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The presence of modular organisation is a common property of a wide range of complex systems,
from cellular or brain networks to technological graphs. Modularity allows some degree of seg-
regation between different parts of the network and has been suggested to be a prerequisite for
the evolvability of biological systems. In technology, modularity defines a clear division of tasks
and it is an explicit design target. However, many natural and artificial systems experience a
breakdown in their modular pattern of connections, which has been associated to failures in hub
nodes or the activation of global stress responses. In spite of its importance, no general theory
of the breakdown of modularity and its implications has been advanced yet. Here we propose
a new, simple model of network landscape where it is possible to exhaustively characterise the
breakdown of modularity in a well-defined way. We found that evolution cannot reach maximally
modular networks under the presence of functional and cost constraints, implying the breakdown
of modularity is an adaptive feature.

Keywords: Modularity, Phenotype Network, Boolean Function, Evolution.

I. INTRODUCTION

Complex networks pervade the evolution and organi-
sation of a wide range of systems, from cellular or brain
webs to technological graphs. Their structure has im-
portant consequences for their stability, resilience and
fragility. Some particular properties of these networks
are very common, such as the presence of modular or-
ganisation (1–4). In modular webs, different subsets of
nodes display a higher integration among them than with
the rest of the system. This feature allows some degree
of segregation between different parts of the network and
has been suggested to be a prerequisite for the evolvabil-
ity of biological webs (5). Within the context of tech-
nological evolution, modular structures have been often
proposed as a target for engineering design.

Modules are also expected to play a key role in pro-
viding a source of specialisation, while their proper in-
terconnection guarantee integration at the system-level
scale. Both are needed in order to sustain proper func-
tionality and we need to understand both how modules
are generated and how their disconnection leads to func-
tional decay. An illustrative example is provided by brain
network topology or the so called connectome (6). Con-
nectomics has been a major breakthrough in pushing for-
ward a new approach to brain disease where both brain
areas and their connectivity patterns become integrated
in a single picture. Under this view, neurological dis-
orders including Alzheimer’s disease or schizophrenia to
challenged healthy cognition, such as in sleep or aware-
ness, can be understood in terms of faulty intermodule
communication (7–10). This failure can lead to the so
called breakdown of modularity (BM) first proposed in
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(11). It involves a transition from high modularity to
low modularity. Similar patterns can be found in other
areas, but no general theory of this phenomenon and its
implications has been advanced yet.

In spite of its importance, BM has received little atten-
tion and it is not well-understood. One important reason
of this is connected with the difficulties associated to un-
derstanding the mapping between structure (genotype)
and function (phenotype) in evolved networks. This is
specially difficult when dealing with a property as mod-
ular structure, and the need for understanding how and
when modular networks are expected to evolve and how
optimality is tied to modular architecture. For exam-
ple, it has been suggested that networks evolved under
”modularly varying goals” must be modular (17). Specif-
ically, computational experiments showed that optimal
networks are non-modular whenever the goal was kept
fixed or under randomly varying goals (with no com-
mon subgoals). However, Clune and co-workers have
shown that modular networks evolve even in the pres-
ence of fixed and modular input-output mappings (18).
Here modular patterns would be the byproduct of a cost-
dependent selection process. More generally, when deal-
ing with evolving networks, an important question is the
role played by modular structures in enhancing robust
functionalities and how modular structures are associated
to evolvable designs. In other words: is the landscape of
modularity associated to Boolean functions smooth? Are
optimal modular solutions always tied to efficient func-
tions and evolvable architectures?

In order to address these limitations, a simple case
study that can be systematically explored would be de-
sirable. Here we propose such a toy model of network
landscapes where it is possible to exhaustively charac-
terise BM in a well-defined way. In this context, it is
worth noting that BM seems to be a common feature of
computational systems (11; 14). Because computation-
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FIG. 1 Different representations of a Boolean function. (A)
Each function has ν = 3 variables named a, b and c. The truth
table specifies the value fµ(a, b, c) ∈ {0, 1} for each of the 23

possible combinations of 3 binary inputs (columns). Combi-
nations corresponding to fµ = 1 are called minterms. A func-
tion is identified by its designation number X = 11101010
(last row). More readable representations are the full (top)
and minimized (bottom) disjunctive normal forms. (B) Hy-
percube consists of the set of terms (nodes), minterms (gray
nodes) and the edges connecting the closest terms in the func-
tion. (C) A feed-forward Boolean network (FFBN) is a di-
rected network made up of logic gates and wires that imple-
ment the function. The figure shows the FFBN of minimal
cost.

related networks can be seen as instances of functional
Boolean processes performed on well-defined circuits, a
minimal case study can help to gain insight into the role
played by modular architecture. Specifically, we consider
the set of minimal Boolean feed-forward networks imple-
menting the 28 = 256 Boolean functions fµ with 3 input
variables, i. e. the mapping

fµ : Σ3 → Σ

where Σ = {0, 1} is the Boolean state space. Such kind of
Boolean representation has been widely used in the study
of evolved networks and in different contexts, including

cellular circuits (12) or pattern-forming genetic circuits
(13). A systematic exploration requires necessarily a lim-
itation of the combinatorial space to be analysed. How-
ever, relevant computational spaces and specific cases can
be observed even in the simplest networks (19). Our
analysis suggests that the optimisation of specific input-
output mappings is not always compatible with highly
modular structures and how the BM might be an adap-
tive feature.

II. FEED-FORWARD BOOLEAN NETWORKS

The model used here is based on Boolean logic (20),
which has been used in the modelling and analysis of the
flow of information in natural and artificial systems, such
as gene regulatory networks (15; 16). A Boolean func-
tion can be represented using a truth table, functional
forms and networks and it is worth noting that, despite
the Boolean picture is a necessarily simple, neural and
genetic networks display nonlinear functional responses
that ultimately involve an almost all-or-none behaviour.
The interactions between these representations reveal the
presence of functional constraints in the organization of
complex systems (see below).Our truth tables give the
value for the function fµ(a, b, c) ∈ {0, 1} for each possi-
ble combination of the inputs a, b, and c. The function
is identified by its designation number

X = fµ(1, 1, 1)fµ(1, 1, 0)...fµ(0, 0, 0)

that is, the binary sequence of all function values (see Fig-
ure 1A). We can achieve more readable (but ambiguous)
expressions using functional forms. The full disjunctive
normal form (Figure 1A top) is the sum of elementary
products (terms) corresponding to input combinations on
which fµ is true (minterms). For example, the minterm
abc represents the combination 111, ab¬c represents 110
and so on.

A common network representation of a Boolean func-
tion is the simple feed-forward Boolean network (FFBN)
without no feedback loops. We focus on a subset of the
function space fµ : Σ3 → Σ involving all the FFBNs that
compute single-output Boolean functions fµ : {0, 1}ν →
{0, 1} with ν = 3 input variables and one output. The
FFBN is a directed graph in which all the nodes carry
the labels of negative-AND (NAND) gates while input
nodes carry the labels of input variables.

Formally, a directed network G = (V,E) consists of a
set of nodes vi ∈ V and a set of edges (vi, vj) ∈ E. The
adjacency matrix A = [Aij ] has elements such as Aij = 1
if there is link (i, j) ∈ E and Aij = 0 otherwise. The size
of the network is the number of nodes N = |V | (logic
gates) that it contains. The number of links is the sum

L =
∑
ij

Aij

In the following, we will study the undirected version
of the FFBN. The network is undirected if for each edge

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 25, 2017. ; https://doi.org/10.1101/142174doi: bioRxiv preprint 

https://doi.org/10.1101/142174


3

(vi, vj) ∈ E there is another edge (vj , vi) ∈ E. An undi-
rected network has m = L/2 edges. We also define the
degree ki =

∑
j Aij as the number of edges attached to

the vi node. The average degree of the network

〈k〉 =
1

N

∑
i

ki = L/N

measures the overall connectivity in the system and it is
one of the main network parameters.

We will also be interested in measuring the flow of
information in the network. The path length is a mea-
sure of the distance between nodes in the network. The
length l of a path is the number of edges traversed along

the path. Let’s define N
(l)
ij as the number of paths of

length l that relate any pair of nodes vi and vj . Among
all the alternative paths, we choose the path of minimal
distance (or geodesic path), which defines the shortest
path distance d(i, j) or the smallest value of l such that

N
(l)
ij > 0. The average path length of a graph (or net-

work diameter) provides a measure of network efficiency
and it is defined as follows:

〈d〉 =
1

n(n− 1)

∑
i,j

d(i, j) (1)

where the normalization term discounts the influence
of nodes on themselves.

III. FUNCTIONAL MODULARITY

The main goal of this paper is to characterise the land-
scape of Boolean functions associated to our system, and
specifically the modularity of neighboring functions and
how is the modularity of the circuit implementing each
function with its one-bit neighbours. Given a decom-
position of the network into a set of subgraphs Ci, the
degree of modularity Q associated to this partition can
be measured as follows (28):

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δ(Ci, Cj) (2)

where ki =
∑
j Aij is the number of connections attached

to the i-th node (or node degree), Ci is the partition
the i − th node belongs to and δ(x) = 1 is x >= 1 and
δ(x) = 0 otherwise. Here, we use the Louvain method for
community detection in order to find the optimal parti-
tion of the FFBN that maximizes the modularity value
(29).

Our hypothesis is that functional requirements con-
strain structural modularity, that is, evolution cannot
reach maximally modular networks under the presence of
functional constraints. In this case, we can define a func-
tional (or phenotype) modularity or upper bound for the
network (or genotype) modularity (2). However, several

genotypes (FFBNs and functional forms) can be found
for the same phenotype. When there is representation
ambiguity, we often prefer shorter or minimized forms
among all the alternatives. For example, a shorter func-
tional form (Figure 1A bottom) divides the support of
fµ into groups (red circles and blue squares) that exploit
functional symmetries (30; 31).

Similarly, engineers are often concerned with the prob-
lem of obtaining the most economical design for elec-
tronic circuits. We define functional modularity Q(X) as
the modularity of the FFBN with minimal cost L + N
or sum of number of logical gates and wires (see Figure
1C). The minimization of Boolean functions is a hard
problem (in general) and there is no simple way to obtain
the optimal solution (20). Following (21), we perform an
exhaustive search to obtain the optimal solution for each
of the 256 Boolean functions of 3 variables (see SM for a
detailed listing).

IV. PHENOTYPE NETWORK

In order to uncover the relationship between modular-
ity and functional requirements, we will make use of the
concept of phenotypic network. A phenotypic network
is a graph whose nodes represent (in our case) Boolean
functions and where two functions are connected if they
differ in only one minterm of the full disjunctive nor-
mal form. In this metagraph, each node maps a func-
tion onto its genotype (a FFBN). The notion of phe-
notypic network is derived from the conceptual frame-
work associated to genotypic and phenotypic spaces pro-
posed by several authors (22–27). The hypercube is also
related to the above definition. The hypercube Qν is
a network of 2ν nodes represented by binary sequences
Si = (si1, s

i
2, s

i
3, ..., s

i
ν) where sik ∈ Σ = {0, 1}. The edges

of the hypercube connect nodes whose sequences differ
in exactly one bit, i.e., there is an edge (Si, Sj) ∈ Qn
when dH(Si, Sj) = 1. Let’s define the Hamming distance
dH(Si, Sj) between any pair of sequences as follows:

dH(Si, Sj) =
ν∑
k=1

|sik − sjk| (3)

In addition, every Boolean function can be represented as
a subgraph of the hypercube (35) (see Figure 1B). Func-
tions in the phenotype network are labelled with its des-
ignation number (a binary sequence) and thus, adjacent
functions can be formally defined using the Hamming dis-
tance between the corresponding designation numbers.
The only relevant difference between the standard hyper-
cube and the phenotype network is that the same func-
tion can be represented with several nodes (genotypes).

Figure 2 maps the space of all reachable Boolean func-
tions with 3 input variables. Even in this case, which is
small and might not seem so relevant, several key classes
of functions and circuit designs are involved (see below)
either as single networks or as part of larger webs. These
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FIG. 2 Phenotype network showing all reachable Boolean functions of 3-inputs. Each function fµ is labelled with its designation
number X and mapped onto a minimal FFBN. Edges connect pairs of functions fµ and fY with Hamming distance dH(X,Y ) =
1. Node colour depicts functional modularity, i.e., the modularity value of the minimal FFBN (see text). The black square and
circle mark the location of the majority and the multiplexor function, respectively.

maps reveal several interesting features. First, a few
functions appear several times in the network because
they have more than one minimal FFBNs. For example,
the function f10000110 accepts three different genotypes
with the same minimal cost (they are displayed at the
bottom left of Figure 2). Second, the network only con-
siders 80 different functions out of the 256 logical func-
tions of 3 variables. Two functions are equivalent and
belong to the same class if one can be obtained from
the other by a permutation of the input variables. We
have discarded from any consideration functions that are
equivalent to any class representative (21) (the SM lists
the equivalence classes of functions).

V. ADAPTATION AND THE BREAKDOWN OF
MODULARITY

The phenotype network maps the pathways to an even-
tual BM. Specifically, we can check if it is possible to

evolve a less modular target function from any other
source function. The distribution of modularity values
P (Q) in this space has a well-defined peak with mean
〈Q〉 ≈ 0.2 (see Figure 3A). However, the variance dis-
played by this distribution suggests the possibility that
BM is widespread. Specifically, we can find five func-
tions with minimal modularity (Q(X) ≈ 0) that can be
accessed from different neighbourhoods of the phenotypic
space (see yellow region in Figure 3B).

There are also highly modular functions surrounded
by modular neighbours. To illustrate this behaviour, we
have chosen two important functions, namely the multi-
plexer (see Figure 4A) and the majority function (see Fig-
ure 4B). Both circuits have special relevance in both elec-
tronic designs and in synthetic biology (? ) Each of these
functions can be accessed in a few mutation steps from
functions with higher modularity, i.e., Q(10101110) ≈ 0.3
and Q(00000111) ≈ 0.3, respectively. At least in these
two cases, the evolution of useful functions is coupled to
a reduction in modularity. These examples suggest how
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FIG. 3 Statistical properties of the phenotype network: (A)
distribution of modularity values and (B) correlation between
node modularity and the average modularity of its near-
est neighbours. The lack of correlation suggests the break-
down of modularity is not a specific property of some sys-
tems/environments. Green circles depict the location of two
highly modular functions.

adaptation might lead to a BM. A decrease of functional
modularity takes place when the evolutionary goal is non-
separable, i.e., the computation of the output requires the
interaction of several inputs. For example, the majority
function is a global computation that combines all input
variables to obtain the output. Similarly, consciously ef-
fortful tasks (like working memory) are expected to break
the modularity of neural systems (38).

How can we relate functional characteristics with the
breaking of modularity? Figure 3B shows the absence
of a clear correlation between the modularity of specific
Boolean functions and the average modularity of its near-
est neighbours in the phenotype network. Additional net-
work analyses might be helpful to understand this pat-
tern. In a previous study, we have suggested that the
BM is related to the small-world behavior of complex net-
works (11). Software projects have a natural tendency to
become disordered structures (41; 48). This degradation
is caused by widespread software changes and indirect
dependencies between unrelated pieces of code.

These changes in modular organisation have impor-
tant implications for both engineering and evolved cir-
cuit designs. In this context, it was early suggested that
software design is an instance of a multi-objective op-
timization process (36). When designing softare, there
is a tradeoff between efficient communication and sep-
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FIG. 4 Evolving specific functions might involve a breakdown
of modularity: (A) the multiplexer function has functional
modularity Q(10101100) < Q(10101110) and (B) the major-
ity function has Q(00010111) < Q(000000111). These target
functions can be evolved from more modular ancestors, that
is, functions with specific groups of inputs affecting different
groups of outputs. Blue arrows represent edges in the pheno-
type network or the specific changes transforming the source
function into the target function. Each function is represented
with their minimal normal disjunctive form (top), hypercube
(middle), and minimal FFBN (bottom).

aration of functional tasks (i.e., modularization). In-
deed, small-sized software architectures are trees (as one
should expect from optimization leading to hierarchical
structures) but clustering emerges at larger sizes. As the
number of components increases, conflicting constraints
arise between different components that would prevent
the reaching of an optimal solution. A need to exchange
information between distant parts of a system can lead
to a modularity reduction.

The minimization of FFBNs is a similar problem. We
can check there is a positive correlation between the av-
erage path length and the modularity of minimal FFBNs
(see Figure 5A). Modularity leads to an enlargement of
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FIG. 5 Balance between network diameter and modularity in Boolean networks. (A) Correlation between network diameter
and modularity indicates that network diameter has to be sacrified to obtain modular networks.(B) The average degree 〈k〉
separates the functional space in two main classes according to their minimal FFBNs showing tree-like (〈k〉 ≤ k∗ ≈ 1.75, cyan
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the multiplexer (F) and the ancestor function (E) are also shown. Blue line in (A) and (B) correspond to the edge (f10101100,
f10101110) in the phenotype network.

the network diameter because there are more pairs of dis-
tant nodes accross modules than within modules, that is,
we can associate the breakdown of modularity to a reduc-
tion of the average path length (1) in the network. For
example, the addition of a link between the two branches
of the multiplexer (see Figure 4A) leads to a sharp de-
crease of its average path length. Interestingly, highly
modular functions are those having the minimal number
of dependencies between the variables (and thus low av-
erage degree). Highly modular networks have a tree-like
architecture (37) while the presence of functional con-
straints creates a larger density of connections and a more
regular (or lattice-like) topology (see Figure 5). That is,
the relationship between network efficiency and modular-
ity reflects the trade-off between function and robustness
and evolvability.

VI. DISCUSSION

The interplay between fitness and system-level prop-
erties such as modularity has been investigated in nat-
ural and artificial designs. Simon proposed that nearly
decomposable systems composed by independent mod-
ules allow faster adaptation to highly fluctuating envi-
ronments (39; 40). A modular architecture allows inde-
pendent changes in different parts of the system without
affecting the whole. Well-adapted modules are conserved
and provide a robust infrastructure for future adapta-
tion. This poses a puzzle because modular architectures
cannot be always maintained or reached in artificial evo-
lution. For example, evolutionary algorithms often yield
designs that are not decomposable and it is difficult to
understand the way these systems work. In software en-
gineering, even if a modular design is provided as initial
solution, development rapidly moves to entangled and

monolithic solutions (41).
Here we have proposed that the breakdown of mod-

ularity takes place because there are changes in the fit-
ness function, e.g., a shift from a well-known environ-
ment to a less predictable environment. There are func-
tional constraints to network modularity. For example,
tasks involving non-separable input-output mappings like
learning a color naming task with interference, evolving
a robust metabolic network in a highly fluctuating en-
vironment (47) or developing software under constantly
changing requirements do not seem to evolve modular
networks. Everything is a novelty for a network exposed
to a highly fluctuating environment and thus, it makes
little sense to maintain costly memories for reusing past
information. In a highly fluctuating environment, the
only requirement for survival is to issue fast responses
and quick adaptations. The lack of memory imposes a
strong constraint on the complexity of evolved structures.

The reduction of modularity has to be contrasted with
existing theories for the emergence of modularity (51).
For example, the breakdown to modularity does not re-
quire a change from a modularly changing environment
(17) to another static environment. Introducing an addi-
tional, temporal dimension in the fitness function is likely
to internally decouple the system (and thus creating the
possibility of increasing modularity). Moreover, looking
at a few case studies does not enable a full understand-
ing of how and when modular networks are expected to
evolve. Instead, we have proposed a simple model of net-
work landscape where it is possible to exhaustively char-
acterise the breakdown of modularity in a well-defined
way and studied the influence of functional and cost con-
straints.

The study of biological networks requires the exam-
ination of the interactions between modularity, network
diameter and function. The phenotype space can be clas-
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sified in two types of functions depending if the mini-
mal FFBNs (genotypes) is a sparse or a dense network.
Sparse genotypes have treelike topologies and their com-
putation involves minimal input interaction. On the
other hand, the modularity of dense networks drops with
the increasing number of distant interactions. Some of
the sparse networks are also maximally modular in our
system, contradicting the intuition that modularity de-
pends on densely intra-connected communities. It can
be shown that tree modularity is significant even when
they are made of sparse modules (37). Nodes in sparse
trees acting as bottlenecks are sufficient to achieve high
modularity values. The above suggests that we have to
extend our definitions of modularity to take into account
different measures of internal network connectivity.

Finally, our results might be useful to understand the
limits of the hypothesis put forward by Simon. The anal-
ysis of the phenotype network reveals how the break-
down of modularity is more likely to take place from
regions of the landscape populated by highly modular
functions. Although neutral models suggest that tinker-
ing increases the possibilities to discover such modular
designs (49; 50), the structure of the phenotype network
suggests that it is not always possible to avoid the break-
ing of modularity. Sometimes modularity is not so ben-
eficial. The evolution of novelties (52) requires the inte-
gration of many different sources of information in order
to obtain coherent system changes.
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