 

and	sounds	are	represented	in	several	brain	regions.	A	mixed	gender	group	of	healthy	human	7 

subjects	participated	the	present	study,	where	their	brain	activity	was	measured	with	fMRI	8 

while	viewing	images	or	listening	to	sounds	of	different	places.	We	found	that	both	visual	and	9 

auditory	scene	categories	can	be	decoded	not	only	from	modality-specific	areas,	but	also	from	10 

several	brain	regions	in	the	temporal,	parietal,	and	prefrontal	cortex.	Intriguingly,	only	in	the	11 

prefrontal	cortex,	but	not	in	any	other	regions,	categories	of	scene	images	and	sounds	appear	12 

to	be	represented	in	similar	activation	patterns,	suggesting	that	scene	representations	in	the	13 

prefrontal	cortex	are	modality-independent.	Furthermore,	the	error	patterns	of	neural	14 

decoders	indicate	that	category-specific	neural	activity	patterns	in	the	middle	and	superior	15 

frontal	gyri	are	tightly	linked	to	categorization	behavior.	Our	findings	demonstrate	that	complex	16 

scene	information	is	represented	at	an	abstract	level	in	the	prefrontal	cortex,	regardless	of	the	17 

sensory	modality	of	the	stimulus.	18 

19 
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Statement	of	Significance	20 

Our	experience	in	daily	life	requires	the	integration	of	multiple	sensory	inputs	such	as	images,	21 

sounds,	or	scents	from	the	environment.	Here,	for	the	first	time,	we	investigated	where	and	22 

how	in	the	brain	information	about	the	natural	environment	from	multiple	senses	is	merged	to	23 

form	modality-independent	representations	of	scene	categories.	We	show	direct	decoding	of	24 

scene	categories	across	sensory	modalities	from	patterns	of	neural	activity	in	the	prefrontal	25 

cortex.	We	also	conclusively	tie	these	neural	representations	to	human	categorization	behavior	26 

based	on	the	errors	from	the	neural	decoder	and	behavior.	Our	findings	suggest	that	the	27 

prefrontal	cortex	is	a	central	hub	for	integrating	sensory	information	and	computing	modality-28 

independent	representations	of	scene	categories.		 	29 
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Introduction	30 

Imagine	taking	a	walk	on	the	beach.	Your	sensory	experience	would	include	the	sparkle	of	the	31 

sun’s	reflection	on	the	water,	the	sound	of	the	crushing	waves,	and	the	smell	of	ocean	air.	Even	32 

though	the	brain	has	separate,	clearly	delineated	processing	channels	for	all	of	these	sensory	33 

modalities,	we	still	have	the	integral	experience	of	being	at	the	beach.	What	are	the	neural	34 

systems	underlying	this	convergence	of	different	sensory	inputs,	which	allow	us	to	form	such	a	35 

rich	representation	of	our	environment?	Here	we	show	that	several	brain	regions	contain	36 

neural	representations	of	visual	and	auditory	scene	information	with	varying	degrees	of	cross-37 

modal	integration.		38 

Neural	mechanisms	underlying	the	perception	of	visual	scenes	has	been	studied	extensively	for	39 

the	last	two	decades,	showing	a	hierarchical	structure	from	posterior	to	anterior	parts	of	visual	40 

cortex	with	increasing	level	of	abstraction.	Starting	from	low-level	features,	such	as	orientation,	41 

represented	in	primary	visual	cortex,	the	level	of	representation	becomes	more	abstract,	42 

through	intermediate-level	features	in	the	occipital	place	area	(Dilks,	Julian,	Paunov,	&	43 

Kanwisher,	2013;	MacEvoy	&	Epstein,	2007),	to	the	representation	of	local	scene	geometry	and	44 

scene	category	in	the	parahippocampal	place	area	(Epstein	&	Kanwisher,	1998	Walther,	45 

Caddigan,	Fei-Fei,	&	Beck,	2009)	and	the	embedding	of	a	specific	scene	into	real-world	46 

topography	in	the	RSC	and	hippocampus	(Morgan	et	al.,	2011).	Does	this	abstraction	continue	47 

beyond	the	visual	domain?	To	identify	representations	of	scene	contents	beyond	this	visual	48 

processing	hierarchy,	we	here	investigated	neural	representation	of	scene	contents	delivered	49 

from	visual	and	auditory	cues.	50 
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Previous	work	has	identified	neural	representations	that	are	not	constrained	to	a	particular	51 

sense	for	other	types	of	stimuli.	Several	brain	areas	have	been	shown	to	integrate	signals	from	52 

more	than	one	sense	(Calvert,	2001;	Driver	&	Noesselt,	2008),	such	as	posterior	superior	53 

temporal	sulcus	(Beauchamp	et	al.,	2004),	the	posterior	parietal	cortex	(Cohen	and	Anderson,	54 

2004;	Molholm	et	al.,	2006;	Sereno	and	Huang,	2006)	and	the	prefrontal	cortex	(Sugihara	et	al,	55 

2006;	Romanski,	2007).	Some	of	these	areas	show	similar	neural	activity	patterns	when	the	56 

same	information	is	delivered	from	different	senses	for	various	stimuli,	such	as	objects	57 

(Man,	Kaplan,	Damasio	&	Meyer,	2012),	emotions	(Müller,	Cieslik,	Turetsky,	&	Eickhoff,	2012),	58 

or	face/voice	identities	(Park	et	al.,	2010).	Despite	these	observations,	little	is	known	about	how	59 

scene	information	is	processed	beyond	the	sensory	modality	domain.		60 

In	real	world	settings,	our	perception	of	scenes	typically	relies	on	multiple	senses.	Therefore,	61 

we	postulate	that	there	should	exist	a	stage	of	modality-independent	representation	of	scenes	62 

beyond	the	visual	hierarchy,	which	should	generalize	information	across	different	modality	63 

channels.	We	hypothesized	that	PFC	may	play	a	role	in	representing	scene	categories	beyond	64 

the	modality	domain	based	on	the	previous	research	showing	that	PFC	shows	categorical	65 

representations	of	visual	information	(Freedman,	Riesenhuber,	Poggio,	&	Miller,	2001;	Miller,	66 

Freedman,	&	Wallis,	2002;	Walther	et	al.,	2009).		67 

The	present	study	investigates	modality-independent	scene	representation	using	MVPA	of	fMRI	68 

data.	First,	we	identified	brain	areas	that	process	both	visual	and	auditory	scene	information	by	69 

decoding	neural	representations	of	scene	categories	elicited	by	scene	images	and	sounds	70 

separately.	We	hypothesized	that	some	of	these	areas,	which	contain	both	visual	and	auditory	71 

scene	content,	might	not	compute	modality-independent	representations	but	process	each	72 
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modality	input	separately.	To	test	this	idea,	we	performed	cross-decoding	analysis	between	the	73 

two	modalities	to	establish	cross-modal	areas.	Furthermore,	we	examined	whether	74 

representations	of	scene	categories	in	one	modality	is	degraded	by	conflicting	stimulation	in	75 

the	other	domain	(i.e.	a	beach	image	and	an	office	sound),	which	shows	whether	a	brain	area	76 

integrate	information	from	different	sensory	domains.	77 

Finally,	to	tie	neural	representations	of	scene	contents	to	human	categorization	behavior,	we	78 

compared	the	errors	of	neural	decoders	to	those	from	a	separate	behavioral	experiment.	79 

Among	the	multisensory	brain	regions	that	we	investigated,	only	prefrontal	regions	contain	80 

modality-independent	representations	of	scene	categories,	integrate	information	from	81 

different	modality	channels	and	reflect	human	categorization	behavior.	82 

	83 

	84 

	85 

	86 

	87 

[Please	insert	Figure	1	around	here]	88 

89 
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MATERIALS	AND	METHODS	90 

We	posited	four	different	models	of	how	visual	and	auditory	information	can	be	processed	91 

within	a	brain	region,	a	purely	visual	model,	a	purely	auditory	model,	a	multi-modal	model	with	92 

separate	but	intermixed	neural	populations	for	processing	visual	and	auditory	information,	and	93 

a	cross-model	model	with	neurons	truly	integrating	visual	and	auditory	information	(Fig	1C).	94 

Experimental	conditions	and	analysis	protocols	were	designed	to	discriminate	between	these	95 

models	(Fig	1A,	B).		96 

Figure	1D	shows	predicted	results	for	each	of	the	four	models.	Specifically,	we	expect	that	97 

primary	visual	and	auditory	regions	will	contain	neurons	dedicated	to	the	processing	their	98 

respective	modality	exclusively.	In	these	regions,	scene	categories	should	be	decodable	from	99 

the	corresponding	modality	condition	only,	but	not	across	modalities.	Also,	conflicting	100 

information	from	the	other	modality	should	not	interfere	with	the	neural	representation	from	101 

the	preferred	modality.	In	multi-modal	regions,	both	visual	and	auditory	information	should	be	102 

processed	in	anatomically	collocated	but	functionally	separate	neural	populations.	Therefore,	103 

we	expect	that	both	image	and	sound	categories	can	be	decoded,	but	decoding	across	104 

modalities	should	not	be	possible.	Conflicting	information	from	the	other	modality	should	not	105 

interfere	with	image	and	sound	processing,	as	the	information	from	each	modality	channel	is	106 

processed	separately.	It	is	conceivable	that	these	multimodal	areas	give	precedence	to	one	107 

particular	sense,	not	processing	both	equally,	when	there	is	conflicting	information	from	each	108 

channel.	Finally,	scene	categories	from	both	modalities	should	be	decodable	from	cross-modal	109 

regions,	as	long	as	they	are	consistent.	Hence,	both	image	and	sound	categories	should	be	110 

decodable,	and	scene	category	decoding	should	generalize	across	modalities.	However,	111 
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conflicting	information	from	one	modality	will	interfere	with	processing	of	information	from	the	112 

other	modality	in	this	region,	so	that	decoding	of	scene	categories	will	be	degraded	when	the	113 

information	from	images	and	sounds	is	inconsistent.		114 

	115 

Participants	116 

Thirteen	subjects	(18	to	25	years	old,	6	females;	7	males)	participated	in	the	fMRI	experiment.	117 

All	participants	were	in	good	health	with	no	past	history	of	psychiatric	or	neurological	disorders	118 

and	reported	having	normal	hearing	and	normal	or	corrected-to-normal	vision.	They	gave	119 

written	informed	consent	before	the	experiment	began	according	to	the	Institutional	Review	120 

Board	of	The	Ohio	State	University.		121 

A	separate	group	of	25	undergraduate	students	from	the	University	of	Toronto	(18	to	21	years	122 

old,	16	females;	9	males)	participated	in	the	behavioral	experiment	for	course	credit.	All	123 

participants	had	normal	hearing	and	normal	or	corrected-to-normal	vision	and	gave	written	124 

informed	consent.	The	experiment	was	approved	by	the	Research	Ethics	Review	Board	of	the	125 

University	of	Toronto.	126 

	127 

Stimuli	128 

In	the	fMRI	experiment,	640	color	photographs	of	different	scene	categories	(beaches,	forests,	129 

cities,	&	offices)	were	used.	The	images	have	previously	been	rated	as	the	best	exemplars	of	130 

their	categories	from	a	data	base	of	about	4000	images	that	were	downloaded	from	the	131 

internet	(Torralbo	et	al.	2013).	Images	were	presented	at	a	resolution	of	800x600	pixels	using	a	132 
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Christie	DS+6K-M	projector	operating	at	a	refresh	rate	60Hz.	Images	subtended	approximately	133 

21x17	degrees	of	visual	angle.	134 

Sixty-four	sound	clips	representing	the	same	four	scene	categories	(beaches,	forests,	cities,	or	135 

offices)	were	used	as	auditory	stimuli.	The	sound	clips	were	purchased	from	various	commercial	136 

sound	libraries	and	edited	to	15	seconds	of	length.	Because	of	this	relatively	longer	137 

presentation	time	for	each	audio	exemplar,	fewer	exemplars	were	used	compared	to	those	in	138 

the	image	condition.	Perceived	loudness	was	equated	using	Replay	Gain	as	implemented	in	the	139 

Audacity	sound	editing	software	(Audacity	Team,	2012).	In	a	pilot	experiment,	the	sound	clips	140 

were	correctly	identified	and	rated	as	highly	typical	for	their	categories	by	14	naïve	subjects.	141 

The	same	visual	and	the	auditory	stimuli	were	used	in	the	behavioral	experiment.	In	the	visual	142 

part	of	the	experiment,	400	images	were	used	for	practice	blocks	(key-category	association	and	143 

staircase-wise	practice),	and	the	240	images	were	used	in	the	main	testing	blocks.	Images	were	144 

presented	on	a	CRT	screen	at	a	resolution	of	800x600	pixels	and	subtended	approximately	29	x	145 

22	degrees	of	visual	angle.	The	resolution	of	the	monitor	was	1024	x	768	with	a	refresh	rate	at	146 

150	Hz.	Images	were	followed	by	a	perceptual	mask,	which	was	generated	by	synthesizing	a	147 

mixture	of	textures	reflecting	all	four	scene	categories	(Portilla	&	Simoncelli,	2000).		148 

	149 

Procedure	and	Experiment	design	150 

fMRI	experiment	151 

The	fMRI	experiment	consisted	of	three	conditions;	the	image	condition,	the	sound	condition,	152 

and	the	mixed	condition,	in	which	both	images	and	sounds	presented	concurrently.	153 
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Participants’	brains	were	scanned	during	twelve	experimental	runs,	four	runs	for	each	154 

condition.	Each	run	started	with	the	instruction	asking	participants	to	attend,	for	the	duration	155 

of	the	run,	to	either	images	(image	runs	and	half	of	the	mixed	runs)	or	sounds	(sound	runs	and	156 

the	other	half	of	the	mixed	runs).		157 

Runs	contained	eight	blocks,	two	for	each	scene	category,	interleaved	with	12.5	s	fixation	158 

periods	to	allow	for	the	hemodynamic	response	to	return	to	baseline	levels.	The	beginning	and	159 

the	end	of	a	run	also	included	a	fixation	period	of	12.5	sec.	The	order	of	blocks	within	runs	and	160 

the	order	of	runs	were	counter-balanced	across	participants.	Mixed	runs	were	only	presented	161 

after	at	least	two	pure	image	and	sound	runs.	Stimuli	were	arranged	into	eight	blocks	of	15	162 

seconds	duration.	During	image	blocks	participants	were	shown	ten	color	photographs	of	the	163 

same	scene	category	for	1.5	seconds	each.	During	sound	blocks	they	were	shown	a	blank	164 

screen	with	a	fixation	cross,	and	a	15-second	sound	clip	was	played	using	Sensimetrics	S14	MR-165 

compatible	in-ear	noise-canceling	headphones	at	approximately	70	dB.	During	mixed	blocks	166 

participants	were	shown	images	and	played	a	sound	clip	of	a	different	scene	category	at	the	167 

same	time.	A	fixation	cross	was	presented	throughout	each	block,	and	subjects	were	instructed	168 

to	maintain	fixation.	Each	run	lasted	3	min	and	52.5	seconds.	169 

fMRI	data	acquisition	and	preprocessing	170 

Imaging	data	were	recorded	on	a	3	Tesla	Siemens	MAGNETOM	Trio	MRI	scanner	with	a	12-171 

channel	head	coil	at	the	Center	for	Cognitive	and	Behavioral	Brain	Imaging	(CCBBI)	at	The	Ohio	172 

State	University.	High	resolution	anatomical	images	were	acquired	with	a	3D-MPRAGE	173 

(magnetization-prepared	rapid	acquisition	with	gradient	echo)	sequence	with	sagittal	slices	174 
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covering	the	whole	brain;	inversion	time	=	930ms,	repetition	time	(TR)	=	1900ms,	echo	time	175 

(TE)	=	4.68ms,	flip	angle	=	9°,	voxel	size	=	1	x	1	x	1	mm,	matrix	size	=	224	x	256	x	160	mm.	176 

Functional	images	for	the	main	experiment	were	recorded	with	a	gradient	echo,	echo-planar	177 

imaging	sequence	with	a	volume	repetition	time	(TR)	of	2.5	s,	an	echo	time	(TE)	of	28ms	and	a	178 

flip	angle	of	78	degrees.	48	axial	slices	with	3	mm	thickness	were	recorded	without	gap,	179 

resulting	in	an	isotropic	voxel	size	of	3	x	3	x	3	mm.		180 

FMRI	data	were	motion	corrected	to	one	EPI	image	(the	72nd	volume	of	the	10th	run),	followed	181 

by	spatial	smoothing	with	a	Gaussian	kernel	with	2	mm	full	width	at	half	maximum	(FWHM)	and	182 

temporal	filtering	with	a	high-pass	filter	at	1/400	Hz.	Data	were	normalized	to	percent	signal	183 

change	by	subtracting	the	mean	of	the	first	fixation	period	in	each	run	and	dividing	by	the	mean	184 

across	all	runs.	The	effects	of	head	motion	(6	motion	parameters)	and	scanner	drift	(second	185 

degree	polynomial)	were	regressed	out	using	a	general	linear	model	(GLM).	The	residuals	of	186 

this	GLM	analysis	were	averaged	over	the	duration	of	individual	blocks,	resulting	in	96	brain	187 

volumes	that	were	used	as	input	for	a	multi-voxel	pattern	analysis	(MVPA).	Preprocessing	was	188 

performed	using	AFNI	(Cox,	1996).		189 

Behavioral	experiment	190 

The	behavioral	experiment	consisted	of	two	parts,	a	visual	and	an	auditory	part.	The	order	of	191 

the	two	parts	was	randomized	for	each	participant.		192 

The	visual	part	consisted	of	two	phases;	practice	and	testing.	Participants	performed	two	types	193 

of	practice;	one	for	the	key-category	association	and	the	other	for	the	fast	image	presentation.	194 

During	the	first	block	of	practice,	photographs	of	natural	scenes	were	presented	for	200ms	195 
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(stimulus	onset	asynchrony,	SOA),	immediately	followed	by	a	perceptual	mask	for	500ms.	196 

Participants	were	asked	to	press	one	of	four	keys	(‘a’,	‘s’,	‘k’,	‘l’)	within	2	second	of	stimulus	197 

onset.	They	received	acoustic	feedback	(a	short	beep)	when	they	made	an	error.	Assignment	of	198 

the	keys	to	the	four	scene	categories	(beaches,	forests,	cities,	offices)	was	randomized	for	each	199 

participant.	After	participants	achieved	90%	accuracy	in	this	key	practice	phase,	they	completed	200 

four	additional	practice	blocks	(40	trials	each),	during	which	the	SOA	was	linearly	decreased	to	201 

26.7ms.	The	main	testing	phase	consisted	of	six	blocks	(40	trials	each)	of	4AFC	scene	202 

categorization	with	a	fixed	SOA	of	26.7ms	and	without	feedback.		203 

In	the	auditory	part,	participants	listened	to	scene	soundscapes	of	15	seconds	in	length.	They	204 

indicated	their	categorization	decision	by	pressing	one	of	four	keys	(same	key	assignment	as	in	205 

the	visual	part).	In	order	to	make	the	task	difficulty	comparable	to	the	image	categorization	206 

task,	we	overlaid	pure-tone	noise	onto	the	original	sound	clips.	Noise	consisted	of	30ms	207 

snippets	of	pure	tones,	whose	frequency	was	randomly	chosen	between	50	and	2000	Hz	with	3	208 

ms	of	fade-in	and	fade-out	(linear	ramp).	Based	on	a	pilot	experiment,	we	set	the	relative	209 

volume	of	the	noise	stimulus	to	nine	times	the	volume	of	the	scene	sounds.	To	familiarize	210 

participants	with	the	task,	they	first	performed	4	practice	trials.	Participants	were	asked	to	211 

respond	with	the	key	corresponding	to	the	correct	category,	starting	from	8	seconds	after	the	212 

onset	of	the	sound	and	without	an	upper	time	limit.	Participants	were	encouraged	not	to	213 

deliberate	on	the	answer	but	to	respond	as	quickly	and	as	accurately	as	possible.	214 

	215 

Data	analysis	and	Statistical	analysis	216 
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Defining	Regions	of	Interest	217 

Regions	of	interest	in	visual	cortex	were	defined	using	functional	localizer	scans,	which	were	218 

performed	at	the	end	of	the	same	session	as	the	main	experiment.	Retinotopic	areas	in	early	219 

visual	cortex	were	identified	using	the	meridian	stimulation	method	(Kastner,	Weerd,	220 

Desimone,	&	Ungerleider,	1998).	The	vertical	and	horizontal	meridians	of	the	visual	field	were	221 

stimulated	alternatingly	with	wedges	with	flickering	checkerboard	pattern.	Boundaries	between	222 

visual	areas	were	outlined	on	the	computationally	flattened	cortical	surface.	The	boundary	223 

between	V1	and	V2	was	identified	as	the	first	vertical	meridian	activity,	the	boundary	between	224 

V2	and	V3	as	the	first	horizontal	meridian,	and	the	boundary	between	V3	and	V4	(lower	bank	of	225 

the	calcarine	fissure	only)	as	the	second	vertical	meridian.	To	establish	the	anterior	boundary	of	226 

V4,	we	stimulated	the	upper	and	lower	visual	field	in	alternation	with	flickering	checkerboard	227 

patterns.	The	anterior	boundary	of	V4	was	found	by	ensuring	that	both	upper	and	lower	visual	228 

field	are	represented	in	V4.	Participants	maintained	central	fixation	during	the	localizer	scan.	229 

To	define	high-level	visual	areas,	we	presented	participants	with	blocks	of	images	of	faces,	230 

scenes,	objects,	and	scrambled	images	of	objects.	FMRI	data	from	this	localizer	were	pre-231 

processed	the	same	way	as	the	main	experiment	data,	but	spatially	smoothed	with	a	4	mm	232 

FWHM	Gaussian	filter.	Data	were	further	processed	using	a	general	linear	model	233 

(3dDeconvolve	in	Afni)	with	regressors	for	all	four	image	types.	ROIs	were	defined	as	234 

contiguous	clusters	of	voxels	with	significant	contrast	(q	<	0.05,	corrected	using	false	discovery	235 

rate)	of:	scenes	>	(faces	and	objects)	for	PPA,	RSC	(Epstein	and	Kanwisher,	1998)	and	OPA	(Dilks	236 

et	al.,	2013);	and	objects	>	(scrambled	objects)	for	LOC	(Malach	et	al.,	1995).	Voxels	that	could	237 

not	be	uniquely	assigned	to	one	of	the	functional	ROIs	were	excluded	from	the	analysis.	238 
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Anatomically	defined	ROIs	were	extracted	using	a	probability	atlas	in	AFNI	(DD	Desai	MPM;	239 

Destrieux	et	al.,	2010):	middle	temporal	gyrus	(MTG),	superior	temporal	gyrus	(STG),	superior	240 

temporal	sulcus	(STS),	angular	gyrus	(AG),	superior	parietal	gyrus	(SPG),	intraparietal	sulcus	241 

(IPS),	middle	frontal	gyrus	(MFG),	superior	frontal	gyrus	(SFG),	and	inferior	frontal	gyrus	(IFG)	242 

with	pars	opercularis,	pars	orbitalis,	and	pars	triangularis.	Anatomical	masks	for	primary	243 

auditory	cortex	and	its	subdivisions	(Planum	Temporale,	Posteromedial	Heschl’s	gyrus,	Middle	244 

Heschl’s	gyrus,	Anterolateral	Heschl’s	gyrus,	&	Planum	Polare)	were	made	available	by	Sam	245 

Norman-Haignere	(Norman-Haignere,	Kanwisher,	&	McDermott,	2013).	After	nonlinear	246 

alignment	of	each	participants’	anatomical	image	to	MNI	space	using	Afni’s	3dQwarp	function,	247 

the	inverse	of	the	alignment	was	used	to	project	anatomical	ROI	masks	back	into	original	248 

subject	space	using	3dNwarpApply.	All	decoding	analyses,	including	for	the	anatomically	249 

defined	ROIs,	were	performed	in	original	subject	space.	250 

Multi-voxel	pattern	analysis	251 

For	each	participant,	we	trained	a	linear	support	vector	machine	(SVM;	using	LIBSVM,	Chang	&	252 

Lin,	2001)	to	assign	the	correct	scene	category	labels	to	the	voxel	activations	inside	an	ROI	253 

based	on	the	fMRI	data	from	all	runs	except	one.	The	SVM	decoder	then	produced	predictions	254 

for	the	labels	of	the	data	in	the	left-out	run.	This	leave-one-run-out	(LORO)	cross	validation	255 

procedure	was	repeated	with	each	run	being	left	out	in	turn,	thus	producing	predicted	scene	256 

category	labels	for	all	runs.	Decoding	accuracy	was	assessed	as	the	fraction	of	blocks	with	257 

correct	category	labels.	Group-level	statistics	was	computed	over	all	thirteen	participants	using	258 

one-tailed	t	tests,	determining	if	decoding	accuracy	was	significantly	above	chance	level	(0.25).	259 
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Significance	of	the	t-test	was	adjusted	for	multiple	comparisons	using	false	discovery	rate	(FDR)	260 

(Westfall	&	Young,	1993).		261 

To	curb	over-fitting	of	the	classifier	to	the	training	data,	we	reduced	the	dimensionality	of	the	262 

neural	data	by	selecting	a	subset	of	voxels	in	each	ROI.	Voxel	selection	was	performed	by	263 

ranking	voxels	in	the	training	data	according	to	the	F	statistics	of	a	one-way	ANOVA	of	each	264 

voxel’s	activity	with	scene	category	as	the	main	factor	(Pereira,	Mitchell,	&	Botvinick.	2009).	We	265 

determined	the	optimal	number	of	voxels	by	cross	validation	within	the	training	data.	In	the	266 

case	of	cross	validation	analysis	of	the	pure	image	and	sound	conditions,	voxel	selection	was	267 

performed	in	a	nested	cross-validation,	using	the	training	data	of	each	cross	validation	fold.	268 

Optimal	voxel	numbers	varied	by	ROI	and	participant	but	were	generally	between	100	and	1000	269 

(mean	voxel	number	averaged	across	all	ROIs	and	subjects	=	107.125).	270 

Error	correlations	271 

Category	label	predictions	of	the	decoder	were	recorded	in	a	confusion	matrix,	whose	rows	272 

indicate	the	category	of	the	stimulus,	and	whose	columns	represent	the	category	predictions	by	273 

the	decoder.	Diagonal	elements	indicate	correct	predictions,	and	off-diagonal	elements	274 

represent	decoding	errors.	Neural	representations	of	scene	categories	were	compared	with	275 

human	behavior	by	correlating	the	error	patterns	(the	off-diagonal	elements	of	the	confusion	276 

matrices)	between	neural	decoding	and	behavioral	responses	(Walther,	Beck,	&	Fei-Fei	2012).	277 

Statistical	significance	of	the	correlations	was	established	non-parametrically	against	the	null	278 

distribution	of	all	error	correlations	that	were	obtained	by	jointly	permuting	the	rows	and	279 

columns	of	one	of	the	confusion	matrices	in	question	(24	possible	permutations	of	four	labels).	280 
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Error	correlations	were	considered	as	significant	when	none	of	the	correlations	in	the	null	set	281 

exceeded	the	correlation	for	the	correct	ordering	of	category	labels	(p	<	0.0417).		282 

To	assess	the	similarity	between	neural	representations	and	the	physical	characteristics	of	the	283 

stimuli,	we	constructed	simple	computational	models	of	scene	categorization	based	on	low-284 

level	stimulus	features.	Scene	images	were	filtered	with	a	bank	of	Gabor	filters	with	four	285 

different	orientations	at	four	scales.	Images	were	categorized	based	on	the	resulting	feature	286 

vector	in	a	16-fold	cross	validation,	using	a	linear	SVM,	resulting	in	a	classification	accuracy	of	287 

85.8%	(chance:	25%).		288 

Physical	properties	of	the	sounds	were	assessed	using	a	cochleagram,	which	mimics	the	289 

biomechanics	of	the	human	ear	(Meddis,	Hewitt,	&	Shackleton,	1990;	Wang	&	Brown,	2006).	290 

The	cochleagrams	of	individual	sound	clips	were	integrated	over	their	duration	and	subsampled	291 

to	128	frequency	bands,	resulting	in	a	biomechanically	realistic	frequency	spectrum.	The	292 

activation	of	the	frequency	bands	was	used	as	input	to	a	linear	SVM,	which	predicted	scene	293 

categories	of	sounds	in	a	16-fold	cross	validation.	The	classifier	accurately	categorized	57.8%	of	294 

the	scene	sounds	(chance:	25%).	Error	patterns	from	computational	analysis	for	images	and	295 

sounds	were	correlated	with	those	obtained	from	the	neural	decoder.		296 

Error	patterns	of	human	observers	were	obtained	from	the	behavioral	experiment.	Mean	297 

accuracy	was	76.6%	for	the	visual	task	(std	=	12.35%,	mean	RT	=	885.6	ms)	and	78.1%	for	the	298 

auditory	task	(std	=	6.86%,	mean	RT	=	7.84	sec).	Behavioral	errors	were	recorded	in	confusion	299 

matrices,	separately	for	images	and	sounds.	CM	rows	indicate	the	true	category	of	the	stimulus,	300 

and	columns	indicate	participants’	responses.	Individual	cells	contain	the	relative	frequency	of	301 
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the	responses	indicated	by	the	columns	to	stimuli	indicated	by	the	rows.	Group-mean	CMs	302 

were	compared	to	confusion	matrices	derived	from	neural	decoding.	303 

Searchlight	analysis	304 

To	explore	representations	of	scene	categories	outside	of	pre-defined	ROIs,	we	performed	a	305 

searchlight	analysis.	We	defined	a	cubic	“searchlight”	of	7x7x7	voxels	(21x21x21	mm).	The	306 

searchlight	was	centered	on	each	voxel	in	turn	(Kriegeskorte,	Göbel,	&	Bandettini,	2006),	and	307 

LORO	cross-validation	analysis	was	performed	within	each	searchlight	location	using	a	Gaussian	308 

Naïve	Bayes	classifier	until	all	voxels	served	as	the	center	of	the	searchlight	(Searchmight	309 

Toolbox;	Pereira	&	Botvinick	2011).	Decoding	accuracy	as	well	as	the	full	confusion	matrix	at	a	310 

given	searchlight	location,	were	assigned	to	the	central	voxel.		311 

For	group-analysis,	we	first	co-registered	each	participant’s	anatomical	brain	to	the	Montreal	312 

Neurological	Institute	(MNI)	152	template	using	a	diffeomorphic	transformation	as	calculated	313 

by	AFNI's	3dQWarp.	We	then	used	the	same	transformation	parameters	to	register	individual	314 

decoding	accuracy	maps	to	MNI	space	using	3dNWarpApply,	followed	by	spatial	smoothing	315 

with	a	4	mm	FWHM	Gaussian	filter.	To	identify	voxels	with	decodable	categorical	information	at	316 

the	group	level,	we	performed	one-tailed	t-tests	to	test	whether	decoding	accuracy	at	each	317 

searchlight	location	was	above	chance	(0.25).	After	thresholding	at	p	<	.01	(one-tailed)	we	318 

conducted	a	cluster-level	correction	for	multiple	comparisons,	applying	a	minimum	cluster	size	319 

of	15	voxels,	the	average	cluster	size	obtained	from	the	α	probability	simulations	conducted	for	320 

each	participant.		321 
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 322 

	323 

	324 

	325 

	326 

[Please	insert	Figure	2	around	here]	327 

	 	328 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/142562doi: bioRxiv preprint 

https://doi.org/10.1101/142562
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

RESULTS	329 

Decoding	scene	categories	of	images	and	sounds	330 

To	assess	neural	representations	of	scene	categories	from	images	and	sounds,	we	performed	331 

multivoxel	pattern	analysis	for	each	ROI.	A	linear	support	vector	machine	(SVM;	using	LIBSVM,	332 

Chang	&	Lin,	2001)	was	trained	using	neural	activity	patterns	with	category	labels	and	then	333 

tested	to	determine	if	a	trained	classifier	can	predict	the	scene	category	in	a	leave-one-run-out	334 

cross	validation.	335 

Figure	2	illustrates	decoding	accuracy	in	each	condition	for	various	brain	areas	(see	Table	1	for	336 

the	results	of	statistical	analysis).	As	shown	in	previous	studies	(Choo	&	Walther,	2016;	Park,	337 

Brady,	Greene,	&	Oliva,	2011;	Walther	et	al.,	2009;	Walther,	Chai,	Caddigan,	Beck,	&	Fei-Fei,	338 

2011;	Kravitz,	Peng,	&	Baker,	2011),	both	early	visual	areas	V1	through	V4	and	high-level	visual	339 

areas,	including	the	parahippocampal	place	area	(PPA),	the	retrosplenial	cortex	(RSC),	the	340 

occipital	place	area	(OPA),	and	lateral	occipital	complex	(LOC),	show	category-specific	scene	341 

representations.	We	were	also	able	to	decode	the	scene	categories	from	activity	elicited	by	342 

sounds	of	the	respective	natural	environments	in	primary	auditory	cortex	(A1)	as	well	as	its	343 

anatomical	sub-divisions	(Fig.	2).	344 

Unlike	previous	reports	showing	that	auditory	content	can	be	decoded	from	early	visual	cortex	345 

(Paton,	Petro,	&	Muckli,	2016;	Vetter	et	al.,	2014),	we	did	not	find	representations	of	auditory	346 

scene	information	in	V1	to	V4.	However,	we	were	able	to	decode	auditory	scene	categories	in	347 

higher	visual	areas,	the	OPA	(30.5%,	t(12)	=	1.966,	q	=	0.036,	d	=	1.36)	and	the	RSC	(31.3%;	t(12)	348 
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=	1.803,	q		=0.048,	d	=	0.5).	Intriguingly,	we	could	also	decode	scene	categories	from	images	in	349 

A1	with	a	decoding	accuracy	of	29.8%,	t(12)	=	1.910,	q	=	1.91,	d	=	0.53.		350 

Having	found	modality-specific	representations	of	scene	categories	in	visual	and	auditory	351 

cortices,	we	aimed	to	identify	scene	representations	in	areas	which	are	not	limited	to	a	specific	352 

sensory	modality.	We	could	decode	categories	of	both	visual	and	auditory	scenes	in	several	353 

temporal	and	parietal	regions	(Fig.	2):	the	middle	temporal	gyrus	(MTG),	the	superior	temporal	354 

gyrus	(STG),	the	superior	parietal	gyrus	(SPG),	and	the	angular	gyrus	(AG).	In	the	superior	355 

temporal	sulcus	(STS),	we	could	decode	scene	categories	only	from	the	images,	not	from	the	356 

sounds.	Although	previous	studies	have	suggested	that	the	intraparietal	sulcus	(IPS)	is	involved	357 

in	audiovisual	processing	(Calvert,	Hansen,	Iversen,	&	Brammer,	2001),	we	could	not	decode	358 

visual	or	auditory	scene	categories	in	the	IPS.		359 

Next,	we	examined	whether	the	prefrontal	cortex	(PFC)	also	showed	category-specific	360 

representations	for	both	visual	and	auditory	scene	information.	Previous	studies	have	found	361 

strong	hemispheric	specialization	in	PFC	(Gaffan	&	Harrison,1991;	Goel,	et	al.,	2007;	Slotnick	&	362 

Moo,	2006).	We	therefore	analyzed	functional	activity	in	PFC	separately	by	hemisphere.	We	363 

were	able	to	decode	visual	scene	categories	significantly	above	chance	from	the	left	inferior	364 

frontal	gyrus	(IFG),	pars	opercularis,	the	right	IFG,	pars	triangularis,	and	in	both	hemispheres	365 

from	the	middle	frontal	gyrus	(MFG)	and	the	superior	frontal	gyrus	(SFG;	Fig.	2	&	Table	1).	The	366 

categories	of	scene	sounds	were	decodable	in	the	right	IFG,	pars	triangularis,	as	well	as	the	367 

MFG	and	SFG	in	both	hemispheres	(Fig.	2	&	Table	1).		368 

Although	the	temporal,	parietal,	and	prefrontal	cortex	all	showed	both	visual	and	auditory	369 

scene	representations,	this	does	not	necessarily	imply	that	these	areas	process	scene	370 
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information	beyond	the	sensory	modality	domain.	Neural	representation	of	scene	categories	in	371 

the	cross-modal	regions	should	not	merely	consist	of	co-existing	populations	of	neurons	with	372 

visually	and	auditorily	triggered	activation	patterns	(see	Fig	1c,	the	multi-modal	model);	the	373 

voxels	in	these	ROIs	should	be	activated	equally	by	visual	and	auditory	inputs	if	they	represent	374 

the	same	category.	In	other	words,	if	the	neural	activity	pattern	elicited	by	watching	a	picture	375 

of	a	forest	reflects	the	scene	category	of	forest,	then	this	neural	representation	should	be	376 

similar	to	that	elicited	by	listening	to	forest	sounds	(see	Fig	1c,	the	cross-modal	model).	We	377 

aimed	to	explicitly	examine	whether	scene	category	information	in	the	prefrontal	areas	378 

transcends	sensory	modalities	using	cross-decoding	analysis	between	the	image	and	sound	379 

conditions.		380 

	381 

	382 

	383 

	384 

[Please	insert	Table	1	around	here]	385 

	 	386 
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Cross-modal	decoding		387 

For	the	cross-decoding	analysis,	we	trained	the	decoder	using	the	image	labels	from	the	image	388 

runs	and	then	tested	whether	it	could	correctly	predict	the	categories	of	scenes	presented	as	389 

sounds	in	the	sound	runs.	We	also	performed	the	reverse	analysis,	training	the	decoder	on	the	390 

sound	runs	and	testing	it	on	the	image	runs	(Fig.	2).		391 

Cross-decoding	from	images	to	sounds	succeeded	in	the	MFG	in	both	hemispheres	and	in	the	392 

right	IFG,	pars	orbitalis.	The	right	MFG	and	the	right	IFG,	pars	triangularis,	showed	significant	393 

decoding	accuracy	for	cross-decoding	from	sounds	to	images	(Fig.	2).	However,	cross-decoding	394 

was	not	possible	in	either	direction	anywhere	in	sensory	cortices	or	temporal	and	parietal	395 

cortices	which	have	significant	decoding	of	both	image	and	sound	categories.	Although	V3	and	396 

the	planum	temporale	(PT)	shows	significant	decoding	from	the	cross-decoding	analysis	of	397 

images	to	sounds	(see	Fig	2	and	Table	1),	it	is	hard	to	interpret	these	findings	as	equivalent	to	398 

those	in	prefrontal	regions	since	they	only	show	significant	decoding	of	either	image	or	sound	399 

categories	in	the	straight	decoding	analysis.	These	results	therefore	suggest	that	only	prefrontal	400 

areas	contain	modality-independent	representations	of	scene	categories	with	similar	neural	401 

activity	patterns	from	visual	and	auditory	scene	information.	402 

	403 

Presenting	images	and	sounds	concurrently	404 

As	a	further	test	to	examine	the	cross-modal	nature	of	scene	category	representations	in	PFC,	405 

we	used	an	interference	condition,	in	which	we	presented	images	and	sounds	from	406 

incongruous	categories	simultaneously.	If	a	population	of	neurons	encodes	a	scene	category	407 
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independently	of	sensory	modality,	then	we	should	see	a	degradation	of	the	category	408 

representation	in	the	presence	of	a	competing	signal	from	the	other	modality.	If,	on	the	other	409 

hand,	two	separate	but	intermixed	populations	of	neurons	encode	the	visual	and	auditory	410 

categories,	respectively,	then	we	should	be	able	to	still	decode	the	category	from	at	least	one	411 

of	the	two	senses.		412 

To	decode	scene	categories	from	this	mixed	condition,	we	created	an	image	and	a	sound	413 

decoder	by	training	separate	classifiers	with	data	from	the	image-only	and	the	sound-only	414 

conditions.	We	then	tested	these	decoders	with	neural	activity	patterns	from	the	mixed	415 

condition,	using	either	image	or	sound	labels	as	ground	truth	(Fig.	2).	As	the	training	and	the	416 

test	data	are	from	separate	sets	of	runs,	cross-validation	was	not	needed	for	this	analysis.	417 

We	were	able	to	decode	visual	and	auditory	scene	categories	from	the	respective	sensory	brain	418 

areas,	even	in	the	presence	of	conflicting	information	from	the	other	modality.	In	temporal	and	419 

parietal	ROIs,	we	could	decode	scene	categories,	but	these	ROIs	were	no	longer	multimodal;	420 

they	only	represented	scene	categories	in	either	the	visual	or	auditory	domain	but	no	longer	421 

both	(Fig	2	&	Table	1).	These	findings	suggest	that	these	ROIs	contain	separate	but	intermixed	422 

neural	populations	for	visual	and	auditory	information.	For	ROIs	in	PFC,	we	found	that	423 

conflicting	audiovisual	stimuli	interfered	heavily	with	representations	of	scene	categories	(Fig.	424 

2).	Scene	categories	could	no	longer	be	decoded	in	PFC	from	either	modality,	except	for	visual	425 

scenes	in	the	right	MFG.	Presumably,	this	break-down	of	the	decoding	of	scene	categories	is	426 

due	to	the	conflicting	information	from	the	two	sensory	modalities	arriving	at	the	same	cross-427 

modal	populations	of	neurons.	428 

	429 
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Error	correlations	430 

To	further	explore	the	characteristics	of	the	neural	representations	of	scene	categories,	we	431 

compared	the	patterns	of	errors	from	the	neural	decoders	with	those	from	human	behavior	as	432 

well	as	with	the	physical	attributes	of	the	stimuli.	If	neural	representation	of	scenes	in	a	certain	433 

brain	region	is	used	directly	for	categorical	decisions,	then	error	patterns	from	this	ROI	should	434 

be	similar	to	errors	made	in	behavioral	categorization	(Walther	et	al.,	2009).	However,	in	early	435 

stages	of	neural	processing,	scene	representations	might	reflect	the	physical	properties	of	the	436 

scene	images	or	sounds.	In	this	case,	the	error	patterns	of	the	decoders	should	resemble	the	437 

errors	that	a	classifier	would	make	solely	based	on	low-level	physical	properties.	438 

To	assess	similarity	of	representations,	we	correlated	the	patterns	of	errors	(off-diagonal	439 

elements	of	the	confusion	matrices,	see	Methods)	between	the	neural	decoders,	physical	440 

structure	of	the	stimuli,	and	human	behavior.	Statistical	significance	of	the	correlations	was	441 

established	with	non-parametric	permutation	tests.	Here	we	considered	error	correlations	to	442 

be	significant	when	none	of	the	correlations	in	the	null	set	exceeded	the	correlation	of	the	443 

correct	ordering	of	the	categories	(p	<	0.0417).		444 

Behavioral	errors	from	image	categorization	were	not	correlated	with	the	errors	derived	from	445 

image	properties	(r	=	-	.458,	p	=	.917),	suggesting	that	behavioral	judgment	of	scene	categories	446 

was	not	directly	driven	by	low-level	physical	differences	between	the	images.	There	was,	447 

however,	a	positive	error	correlation	between	the	auditory	task	and	physical	properties	of	448 

sounds	(r	=	.407,	p	<	.0417).		449 
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For	the	image	condition,	errors	from	neural	decoders	were	similar	to	those	from	image	450 

structure	in	early	visual	cortex	and	similar	to	human	behavioral	errors	in	high-level	visual	areas	451 

(Fig	3A);	in	early	visual	cortex,	decoding	errors	were	positively	correlated	with	image	structure	452 

(V1:	r	=	.746,	p	<.0417;	V2:	r	=	.451,	p	=	.083)	but	not	with	behavioral	errors	(V1:	r	=	-0.272,	p	453 

=	.0708;	V2:	r	=	-.132,	p	=	.667).	V3	and	V4	showed	no	strong	correlation	with	stimulus	structure	454 

(V3:	r	=	-0.171,	p	=	.708;	V4:	r	=	.076,	p	=	.667)	or	behavior	(V3:	r	=	.356,	p	=	.125;	V4:	r	=	.250,	p	455 

=	.125).	In	high-level	scene-selective	areas,	decoding	errors	were	positively	correlated	with	456 

image	behavior	(PPA:	r	=	.570,	p	<	.0417;	RSC:	r	=	0.637,	p	<	.0417;	not	in	OPA:	r	=	.183,	p	457 

=	.292),	but	not	with	the	error	patterns	representing	image	structure	(PPA:	r	=	.0838,	p	=	0.333;	458 

RSC:	r	=	-.230,	p	=	0.708;	OPA:	r	=	.099,	p	=	.458).		459 

Errors	from	the	neural	decoders	in	SPG	were	positively	correlated	with	image	behavior	(r	460 

=	.404,	p	=	<	.0417)	but	not	with	image	structure	(r	=	.220,	p	=	.167).	The	errors	from	MTG,	STS,	461 

and	AG	also	showed	high	correlation	with	image	behavior	errors,	but	did	not	reach	significance	462 

in	the	permutation	test	(MTG:	r	=	.360,	p	=	.083;	STS:	r	=	.348,	p	=	.083;	AG:	r	=	.552,	p	=	.083;	463 

Fig.	3A).	Finally,	in	PFC,	errors	from	the	image	decoders	in	the	right	MFG	and	SFG	show	464 

significant	correlation	with	image	behavior	(right	MFG:	r	=	.377,	p	<	.0417;	right	SFG,	r	=	.338,	p	465 

<	.0417).	The	left	hemisphere	of	these	ROIs	also	showed	positive	correlations	but	not	466 

significantly	(left	MFG:	r	=	.309,	p	=	.083;	left	SFG:	r	=	.212,	p	=	.208).	On	the	other	hand,	the	left	467 

IFG,	pars	opercularis,	and	the	right	IFG,	pars	triangularis,	showed	no	error	correlation	at	all	with	468 

either	image	behavior	or	structure	(Fig.	3A).	469 

In	the	sound	condition,	error	patterns	from	sound	structure	as	well	as	sound	behavior	were	470 

positively	correlated	with	decoding	errors	from	A1,	even	though	the	permutation	test	did	not	471 
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reach	significant	level	(with	sound	structure:	r	=	.438,	p	=	.083;	with	sound	behavior:	r	=	.46;	p	472 

=	.125).	However,	three	of	the	five	anatomical	sub-divisions	of	Heschl’s	Gyrus	showed	473 

significant	correlation	with	sound	structure	(TE1.1:	r	=	.478,	p	<	.0417;	TE1.0:	r	=	.443,	p	474 

<	.0417).	TE1.0	also	showed	significant	error	correlations	with	human	behavior	for	sounds	(r	475 

=	.83,	p	<	.0417;	Fig.	3B).		476 

None	of	the	temporal	or	parietal	ROIs	showed	significant	error	correlations	of	decoding	sounds	477 

with	sound	structure	or	behavior	(Fig.	3B).	In	PFC,	we	found	that	errors	from	the	right	SFG	478 

significantly	correlate	with	both	sound	structure	(r	=	.397,	p	<	.0417)	and	sound	behavior	(r	479 

=	.721,	p	<	.0417).	The	left	SFG	and	the	right	MFG	also	showed	high	correlations	with	sound	480 

behavior	but	not	significantly	(left	SFG:	r	=	.224,	p	=	.208;	right	MFG:	r	=	.486,	p	=	.125;	Fig.	3b).	481 

	482 

[Please	insert	Figure	3	around	here]	483 

	484 

	485 

Whole-brain	analysis	486 

In	order	to	explore	representations	of	scene	categories	beyond	the	pre-defined	ROIs,	we	487 

performed	a	whole-brain	searchlight	analysis	with	a	size	of	7x7x7	voxels	(21x21x21	mm)	cubic	488 

searchlight.	The	same	LORO	cross-validation	analysis	for	image	and	sound	conditions	as	well	as	489 

the	same	two	cross-decoding	analyses	as	for	the	ROI-based	analysis	were	performed	at	each	490 

searchlight	location,	followed	by	a	cluster-level	correction	for	multiple	comparisons.	For	each	491 

decoding	condition,	we	found	several	spatial	clusters	with	significant	decoding	accuracy.	Some	492 
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of	these	clusters	confirmed	the	pre-defined	ROIs,	others	revealed	scene	representations	in	493 

unexpected	regions	beyond	the	ROIs.		494 

For	the	decoding	of	the	image	categories,	we	found	a	large	cluster	of	15359	voxels	with	495 

significant	decoding	accuracy	for	decoding	scene	images,	spanning	most	of	visual	cortex.	In	496 

accordance	with	the	ROI-based	analysis,	we	also	found	clusters	in	prefrontal	cortex,	497 

overlapping	with	the	right	middle	frontal	gyrus	(MFG),	and	the	superior	frontal	gyrus	(SFG),	the	498 

inferior	frontal	gyrus	(IFG)	and	MFG	in	the	left	hemisphere.	See	Figure	4A	and	Table	2	for	a	499 

complete	list	of	clusters.	Decoding	of	sound	categories	produced	two	large	clusters	in	the	two	500 

hemispheres,	which	overlap	with	primary	auditory	cortices,	as	well	as	clusters	near	the	right	501 

insula	and	in	left	STG	(see	Fig.	4A	and	Table	2).		502 

Even	though	we	were	able	to	find	ROIs	that	allowed	for	decoding	of	both	images	and	sounds,	503 

we	could	not	find	any	searchlight	locations	where	this	was	possible.	This	may	be	due	to	spatial	504 

smoothing	introduced	in	the	alignment	to	the	standard	brain	and	due	the	different	classifier	–	505 

we	used	a	Gaussian	Naïve	Bayesian	classifier	for	the	searchlight	analysis	and	a	linear	SVM	for	506 

the	ROI-based	analysis.	507 

We	found	several	significant	clusters	in	the	right	prefrontal	cortex	that	allowed	for	cross-508 

decoding	between	images	and	sounds	(Fig.	4B).	The	image-to-sound	condition	produced	509 

clusters	with	significant	decoding	accuracy	in	the	right	MFG,	SFG,	and	IFG	as	well	as	right	510 

superior	temporal	gyrus	(STG),	right	angular	gyrus	(AG),	right	inferior	temporal	gyrus	(ITG),	and	511 

left	middle	occipital	gyrus.	The	sound-to-image	condition	resulted	in	clusters	in	the	right	MFG,	512 

the	IFG	and	the	anterior	cingulate	gyrus	as	well	as	the	right	pre/postcentral	gyri	and	the	513 

parahippocampal	gyrus	(See	Fig	4B	and	Table	3	for	details).	We	found	two	compact	clusters	514 
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that	allowed	for	cross-decoding	in	both	directions	in	the	right	prefrontal	cortex,	overlapping	515 

with	the	right	IFG	(124	voxels)	and	MFG	(208	voxels).	Cross-decoding	between	images	and	516 

sounds	was	not	possible	anywhere	else.	517 

	518 

[Please	insert	Figure	4	around	here]	519 

[Please	insert	Table	2	around	here] 520 

[Please	insert	Table	3	around	here]	521 

	522 

We	compared	error	patterns	from	the	neural	decoders	to	stimulus	properties	and	human	523 

behavior	for	all	searchlight	locations	that	allowed	for	decoding	of	scene	categories	(Fig.	5	&	524 

Table	4).	Clusters	in	visual	cortex,	overlapping	with	V1-V4,	showed	significant	error	correlations	525 

with	image	properties.	Error	patterns	from	searchlight	locations	in	the	superior	parietal	gyrus	526 

(SPG)	and	the	parahippocampal	gyrus,	overlapping	with	the	PPA,	correlated	with	errors	from	527 

human	behavior	for	image	categorization.	In	general,	we	observed	a	posterior-to-anterior	(PA)	528 

trend,	with	voxels	in	the	posterior	(low-level)	visual	regions	more	closely	matched	to	stimulus	529 

properties	and	with	voxels	more	anterior	(high-level)	visual	regions	more	closely	related	to	530 

behavior.		531 

Clusters	in	bilateral	STG,	overlapping	with	A1,	showed	significant	error	correlations	with	sound	532 

properties	and	behavioral	errors	for	sound	categorization.	Within	this	cluster,	we	see	the	same	533 

posterior-to-anterior	(PA)	trend,	with	posterior	voxels	being	more	closely	related	to	sound	534 
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properties	and	more	anterior	voxels	being	more	closely	related	to	behavioral	categorization	of	535 

scene	sounds	(Fig.	5B).		536 

	[Please	insert	Figure	5	around	here]	537 

	[Please	insert	Table	4	around	here]	538 

	539 

	540 

	 	541 
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DISCUSSION 542 

The	present	study	investigated	where	and	how	scene	information	from	different	sensory	543 

domains	forms	modality-independent	representations	of	scene	categories.	We	have	found	that	544 

both	visual	and	auditory	stimuli	of	the	natural	environment	elicit	representations	of	scene	545 

categories	in	sub-regions	of	prefrontal	cortex	(PFC).	These	neural	representations	of	scene	546 

categories	generalize	across	sensory	modalities	and	resemble	human	categorization	behavior,	547 

suggesting	that	scene	representations	in	PFC	reflect	scene	categories	not	constrained	to	a	548 

specific	sensory	domain.	To	our	knowledge,	our	study	is	the	first	to	demonstrate	a	neural	549 

representation	of	scenes	at	such	an	abstract	level.	550 

Three	distinct	characteristics	support	the	idea	that	neural	representations	of	scene	categories	551 

in	PFC	are	distinct	from	those	in	modality-specific	areas	such	as	the	visual	or	the	auditory	552 

cortices	or	other	multisensory	areas.	First,	both	image	and	sound	categories	could	be	decoded	553 

from	the	same	areas	in	PFC.	Thus,	it	can	be	inferred	that	neural	representations	of	scene	554 

categories	in	PFC	are	not	limited	to	a	specific	sensory	modality	channel.	Second,	the	555 

representations	in	PFC	could	be	cross-decoded	from	one	modality	to	the	other,	showing	that	556 

the	category-specific	neural	activity	patterns	were	similar	across	the	sensory	modalities.	Third,	557 

when	subjects	were	presented	with	incongruous	visual	and	auditory	scene	information	558 

simultaneously,	it	was	no	longer	possible	to	decode	scene	categories	in	PFC,	whereas	modality-559 

specific	areas	as	well	as	multimodal	areas	still	carried	the	category-specific	neural	activity	560 

patterns.	This	result	shows	that	inconsistent	information	entering	through	the	two	sensory	561 

channels	in	the	mixed	condition	interferes,	preventing	the	formation	of	c	of	scene	categories	in	562 

PFC.	563 
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Although	scene	categories	could	be	decoded	from	both	images	and	sounds	in	several	ROIs	in	564 

the	temporal	and	parietal	lobes,	cross-decoding	across	sensory	modalities	was	not	possible	565 

there,	suggesting	that	neural	representations	elicited	by	visual	inputs	were	not	similar	to	those	566 

elicited	by	auditory	inputs.	Further	supporting	the	idea	that	visual	and	auditory	representations	567 

are	separate	but	intermixed	in	these	regions,	decoding	of	scene	categories	from	the	visual	or	568 

auditory	domain	was	still	possible	in	the	presence	of	a	conflicting	signal	in	the	other	domain.	569 

These	findings	suggest	that	even	though	information	from	both	visual	and	auditory	inputs	is	570 

present	in	these	regions	(Beauchamp	et	al.,	2004;	Calvert	et	al.,	2001),	scene	information	is	571 

computed	separately	for	each	sensory	modality,	unlike	in	PFC.	The	discrimination	between	572 

multi-modal	and	truly	cross-modal	representations	is	not	possible	with	the	univariate	analysis	573 

techniques	used	in	those	studies.	574 

Analysis	of	decoding	errors	demonstrated	that	the	category	representations	in	the	visual	areas	575 

have	a	hierarchical	organization.	In	the	early	stage	of	processing,	categorical	representations	576 

are	formed	based	on	the	physical	properties	of	visual	inputs,	whereas	in	the	later	stage,	the	577 

errors	of	neural	decoders	correlate	with	human	behavior,	confirming	previous	findings	which	578 

mainly	focused	on	the	scene-selective	areas	(Walther	et	al.,	2009;	2011;	Choo	&	Walther,	579 

2016).	Significant	error	correlation	between	human	behavior	and	the	neural	decoders	in	580 

prefrontal	areas	confirms	that	this	hierarchical	organization	is	extended	to	PFC,	beyond	the	581 

modality-specific	areas	PPA,	OPA,	and	RSC.		582 

Intriguingly,	no	similar	hierarchical	structure	of	category	representations	was	found	in	the	583 

auditory	domain.	Both	types	of	errors,	the	errors	representing	the	physical	properties	and	584 

those	from	human	behavior,	were	correlated	to	the	errors	of	neural	decoder	in	the	A1.	This	585 
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difference	between	the	visual	and	the	auditory	domain	might	reflect	the	fact	that	much	of	586 

auditory	processing	occurs	in	sub-cortical	regions,	before	the	information	arrives	in	auditory	587 

cortex.	Thus,	if	the	auditory	scene	processing	is	relying	on	a	neural	architecture	with	a	588 

hierarchy,	it	might	not	be	easily	detectable	with	fMRI.	A	recent	study	by	Teng,	Sommer,	589 

Pantazis	and	Oliva	(2017)	showed	evidence	suggesting	a	potential	structure	under	auditory	590 

scene	processing,	by	finding	that	different	types	of	auditory	features	in	a	scene,	reverberant	591 

space	and	source	identity,	are	processed	at	a	different	time	course.	Further	investigation	with	592 

other	various	recording	techniques,	such	as	MEG/EEG	in	combination	with	fMRI,	as	well	as	with	593 

computational	modeling	(Cichy	&	Teng,	2016)	necessitates	for	a	better	understanding	of	the	594 

neural	mechanism	of	auditory	scene	processing.		595 

Previous	fMRI	studies	have	shown	that	auditory	content	can	be	decoded	from	early	visual	596 

cortex,	suggesting	cross-modal	interactions	in	the	modality-specific	areas	(Paton	et	al.,	2016;	597 

Vetter	et	al.,	2014).	Although	we	did	not	observe	representations	of	auditory	scenes	in	the	early	598 

visual	areas,	our	data	show	that	auditory	content	can	be	decoded	from	high-level	scene-599 

selective	areas	(RSC	and	OPA).	Visual	content	can	be	decoded	from	A1.	This	seeming	600 

inconsistency	with	previous	studies	might	be	driven	by	different	levels	of	complexity	and	601 

diversity	of	the	auditory	stimuli	used	in	each	experiment:	Vetter	et	al.	(2014)	used	few	602 

exemplars	of	object-level	sounds.	We	used	more	complex	sounds	with	multiple	objects	603 

overlapping	in	time,	recorded	from	real-world	settings,	whose	statistics	could	only	be	classified	604 

at	the	category	level.	Thus,	category-specific	visual	imagery	caused	by	auditory	stimulation	may	605 

underlie	the	decoding	of	auditory	scene	categories	in	RSC	and	OPA.	These	findings	lead	to	a	606 

host	of	further	questions	for	future	research,	such	as	how	these	visual	and	auditory	areas	are	607 
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functionally	connected,	whether	the	multisensory	areas	mediate	this	interaction	between	the	608 

visual	and	auditory	areas	by	sending	feedback	signals,	or	whether	these	cross-modal	609 

representations	can	influence	or	interfere	with	perceptual	sensitivity	in	each	sensory	domain.		610 

The	whole-brain	searchlight	analysis	confirmed	the	findings	of	our	ROI-based	analysis.	In	the	611 

image	and	sound	decoding	analyses,	we	found	clusters	with	significant	decoding	accuracies	in	612 

the	visual	and	the	auditory	areas	as	well	as	in	the	temporal,	the	parietal,	and	the	prefrontal	613 

regions.	Furthermore,	the	clusters	in	the	prefrontal	areas	showed	significant	accuracy	in	the	614 

cross-decoding	analysis,	while	the	clusters	in	other	modality-specific	or	multimodal	areas	did	615 

not,	supporting	the	view	that	only	representations	in	the	prefrontal	cortex	transcend	sensory	616 

modalities.	In	the	analysis	of	decoding	errors,	we	observed	that	the	errors	of	the	image	617 

decoders	were	significantly	correlated	with	human	categorization	behavior	in	scene-selective	618 

areas	PPA	and	RSC	as	well	as	in	the	superior	parietal	gyrus,	consistent	with	previous	work	by	619 

our	group	(Walther	et	al.,	2009;	2011;	Choo	&	Walther,	2016).		620 

Previous	studies	addressing	the	integration	of	audiovisual	information	to	form	a	modality-621 

independent	representations	have	employed	univariate	analysis	(Beauchamp	et	al.,	2004;	622 

Downar	et	al.,	2000)	or	correlations	of	content-specific	visual	and	auditory	information	in	the	623 

brain	(Hsier	et	al.,	2012).	These	methods	do	not	distinguish	between	co-activation	from	624 

multiple	senses	and	modality-independent	processing.	Recent	studies	using	MVPA	have	shown	625 

that	visual	and	auditory	information	about	objects	(Man	et	al.,	2012)	or	emotions	(Peelen,	626 

Atkinson	&	Vuilleumier,	2010)	evokes	similar	neural	activity	patterns	across	different	senses,	627 

suggesting	that	stimulus	content	is	represented	independently	of	sensory	modality	at	later	628 

stages	of	sensory	processing.	Unlike	the	present	study,	however,	these	studies	report	that	areas	629 
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in	temporal	or	parietal	cortex	are	involved	in	this	multimodal	integration.	One	reason	for	this	630 

difference	could	be	that	real-world	scenes	are	more	variable	in	their	detailed	sensory	631 

representation,	typically	including	multiple	visual	and	auditory	cues.	Furthermore,	we	here	632 

consider	representations	of	scene	categories	as	opposed	to	object	identity	(Man	et	al.,	2012).	633 

Our	results	indicate	that	generalization	across	sensory	modalities	at	the	level	of	scene	634 

categories	occurs	only	in	PFC.	The	same	brain	regions	have	been	found	to	be	involved	in	purely	635 

visual	categorization	and	category	learning	(Freedman	et	al.,	2001;	Mack,	Preston,	&	Love,	636 

2013;	Meyers,	Freedman,	Kreiman,	Miller,	&	Poggio,	2008;	Miller	&	Cohen,	2001;	Wood	&	637 

Grafman,	2003).	638 

In	a	recent	review,	Grill-Spector	and	Weiner	(2014)	suggested	that	the	ventral	temporal	cortex	639 

contains	a	hierarchical	structure	for	visual	categorization,	which	has	the	more	exemplar-specific	640 

representations	in	posterior	areas,	but	the	more	abstract	representations	in	anterior	areas	of	641 

the	ventral	temporal	cortex.	In	the	present	study,	we	show	that	the	posterior-to-anterior	642 

hierarchy	of	levels	of	abstraction	extends	to	the	PFC,	which	represents	scene	categories	beyond	643 

the	sensory	modality	domain.	The	abstraction	and	generalization	across	sensory	modalities	is	644 

likely	to	contribute	to	the	efficiency	of	cognition	by	representing	similar	concepts	in	a	645 

consistent	manner,	even	when	the	physical	signal	might	be	delivered	via	different	sensory	646 

channels	(Huth,	de	Heer,	Griffiths,	Theunissen,	&	Gallant,	2016).		647 

648 
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LIST	OF	TABLES	776 

Table	1	Statistical	results	of	decoding	performance	in	each	ROI	for	each	type	of	decoding	analysis:	t-777 

value,	q	value	(p	corrected	for	multiple	comparison),	Cohen’s	d.	One-sample	t-test	(one	tailed)	was	778 

performed	to	see	whether	neural	decoder’s	performance	is	over	the	chance	(25%)	and	the	significance	779 

of	the	test	was	adjusted	using	false	discovery	rate	(FDR)	;	the	degree	of	freedom	in	each	t-test	was	12,	780 

and	the	significant	tests	(q	<	.05)	are	highlighted	in	bold	font.	781 

	 	782 
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	783 

ROI 
Pure condition  Mixed condition 

Image decoding Sound decoding Image to sound Sound to image  Image decoding Sound decoding 

V1 4.90  0.001  1.36 0.41  0.345  0.11 -0.48 0.679  0.13 -0.12 0.679  0.03  9.28  <0.001 2.57 -0.13 0.551  0.04 

V2 8.34  <0.001 2.31 0.62  0.272  0.17 0.87  0.200  0.24 1.01  0.200  0.28  6.65  <0.001 1.85 -0.64 0.733  0.18 

V3 3.43  0.005  0.95 0.90  0.193  0.25 2.67  0.020  0.74 0.46  0.326  0.13  6.34  <0.001 1.76 -1.43 0.910  0.40 

V4 4.22  0.001  1.17 1.01  0.166  0.28 1.00  0.284  0.28 0.59  0.284  0.16  9.15  <0.001 2.54 2.25  0.022  0.62 

PPA 7.26  <0.001 2.01 1.46  0.085  0.40 -0.33 0.627  0.09 1.10  0.294  0.30  9.51  <0.001 2.64 0.87  0.200  0.24 

OPA 8.10  <0.001 2.25 1.97  0.036  0.55 -0.30 0.617  0.08 -0.13 0.617  0.04  9.29  <0.001 2.58 0.00  0.500  0.00 

RSC 5.77  <0.001 1.60 1.80  0.048  0.50 0.34  0.704  0.10 -0.55 0.704  0.15  6.35  <0.001 1.76 1.80  0.048  0.50 

LOC 8.58  <0.001 2.38 0.70  0.250  0.19 0.12  0.454  0.03 0.28  0.454  0.08  9.98  <0.001 2.77 -0.12 0.545  0.03 

A1 1.91  0.040  0.53 4.17  0.001  1.16 1.97  0.072  0.55 -0.49 0.682  0.13  -3.00 0.994  0.83 4.80 <0.001  1.33 

A1  PT 1.45  0.087  0.40 4.74  0.000  1.31 2.53  0.026  0.70 0.88  0.199  0.24  -0.88 0.801  0.24 5.30 <0.001  1.47 

A1 TE1.1 0.00  0.500  0.00 2.23  0.045  0.62 -1.41 0.908  0.39 -0.38 0.908  0.11  -0.45 0.670  0.12 3.30  0.006  0.92 

A1 TE1.0 0.26  0.399  0.07 2.57  0.024  0.71 0.42  0.340  0.12 0.98  0.340  0.27  0.55  0.296  0.15 7.94 <0.001  2.20 

A1 TE1.2 -2.86 0.993  0.79 1.06  0.310  0.29 0.12  0.455  0.03 0.33  0.455  0.09  -0.48 0.679  0.13 3.26  0.007  0.91 

A1 PP 0.95  0.181  0.26 3.08  0.010  0.85 -0.15 0.614  0.04 -0.30 0.614  0.08  -0.61 0.724  0.17 4.16  0.001  1.15 

MTG 2.69  0.010  0.75 3.28  0.007  0.91 1.56 0.146  0.43 1.09  0.148  0.30  0.96 0.357  0.27 0.37  0.358  0.10 

STG 3.35  0.003  0.93 4.26  0.001  1.18 -0.72 0.756  0.20 -0.43 0.756  0.12  -0.52 0.693  0.14 3.36  0.006  0.93 

STS 2.67  0.020  0.74 1.59  0.069  0.44 0.00  0.500  0.00 0.84  0.418  0.23  2.62  0.022  0.73 1.47  0.084  0.41 

Angular gyrus 4.18  0.001  1.16 2.28  0.021  0.63 0.67  0.464  0.19 0.09  0.464  0.03  2.38  0.035  0.66 1.58  0.070  0.44 

SPG 4.81  <0.001 1.33 2.96  0.006  0.82 -0.21 0.581  0.06 0.10  0.581  0.03  8.72  0.000  2.42 -1.26 0.885  0.35 

IPS 2.07  0.060  0.58 0.25  0.405  0.07 1.37  0.196  0.38 -0.72 0.756  0.20  1.17  0.264  0.32 0.53  0.303  0.15 

IFG orb LH -1.15  0.864 0.32 -0.15 0.864 0.04 -0.11 0.935  0.03 -1.63 0.935  0.45  -0.24 0.595  0.07 1.11  0.287  0.31 

IFG orb RH -2.85  0.993 0.79 -0.10  0.993 0.03 2.41  0.033  0.67 0.27  0.397  0.07  1.94  0.054  0.54 1.74  0.054  0.48 

IFG opr LH 3.64  0.003  1.01 -0.06  0.525 0.02 0.85  0.348  0.24 0.40  0.348  0.11  1.50  0.086  0.41 1.45  0.086  0.40 

IFG opr RH 1.00  0.337  0/28 0.33  0.375  0.09 0.00  0.500  0.00 0.88  0.398  0.24  0.37  0.721  0.10 -0.89 0.804  0.25 

IFG tri LH 1.35  0.108  0.37 1.30  0.108  0.36 -0.69 0.749  0.19 -0.63 0.749  0.17  0.33  0.375  0.09 1.28  0.223  0.36 

IFG tri RH 2.19  0.040  0.61 1.91  0.040  0.53 1.38  0.096  0.38 2.96  0.012  0.82  0.58  0.285  0.16 1.72  0.112  0.48 

MFG LH 5.01  <0.001 1.39 2.88  0.007  0.80 2.29  0.041  0.63 0.61  0.275  0.17  0.98  0.349  0.27 -0.09 0.537  0.03 

MFG RH 5.87  <0.001 1.69 4.30  0.001  1.19 1.89  0.042  0.52 2.02  0.042  0.56  3.08  0.010  0.85 1.33  0.104  0.37 

SFG LH 2.39  0.017  0.66 3.49  0.004  0.97 0.77  0.288  0.21 0.57  0.288  0.16  1.30  0.219  0.36 0.69  0.252  0.19 

SFG RH 2.98  0.011  0.83 2.22  0.023  0.62 1.06  0.223  0.29 0.79  0.223  0.22  1.82  0.094  0.50 -2.74 0.991  0.76 
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Table	2	Clusters	identified	in	the	searchlight	analysis	for	decoding	of	image	and	sound	scene	categories	786 

(thresholded	at	p	<	.01).	787 

Decoding	
Condition	

Peak	(MNI	coordinates)	 Volume	
(µl)	

Description	
x	 y	 z	 Accuracy	(%)	

Image	 -1.5	 81.9	 7	 40.1	 407262	 Middle	occipital	gyri,	
parahippocampal	gyri,	precuneus,	
cuenus,	superior	parietal	lobule,		
right	angular	gyrus	

-46.1	 -10.2	 34	 30.8	 7212	 Right	middle	frontal	gyrus	

-4.5	 -40	 31	 29.6	 4216	 Right	medial	frontal	gyrus	

40	 1.6	 31	 28.8	 1273	 Left	Inferior	frontal	gyrus	

34.2	 -48.9	 -8	 28.0	 1087	 Left	middle	frontal	gyrus	

13.4	 -60.8	 25	 28.6	 663	 Left	superior	frontal	gyrus	

19.3	 -48.9	 -14	 27.5	 424	 Left	superior	frontal	gyrus	

Sound	 52	 13.5	 4	 31.5	 13364	 Left	superior	temporal	gyrus	

-52	 13.5	 7	 31.1	 2439	 Right	superior	temporal	gyrus	

-37.2	 19.5	 7	 29.2	 1193	 Right	posterior	insula	

	788 
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Table	3	Clusters	identified	in	the	searchlight	analysis	for	cross-decoding	of	scene	images	and	sounds	790 

(thresholded	at	p	<	.01). 791 

Decoding	
Condition	

Peak	(MNI	coordinates)	 Volume	
(µl)	

Description	
x	 y	 z	 Accuracy	(%)	

Image	To	
Sound	

-10.4	 -31.1	 16	 29.2	 18800	 Right	anterior	cingulate,	right	medial	
frontal	gyrus,	right	superior	frontal	
gyrus	

-31.2	 -10.2	 40	 28.1	 9731	 Right	middle	frontal	gyrus,	right	
inferior	frontal	gyrus	

-55	 61.1	 13	 28.8	 2811	 Right	superior	temporal	gyrus,	right	
angular	gyrus,	right	middle	temporal	
gyrus	

-31.2	 -34	 22	 27.6	 1273	 Right	middle	frontal	gyrus,	right	
inferior	frontal	gyrus	

28.2	 22.5	 22	 27.3	 955	 Left	insula	

37.2	 16.5	 31	 27.3	 610	 Left	postcentral	gyrus,	left	precentral	
gyrus	

-52	 -22.1	 7	 28.0	 504	 Right	inferior	frontal	gyrus	

16.4	 87.9	 13	 26.9	 451	 Left	middle	occipital	gyrus,	left	
cuneus	

22.3	 -31.1	 10	 27.3	 398	 Left	anterior	cingulate	
Sound	To	
Image	

-22.3	 -37	 10	 28.1	 10527	 Right	medial	frontal	gyrus,	right	
anterior	cingulate,	right	inferior	
frontal	gyrus	

-49.1	 -10.2	 40	 28.8	 8777	 Right	middle	frontal	gyrus,	right	
inferior	frontal	gyrus,	right	insula	

31.2	 16.5	 28	 27.8	 5197	 Left	postcentral	gyrus,	left	precentral	
gyrus,	left	insula	

-34.2	 22.5	 -8	 27.0	 1299	 Right	parahippocampal	gyrus,	right	
hippocampus	
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Table	4	Clusters	identified	in	the	searchlight	analysis	for	error	correlations	in	the	image	and	the	sound	794 

conditions	(thresholded	at	p	<	.05).	795 

Error	correlation	 Peak	(MNI	coordinates)	 Volume	
(µl)	

Description	 ROIs	with	
overlap		

x	 y	 z	
correlation	
coefficient	

im
ag
e	
co
nd

iti
on

	
	 	

with	image	
structure	

16.4	 96.8	 -2	 .868	 36354	 middle	occipital	
gyrus,	inferior	
occipital	gyrus,	
lingual	gyrus,	
cuneus	

V1,	V2,	V3,	V4	

with	image	
behavior	

1.5	 99.8	 16	 .829	 172753	 middle	temporal	
gyrus,	middle	
occipital	gyrus,	
superior	occipital	
gyrus,	inferior	
parietal	lobule,	
superior	parietal	
lobule	

PPA,	OPA,	RSC,	
LOC	

so
un

d	
co
nd

iti
on

	
	 	

with	sound	
structure	

43.1	 19.5	 1	 .648	 3182	 left	superior	
temporal	gyrus	

left	A1	

-49.1	 10.6	 7	 .701	 530	 right	precentral	
gyrus,	right	
superior	temporal	
gyrus	

right	A1	
	

with	sound	
behavior	

52	 10.6	 10	 .757	 7318	 left	superior	
temporal	gyrus	

left	A1	

-55	 7.6	 7	 0.787	 1671	 right	precentral	
gyrus,	right	
superior	temporal	
gyrus	

right	A1	
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FIGURE	LEGENDS	798 

Figure	1	(A)	Illustration	of	the	image,	sound,	and	mixed	conditions.	In	the	pure	image	and	sound	799 

conditions,	either	images	or	sounds	from	four	different	scene	categories	were	presented	while	neural	800 

activity	patterns	of	participants	were	recorded.	In	the	mixed	condition,	both	images	and	sounds	were	801 

presented	simultaneously,	but	they	were	always	from	different	categories	(i.e.	a	beach	images	with	city	802 

sounds).	(B)	Multivariate	analysis	of	fMRI	data	for	decoding	image	and	sound	category,	cross-decoding	803 

across	image	and	sound,	and	decoding	image	and	sound	from	the	mixed	condition.	(C)	Models	for	804 

separate	brain	areas	dedicated	to	visual,	auditory,	multi-modal,	and	cross-modal	processing.	(D)	805 

Predictions	for	decoding	performance	of	each	model	in	different	conditions	(full	color:	decodable,	grey:	806 

not	decodable)	807 

 808 

Figure	2	Decoding	accuracy	in	each	ROI	(listed	in	each	row)	for	each	condition	(listed	in	each	column)	are	809 

illustrated	with	the	degree	of	color	saturation.	Decoding	accuracies	for	the	image	scene	categories	are	810 

illustrated	in	red,	those	for	the	sound	categories	are	illustrated	in	blue,	and	those	for	the	cross	decoding	811 

analysis	are	illustrated	in	purple.	The	first	four	columns	are	results	from	the	image	and	sound	conditions	812 

and	the	two	columns	on	the	right	are	the	results	from	the	mixed	condition.	The	last	column	indicates	813 

the	corresponding	models	for	each	ROI,	whose	predictions	are	comparable	to	the	results	in	each	ROI;	V:	814 

visual,	A:	auditory,	M:	multi-modal,	C:	cross-modal.	Significance	of	the	one-sample	t-tests	(one-tailed)	815 

was	adjusted	for	multiple	comparisons	using	false	discovery	rate,	*q	<	.05,	**q	<	.01,	***q	<	.001.			816 

	817 

Figure	3	Error	correlations	of	the	neural	decoder	with	behavior	and	stimuli	structure	in	the	image	(A)	818 

and	sound	(B)	conditions.	Diagonal	axes	indicate	the	points	where	the	error	correlations	with	behavior	819 

and	with	stimuli	structure	are	equal.	In	the	image	condition,	we	see	a	clear	progression	from	V1	through	820 
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V2-4	to	higher-level	visual	areas	(in	red),	moving	from	strong	error	correlation	with	image	structure	to	821 

strong	error	correlation	with	visual	behavior.	Error	patterns	from	decoding	image	categories	from	PFC	822 

(in	green)	are	most	similar	to	visual	behavior.	In	the	sound	condition,	all	ROIs	are	close	to	the	diagonal,	823 

because	sound	structure	and	sound	behavior	error	patterns	are	significantly	correlated	with	each	other.	824 

We	see	A1	and	its	subdivisions	(in	blue)	high	along	the	diagonal,	indicating	strong	similarity	with	both	825 

sound	structure	and	sound	behavior.	OPA	and	RSC	(in	red)	show	low	error	correlation	with	either	826 

structure	or	behavior.	Prefrontal	ROIs	(in	green)	are	distributed	along	the	diagonal,	with	right	MFG	and	827 

right	SFG	showing	high	and	left	MFG	showing	low	error	correlations.		828 

 829 

Figure	4	Searchlight	maps	for	(A)	decoding	image	and	sound	categories	and	(B)	cross-decoding	across	830 

image	and	sound	categories	(thresholded	at	p	<	.01).	(A)	Searchlight	locations	for	image	decoding	831 

overlap	with	the	parahippocampal	place	area	(PPA),	the	retrosplenial	cortex	(RSC),	the	occipital	place	832 

area	(OPA),	the	superior	parietal	gyrus	(SPG),	the	inferior	frontal	gyrus	(IFG),	the	middle	frontal	gyrus	833 

(MFG),	and	the	superior	frontal	gyrus	(SFG),	which	are	highlighted	in	red.	Searchlight	locations	for	sound	834 

decoding	overlap	with	A1,	which	are	highlighted	in	blue.	(B)	Searchlight	locations	for	cross-decoding	835 

analysis	(image	to	sound,	sound	to	image,	or	both)	overlap	with	PPA,	IFG,	MFG,	and	SFG,	which	are	836 

highlighted	in	orange,	yellow,	or	green	respectively.		837 

 838 

Figure	5	Searchlight	maps	or	error	correlations	in	the	image	(A)	and	sound	(B)	condition	(thresholded	at	839 

p	<	.01).	Note	that	(B)	uses	a	more	compact	range	of	axial	slices	than	(A).	There	were	no	significant	error	840 

correlations	outside	of	this	range	of	slices.	(A)	Searchlight	locations	with	significant	error	correlations	841 

with	image	structure	overlap	with	V1	and	V2	(highlighted	in	purple).	Searchlight	locations	with	842 

significant	error	correlations	with	image	behaviors	overlaps	with	the	parahippocampal	place	area	(PPA),	843 
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and	the	retrosplenial	cortex	(RSC).	(B)	Searchlight	locations	with	significant	error	correlations	with	sound	844 

structure,	and	sound	behaviors	(or	both)	overlap	with	A1	and	its	subdivisions	such	as	the	planum	845 

temporale	(PT),	posteromedial	Heschl’s	gyrus	(TE1.1),	middle	Heschl’s	gyrus	(TE1.0),	anterolateral	846 

Heschl’s	gyrus	(TE1.2),	and	the	planum	polare	(PP). 	847 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/142562doi: bioRxiv preprint 

https://doi.org/10.1101/142562
http://creativecommons.org/licenses/by-nc-nd/4.0/


49 
 

	

	 	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/142562doi: bioRxiv preprint 

https://doi.org/10.1101/142562
http://creativecommons.org/licenses/by-nc-nd/4.0/


50 
 

	

	 	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/142562doi: bioRxiv preprint 

https://doi.org/10.1101/142562
http://creativecommons.org/licenses/by-nc-nd/4.0/


51 
 

	

	 	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/142562doi: bioRxiv preprint 

https://doi.org/10.1101/142562
http://creativecommons.org/licenses/by-nc-nd/4.0/


52 
 

	

	 	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/142562doi: bioRxiv preprint 

https://doi.org/10.1101/142562
http://creativecommons.org/licenses/by-nc-nd/4.0/


53 
 

	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/142562doi: bioRxiv preprint 

https://doi.org/10.1101/142562
http://creativecommons.org/licenses/by-nc-nd/4.0/

